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Kernniveaus und Schalenmodell
von Ch. Terreaux

Seminar für theoretische Physik der Universität Zürich

(6. XL 1957)

Summary. This is a continuation of a previous paper1) concerning a systematic
comparison of the experimental low levels of odd nuclei with the one-particle levels
predicted by the shell modell. The principles oi the graphic representation used
in these papers are briefly summarized. All the low empirical levels lor the region
N 13—81 with Z — even, N odd are graphically represented. The behaviour
of these levels can generally be understood within the framework of the generalized
spherical shell model (with configuration mixtures included.) A new discussion of
the Bethe-Weizsäcker formula for the binding energy is given. The various
contributions to the binding energy are interpreted in terms of the typical parameters
of the shell model, like depth and radius of the potential well etc. The constant of
the principal term of this formula proportional to A is determined theoretically
from the nuclear radius only. The agreement with the empirical value of this
constant is excellent. Finally, the nuclear radii are discussed in the light of the shell
model.

§ 1. Einleitung

In einer früheren Arbeit1) (hier mit I bezeichnet) wurde ein systematischer

Vergleich der experimentellen untersten Anregungsniveaus der
ungeraden schweren Atomkerne mit den Einteilchenniveaus, wie sie aus
dem Schalenmodell folgen, eingehend diskutiert. Zu diesem Zwecke
wurde eine Darstellungsmethode der Termschemata eingeführt, deren
Grundidee die folgende ist :

Die Parameter der Potentialtöpfe (Tiefe, Radien) die in der Näherung
des Schalenmodells benutzt werden, sind gleichmässig variierende
Funktionen der Nukleonenzahlen. (Die Neutronenzahl N und die Protonenzahl

Z werden als kontinuierliche Variablen betrachtet.) Der
Energieeigenwert der Einteilchenniveaus in den Potentialtöpfen ist also auch

eine kontinuierliche Funktion der Nukleonenzahlen und diese Niveaus
können mit Hilfe einer Folge von regelmässigen Flächen dargestellt, werden.

Zu jeder Fläche SjP gehört eine „Zuordnung" jp (gesamtes
Drehmoment j =7 ± y2 und Parität P von l) der betreffenden Niveaus. In
Fig. 1 sind zwei dieser Flächen skizziert. Sie stellen die Energieeigenwerte

der Niveaus Xjp(N, Z) (positive Richtung nach unten) als Funktion
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der Koordinaten N, Z dar. Im Rahmen der Schalenstruktur wird der
Verlauf der Ablösungsenergie der Kerne durch die Flächen SjP gegeben.
Dem Grundzustand des Kerns entspricht dabei eine kompakte Besetzung
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Fig. 1.

Skizze im dreidimensionalen Raum: Energieeigenwert r (positive Richtung
nach unten) als Funktion der Koordinaten : Neutronenzahl N und Protonenzahl Z.
Die Figur zeigt zwei verschiedene Einteilchenniveaullächen S .p durch T (N, Z)
gegeben. S. p2 liegt oberhalb S. p Kz„.p ist die Schnittlinie von S.p mit einer

Ebene Z° konst. (Strich-punktiert).
N(Z) liegt in der Är — Z-Ebene und gibt die mittlere Neutronenzahl der stabilen
Kerne, definiert durch die Schwerpunkte der Häufigkeit der stabilen Isotopen.

K.p ist die Projektion von N(Z) auf die Fläche S.P (gestrichelt).
Die Grundzustände der Kerne sind mit O bezeichnet. Gewöhnliche angeregte
Zustände (höhere Niveaus in der Schalenstruktur) mit • Löcherniveaus mit A •

Z. B. für die Kerne (Z°, N°-2) bzw. (Z°, N°) sind A bzw. B der Grundzustand mit
Zuordnung j\ ', D bzw. E Anregungsniveau mit Zuordnung ;2 2. Mit dem Kern
(Z°, N° + 2) ist das Niveau fxPl im Grundzustand vollgefüllt. C ist der
Grundzustand /2 '¦, F ein Lochniveau jxFl ¦ AD, BE, CF sind die entsprechenden An¬

regungsenergien.

der Einteilchenniveaus bis zur Fermienergie. Zur Definition der
Ablösungsenergie ist die folgende Wahl des Energienullpunkts geeignet: der
Energiewert Xjp(N, Z) derjenigen Punkte von SjP, die das oberste besetzte
Einteilchenniveau (Kern im Grundzustand) in den Potentialtöpfen
darstellen, wird mit der Ablösungsenergie eines Nukleons für den Kern (N,Z)
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gleichgesetzt. Diese Punkte sind in Fig. 1 mit o bezeichnet. Wenn der
Grundzustand der ungeraden Kerne ein Einteilchenzustand ist, dann ist
jp auch die Zuordnung für den ganzen Kern. Diese Definition von x legt
die Tiefe des Potentialtopfs fest. (Betreffend eine andere Definition von
T, bei der alle besetzten Niveaus eine Rolle spielen, vgl. § 3.)

Die übrigen Teile der Flächen S}p enthalten die Einteilchenanregungs-
niveaus jp der angeregten Kerne. Mit der obigen Wahl des Energienullpunkts

ist dann x,p die Ablösungsenergie (positiv gezählt) des Kernes im
Grundzustand plus oder minus der Anregungsenergie des betreffenden
Kernzustandes jp. Plus gilt für Löcherzustände (Fig. 1, v) minus für
gewöhnliche Anregungszustände (Fig. 1, •).

Ein solches System von Kernniveauflächen kann auch unmittelbar
aus den experimentellen Daten konstruiert werden. Die qualitative
Übereinstimmung im Verlauf dieser theoretischen und experimentellen
Flächen bestätigt die Gültigkeit des Schalenmodells. Die Gebiete der
experimentellen Flächen S3p die den Grundzuständen mit der Zuordnung jp
entsprechen, werden direkt mit Hilfe der Ablösungsenergien konstruiert
(Differenz der gesamten Bindungsenergien von 2 aufeinanderfolgenden
Kernen). Die anderen Punkte der Flächen SjP, die den angeregten
Niveaus der Kerne entsprechen, lassen sich ebenfalls bestimmen, indem
man die Anregungsenergie des betrachteten Zustandes vom
Grundzustand des betreffenden Kerns aus aufträgt, in negativer Richtung (nach
oben) für gewöhnliche Anregungszustände, in positiver Richtung (nach
unten) für Löcherzustände. Ohne irgendwelche theoretischen Begriffe
(wie Löcherzustände usw.) zu benutzen, ist das folgende phenomenolo-
gische Kriterium dieser Regel im allgemeinen äquivalent (siehe Fig. 1) :

Man trägt die Anregungsenergie des Niveaus jp in negativer Richtung
auf, wenn die Kerne mit einem Grundzustand derselben Zuordnung jp,
die in der unmittelbaren Umgebung des betrachteten Kerns liegen, eine

grössere Nukleonenzahl haben als der betrachtete angeregte Kern. Liegen

diese Grundzustände bei kleineren Nukleonenzahlen, so wird die
Anregungsenergie in positiver Richtung aufgetragen. Bei Annahme der
Schalenstruktur folgen, wenn die Nukleonenzahl stetig wächst, gewöhnlicher

Anregungszustand, Grundzustand und dann Löcherzustand in
stetiger Weise nacheinander. Diese Zustände liegen auf den Fortsetzungen
der Flächenbereiche von SjP, die die Grundzustände enthalten. Es wird
sich zeigen, dass diese Fortsetzungen stetig sind.

Um die rechnerische Seite der Arbeit so weit wie möglich zu verkürzen
(siehe § 3), wurde in I die Diskussion betreffend den allgemeinen
Vergleich der empirischen und theoretischen Einteilchenniveaus auf gewisse
mittlere Einteilchenniveaulinien K}p auf den Flächen SjP beschränkt.
Diese Kurven Kóp entsprechen idealen mittleren Kernen, für die die Neu-
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tronenzahl der Mittelwert N(Z) (Fig. 1) der stabilen Kerne ist. Tatsächlich

lassen sich die theoretischen Niveaus nur für diese mittleren Kerne
leicht ableiten, erstens weil nur die Kernradien der stabilen Kerne
experimentell bekannt sind, zweitens weil die theoretische Bestimmung (bei
der weitgehend interpoliert werden muss) auf der Annahme der gleich-
massig langsamen Abhängigkeit der Parameter (Tiefe) der Potentialtöpfe

von den Nukleonenzahlen über das ganze periodische System
beruht. Letzteres gilt nicht mehr für Kerne, die von den mittleren Kernen
abweichen. Insbesondere variiert die Tiefe der Töpfe zwischen den
verschiedenen Kernen einer Isobarenreihe beträchtlich.

