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Ein Beispiel zum Nukleon-Vertex
von Res Jost, ETH., Ziirich
(6. I1. 1958)

Zusammenfassung: Es wird an Hand eines Beispiels gezeigt, dass die lokalen
Vertauschungsrelationen und das Massenspektrum zur Herleitung der Dispersions-
relation fiir den Nukleon-Vertex nicht hinreichen.

§ 1. Einleitung

Analytizititseigenschaften von Streuamplituden und verwandten
Grossen erfreuen sich seit einiger Zeit unter dem Namen «Dispersions-
relationen» (D.R.) einer zunehmenden Beliebtheit. Man kiimmert sich
dabei weniger um die Herleitung solcher Beziehungen, sondern man dis-
kutiert Streuexperimente unter dem Gesichtspunkt ihrer Giiltigkeit. Da-
bei ist freilich zu beachten, dass die D.R. in den meisten Fillen so
schwache Aussagen sind, dass sie durch das Experiment weder bewiesen
noch widerlegt werden konnen. Sie miissen daher durch zusétzliche Be-
trachtungen iiber die Matrixelemente selbst erginzt werden. Diese Pro-
bleme sollen aber hier nicht diskutiert werden.

Vielmehr wollen wir uns mit der Frage der Herleitbarkeit der D.R.
befassen. Die bekannten gelungenen Herleitungen beruhten auf der
mikroskopischen Kausalitdt der zugrunde gelegten Feldtheorie und der
Ausniitzung des Massenspektrums?!)?). Voll ausgeniitzt wurden die bei-
den Voraussetzungen bisher in keinem Fall. Wir werden aber sehen, dass
sie fiir den Beweis der D.R. fiir den Nukleon-Vertex nicht ausreichen.
Eine dhnliche Situation besteht in der Nukleon-Nukleon Vorwirts-
streuung.

Uber den Nukleon-Vertex ist das folgende bekannt?): Falls das Ver-
hiltnis der 7-Masse u zur Nukleonmasse M grosser als /2 — 1 wiire, dann
gdbe es eine D.R. Wir werden zeigen, dass aus mikroskopischer Kausali-
tit und Massenspektrum eine D.R. nicht folgt, sofern das erwidhnte
Verhiltnis kleiner ist als 2/)/38 — 1. Dies ist tatsdchlich der Fall. Die an-
gegebene Schranke fiir das Massenverhiltnis ist nicht optimal.
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Es lohnt sich vielleicht, die Verhiltnisse etwas naher zu beschreiben,
soweit das beim unbefriedigenden Stand der Dinge moglich ist. Wahrend-
dem die Vertex-Funktion I" (w) fiir /M > )2 — 1 in einer von w =
(2u)* bis oo langs der positiven reellen Achse aufgeschnittenen Ebene
reguldr ist, ist dies bei abnehmendem u/M nicht mehr notwendigerweise
der Fall. Das Regularitdtsgebiet wird dann (in einer bisher unbekannten
Weise) z. T. durch Kurven begrenzt, die nicht ausschliesslich Stiicke der
reellen Achse sind. Natiirlich kann man immer auf das tatsdchlich
vorhandene Regularitidtsgebiet die Cauchysche Formel anwenden und
derart eine verallgemeinerte D.R. herleiten.

Mit allem Nachdruck muss aber festgestellt werden, dass unser Bei-
spiel nur zeigt, dass aus gewissen Annahmen die D.R. fiir den Nukleon-
Vertex nicht folgt. Diese Annahmen sind durchaus nicht erschépfend.
Zum Beispiel ist die Unitaritit der S-Matrix nicht darunter enthalten.
Stellt man sich etwa auf den Standpunkt der Feldtheorie von LEHMANN
et al.3), so dussert sich dieser Umstand darin, dass das Gleichungssystem
tiir die 7-Funktionen nur zum geringsten Teil ausgeniitzt worden ist. Es
ist durchaus moglich, dass die Beniitzung dieses Gleichungssystems die
Situation radikal dndert.

Welchen Wert man der Tatsache beimessen soll, dass die betrachtete
D.R.in jeder Ordnung der Stérungsrechnung richtig ist*), wird hier nicht
entschieden.¥)

Unsere Uberlegungen werden fiir 3 skalare Felder 4(x), B(x) und C(x)
~ durchgefiihrt. Dabei sollen B(x) und C(x) Teilchen der Masse M = 1 be-
schreiben. Sie stehen fiir das Nukleon-Feld. A4(x) steht etwa fiir das
Mesonfeld und beschreibt Teilchen der Masse u.

