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Quantité d'information, et systèmes physiques

par L. Berger, Lausanne

(15 XII 1957)

The purpose of this publication is to show how the notion of 'quantity of information'

can be introduced, to describe statistical correlations between physical
systems.

This problem is treated in the classical case (systems which are caracterized by
c-numbers). Then it is treated in the quantum case (systems which are caracterized
by (/-numbers). In both cases, the time evolution of information is investigated, for
an isolated system. A conservation equation for information is derived.

Before that, the definition and mathematical properties of quantity of information

are briefly given. A definition is chosen, which explicitly shows two elements
on which information depends always; these elements are: the system which
contains information ('document'), and the system described by the information
('subject').

1. Introduction

Le but de cette publication est de montrer comment il convient
d'introduire la notion de «quantité d'information», pour décrire les

corrélations statistiques entre des systèmes physiques.

Ce problème est traité dans le cas classique (systèmes caractérisés par
des nombres c). Puis il est traité dans le cas quantique (systèmes
caractérisés par des nombres q). Dans les deux cas, l'évolution temporelle de

l'information est examinée, lorsque le système est isolé. On trouve que
l'information se conserve.

Auparavant, la définition et les propriétés mathématiques de la quantité

d'information sont rappelées rapidement. La définition qui est
choisie explicite deux éléments dont dépend toujours l'information; ces
deux éléments sont: le système qui contient l'information («document»),
et le système décrit par l'information («sujet»).
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2. Définition mathématique de la quantité d'information

Soit tout d'abord une variable continue et réelle x:

— oc < x < 4- oo

Soit une densité de probabilité p(x) définie sur la variable x:
— OO

/ p(x) dx — 1

— 00

Appelons entropie de la variable x le nombre Sx, s'il existe :

— oo

S* - I p(x) \o%p(x) dx (2.1)
—oo

Soient maintenant 2 variables continues et réelles x et y:

— oo <[ % < -y- oc — oo < y <[ 4- oo

Soit une densité de probabilité combinée p(x, y) définie sur l'espace
des paires (x, y) :

/ / p(x, y) dxdy 1

— OO — Où

Appelons entropie du système de variables x, y le nombre Sxy, s'il
existe :

— OO -foo

S xy — p(x,y) log p(x, y) dx dy (2.2)
— CO —00

Les variables x et y ont chacune une densité de probabilité projetée:

— OO -i-OO

r
p(x) / p(x, y) dy p(y) / p(x, y) dx

Selon (2.1.), chacune de ces deux variables a donc aussi une entropie
(si les intégrales existent) :

¦f00 +00

Sx -fp{x) log p(x)dx Sy=-Jp(y)\oEp(y)dy (2.3)
—oo —oo

Appelons alors information de la variable y sur la variable x la quantité
IxV"-

Ixy Sx +Sy—Sxy (2.4)



Vol. 31, 1958 Quantité d'information et systèmes physiques 161

Nous appellerons y le document, et x le sujet de l'information. Lxy
mesure les corrélations statistiques entre x et y*).

Remarquons que l'expression (2.4) est analogue à celle qui figure
dans le théorème fondamental de Shannon1) sous le nom de «rate of
transmission of information». Cependant, lorsque Shannon et d'autres
auteurs discutent les propriétés mathématiques générales de l'information,

ils le font2)4)6) sur une expression de la forme de (2.1.); le signe en
est d'ailleurs différent chez Shannon d'une part, et chez Wiener et
Brillouin d'autre part.

Employée comme mesure de l'information, l'expression (2.1.) présente
certains défauts, souvent signalés dans la littérature3)5). Certains au
moins de ces défauts semblent ne pas affecter l'expression (2.4.) ; cela
est dû au fait que (2.4.) précise et met en évidence les deux éléments
dont dépend toujours l'information, à savoir: le document et le sujet.

Il semble préférable à l'auteur de réserver le nom de quantité
d'information à des expressions de la forme de (2.4.).

3. Propriétés mathématiques de la quantité d'information

Enonçons brièvement les propriétés générales de l'expression (2.4.).
La plupart d'entre elles ont d'importantes conséquences dans les
applications à la Physique.

Ces propriétés découlent le plus souvent de propriétés de l'entropie
(2.1.), démontrées par Shannon ou Brillouin2)4).

Propriété a: Ixy Iyx.
Propriété b : 0 < Ix y < + oo.
Propriété c: Si p(x,y) p(x)p(y) (x et y statistiquement indépendantes)

alors : Ix y 0.

Propriété d : Si la variable z est une fonction univoque z z(y) de la
variable y, alors: Ixz < Ixy.

Propriété e : Si la variable z est une fonction biunivoque z z(y) de la
variable y, alors: Ixz= Ixy.

Par une généralisation évidente, il est possible de définir une information

lorsque le document (ou le sujet, ou les deux) est constitué par une
paire de variables. Par exemple :

Ixyz Sx + Syz — Sxyz (3.1)

Dans (3.1.), Sxyz est supposé défini par généralisation naturelle des

expressions (2.1.) et (2.2).