Der Vergleich hat das Folgende gezeigt: Im grössten Teil des
periodischen Systems (d. h. abgesehen vom Gebiet der grössten Einteilchen-
niveaudichten des sphärischen Schalenmodells, d. h. dem Gebiet der
seltenen Erden N 90—115) existiert eine vollkommene Korrespondenz
zwischen den experimentellen und theoretischen mittleren Niveaus. Die
Approximation der unabhängigen Teilchen im idealen Schalenmodell, bei
der die grosse Spinbahnkopplung mitberücksichtigt ist, offenbart sich
dadurch, dass die untersten experimentellen mittleren Niveaus KjP aus
den entsprechenden theoretischen Niveaus durch eine gleichmässige
Deformation hervorgehen, was im allgemeinen eine Verkleinerung der
Anregungsenergie mit sich bringt. Diese Deformation beruht daher auf der
direkten Nukleonenwechselwirkung, die im Schalenmodell als eine
Störung behandelt wird, und die Mischungen von Einteilchenzuständen
hervorruft. Die letztere hat also im allgemeinen nur eine gleichmässige
Deformation der untersten Kernniveauflächen SjP zur Folge. Dies stellt
eine Rechtfertigung des Schalenmodells dar. Nur im Gebiet der grössten
Einteilchcnniveaudichten (N 90—115) wird die Kernstruktur durch
die direkte Nukleonenwechselwirkung stark geändert. Dieses Gebiet ist
gerade das Anwendungsgebiet der deformierten Kerne, für das das
sphärische Schalenmodell unbrauchbar wird.

Der Zweck dieser Arbeit ist, die Gesamtheit der experimentellen Ein-
teilchenniveauflächen SjP selbst darzustellen (in I wurde nur ein kleiner
Teil reproduziert) und den allgemeinen Verlauf dieser Flächen ausserhalb
der mittleren Verteilungslinie N(Z) der stabilen Kerne zu diskutieren.

Im nächsten Abschnitt werden zuerst die Resultate der graphischen
Darstellung der Niveaus für die ungeraden schweren Kerne mit ungerader
Neutronenzahl im Gebiet N 13—82 ausführlich gegeben. Aus dieser
Darstellung geht hervor, dass im allgemeinen die Flächen S^p in diesem
Gebiet regelmässig sind.

Ferner wird sich zeigen § 3), dass der Verlauf der experimentellen
Flächen S}p so ist, dass daraus die bekannten Eigenschaften der Fläche
der Bindungsenergie B(N,Z) der Kerne folgen, deren analytische Form
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durch die empirische Bethe-Weizsäcker-Formel approximiert wird. Mit
der obigen Wahl des Energienullpunkts wird die Lage der Flächen SjP
im Prinzip durch die Ableitung der Bindungsenergie B(N,Z) gegeben.
Die Ablösungsenergie Xjp(N, Z) ist ja auch der Unterschied zwischen den
Gesamt-Bindungsenergien von zwei aufeinanderfolgenden Kernen. Eine
Integration der x's muss also auf eine Interpretation des Bethe-Weiz-
säckerschen Ausdrucks der Bindungsenergie durch die typischen
Begriffe des Schalenmodells (Topftiefe, Radius) führen. Diese Analyse wird
gestatten, die verschiedenen Beiträge zur Kernbindungsenergie für alle
Kerne im Sinne des Schalenmodells zu deuten.

Zum Schluss § 4) wird eine Verallgemeinerung des Radiusgesetzes
für die Kerne im Rahmen des Schalenmodells angegeben.

§ 2. Graphische Darstellung der Kernniveaus

In diesem Abschnitt wird das Resultat der graphischen Darstellung
der Niveauschemata der ungeraden schweren Kerne kommentiert. Das
Prinzip der Konstruktion, die in I ausführlich beschrieben wurde, ist
kurz in der Einleitung wiederholt. Die folgenden experimentellen Daten
wurden verwendet :

1. Die Bindungsenergien B(N,Z), nach den Tabellen von Wapstra2)
und Huizenga3)

2. Die Zuordnung jp der Grundzustände (gesamtes Drehmoment j und
Parität P).

3. Anregungsenergien der Niveaus von bekannter Zuordnung jPi).
Hier werden speziell nur die ungeraden schweren Kerne mit einer

ungeraden Neutronenzahl N (Z gerade) im Gebiet N 13—82 betrachtet.
Aus praktischen Gründen werden statt der Einteilchenflächen SjP die
Linien Z const (Kz.p, siehe Fig. 1), gegeben. Sie stellen den
Energieeigenwert XjP als Funktion von N für jedes Z und jp dar. Die Kurven
KZjP sind Schnittkurven der Fläche SjP mit einer Folge von Ebenen
parallel zur riV-Ebene.

Die Ablösungsenergien xNjp(N,Z) eines Neutrons wurden allgemein
aus der Bindungsenergie von 2 aufeinanderfolgenden ungeraden Kernen
(d. h. mit N und N - 2) bestimmt :

xn.p(N, Z) 1/2 {BjP(N, Z) - BjP(N - 2, Z)} (1)

(Der Index N bedeutet die Ionisierung eines Neutrons.) Die Differenz
AN= 2 wurde in (1) gewählt, um nur gleichartige Kerne (N ungerade)
zu vergleichen, was wie wir später sehen werden, wichtig ist. xNjP
bestimmt die Flächenanteile von SjP, welche die Grundzustände der Kerne
enthalten. Die Anregungsenergien werden von diesen Punkten aus, nach
dem in der Einleitung erwähnten Kriterium aufgetragen.
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Im allgemeinen ist die Zuordnung jp des Kerns (N, Z) im Grundzustand
identisch mit der Zuordnung des Vergleichskerns (N — 2, Z), was beim
Aufschreiben von (1) verwendet ist. Es kommt aber für gewisse Werte
von N auch der Fall vor, dass der Vergleichskern N — 2 in (1) eine
verschiedene Zuordnung j'1" besitzt. Im Schalenmodell entsprechen diesen
Werten von N im allgemeinen Kerne (N, Z) für welche gerade ein neues
Einteilchenniveau jp mit nur einem Neutron besetzt wird. (Im Kern N — 2

enthält dann das vorherige Niveau j'p' ein Neutron-Loch.) In (1) ist dann
BjP (N — 2) durch ByP' (N — 2) zu ersetzen, wo j'p' die Zuordnung des

Grundzustands von (N — 2) ist. Es treten dann die typischen Sprünge
der Ablösungsenergie beim Wechsel der Zuordnung der Grundzustände
auf. (Siehe (I) Fig. 5 für die mittleren Niveaus K^p). Die so verallgemeinerte

Definition (1) würde deshalb in diesen Punkten Unregelmässigkeiten
im Verlauf der Kurven KZjP mit sich bringen. Diese sind besonders

sichtbar für die Kerne mit N magisch 4- 1 (in (1) kommt dann N
magisch + 1 und N — 2 - - magisch — 1 vor.) In den Fällen wo die Kurven

KZjP eine magische Zahl von N durchlaufen (z. B. N 28) würden
diese Kurven einen wesentlichen Sprung bei N magisch + 1 haben.
Um diese Unstetigkeiten zu vermeiden, wurden die Lagen der
Grundzustände der Kerne : N magisch + 1, Z gerade, dadurch bestimmt,
dass die Kurven Kzjp im Punkte N + 1 interpoliert wurden. In diesem
Sinne sind alle Grundzustände der Kerne für N 21, 29 und 51 systematisch

korrigiert.

In allen andern Fällen wo (1) im Gebiet N 21—82 auf den Vergleich
von 2 Kernen mit verschiedenen jp führt, wurde die Definition (1) trotzdem

verwendet (die Unstetigkeiten sind dann kleiner). Dies wurde
gemacht, um die experimentellen Daten so weit wie möglich unmittelbar
zu benutzen.