§ 2. Die Beziehungen zwischen den Dreipunktfunktionen

In diesem Paragraphen fithren wir die verschiedenen Dreipunktfunk-
tionen ein, diskutieren ihre Eigenschaften und leiten die zwischen ihnen
bestehenden Relationen ab?)%)8). Zugrundegelegt werden 3 lokale, skalare
Felder A(x), B(x) und C(x).

Definitionen:
W pc(to — %1, 21 — %5) = (A (24) B (#1) C (%5) > (1)
Gapc (X9 — %1, %5 — %) = {[A (%) B (21) ] C (%2) Do (2)

?ase (%o — %1, X — %) = O (x9— %) O (%7 — %)
Gpc (%o — %1, X1 — %) + O (xg — x5) O (x5 — #y)
GABC (g ~— Xay Ty — ¥g). (3)

*) Siehe Anmerkung bei der Korrektur.
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Eigenschaften: Da unter unseren Voraussetzungen die CT P-Invarianz
besteht, gelten

Wypc (& 1) = Wepy (1, §) (4)
Gapc (— & —n) = Gapc (& 9) (3)

Ausserdem folgen aus den Definitionen
Gape (%o — %y, %y — 25) = — Gy (%7 — %o % — xz)‘ (6)

Yapc (Xp — %, Xg — %) = Y4cn (g — Fss g — %) (7)

Wegen Lorentz-Invarianz und ILokalitit sind die eingefithrten Funk-
tionen selber Lorentzinvariant und es gelten weiter

Gupc (6, m)=0falls2<<O0oder{72<<Ound (£+1)2<<0} (8)
74pc (&) =0falls £V, oder n €V,. 9
Aus den fiiblichen Voraussetzungen iiber das Spektrum hat man weiter*)

W, pe(p, q) = O fir p &V, oder g &V, (10)

Gape (b, q) = 0 fiir ¢ < 0 oder { p* << Ound (¢ — p)2 < 0}.  (11)

(10) und (11) gestatten oft Verfeinerungen. Diese werden sich im folgen-
den als entscheidend erweisen. Im allgemeinen hat A4 (x) Matrixelemente
zwischen dem Vakuum und den Ein-Teilchen-Zustianden der Masse M .
Diese sind fiir uns ohne Interesse, und wir denken sie uns im folgenden
durch die Anwendung eines Klein-Gordon-Operators entfernt. Dagegen
ist es wichtig, bei welcher Masse das Kontinuum der Mehr-Teilchen-
Zustdnde einsetzt. Dies geschehe bei einer Masse m,. Dann gelten zu
(10) und (11) die Verschiarfungen

¢ (p, @) = 0 fiir p << mj oder g < m¢ (10°)
s apc (B, ) = 0 fiir g2 << m oder

{#o < mund (g — p)* < m}. (ar)
Schliesslich erfillt G 50 (xy—2,, x,—2%,) die Jacobische Identitit. Es gilt

Gapc (%o — %1, %y — %g) + Gy (%1 — %, X9 — %) +
Geap (2 — %9, £y — %1) = 0. (12)

*) F (p, q) steht fiir die Fourier-Transformierte von F(§, n).
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Relationen: Offenbar bestimmen die Wightman-Funktionen W,z
die zwei andern Systeme von Dreipunktfunktionen vollstindig. Uber sie
setzen wir die Eigenschaften, die aus Lorentzinvarianz, Lokalitit und
Spektrum folgen, voraus. Das nichste Interesse gilt dann der Frage, die
Funktionen G, - so zu charakterisieren, dass es zu ihnen Wightman-
Funktionen der vorausgesetzten Art gibt.

Wir behaupten, dass die Eigenschaften (5), (6), (8), (11) und (12) dazu
hinreichen. In der Tat, falls wir definieren

Wine®0) =0 (9) O (p— 9 Gage (. 9)

~

+ 0 (p) O (g—7) Gopa (7. 7) (13)
so ist W zc (p, g) kraft der Jacobi-Identitit

Gapc Q)+ Grea(@—po—B) + Goup—a.p—) =0 (14)

und dank (5) und (6) lorentzinvariant. (11) garantiert (10). Ausserdem
wird (2) in Wightman-Funktionen ausgeschrieben zu einer Identitit. Die
Lokalitit ist trivial durch (8) ausgedriickt.
Endlich fragen wir uns nach den Eigenschaften, die 7,5, haben muss,
damit dazu ein G, 5. mit den Eigenschaften (5), (6), (8) und (11) gehort.
Wir setzen anfangs lediglich (7) und (9) voraus und definieren