*) Bien que la définition (2.4) de l'information soit symétrique en x et y,
l'auteur préfère, pour diverses raisons, utiliser la notation dissymétrique Ix y.
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On a alors les propriétés suivantes :

Propriété f: Ixyz Lxzy.
Propriété g : Ix y z > Lx y. Ixyz>Lxz.
Propriété h: Ixyy Ixy.
Propriété i: Si la variable z est une fonction univoque z z(y) de la

variable y, alors: Ixyz= Lxy.
Définition j : On a en général: Ixyz ^ Ixy + Lxz.
Introduisons donc l'information d'interaction Jxyz des documents y et

z sur le sujet x, définie par:

ixy^ixy + ixz+Jxyz (3.2)

Propriété k: Si p(x,u,y,z) p(x,y)p(u,z) (paire (x,y) statistiquement
indépendante de la paire (u, 2)), alors: Ixuyz Lxy + Iuz.

Donc, dans ce cas : Jxu yz — 0.

4. La quantité d'information dans les systèmes physiques
classiques. Evolution temporelle

Soit un système physique classique a. Caractérisons son état à l'instant

t à l'aide de variables canoniques px, qx, pn, qn (nombres c).
Introduisons aussi une variable (ou système de variables) quelconque x

(nombre c). Cette variable est supposée ne pas dépendre du temps. Elle
décrit, par exemple, un certain événement qui s'est passé à un temps t0

fixé.
Supposons qu'une densité de probabilité p(px, qx, pn, qn: x) soit

définie sur l'espace des paires (a; x) (px,qx, ¦ ¦ ¦ pn, <ln- A-
Il est alors possible de définir Vinformation du système physique a

(document) sur le sujet x; il suffit d'utiliser le processus qui, dans la
section 2 du présent article, mène de l'expression (2.2.) à l'expression (2.4.).
Cette information est :

Ixa IxPi9i---Pn9n Sx + Spxq1- ¦¦pnqn-Sxpxqx---pnqn (4.1)

Supposons le système a isolé. Examinons l'évolution temporelle de

l'information Ixa.
A cause de la constance de la variable x, et à cause du théorème de

LiouviLLE de la conservation de la densité en phase, il est évident que
chacune des entropies qui composent l'expression (4.1.) reste constante
au cours du temps*). L'information (4.1.) est donc elle-même constante
au cours du temps:

*) H n'est peut-être pas inutile de remarquer que ces entropies, étant délinies à

partir de probabilités à «grain fin», ne sont pas celles de la thermodynamique.
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Le résultat (4.2.) précise l'idée commune et vague selon laquelle un
système physique ne peut acquérir de l'information sans communication,

sans interaction physique, avec l'extérieur.
Il n'est d'ailleurs pas absolument nécessaire, pour que (4.2.) ait heu,

que l'état du système isolé a soit caractérisé par des variables canoniques.

Considérons en effet la condition suivante :

«Principe du déterminisme réversible»: L'état du système à un temps
quelconque tx détermine, d'une manière univoque, à la fois l'évolution
passée et l'évolution future du système.

Si les variables décrivant l'état du système isolé a sont telles que cette
condition soit réalisée, alors (4.2.) est valable. La raison en est la propriété

e) de l'information (voir la section 3 du présent article). Mais les

entropies qui composent l'information (4.1.) ne se conservent en général
plus.

Remarquons finalement que le résultat (4.2.) n'exclut pas la possibilité

d'une dissipation de l'information. Dans certains systèmes l'on
peut classer les variables en variables «visibles» et en variables «cachées» ;

et il est concevable que l'information, comme l'énergie, ait une tendance
à se porter des variables visibles sur les variables cachées du système.
La formule (4.2.) ne peut rien nous apprendre au sujet d'une telle
dissipation de l'information; en effet toutes les variables du système isolé a

interviennent dans (4.2.), et y sont traitées sur le même pied.

5. La quantité d'information dans les systèmes physiques
quantiques. Evolution temporelle

Soit un système physique quantique a.
A chaque ensemble maximum O de grandeurs physiques simultanément

mesurables de a est associé à l'instant t un ensemble complet7) O
d'opérateurs commutables d'un espace de Hilbert.

Introduisons également une variable quelconque X (nombre q,
opérateur sur un espace de Hilbert). Cette variable est supposée ne pas
dépendre du temps; elle décrit, par exemple, un certain événement physique

x qui s'est passé une fois, à un temps t0 fixé.
La paire (O; X) est un ensemble complet d'opérateurs commutables

pour le système combiné (a; x).
Supposons qu'un opérateur de densité8)10) Qa x soit défini sur l'espace

de Hilbert combiné (espace produit) de a et de x. Il définit les

propriétés statistiques du système combiné (a; x), et est donc le correspondant

quantique d'une densité de probabilité.
On a également des opérateurs de densité Qa et Qx projetés sur l'espace

de Hilbert de a et sur celui de x. Ils sont naturellement obtenus par
formation de «trace»11)12) à partir de Qa x.
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L'ensemble complet (O; X) d'opérateurs commutables de (a; x)
définit une représentation orthogonale de (a; x).