Für die Grundzustände der leichteren Kerne, soweit sie hier betrachtet
sind (N 13—19), muss eine etwas andere Definition der Ablösungsenergien

xNjP(N, Z) verwendet werden : x ist definiert mit Hilfe der
Tangente der Kurve Z const, auf dem Flächenstück Bjp(N, Z) im Punkte
N. (Wegen der Schalenstruktur soll die Fläche der Bindungsenergie
B(N, Z) aus einer Folge von regelmässigen stetigen Flächenstücken
BjP(N, Z) bestehen, die jeweils durch die entsprechende Einteilchenzuordnung

jp charakterisiert sind. BjP(N, Z) entspricht dem Flächenanteil

von Sjp, der die Grundzustände enthält.) Für dieses Gebiet wäre
aber die Definition (1) nicht mehr ein gutes Mass für die Ablösungsenergie
des letzten Neutrons. Dies kommt daher, dass die Krümmung der
Bindungsenergiefläche für die leichteren Kerne grösser ist. Die Änderung
der Bindungsenergie von 2 aufeinanderfolgenden ungeraden Kernen
(N, Z) und (N — 2, Z) ist hier wesentlich grösser als die Ablösungsenergie,
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die wir mit Hilfe der Tangente der Kurve Z const, auf der Fläche BjP
(N,Z) im Punkte N erhalten. Die Definition (1) würde ein abnormales
Sinken der Kurven KZjP verursachen*).

Die Darstellung der experimentellen Niveauschemata, wie sie oben
beschrieben ist, ist für das Gebiet N 13—82 in Fig. 2 gegeben. Dieses
Gebiet ist das interessanteste, denn es enthält den grössten Teil der hier
betrachteten experimentellen Daten, während für grössere N-Werte der
Mangel an bekannten Bindungsenergien (Gebiet der seltenen Erden) uns
zwingt, die Kurven KZjP in vielen Fällen zu interpolieren. Die mittleren
Niveaulinien KjP der Fig. 5 (I), oberer Teil, sind unmittelbar aus Fig. 2

bestimmt worden. Ein Teil der Kzjp war auch schon in (I) Fig. 3

reproduziert (für f 9/2+, 5/2+ im Gebiet N 35-65).
Die hier verwendeten Bezeichnungen für die gemessenen Niveaus sind

dieselben wie in I. Sie sind in der Legende der Fig. 2 zusammengefasst.
Die besonders bezeichneten Punkte (• gewöhnlich angeregte Zustände
— höhere Niveaus in der Schalenstruktur — O Grundzustände, V Löcher)
geben ausschliesslich die Niveaus mit gemessenen Zuordnungen jp an. Es

gibt noch eine gewisse Anzahl Kerne, die hier mit X bezeichnet sind,
für welche nur die Ablösungsenergie des Grundzustandes, aber nicht jp,
bekannt ist, und für die jp durch Interpolation bestimmt sind. Diese
Kerne wurden mitbenutzt, um die regelmässigen Kurven Kzjp zu
konstruieren.

In der Mitte der Schalen 7/2" und 9/2+ ist der tatsächliche Spin der
Grundzustände um 1 kleiner als der theoretische Wert, der aus dem
Schalenmodell folgt. (Z. B. für die Schale 7/2~ N 25 ist der
Grundzustand 5/2^, ebenso für die Schale 9/2+, in der Nähe von A7 45,ist der
Grundzustand 7/2+.) Dies bedeutet, dass die erste Näherung des Schalenmodells

(freie Nukleonen, mit Spinbahnkopplung) hier ungültig wird,
und dass Mischungen von Einteilchenzuständen vorkommen. Diese
gemischten Niveaus sind in Fig. 2 zusammen mit den Kurven (j — l)p
(eingerahmte Bezeichnungen) gegeben. Die theoretischen Zustände 7/2~bzw.
9/2+, die den Grundzustand darstellen sollten, sind in diesem Falle leicht
angeregt.

Allgemeine Diskussion der Niveaulinien KZjP

Ein Blick auf Fig. 2 zeigt, dass die Kurven KZjP als Funktion von A7

im allgemeinen stetige, glatte Kurven sind. Die Einteilchenniveaus
treten, wenn wir entlang dieser Kurven im Sinne wachsender Neutronenzahl

fortschreiten, im allgemeinen in der Reihenfolge als gewöhnliche

*) Dieses Sinken der Niveaus (in den Potentialtöpfen) im Gebiet der leichteren
Kerne, ist in Fig. 5 (I) für das erste mittlere Niveau K3/2+ angegeben. Fette Kurve:
aus Kz -p mit korrigierten Ablösungsenergien konstruiert, strichpunktierte Linie :

aus den Kz-p mit Ablösungsenergien rjq (1).



52 Ch. Terreaux H. P.A.

Zustände, dann als Grundzustände und Löcher auf. Dies ist eine Eigenschaft

der idealen Schalenstruktur.
Die Gesamtheit der Kurven Kz.-p (Fig. 2) zerfällt in verschiedene

Kurvengruppen: In einem gewissen zusammenhängenden Bereich der
N-Achse, haben die verschiedenen KZjP die zur selben Zuordnung jp und
verschiedenen Z gehören, eine ähnliche Form. Sie verlaufen im
allgemeinen ungefähr parallel mit gleichen Abständen. Wir erhalten auf diese
Weise Gruppen von Niveaulinien KZjP Jede Gruppe ist durch ein
bestimmtes jp charakterisiert, und entspricht einem bestimmten
Einteilchenniveau jp. Dagegen kommen typische Sprünge zwischen diesen

Gruppen vor, insbesondere zwischen 2 Gruppen die durch eine magische
Zahl von N getrennt sind.

Auch die verschiedenen experimentellen Niveauflächen SjP der
ungeraden Kerne, die durch die Kz.-p dargestellt sind, sind stetig, und die
verschiedenen Flächen die zu verschiedenen Niveaus gehören, sind voneinander

gut getrennt, besonders wenn 2 Flächen eine magische Zahl
überbrücken. (In I sind die entsprechenden mittleren Niveaulinien Ksp
getrennt.) Für die untersten Anregungsniveaus des Gebietes N 13—82
bleibt also im allgemeinen die Stetigkeit der Niveauflächen SjP trotz der
direkten Nukleonenwechselwirkung erhalten. Dies ist eine Rechtfertigung

der Schalenstruktur.

Die Unregelmässigkeiten im Verlauf von KZjp

Die oben genannte Stetigkeit der KZjP ist ein allgemeiner Zug unserer
Darstellung, doch kommen auch gewisse Unregelmässigkeiten vor, die
wir jetzt diskutieren. Die Unregelmässigkeiten der Kurven KZ]-p für
Z 52, 54 und 56 (Fig. 2) rühren nicht von der Tatsache her, dass in
einer Folge von Grundzuständen 3/2+plötzlich ein Grundzustand 1/2+ bei
Z 54 N 75 und Z 56 N 77 vorkommt (Sprung auf eine andere
Fläche SjP an diesen Stellen). Diese Kerne mit der Zuordnung 1/2+im
Grundzustand haben eine abnormal grosse Bindungsenergie, die wesentlich

grösser ist als der Abstand zwischen den Flächen S3/2+ und 51/2+ in
diesen Punkten. Tatsächlich ist der Unterschied zwischen dem
experimentellen Grundniveau 1/2+ und dem Grundniveau, das wir erhalten
würden, wenn das Flächenstück 2?3/2+ in diesen Ausnahmepunkten
regelmässig wäre, von der Grössenordnung 0,3 MeV also lOmal grösser als
die Anregungsenergie des Niveaus 3/2+. Die im Gebiet A/=70—82
vorkommende Unregelmässigkeit hat einen andern Grund : Wir sind hier in
dem ersten Gebiet, in dem nach dem sphärischen Schalenmodell sehr

grosse Einteilchenniveaudichten auftreten, wodurch Änderungen in der
Kernstruktur hervorgerufen werden können. (Mischungen von
Einteilchenniveaus, erstes Anwendungsgebiet der deformierten Kerne.) Eine
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Fig. 2.