G ype (%9 — %1, B1— %a) =7 g o (¥o— X1, Ko — %) + ¥ gc(¥1 — %o, X3 — %)

— Ppac (%1 — %o, %y — Xo) —Tpyc (Ko — %1, Xy — %4). (15)
Dadurch werden (5), (6), (8) und (12) erfiillt. (11) wird nach der Substi-
tution von (15) als Bedingung fiir 7, 5:(§, ) aufgefasst. Diese bedeutet,

dass N N
Yapc @ — 0.9 +745c(—P+ 9 —9)

- 77BAC (— 2,9 — 77}5»1(: (7, —q9 =0 (16)

unter den Vorasussetzungen von (11) und (11').

Nun ist nach BARGMANN, HALL und WIGHTMAN?) 7,4 z¢(p, ¢) Randwert
einer analytischen Funktion der Quadrate $2, ¢%, (p + ¢)% Wir bezeich-
nen diese Funktion mit f,pq(w,, w, ws). Ein einfaches funktionen-
theoretisches Argument zeigt, dass (16) d4quivalent ist zu

fABc (w1, wy, wy) = fBAc (w3, w5, wy). (17)

Ausserdem gilt (7), welches aussagt, dass

fagc (@), Wy, w3) = Tacp (@, wy, wy). (18)
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(17) und (18) gelten natiirlich nur in den Regularititspunkten von f. Thr
Sinn ist, dass die verschiedenen Funktionen f sich durch eine einzige
analytische Funktion ausdriicken lassen.

Im Beispiel werden wir (17) und (18) dadurch befriedigen, dass wir
alle Funktionen fyy,(w,, ws, w;) gleich einer in w,, w,, w3 Ssymmetrischen
Funktion f(w,, w,, w;) setzen werden.

Diese Funktion muss regulir analytisch sein fiir Werte, die sich wie
fogt darstellen lassen

wy = (pr+ ipy)® Wy = (q1+1¢5)* wg = (p1+ 1+ 1pa+14)? (19)
wobei p, € V, und ¢, € V,. Ausserdem werden wir zu verifizieren

haben, dass (16) unter den Bedingungen von (11) und (11°) erfillt sind.

Die Vertex-Funktion schliesslich ist durch
I'y(w) = f4p¢ (M;, Mg’ w) (20)

definiert. Unser Beispiel wird M ; = M annehmen und diese Masse auf
1 normieren.

§ 3. Abschitzungen uber das Regularititsgebiet von f (w,, w,, w;)

Das durch (2.19) charakterisierte Gebiet ist vollstindig bekannt?). Fiir
unsere Zwecke ist es aber bequemer, nur mit einer Approximation dieses
Gebietes zu arbeiten. Die nétigen Abschdtzungen werden in diesem Para-
graphen hergeleitet.

Uns interessiert nur derjenige Teil des Regularitatsgebietes, fiir den
u, > 0 fiir £ = 1, 2, 3. Dabei ist w,, = u, + v, gesetzt. Diese Einschrin-
kung bedeutet offenbar

Pr>p5>0, 41> g5> 0, (py+ ¢1)2> (Pa+ ¢)2 >0 (1)

d. h. #4, g, und $; + ¢, sind immer zeitartig.
Unter dieser Einschrankung gelten die folgenden Abschitzungen:
1. Abschitzung: Falls v; > 0 und v, > 0 dann ist 3 < (Y1, — Juy)?.

Beweis: Zunichst folgt aus v, > 0, dass p, € V', und aus v, < 0, dass
g, € V_. Zu zeigen ist dann

(br0) — ra) >VEi— 23V — 65 @
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Das Minimum der linken Seite bei fester rechter Seite wird offenbar fiir
P = — A g, und p, = u g, erreicht. Dann bedeutet (2)

pE+Ag> Vg — @V e — & (3)
was erfillt ist.

2. Abschitzung: Falls v; > 0, v, << 0 und vy > 0, dann ist #, — u, > 0.
Beweis: Es ist
Uy — g = P} — P — q1 + G5

=[(p1+ )2 — o+ 0)2] + 2G5 (po + 92) — 21 (1 + q0)- (4)

Nun bedeutet vy > 0, dass p, + ¢, € V. Andererseits ist ¢; € IV_. Daher
1st jeder Term der rechten Seite positiv.