L'opérateur de densité Qax y est représenté par une matrice QÏfku les

opérateurs projetés Qa et Qx par des matrices gS et qxm.

Il est alors possible de définir l'entropie9)13) du système combiné

Et aussi les entropies Sa et 5% des systèmes partiels a et #;

« *

Les valeurs de toutes ces entropies dépendent de la représentation
orthogonale choisie, donc de O.

Par analogie à (2.4) ou à (4.1), on définit l'information du système
quantique a sur l'événement (quantique )x:

Ixa =Sx -\-Sa — Sax (5.2)

Il est maintenant essentiel de se rappeler que la valeur de l'information

(5.2) dépend de l'ensemble maximum O de grandeurs physiques
simultanément mesurables, choisi pour définir la représentation du
svstème a:

Ixa Ixa(0) (5.3)

Nous appelons la relation fonctionnelle (5.3) la fonction d'information
du système quantique a sur l'événement (quantique) x.

On peut dire que (5.3) représente l'information sur la variable X
(décrivant l'événement x), qui est fournie par la mesure de l'ensemble maximum

O de grandeurs physiques simultanément mesurables du système a.
Comme on ne peut mesurer simultanément plusieurs ensembles
maximums O, la valeur de l'information doit être indiquée pour chaque O;
il est donc normal que l'information soit représentée dans le cas quantique

par une relation fonctionnelle, et non par un simple nombre.

Il est facile de vérifier que l'information (5.3) jouit, relativement aux
arguments x et a, de toutes les propriétés mathématiques générales qui
sont énoncées à la section 3*).

Il est également facile de voir que, dans la limite classique : lim h O,

la valeur de l'information (5.3) devient indépendante de O, et est donnée

par (4.1).

*) Il convient cependant, là où des densités de probabilité figurent dans les

énoncés, de les remplacer par des matrices de densité.
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Supposons le système a isolé. Examinons l'évolution temporelle de

l'information Ixa.
Dans la forme de Heisenberg des équations du mouvement

(«Heisenberg picture»), les opérateurs des grandeurs physiques du système
isolé a évoluent selon des équations où figure un hamiltonien H (a) qui
ne contient pas explicitement le temps. Par contre l'opérateur de densité

Qax reste constant.

Il est facile de voir que, pour un O donné, l'information (5.3) varie en

général au cours du temps. Le seul cas où l'information (5.3) se conserverait

serait celui où les opérateurs qui constituent O seraient tous des

constantes du mouvement.
Pour nous sortir de cette difficulté, introduisons alors à chaque instant

t un nouvel ensemble maximum 0' (t) de grandeurs physiques simultanément

mesurables de a, auquel est associé un ensemble complet O'
d'opérateurs commutables. Cet ensemble de grandeurs physiques O' (t) est
défini à partir de O par la relation suivante entre les opérateurs
correspondants :

-~H(a)t 4-HWI
0=e n Oe (5.4)

On obtient alors facilement:

^lxa(0'(t)) 0 (5.5)

On peut exprimer le résultat (5.5) en disant que l'information, donnée
au temps t O par la mesure de l'ensemble maximum O de grandeurs
physiques de a, n'est plus donnée à un autre temps par la mesure de cet
ensemble, mais bien par celle d'une autre ensemble maximum O'*).

Comme dans le cas classique (4.2), le résultat (5.5) précise l'idée
commune et vague selon laquelle un système physique ne peut acquérir de
l'information sans communication, sans interaction physique avec
l'extérieur. Mais, pour s'apercevoir de cette conservation dans le cas
quantique, il est nécessaire à des temps différents de mesurer des grandeurs
physiques différentes du système. Si l'on mesure à des temps différents
toujours le même ensemble maximum de grandeurs physiques (par
exemple toujours les positions des constituants du système), on constate
au contraire une variation apparente de l'information du système. Ce

phénomène disparaît dans la limite classique.

*) Il est essentiel de bien voir que ce sont des ensembles de grandeurs physiques,
et non les ensembles d'opérateurs correspondants, qui figurent comme arguments
dans (5-3) et (5.5). Une grandeur physique est définie en indiquant les techniques
expérimentales nécessaires à sa mesure. Il lui correspond au cours du temps différents

opérateurs.
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Pas plus que dans le cas classique (4.2), l'équation de conservation
(5.5) n'exclut une dissipation possible de l'information.

Je tiens finalement à remercier le professeur D. Rivier, ainsi que
MM. C. Piron et J. Rufenacht, pour les fructueuses discussions que
j'ai eues avec eux sur le sujet de ce travail.

Lausanne, Laboratoire de Physique de l'Université.
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