Z)i« empirischen Linien Kz P (Z konst.) der Einteilchenniveauflächen S p für die ungeraden Kerne: (N ungerade, Z gerade).

Kz.p ist mit Hüte des Energieeigenwertes TN(N, Z) als Funktion der Neutronenzahl N in der Ebene Tjy, ^V dargestellt. Die verschiedenen
Kurven Kzp sind mit den Werten von Z p bezeichnet.

Der Kerngrundzustand mit gemessener Zuordnung ist mit O bezeichnet, und ist im allgemeinen durch rN.P(N,Z) Formel (1) gegeben.
Systematische Korrektionen nur lür die Neutronenzahlen N 13—19, 21, 29 und 51. (Siehe § 2.) • : gewöhnliches angeregtes Niveau.
A: Lochniveau, i: bezeichnet Kerne für welche nur die Ablösungsenergie aber nicht die Zuordnung experimentell bekannt ist
(;' durch Interpolation bestimmt). Kern {N,Z) rechts unten: Grundzustand jp mit einem gewöhnlichen angeregten Niveau fp' und

Lochniveau ;
Die eingerahmten Bezeichnungen Z(j- l)p (5/2_ bzw. 7/2+) im Gebiet AT — 25 bzw. 45 stellen gemischte Niveaus dar, die in der Mitte
der Schalen jp 7/2~ resp. 9/2+ vorkommen. Die punktierte Linie W. Z 26 bzw. IF. Z 40 ist die theoretische mittlere Ablösungsenergie

Z konst. (Z 26 bzw. 40) nach (4) als Funktion von -V (entspricht der Mittellinie Kz gemittelt über die Zuordnung /_ der
empirischen Linien Kz.p).
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Zuordnung zwischen den experimentellen Niveauschemata und den
Vorhersagen des sphärischen Schalenmodells bleibt noch möglich, obwohl die
Werte der Quadrupolmomente schon in diesem Gebiet wesentlich grösser
sind als die Einteilchenwerte.

Neben den obigen Unregelmässigkeiten zeigt Fig. 2 noch eine andere
Art von Unregelmässigkeit im Verlauf der KZjP. Wenn Z magisch ist,
wächst die Anregungsenergie der angeregten Niveaus besonders stark in
der Nähe einer magischen Zahl von N, was gewisse anomale Annäherungen,

manchmal auch Kreuzungen der Kurven Kzjp und K(z_2) jP verursacht.

Siehe in Fig. 2 z. B. den Verlauf von if50n/2- gegenüber KiSnj- im
Gebiet 2V~ 66. Dieselbe Situation wiederholt sich für KWi,-, das die Kurve
K^ij- (N ~31) zu kreuzen scheint und für K20S/- und Kxs,/- (2V~20).
In diesem letzten Fall ist die Anomalie weniger ausgeprägt. Dies ist das

Analogon der Zunahme der Anregungsenergien in der Nähe von N
magisch. (Vergleiche in Fig. 2 besonders die Niveaus KZuj- vor N=82
(Grundzustand 3/2+) und Kzy2- vor N 50 (Grundzustand 9/2+). Wir
sehen also, dass die Anregungsenergien wesentlich erhöht werden, wenn
eine Schale für beide Nukleonenarten genau voll ist*).

Zusammenfassend kann man sagen: Im Gebiet N— 13—82 sind die
Kernniveauflächen SjP für die ungeraden Kerne mit N ungerade im
allgemeinen regelmässig. Zusammen mit den Resultaten von I, zeigt sich
also, dass die direkte Wechselwirkung zwischen den Nukleonen, die im
verallgemeinerten Schalenmodell als eine Störung behandelt wird, die
die Einteilchenzustände mischt, im allgemeinen nur kontinuierliche
Deformationen der Niveauflächen SjP mit sich bringt. Aber für eine
magische Zahl der Nukleonen sind diese Deformationen unregelmässig und
grösser, obwohl eine Korrespondenz mit den Vorhersagen des Schalenmodells

in diesem Gebiet noch in befriedigender Weise möglich ist.
Wir wollen noch kurz den Fall betrachten, wo die Lage der

Grundzustände mit Hilfe der gewöhnlichen Definition der Ablösungsenergien
(aus der Bindungsenergie benachbarter Kerne AN 1) bestimmt sind:

x'N B(N, Z) - B(N - 1, Z) (2)

Wir vergleichen also hier die Bindungsenergien von Kernen verschiedener
Eigenschaften, und die so berechneten Lagen der Grundzustände werden
von den xN (1) im Mittel um eine Paarungsenergie abweichen. Die
letzteren sind aber wesentlich von N (für Z= konst.) abhängig: 1,5 MeV im
Durchschnitt mit Maxima für N-Werte, die vollgefüllten Schalen
entsprechen. Fig. 3 gibt die Kurven Kzjp der Fig. 2 für das Gebiet
N 50—82 wieder, wenn (2) benutzt ist. Die Unregelmässigkeiten der

*) In I wurde schon gezeigt, dass für fast doppelmagische Kerne die direkte
Nukleonenwechselwirkung eine kleine Rolle spielt.
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Paarungsenergien zeigen sich im Verhalten der KZjP und das ganze
Kurvensystem ist, mit Fig. 2 verglichen, um 1,5 MeV nach oben versetzt. Für
die Stetigkeit der experimentellen Niveauflächen SjP ist also wesentlich,
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Die Linien -ff^.p (Z konst.) der Einteilchenniveauflächen S.p für die ungeraden
Kerne : (N ungerade, Z gerade). Dasselbe wie Fig. 2 für die Kerne N 50 bis 82,

aber der Grundzustand der Kerne ist hier mit Hilfe von t'., Formel (2), be-

stimmt. Die starke Abhängigkeit der in (2) vorkommenden Paarungsenergie als

Funktion der Neutronenzahl N äussert sich im Verlauf der Kz.p. Gleiche Linien-
und Punktebezeichnung wie in Fig. 2.

dass in der Definition der Ablösungsenergien nur Kerne mit denselben
Eigenschaften (ungerade Kerne mit derselben Zuordnung jp) verglichen
werden.

§ 3. Bindungsenergie im Rahmen des Schalenmodells

Die Kurven Kzjp die den Verlauf der Kernniveaus von bestimmter
Zuordnung jp für eine Reihe von Isotopen als Funktion von N angeben,
steigen für wachsende N-Werte. Ausserdem können wir die entsprechenden

Kurven KNjp für eine Reihe von Isotonen als Funktion von Z für



Vol. 31, 1958 Kernniveaus und Schalenmodell 55

die ungeraden Kerne mit ungerader Protonenzahl konstruieren. Sie
haben einen ähnlichen Verlauf, nur sind die Neigungen der Kurven etwa
2,5mal grösser. Dieses Verhalten entspricht dem bekannten Verlauf der
Fläche der Bindungsenergie B(N, Z), die wir in diesem Abschnitt
eingehend diskutieren.

Wegen der Schalenstruktur ist die Fläche der Bindungsenergie B(N,Z)
unregelmässig, und besteht aus einer Folge von im allgemeinen glatten
Flächenstücken Bjp(N, Z), die jeweils durch die Zuordnung jp der
entsprechenden Kerne im Grundzustand charakterisiert sind. Dazu kommen
noch die in § 2 erwähnten Unregelmässigkeiten hinzu, die von der Änderung

der Kernstruktur in gewissen Bereichen des periodischen Systems
verursacht werden. Es kann deshalb nicht in Frage kommen, einen eini-
germassen strengen analytischen Ausdruck für die Bindungsenergie der
ungeraden Kerne über das ganze periodische System hinweg zu finden.
Wir werden uns in diesem Abschnitt auf Mittelwerte über die- verschiedenen

Zuordnungen jp beschränken, d. h. die Schalenstruktur wird nicht
im einzelnen berücksichtigt. Insbesondere werden die verschiedenen
Linien KZjP für eine bestimmte Reihe von Isotopen Z (verschiedene jp)
durch eine mittlere Kurve Kz ersetzt werden, die durch die Mitte des

Bereichs der Grundzustände jp läuft und die verschiedenen KZjP kreuzt.
Damit sind alle Punkte des ganzen Bogens von Kz durch eine mittlere
Ablösungsenergie xN bestimmt. Für diese lässt sich dann wohl eine
analytische Form finden.