3. Abschdtzung: Falls v; > 0 und v, > 0, dann ist auch v, > 0. Falls
ausserdem noch Re w; w, = u; uy — v; v4 > 0, dannist auch ug — u; — u,
> 0.

Beweis: Aus der Voraussetzung folgt, dass p, € V', und ¢, € V.. Daher

ist v3 = 2 (p1 + ¢1) (P2 + ¢2) > 0.
Nun soll weiter gelten

(pF — 13 (g; — 43) — 4 (Pr#2) (11 92) > O (5)
und daraus soll
ty — sy — Uy =2 ((p1 1) — (P2 ¢2)) > 0 (6)

folgen. Bezeichnen wir den (hyperbolischen) Winkel zwischen $, und p,
mit y; (x; ~ 0) und analog den zwischen ¢; und ¢, mit y,, dann lautet (5)

(B2 — D) (@ — ) — 4 VP2 25 % Ch 2, Ch 2y > 0. (7)

Setzt man weiter ¥; = <L p; ¢ und ¥y, = < p, q,, dann gilt ¥y < 1+ + ¥y
also

Uy — Uy — Uy = 2 (VEE% Ch¥,— V??qg Ch Tz]
=2 [Vpigl Ch¥ -V i Chip+ e+ P

>2(Vpiq? —4VpiaE Chyy Chy) Ch W, (8)
und mit (7)

ug—ul—u2>v—j)iz-q—_;mq%— #-12)(@E—@]>0 (9
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§ 4. Das Beispiel

Es seien a > 0, b > 0 und ¢ > 0. Ausserdem werde d = b + ic ge-
setzt. Weiter sei

z:x+iy=]/7].:i_—_a2—w- (1)

wobei die Wurzel fiir positiven Radikanden positiv gewahlt ist.
Wir setzen dann (siehe § 2 Ende)

! (wy, wy, wy) = (2, + 25 + 23 — d)7! (2)

und behaupten, dass diese Funktion in dem im vorigen Paragraphen
diskutierten Gebiet reguldr sei, falls nur

14+ a%—(b+c¢2>0 (3)

ist. Eine Singularitdt tritt in (2) auf, falls 2y + 2, + 23 = 4 ist. Da aber
(1) die Geschnittene w-Ebene auf Re z > 0 abbildet und uns Singulari-
tdten nur interessieren, falls sie in der geschnittenen Ebene liegen, kén-
nen wir uns auf solche beschranken, fiir die gilt 0 < Re z, < b. Dieser
Streifen aber wird durch die Umkehrung von (1) auf das Innere einer
nach rechts offenen Parabel mit Scheitel in w = 1 + a% — b2 > 0 abge-
bildet. f (w,, w,, w;) hat also nur Singularititen, falls gleichzeitig
u;, > 0 fir £ =1, 2, 3. Das war die Voraussetzung, unter denen die Ab-
schatzungen des § 3 hergeleitet wurden.

Jetzt definieren wir z; = d — 2, — 2z, und entsprechend
wy =1+ a%— (d — z; — z,)% 4)

Nun wollen wir zeigen, dass der Punkt w; =1+ a% — 2%, w, =
1 + a® — 22 und w, unter keinen Umstianden die Abschitzungen aus § 2
erfiillt.

Zuerst untersuchen wir, unter welchen Bedingungen die 1. Abschit-
zung verletzt ist. Dort ist die wesentliche Voraussetzung v; v, < 0,
welche sich auf y; y, << 0 abbildet. Weiter schreiben wir die 1. Ab-
schitzung passend u; + u, — 43 > 2 )/u, u,. Es ist dann zu untersuchen,
wann die umgekehrte Ungleichung gilt.

Nach (4) und (1) wird
Uy + Uy — g =1+ a% — b2+ 24+ 2 (b — x;) (b — xy)

—2(c—m) (c—ys) (5)
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andererseits aber

Vi Vg = Vit a2 =+ 52 V14 a8 — 5 + 33
=Vi+a—2Y1+a2— a2+ | 19 |

Viba2—b2t (02— a2 V1-+a2— b2+ (62— x) — v, v,

%

ST 7 S 3 T s ©

wobei die Schwarz’sche Ungleichung und die Beschrinkung 0 <x, < b
verwendet worden sind. Anwendung der letzten Tatsache liefert weiter

Vuyus =1+ a® — 024 (b— x,) (b— %) — ¥1 Va. (7)

Vergleicht man (5) mit (7), so findet man, dass uy + uy — 13 < 2 }/1; uy
falls nur a2

+a*—-b+c¢
B 1 oy S mEg R (8)

ist.

