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Limite non-relativiste d'une équation de Bethe-Salpeter*)**)
par G. Wanders.

Institut de Physique de l'Université, Genève (Suisse).

(5. VI. 1957.)

Summary. A bound state of two scalar particles with mass m is described
relativistically by a wave function 0 (xx, x2), which is a solution of a Bethe-
Salpeter equation. Wick and Cutkosky were able to discuss the "ladder approximation"

of this equation quite completely, in the special case of scalar photons as

binding particles. This article presents an extension of their results to the case of
a binding due to scalar mesons, with nonvanishing mass /i. The wave function of
an /S-state has a two-parameter integral representation, the Bethe-Salpeter equation

being equivalent to an integral equation for the weight function of this
representation. In spite of the intricate structure of this equation, it is possible to
investigate its nonrelativistic, or static limit, where the bound particles become

infinitely heavy (m -> oo In this limit, the set of eigenvalues of the Bethe-Salpeter
equation corresponding to the value x 0 of the new quantum number k is
identical with the spectrum of the Schroedinger equation with a Yukawa potential.
These results are the natural generalization of those obtained by Wick and
Cutkosky. Moreover, the limit of the wave function cp [xv x2) is identical, in the

1. Introduction.

Les bases d'une description relativiste des états liés ont été
formulées en premier par Bbthb et Salpeter1) et Gell-Man et
Low2). Un état lié de deux particules est décrit par une amplitude
0(xx, x2), qui est l'élément de matrice entre le vecteur d'état | <x> du
système considéré et le vide | 0> d'un produit chronologique:

0(xx, x2) <0 | T[Wx(xx), W2(x2)] 1 a> (1.1)

^x(x) et W2(x) étant les opérateurs des champs quantifiés associés

aux particules liées. Opérateurs et vecteurs d'état sont exprimés
en représentation de Heisenberg (xx et x2 sont deux points de

*) Recherche subventionnée par la Commission Suisse de l'Energie Atomique
(CS. A.).

**) Ce travail constitue une thèse présentée à l'Université de Lausanne, le
28 mai 1957, pour l'obtention du grade de Docteur es Sciences. Un rapport
préliminaire a été publié dans Phys. Rev. 104, 1782 (1956).
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Vespace-temps: xt (x{, t{)). L'amplitude @(xx, x2) est solution d'une
équation intégrale homogène, dite équation de Bethe-Salpeter:

0(xx,x2) J (dx3f... (dXri)iD'xc(xx—xa)L)'2c(x2-xx)

l(x3,xi;xs,x6)0(x5,x(i). (1.2)

-Dj" et D2 sont les propagateurs effectifs, invariants et causaux
des particules liées, I est un noyau, également invariant et causal,
caractérisant leur interaction.

Il n'existe aucun modèle de théorie relativiste pour lequel on
connaisse une expression fermée de ce noyau d'interaction. Il est

toujours défini par une série de puissances d'une constante de

couplage, que l'on ne sait pas sommer et dont la convergence est
d'ailleurs douteuse. On est donc contraint, dans toute discussion
concrète de (1.2), de remplacer I par un ou plusieurs termes de son
développement. Du point de vue théorique, il est alors bon de chercher

à ne pas faire d'autres approximations, c'est-à-dire de discuter
rigoureusement l'équation (1.2) avec une forme approchée du noyau
d'interaction, afin d'établir les propriétés exactes d'un certain type
d'interaction relativiste. Les premières recherches positives dans ce

sens sont dues à Goldstein3) et à Wick4) et Cutkosky5).
Ces derniers auteurs discutent essentiellement le cas d'une théorie

purement scalaire, où les particules liées sont des particules de

spin 0 et de masse m, que nous appelerons «nucléons», et où la
liaison est due à des «mésons» de spin 0 et de masse pi, couplés sca-
lairement avec les nucléons. Ils considèrent la ladder approximation
de l'équation de Bethe-Salpeter correspondante, dans laquelle I
est remplacé par le premier terme de son développement :

I(x3,xi;x5,x6)= — (2ji)-i^rò(xz—x5)ô(xi— x6)Dcß(x5 — xe), (1.3a)

et les propagateurs effectifs sont remplacés par les propagateurs
des particules libres:

Dl'(x)=DÏ(x)—+DXx)*). (1.3b)

On voit, d'après (1.1), que si l'état lié est un état-propre de

l'énergie et de l'impulsion, correspondant au quadrivecteur-propre
P= (P, E), l'amplitude 0(xx, x2) a la forme:

$(xx,x2)=cp(x)ei(p'V**); X ±-(xx + x2), x xx-x2. (1.4)

*) On&: D^1(x) (2ti)-ì f (dp)4'(p2 +m2-ie)-1exp[i(p, x)]. e > 0, arbitrairement

petit, assure la causalité du propagateur.
**) Nous utilisons la métrique indéfinie (1,1,1,-1); le produit scalaire (a,b) de

deux quadrivecteurs a et 6 vaut donc: (a, b) aa 6a (a, b) — a4 6â.
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En particulier, si nous choisissons comme référentiel le système
de repos de l'état lié, il vient: P (O, E) avec E 2m — B, B > 0
étant l'énergie de liaison.