Die analytische Form der mittleren Fläche der Bindungsenergie B(N,Z)
ist z. B. durch die semi-empirische Bethe-Weizsäckersche Formel
gegeben :

Bm «A-ß^-yA*-*ZJ%# (3)

Ô 4- -C- =0,80 MeV Rn= 1,08-10"13 cm
5 An v0

Für die Coulomb Energie (letztes Glied von (3)) ist eine homogene
Dichteverteilung der Protonen innerhalb einer Kugel mit dem elektrischen

Radius Rel= R0A1IS (nach Hofstädter5)) angenommen. a.,ß,y
sind Konstanten*).

Üblicherweise werden die Konstanten <x, ß, y durch Anpassung der
mittleren experimentellen und berechneten Ablösungsenergie BjA eines
Nukleons über das ganze periodische System bestimmt. Diese Konstantenwerte

beziehen sich auf die mittleren stabilen Kerne. In dieser Arbeit

als üblich.
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wird mehr verlangt werden : die aus der empirischen Formel (3) berechnete

mittlere Ablösungsenergie der Kerne

xN(N,Z) Bw(N,Z)-Ba(N~l,Z)

— P[ ^M-l)J 3 ^!/3 ^ 3 ^4'3
(4)

xz(N,Z) 5œ(V,Z) - B„(2V,Z-1)
4A'2 ] 2 y Ò Z(Z-l) Z-l

-4(^4-1)J 3 A1'3 ' 3 .l4'3 (A-1)1J3

muss die wirkliche Ablösungsenergie eines Nukleons für alle möglichen
Kerne approximieren. Insbesondere muss (4) den Verlauf der mittleren
Ablösungsenergiefläche auch ausserhalb der Verteilungslinie N(Z) (Fig. 1)

der stabilen Kerne wiedergeben. Wir werden die Konstanten a, ß, y so
bestimmen, dass wir zuerst nur die Gesamtheit der mittleren stabilen
Kerne heranziehen. Dann werden wir verifizieren, dass die Ablösungsenergie

(4) mit den so erhaltenen Konstanten, auch wirklich die
empirische Ablösungsenergie aller Kerne (auch ausserhalb von N(Z)) approximiert.

Ausserdem werden wir den Wert von « auch rein theoretisch
bestimmen. Die Übereinstimmung mit dem semi-empirischen Wert ist
ausgezeichnet.

Bevor wir die Konstanten bestimmen, wollen wir zuerst die allgemeine
Form der empirischen Formel (3) im Rahmen des Schalenmodells
begründen. Zu diesem Zweck werden wir 2 verschiedene Definitionen für
die Potentialtöpfe des Schalenmodells benutzen. Diese wurden schon in
früheren Arbeiten beschrieben und werden hier kurz gegenübergestellt.
Wir nehmen 2 verschiedene kugelsymmetrische Potentialtöpfe mit schiefen

Wänden VN(r), Vz(r) für die Neutronen bzw. Protonen an. Diese sind
mit Hilfe der folgenden 3 Parameter bestimmt: Radius, Neigung der
Wände und Tiefe (siehe Fig. 4 rechts). Die Radien werden gemäss den
letzten Messungen von Hofstädter5) festgesetzt. (Diese beziehen sich
allerdings auf den elektrischen Radius.) Für die äussere Kante der Töpfe
nehmen wir an:

Rk (1,08 A1'3 + 2,4) • 10-13 cm (5)

Hierbei ist noch die endliche Reichweite der Kernkräfte durch die additive

Konstante berücksichtigt. In Übereinstimmung mit den Resultaten
von Hofstädter wurde die Dicke a der „Potentialoberfläche" konstant
gewählt: a 2,9-IO-13 cm. (Siehe Fig. 4 rechts.) Die Tiefe der Potentialtöpfe

(hier mit V° bzw. Vz bezeichnet) ist indirekt festgesetzt.
In I1) und im ersten Teil dieser Arbeit sind die V° so bestimmt, dass

die Energie des obersten besetzten Niveaus bei kompakter Besetzung die
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Ablösungsenergie darstellt und die mittleren experimentellen und
theoretischen Ablösungsenergiekurven über das ganze periodische System
zusammenfallen. Das Schalenmodell setzt dann V° fest. V° wurde nur für
die idealen mittleren Kerne N(Z) bestimmt. Dabei sind die V% und Vz
als langsam veränderliche Funktionen derNukleonenzahlen angenommen.

Kropf um. .WSA* «HA +24

Wfi

£fr

v?-v,I »Ç,

add

A+t

Yilri
C.-A+E^ Vsàn(r)sym sym cm

Rechts :

Fig. 4.

Das Potential der Kernkräfte nach dem Schalenmodell: V., (r) bzw.
V (r) für die Neutronen bzw. Protonen als Funktion des Radius r. V (r) gesamte
Coulombenergie eines Protons im Kernfeld mit homogener elektrischer
Dichteverteilung. FO, V® : Topltieie. F*>— V : Mittelwert der Kernkrälte und elektrischen

Kräfte (18) auf ein Proton (strich-punktierte Linie). Index: sym. bezeichnet

den idealen symmetrischen Kern mit konstanter Ablösungsenergie a. a „Dicke"
der Potentialoberfläche. Die Schraffierungen zeigen die Grenze des Topfgebietes in

dem sich die besetzten Niveaus befinden.
Links: Skizze der verschiedenen Beiträge zu den Kernpotentialen als Funktion
der Teilchenzahl A für die idealen mittleren Kerne durch N (Z) Fig. 1 gegeben.

t t., mittlere empirische Ablösungsenergie eines Neutrons bzw. Protons.

£., £»r, e : kinetische Fermienergie nach Formeln (7), (7'). e: Fermienergie des

symmetrischen Kerns (9). Tx, T2 sind die Ausdrücke (16').
A ¦

V° ist gleich der kinetischen Grenzenergie plus die Ablösungsenergie. Bei
der Ionisation des letzten Nukleons sind also Radius und Tiefe des

Potentialtopfs festgehalten.
In diesem Modell, hier mit M. I. bezeichnet, stellen die Töpfe VN(r)

bzw. Vz(r) eine Art effektives Potential dar, das auf ein sich im Topf
frei bewegendes Neutron bzw. Proton wirkt. Im Laufe einer Ionisation
bleibt dieses Potential für das ionisierte Teilchen noch (bis zur endgül-
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tigen Entfernung) bestehen. Dagegen bleibt das Potential für die
restlichen Nukleonen (Kerninneres) nicht mehr „self-consistent", sobald das

ionisierte Nukleon vom Kern entfernt ist (die Grösse der Töpfe hängt
natürlich von der Nukleonenzahl ab). In diesem Modell ist die gesamte
Bindungsenergie eines Kerns gleich der Summe der sukzessiven
Ablösungsenergien t der verschiedenen Kerne die im Laufe der Ionisierung
vorkommen.

In einer älteren Arbeit6) wurde schon eine andere Definition der V°
benutzt : Die V° sind so bestimmt, dass die Summe der Energieeigenwerte
aller Nukleonen eines Kerns, berechnet nach dem Schalenmodell, im Mittel

gleich ist der gesamten experimentellen Bindungsenergie B dieses

Kerns, mit der Nebenbedingung : die obersten besetzten Niveaus in den

Töpfen für die Neutronen bzw. Protonen, müssen im Mittel für das ganze
periodische System der Stabilitätsbedingung für den /S-Zerfall genügen.