Jetzt wird gezeigt, dass in den verbleibenden Fillen mit y; y, << 0 die
2. Abschitzung verletzt ist. Wir setzen also die Negation von (8) voraus.
Den Voraussetzungen der 2. Abschitzung entspricht y, < 0, v, > 0.

Dann wird

1+ a%-02%+ c?

Yg=C— Y1 — Ve =C— <0 (9)

ds
was im Einklang steht zu vy > 0. Aber jetzt wird

Uy — g = — (¥ + %) (¥; — %) + (V1 + ¥2) (V1 — ¥a) = 0% — (¥1 + ¥3)?

1 taz—z (f +9 P (10)

<

und das steht im Widerspruch mit der 2. Abschitzung.

Zum Schluss bleibt noch die Diskussion des Falles v, v, > 0 oder
vy Vg = 0. Gemiss der 3. Abschiatzung bietet nur der Fall Interesse, fiir
den auch v, v, > 0 oder y, y, > 0. Weil aber y; + vy, + y3 = ¢ > 0 muss
notwendig 0 < v, =< ¢. Unter dieser Voraussetzung wird

Ug— Uy — Uy = — [1+a2 — B2+ 2+ 2 (b — x) (b—xp) — 2]

<—[l4+a—p—c]<0 (11)

was der 3. Abschdtzung wiederspricht.
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Aus der eben durchgefiihrten Verifikation schliessen wir, dass
rpg) =tz —d)Tt (12)

die Fouriertransformierte einer invariant-retardierten Funktion ist. Wir
identifizieren sie mit den 6 Funktionen 7yy, aus § 2. Die Gleichungen
(2.16) sind dann erfiilllt, sofern nur $2 <1+ a2 ¢2 <1+ 4? und
(g — $)* < 1+ a2 ist. Unser Beispiel erfiillt also alle in §2 gestellten
Forderungen, falls 1 + a2 = m% fir X = 4, B, C.

Fiir die Vertex-Funktion ergibt sich mit M= M, =1
I'j(w)=(z+4 2a —d)L. (13)

I', (w) hat offenbar einen Pol bei 2 = d — 2a = b — 2a -+ ic. Dieser liegt
in der geschnittenen w-Ebene, wenn

b— 2a > 0. (14)

Die Existenz eines solchen Poles ist mit der Giiltigkeit einer Dipersions-
relation unvertriaglich. Diese Kalamitit kann in unserem Beispiel nur
auftreten, falls a? < !/, ist. Das bedeutet im Fall des Nukleon-Vertex

M+pu 2

was erfullt ist.

Es wiirde zu weit fiihren, wenn der Verfasser alle Physiker namhaft
machen wollte, denen er im Hinblick auf diese Arbeit verpflichtet ist.
Besonderen Dank schuldet er J. R. OpPENHEIMER, dem Direktor des
Institute for Advanced Study, fiir die Einladung zu einem lingeren Auf-
enthalt in Princeton und der National Science Foundation fir ihre finan-
zielle Unterstiitzung,

Anmerkung bei der Korvektur. Drei neue Arbeiten von R. Karprrus, C. SbMMER—
FIELD, E. WicaMaNN; Y. NaMBU und R. OuME (alle im Druck) befassen sich u. a.
mit der Vertex-Funktion in der niedrigsten stérungstheoretischen Naherung. Ver-
gleiche dazu auch G. KALLEN und A WicHTMAN®) (im Erscheinen in Kgl. Danske
Vidensk. Selskab, Mat.-fys. Medd.). Appendix III. Wiahrend die Autoren zu einer
betrichtlichen Klirung der Verhiltnisse auf der reellen Achse gelangen, bleibt das
eventuelle Auftreten komplexer Singularititen vollstindig im Dunkeln.
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vgl. ). Eine neue Arbeit von G. KALLEN und A. WicHTMAN wird viel tiefere
Resultate einer systematischen Untersuchung des Regularitidtsgebietes von
f(wy, wy, w,) enthalten.

Corrigenda HPA Vol. 31/1

S. 39. Tabelle B. Addendum: 10-% in den Spalten unter d(u’K), d(u’o) ,

(1,K) " %1,0) -

S.42. Fussnote %) soll heissen W. G. L. Jb. 1953... statt W.et L. Jb. 1953...
S.42. Fussnote 19) soll heissen Mehrparametrige... statt Mehrparametrge...
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