Die Rechnungen im Rahmen dieses Modells, hier mit M. II bezeichnet,
haben gezeigt, dass das oberste besetzte Einteilchenniveau der Töpfe
aller mittleren stabilen Kerne im Grundzustand fast beim
Energienullpunkt liegt. Es ist hauptsächlich dieses Resultat, das wir brauchen,
wenn wir das Modell II benutzen*). Die Ablösungsenergie eines Nukleons
ist hier im wesentlichen gleich der Änderung der Summe der
Energieeigenwerte aller Nukleonen der Kerne vor und nach der Ionisierung.
Diese Änderung ist bedingt durch die Abnahme des Kernradius, und
daher des Fassungsvermögens, des ionisierten Kerns. Wir bemerken,
dass der Potentialtopf hier schon an die Teilchenzahl des ionisierten
Kerns angepasst werden muss, wenn das ionisierte Teilchen sich noch im
Wirkungsbereich der Kernkräfte befindet. Wenn wir von diesem Modell II
Gebrauch machen, wird immer angenommen, dass das oberste besetzte
Niveau der stabilen Kerne auf der Nullinie der Energie liegt. Die
Ablösungsenergie eines Nukleons ist also genau gleich der Änderung der
Summe der Energieeigenwerte aller Nukleonen vor und nach der
Ionisierung. Falls dasselbe Gesetz für den Materieradius in beiden Modellen
benutzt wird, gilt für die Topftiefen in den beiden Modellen :

(^A'/Mod.I — TV + C'a) Mod. II

("zKlod.I — XZ + \YZÌ Mod. II

da die kinetischen Grenzenergien in beiden Fällen ungefähr gleich gross
sind.

Das Modell II wird nur für die theoretische Bestimmung von oc benutzt
werden. Wenn nichts anderes bemerkt ist, ist im folgenden das Modell I
angenommen.

*) In 6) wurden die Radien der Töpfe streng proportional zu A1!3 gewählt. Das
ändert aber unser Resultat nicht.
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Zur Ableitung von (3) benutzen wir nun als erste Näherung die folgende
Vereinfachung : die Teilchenverteilung in den Potentialtöpfen nach de m
Schalenmodell wird durch eine Fermiverteilung ersetzt. Insbesondere
wird die kinetische Grenzenergie des obersten Nukleons im Topf mit der
Grenzenergie eines Fermigases identifiziert. In dieser Näherung wird also

angenommen, dass die Teilchen sich zwischen starren Wänden und in
einem konstanten Potential bewegen (statt in dem tatsächlichen
Potentialtopf).

Die kinetischen Grenzenergie eines Fermigases, das aus A Nukleonen
(Gewichtsfaktor 4) besteht und in einer Kugel mit dem Radius R
eingeschlossen ist, ist gegeben durch

Afe2 / niMc \2/9.t:\2 3 ,„E^^~-\~Rß^-)\~) (7)

Falls die Protonen und Neutronen getrennt behandelt werden, sind die
Grenzenergien

B.
/2AT\23 I lf 4Z2 1 2 /.Y-Z\2 n/N-Z\3)

(7')
2Z\2'3 r l r 4Af! 1 2 (N-Z\* IN - Z\3\

Hier ist N — Z klein gegen A angenommen, was diese Entwicklung von
(2 N/Af6 bzw. (2Z\Af"i ermöglicht. Die beiden ersten Glieder in (N-Z)
lassen sich wie in (7') umformen. Die O-Terme von dritter und höherer
Ordnung in (N — Z)jA sind äusserst klein und werden vernachlässigt.

Die empirische Formel (3) kann man nun verstehen als eine Entwicklung

der Bindungsenergie des Kerns, wobei als erste Näherung die Energie
eines gewissen idealen kugelsymmetrischen Kernes, auftritt. Dieser ideale
Kern soll aus A/2 Neutronen und ^4/2 Protonen bestehen und eine
konstante (d. h. A -unabhängige) Ablösungsenergie oc haben. Die Neutronen
und Protonen befinden sich zwischen starren Wänden in dem gleichen
konstanten Potential oder in zwei Potentialtöpfen mit derselben
Ausdehnung wie sie durch die Wände gegeben ist. Wegen N Z nennen wir
diesen idealen Kern den symmetrischen Kern. Was bei diesem idealen
Kern vernachlässigt ist, ist natürlich erstens die Differenz (A7 — Z) und
die dadurch bedingte Verschiedenheit der Potentiale für Protonen und
Neutronen. Zweitens sind eine Reihe von Randeffekten vernachlässigt:
Die Potentialwände sind endlich hoch (keine starren Wände), die
Wellenfunktionen der Nukleonen nehmen gegen den Rand hin ab und erstrecken
sich etwas über die Potentialwände hinaus, was wiederum wegen der
Selbst-Konsistenz schiefe Potentialwände mit sich bringt. Ferner bedingt
die endliche Reichweite der Kernkräfte eine grössere Ausdehnung des

Potentialtopfs als die der Materie. Endlich ist noch die Coulombenergie
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in diesem idealen Kern nicht berücksichtigt. Die 3 letzten Glieder der
empirischen Formel (3) berücksichtigen näherungsweise die Differenz
(N — Z), die Randeffekte und die Coulombenergie. Nach diesen wird
entwickelt.

Betrachten wir zuerst den idealen symmetrischen Kern. Für i?Materie

setzen wir nach Hofstädter5)

^Materie Rel R0^ ^ := ^Topf sym
(8)

R0= 1,08-10-13 cm

Wegen der starren Wände ist die Ausdehnung des Potentialtopfs gleich
der der Materie. Die Grenzenergien für die 2 Nukleonensorten sind beide

gleich

unabhängig von A wegen der strengen Proportionalität des Kernvolumens
zur Teilchenzahl.

In Modell II ist die gesamte Bindungsenergie des symmetrischen Kerns :

B(A)^A-Vlym^L11-EK(A) (10)

' Sym. M. II fc

wobei Fgym das Potential des symmetrischen Kerns (mit unendlich hohen

Wänden) und EK die gesamte kinetische Energie der Teilchen ist. In
unserem Fall gilt für ein Fermigas

EK(A) ^e-A. (11)

Die Differenz der kinetischen Energie von 2 Kernen A und (A — 1) (die
verschiedene Radien besitzen) ist:

EK(A)-EK(A-l)=\e
(obwohl das ionisierte Teilchen vom Topfboden um die gesamte
Fermienergie e entfernt ist). Die Differenz der Bindungsenergie von 2 Kernen A
und (A — 1) gibt die Ablösungsenergie des symmetrischen Kernes. (Die
unendlich hohen Wände sind natürlich nur als eine Idealisation für die
Berechnung von e usw. zu betrachten.) Nach (10) ist dann :

oc= B(A) - B(A - 1) e-4e 4e ~ 17 MeV (12)

Die Unabhängigkeit von a von A beruht auf der konstanten Dichte des

symmetrischen Kerns, e kann auch als Änderung der kinetischen Energie
aufgefasst werden, wenn A um 1 grösser wird unter Konstanthaltung des
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Topfradius. — 2/5 e in (12) stellt dann die Änderung der kinetischen
Energie unter Konstanthaltung der Teilchenzahl dar, wenn der Radius
von i?Topf sym (A) zu i?Top£ sym. (A + 1) variiert. Die Ablösungsenergie oc

des symmetrischen Kerns ist also allein durch die Änderung des Radius
der MaterieVerteilung während der Ionisation bestimmt. Somit haben
wir den Wert von oc rein theoretisch bestimmt. Wir werden sehen, dass

(12) sehr gut mit dem empirischen Wert übereinstimmt.

Im Sinne von Modell I gilt für das Potential des symmetrischen Kerns
nach (6) (xN xz oc) :

^ym.M.i=«+e^59MeV. (13)

unabhängig von A. Für alles weitere wird Modell II nicht mehr benutzt
werden. Die Konstanz von Fgym ist mit dem angenommenen Radiusgesetz

(8) (konstante Dichte der Kernmaterie) konsistent.
Die Bindungsenergie des symmetrischen Kerns, im Sinne von Modell I,

erhält man durch Summation der sukzessiv vorkommenden Ablösungsenergien

oc konst: ßsym a -A. Mit der Annahme V°ym M_ n e sind
alle Grössen des Potentials des symmetrischen Kerns direkt aus dem
Radiusgesetz für 2?Materie bestimmt.

Betrachten wir jetzt die verschiedenen Korrekturen zur Bindungsenergie.

Diese stellen die Abweichungen der kinetischen Grenzenergie und
Tiefe des wahren Potentials gemäss Schalenmodell von den entsprechenden

Grössen des symmetrischen Kernes dar. Das 2. Glied in (3) beschreibt
den Unterschied der mittleren Kernkräfte (Topftiefen V°) in erster Näherung

für Protonen und Neutronen, denn die Topftiefen sind verschieden,
wenn die Anzahl der beiden Nukleonensorten verschieden sind. Dies steht
nicht im Widerspruch mit der experimentellen Tatsache der
Ladungsunabhängigkeit der wirklichen Kernkräfte (z. B. der Ähnlichkeit der
Niveauschemata der Spiegelkerne), sondern ist eine Folge des

Ausschliessungsprinzips. Durch die Austauschkräfte, z. B. zwischen geladenen und
ungeladenen Nukleonen, mit Ladungswechsel werden, falls N> Z,
die Protonen bevorzugt, da die überschüssigen Neutronen, wegen des

Ausschliessungsprinzips, nicht an der Austauschwechselwirkung teilnehmen.

Folglich gilt für die mittleren Kernkräfte des Schalenmodells
Vz > V%. Der Einfluss dieser Unsymmetrie auf die gesamte Bindungsenergie

ist von der Form ~ (N — Z)2/A (erstes Glied der Entwicklung),
denn die nötige Energie um die Töpfe des symmetrischen Kerns wieder
herzustellen, ist

AB ~ (N-Z)(V«-VZ) ~ (N-Z) (sN-sz) -i-i^l (14)

wenn man in (7') nur die erste Näherung in (N — Z)fA betrachtet und
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T.v Tz setzt, ß (N-Z)jA ist also ein Mass für die Unsymmetrie der
mittleren Austauscheffekte.

Das 3. Glied in (3), die sogenannte „Oberflächenenergie" stellt im
Schalenmodell die folgenden Randeffekte dar: Die Potentialwände des

Schalenmodells sind endlich hoch (keine starren Wände). Dadurch wird
die kinetische Grenzenergie verglichen mit der Fermieenergie des
symmetrischen Kerns kleiner. Dies hat eine etwas grössere Bindung der Nukleonen

zur Folge. Ferner nimmt, wegen dieser Randbedingungen, die
Wellenfunktion der Nukleonen gegen den Rand hin allmählich ab (und erstreckt
sich etwas über die Potentialwände hinaus), was wegen der Selbst-
Konsistenz schiefe Potentialwände mit sich bringt. Dadurch wird die
mittlere potentielle Energie der Nukleonen (gemittelt über den ganzen
Kern) kleiner als die Topftiefe V°. Durch diesen Effekt wird die Bindung
der Nukleonen etwas vermindert. Eine Abschätzung dieser Effekte ist
schon von V.Weizsäcker7) gegeben worden. Für ein trapezförmiges Potential

(siehe Fig. 4 rechts) gibt das statistische Modell die A2/3 Abhängigkeit

(siehe Bethe und Bacher8)). Wir akzeptieren hier diese Näherung.
In unserem Modell stellt also das entsprechende Glied 2/3 y A~1,a in der
Ablösungsenergie (4) diese Randeffekte dar, genauer, es ist die Differenz
der kinetischen Grenzenergien im Potential mit schiefen Wänden (mittlerer

Radius RTopl sym.) und im Potential des idealen symmetrischen
Kerns. Der Zahlwert von y wird bestimmt werden durch Vergleich mit
den experimentellen Daten. (Siehe unten.).

Ein weiterer Randeffekt kommt von der endlichen Reichweite der
Kernkräfte. Der mittlere Radius des wahren Potentials muss deshalb

grösser sein als .rvTopf sym (Radius des idealen Kerns), was eine weitere
Korrektion zur kinetischen Grenzenergie bedingt. Zur Abschätzung
benutzen wir weiterhin die Approximation der starren Wände, aber mit
einem abgeänderten Radius -R-Topf^ i?Topf sym ¦ Wir bestimmen i?Topf

dadurch, dass die Fermienergie nach diesem Modell zusammen mit dem
obigen Glied 2/3 y A~lls über das ganze periodische System hin mit der
kinetischen Grenzenergie des wahren Potentials (Fig. 4), berechnet nach
dem Schalenmodell, so gut wie möglich übereinstimmen. Hierbei kann
nur die Grösse «^(Formel (7)) angepasst werden, da nur der eine
Parameter RTopi zur Verfügung steht. Fernerwerden nur die idealen mittleren
Kerne N(Z) (Fig. 1) benutzt. Das Resultat dieser Anpassung ist :

^Topf (1.08 A1'3 + c) ¦ 10-13 cm (15)

wobei c noch sehr schwach von A abhängt*). i?Topf muss mit dem mitt-

*) Für c könnte man einen konstanten Mittelwert wählen, (wie in (5)). Die
A -Abhängigkeit erleichtert aber die Bestimmung von oc, ß, y. Sie stellt eine Korrektur

zweiter Ordnung zur kinetischen Grenzenergie dar (siehe unten).
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leren Radius des wahren Potentials übereinstimmen, was in der Tat der
Fall ist*).

Der letzte Randeffekt ist auch von der Form ~ A-1'3. Die Differenz
der Fermienergie e des idealen Kerns mit dem Radius i?Materie (e sa - oo(7))

und die eA des idealen symmetrischen Kerns mit dem Radius RTovi ist
in der Tat

/|p=P _ o ~.r
ZC -.4-1/3

Das 4. Glied in (3) ist die gesamte Coulombenergie des Kerns. Das
entsprechende letzte Glied von xz (4) ist die gesamte Coulombenergie
eines Protons im Kern. Dass die gesamte und nicht die mittlere Coulombenergie

(3/5) Ze2\Rel auftritt, stimmt überein mit unserer Definition àer
Kernpotentiale (im Modell I), die die wirklichen Kräfte darstellen.

Bis jetzt haben wir die Form der verschiedenen Glieder der
Bindungsenergieformel (3) durch die typischen Grössen des Schalenmodells
interpretiert und ausserdem den Wert von a direkt abgeleitet. Die
Hauptannahme dabei war, dass die Einteilchenniveaus der Potentialtöpfe im
Sinne von Modell II für den Kerngrundzustand (kompakte Besetzung),
genau bis zur Nullinie der Energie besetzt sind. Eine direkte Ableitung
der Konstante y wäre an sich auch möglich, denn y stützt sich auf die
Topfgrössen des idealen Kernes, die wir direkt kennen. Aber eine
Abschätzung der Randeffekte auf diesem Weg ist sehr umständlich.
Dagegen stellt das 2. Glied in (3) einen Austauscheffekt dar, der nicht im
Rahmen des Schalenmodells theoretisch abgeleitet werden kann. Der
Wert von ß kann deshalb nur aus den empirischen Ablösungsenergien
entnommen werden.

Neben der Bestimmung der Konstanten ß, y ist es unser Ziel, auch
noch einen Ausdruck für die Grösse des wahren Potentials der Kerne zu
finden. Wir versuchen, die Tiefen des wahren Potentials V%, Vz so zu
bestimmen, dass daraus eine Ablösungsenergie der Form (4) entsteht,
wenn wir die kinetische Grenzenergie des wahren Potentials davon
abziehen. Wir setzen: „K [« + *a\ - T1N + T2

(16)

Vz [a + eA] - Txz + T2

r..-(Hr)['-Ä]>°
wobei

T _
ö Z(Z-l) 2eA IN-Z\

2 ~ T Za» ¦" ~9~ \ A

*) Der „mittlere Radius des wahren Potentials" (siehe 6)) ist definiert als der
Radius eines rechteckigen Vergleichspotentials mit gleichem Fassungsvermögen
und gleicher Grenzenergie wie das wahre Potential.
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Die Ablösungsenergie t potentielle Energie-kinetische Grenzenergie:

7

vz-ve-uz +

3 A1'3,
(17)

Y

3 A1'3

stimmt dann mit (4) überein. Vc ist die gesamte Coulombenergie eines
Protons.

Die gesamte Bindungsenergie B des Kerns im Sinne von Modell I
erhalten wir aus (17) durch sukzessive Summation der t, was (3) liefert,
denn die Ablösungsenergien (17) sind die partiellen Ableitungen von B
nach N und Z.

Wir bestimmen jetzt die Konstanten oc, ß, y in (3). Dies tun wir so,
dass die halbempirischen Ausdrücke (16) für V%, Vz und (17) für t^,, tz
die aus dem Schalsnmodell berechneten Potentialtiefen*) und die empirischen
mittleren Ablösungsenergien xN, xz für alle A so gut wie möglich wiedergeben,

(oc ist hier auch aus den empirischen Ablösungsenergien neu
bestimmt.) Die empirischen mittleren Ablösungsenergien x sind Mittelwerte
(über das ganze periodische System) der Kurvenstücke K}p (Fig. 1) die
die Grundzustände der Kerne enthalten. xN ist der Mittelwert der Zackenlinie

in (I) Fig. 5, oberer Teil. Die Konstante ò folgt schon aus dem
empirischen Wert von R0 (8) allein. Fig. 4 skizziert die Methode und Fig. 5

gibt die Resultate der Anpassung**). Dabei werden für jeden A -Wert die
mittleren Neutronen und Protonenzahlen benutzt (durch die Verteilungslinie

N(Z) Fig. 1 der stabilen Kerne gegeben). Fig. 5 liefert dann die
Zahlenwerte für die Konstanten :

oc 17,1 MeV ß 26,9 MeV y 21,7 MeV Ô 0,80 MeV (3')

Die ausgezeichnete Übereinstimmung des empirischen Wertes von oc

(Formel (3')) mit dem theoretischen a (Formel (12)) liefert die Berechtigung

unserer Annahme über den Radius des symmetrischen Kernes. Die
Grösse c (15) wächst sehr langsam mit A(A 50 : c 0,72, A 240:
c 0,81) was durch die langsame Abnahme der empirischen mittleren
Ablösungsenergien ï für wachsende A -Werte bedingt wird. Wegen der
endlichen Neigung der Topfwände folgt daraus eine mit A etwas stärkere

*) Die Berechnung der Energieniveaus mit schiefwandigen Potentialtöpfen und
auf Grund der letzten Hofstädterschen Messungen wurde von Herrn A. Schröder
durchgeführt.

**) Die Anpassung darf nicht für A < 50 fortgesetzt werden, weil dann tjv (A),

r Z(A), nicht mehr die mittleren Ablösungsenergien der mittleren Kerne N(Z)
darstellt.
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(Fig. 1) gegebenen idealen mittleren

Kerne. Gleiche Bezeichnung

wie in Fig. 4.

Fette Kurven: rN r mittlere

empirische Ablösungsenergie
eines Neutrons bzw. Protons

als Funktion von^. (Mittelwert
über das ganze periodische
System des Bogenstückes der

Linien K .P das die Kerngrund-
zustände enthält.) VO, Vj>: die

aus Topfradius, Neigung der

Topfwände und mittlerer
empirischer Ablösungsenergie t
bzw. x im Rahmen des
Schalenmodells gerechneten
Potentialtiefen. Die FO der leichten
Kerne: C13, O1' (in I, Fig. 9, an
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Fig. 5.

Die Bestimmung der Konstanten ol, ß, y der Bindungsenergieformel (3) durch An¬

passung der berechneten TopfPotentiale über das ganze periodische System.
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Zunahme des Radius RTopf (15) des Vergleichspotentials (das in (7)
eingeht) als es das 41/3-Gesetz gibt. (Bringt eine Korrektur 2. Ordnung der
kinetischen Grenzenergie mit sich.) Wenn wir für c einen Mittelwert für
alle A gewählt hätten, würden die gerechneten Kurven V%, Vz (Fig. 5

gestrichelte Linien) etwas schief zu den empirischen Daten V° (Fig. 5

fette Linien) liegen, was die Bestimmung der Konstanten ß erschweren
würde.

Der Verlauf der x und V° gemäss Schalenmodell, ist recht gut
wiedergegeben, wenn man bedenkt, dass die Ausdrücke (16), (17) nur eine erste
Näherung darstellen. Der Faktor (ß — eAß) von T1N, T1Z(16') ist wesentlich

für die Anpassung an die Topfböden für Protonen und Neutronen.
In I wurde erwähnt, dass V$ ^ 46 MeV praktisch für alle A > 50.

Fig. 5 zeigt, dass diese Konstanz ein Zufall ist und von einer näherungsweisen

Kompensation der Zunahme von (oc + eA) und T2 und von Tm
herrührt.

Die Konstanten oc, ß, y der Bindungsenergieformel (3) beziehen sich
bis jetzt nur auf die Ablösungsenergie der mittleren stabilen Kerne.
Jedoch erwarten wir, dass die berechneten Ablösungsenergien x mit den
obigen Konstanten auch die wirkliche Ablösungsenergie aller möglichen
Kerne approximieren, denn das verwendete Kernmodell sollte auch
ausserhalb des Energietals gültig sein. In der Tat, tragen wir die xN bzw.

xz (Formel 4) als Funktion von N bzw. Z auf, so erhalten wir für A-
Werte > 30 Kurven, die in sehr befriedigender Weise mit den Mittelwerten

Kz bzw. KN der Kurven Kzjp bzw. KNjP übereinstimmen (KN
entspricht xz) (Mittelwerte über jp). Fig. 2 zeigt zwei solche Mittelwertkurven

für die Isotopenfolge Z 26 und 40 (gestrichelte Kurven, mit
W bezeichnet). Dies liefert eine strenge Prüfung des Wertes von ß, denn
das entsprechende Glied in (4) gibt im wesentlichen allein die Neigung
der Kz. Der angegebene Wert von /3(3') liefert also tatsächlich die richtige

Form der Kurven Kz.
Das allgemeine Verhalten der mittleren Ablösungsenergie eines

Nukleons lässt sich also gut im Rahmen des Schalenmodells interpretieren.
Damit geben auch die Formeln (16) eine Abschätzung der Grösse V$ bzw.
Vz des wahren Potentials für alle möglichen Kerne.

§ 4. Der Radius der Kerne

Zum Schluss wollen wir noch kurz die Kernradien im Zusammenhang
mit dem Schalenmodell betrachten.

Bis jetzt haben wir immer für den Radius der Materie eine reine A1^-
Abhängigkeit, oder für den Potentialtopf RK R0 Alls + const,
angenommen. Es scheint jedoch, dass eine solche Abhängigkeit nur für den
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symmetrischen Kern gültig sein kann, denn nur in diesem idealen Fall
sind die Kernkräfte von A unabhängig, was wegen der Selbst-Konsistenz
eine streng konstante Materiedichte bedeutet. Die letzten Resultate
Hofstädters5) scheinen auch in diesem Sinne zu sprechen: R könnte
etwas schneller als ^41/3 wachsen : Für 40 < A < 122 streut Rei um
1,07 A1'3. Aber für grössere Kerne Au197, Bi209 scheint R0 systematisch
grösser als 1,07 zu sein. Das ist der Grund warum R0 1,08 gewählt
wurde.

Das Schalenmodell gestattet heuristisch dieses Resultat abzuleiten,
wenn wir für den idealen symmetrischen Kern die Annahme

^Topf sym.
COnst. 41'8

machen. Sind die beiden Potentialtöpfe VN(r), Vz(r) verschieden tief, so

fallen sicher die beiden Topfwände nicht zusammen (Fig. 4, rechts), so
dass die Ausdehnung der entsprechenden Nukleonenwolken verschieden
sind. i?Materie wird, ähnlich wie im Falle der Bindungsenergie, durch eine

Entwicklung gegeben

-"¦Materie — ""o A 1 + const. (V°N - Vz) ¦

R0A1>*[l+ const. p^£)V--]

N-Z

(19)

Im Gegensatz zu (14) kommt in der zweiten Näherung (N—Z)jA vor,
während bei der gesamten Bindungsenergie (N — Z) direkt auftritt.
Diese erste Korrektur ist schon recht klein. (Natürlich spielt diese
Korrektur von j??Materie bei der Bindungsenergie keine Rolle mehr.) Ein
identischer Ausdruck (mit const 0,66) wurde schon von Bethe und
Bacher9) abgeleitet aus der Bestimmung des Extremums der Bindungsenergie

der Kerne im statistischen Modell.

Dem Forschungsrat des Schweizerischen Nationalfonds möchte ich an
dieser Stelle meinen besten Dank für die Gewährung eines Forschungsstipendiums

aussprechen. Den Herren Professoren Dr. W. Heitler und
K. Bleuler möchte ich für wertvolle Diskussionen recht herzlich danken.

Herrn A. Schröder bin ich für seine neue Bestimmung der
Topfdaten zu grossem Dank verpflichtet.
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