(1.2) et (1.3) donnent alors une équation pour <p(x) qui s'écrit,
dans l'espace de Fourier:

tp(p)=XF-i(p)3<p(p) (1.5)

avec:

et:

cp(x) (2n)~2 f (dp)icp(p)ei^x\ (1.6)
j

F(p) [(±P + pJ+m2] [(Ip-^ + mfr] (1.7)

^(v) —^J(dkn(p~k)2 + pi2]^cp(k). (1.8)

Dans ces équations, nous avons écrit m2 et pi2 pour m2 — i e et
pi2 — ie.

A l'aide d'une méthode de prolongement analytique, Wick4) a pu
prouver que l'équation (1.5) possède un système complet de
solutions. De plus, Wick4) et Cutkosky5) ont montré que dans le cas

pi 0 (couplage par photons scalaires), les solutions de (1.5) possèdent

des représentations intégrales à un paramètre (voir équation
(3.5) du présent travail), l'équation de Bethe-Salpeter étant
équivalente à un système d'équations intégrales en les fonctions-poids
de ces représentations. Les résultats essentiels de la discussion de ce

système sont:
a) les valeurs propres X*) sont caractérisées par quatre nombres

quantiques, les nombres quantiques usuels n, l et m., et un nouveau
nombre quantique y. (y. 0, 1, 2,

b) Dans la limite non-relativiste (ß->0), les valeurs-propres
^o,n,i,m correspondant à k — 0 sont identiques à celles que donne
l'équation de Schroedinger (spectre de Balmer). Il semble d'autre
part établi 4)5)5)7) que les valeurs-propres correspondant à x > 1

convergent toutes vers une même valeur finie dans la limite B->-0.

Le but du présent travail est de montrer que des résultats
analogues sont valables dans le cas général pi + 0. Nous ne considérons
que les états S (l m — 0), pour lesquels la fonction <p(p) est à
symétrie sphérique dans l'espace tridimensionnel du vecteur p (p
(p, co)): cp(p) <p([p|> co), ce qui simplifie notablement les calculs
sans restreindre l'intérêt des résultats. Nous montrons au § 2 que

*) L'énergie de liaison B intervenant de manière compliquée dans l'équation
de Bethe-Salpeter, il convient de considérer B comme fixé et X comme paramètre
variable dont il s'agit de trouver les valeurs-propres.
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toute amplitude cp(p), décrivant un état S, possède une représentation

intégrale (2.1) à deux paramètres et que l'équation de Bethe-
Salpeter (1.5) est équivalente à une équation intégrale en la
fonction-poids g(u, M2) de cette représentation, (2.18). Le problème de

Bethe-Salpeter est ainsi réduit à la discussion de cette équation.
Le fait que (2.18) est équivalente, dans la limite pi — 0, au

système de Wick et Cutkosky (voir § 3), montre que les valeurs-propres
du problème général sont aussi caractérisées par deux nombres
quantiques: le nombre quantique radial n et le nouveau nombre
quantique x. Il semble ainsi que l'apparition d'un nouveau nombre
quantique soit une caractéristique générale de la «ladder approximation»

de l'équation de Bethe-Salpeter.
La complexité de l'équation intégrale (2.18) est telle qu'il ne

semble guère possible d'en trouver des solutions, même approchées,
pour des valeurs arbitraires des paramètres qui y interviennent.
D'autre part, il ne nous a pas été possible de construire une équation
simple, que l'on sait résoudre, et qui possède les caractéristiques
essentielles de l'équation étudiée, de telle sorte qu'elle puisse en
servir de modèle.

Toutefois, un certain changement de variable (2.21) donne à

l'équation intégrale une forme (2.23) telle qu'il devient possible
d'en discuter la limite non-relativiste, ou statique (limite dans
laquelle les nucléons deviennent infiniment lourds, m->oo, l'énergie
de liaison tend vers zéro, B -> 0, de telle façon que (mB) reste fini).
En particulier, on peut construire une équation intégrale à une
variable (4.24) exprimant le problème-limite pour une classe «régulière»

de fonctions-propres, correspondant à x 0. (Voir § 4 et § 5.)
D'autre part, il est possible de transformer l'équation de Schroe-
dinger avec potentiel de Yukawa en une forme équivalente qui se

trouve être identique à (4.24) (§ 6). Nous avons ainsi établi qu'une
classe de valeurs-propres de l'équation de Bethe-Salpeter est
identique, dans la limite non-relativiste, au spectre de valeurs-propres
de l'équation de Schroedinger correspondante.

Ceci prouve que pour la classe correspondante de fonctions-
propres, le potentiel de Yukawa est équivalent, dans la limite
statique, à l'interaction relativiste de la «ladder approximation». Ce

résultat confirme les conclusions de certains arguments qualitatifs,
dans lesquels on néglige les effets de retard contenus dans l'interaction

relativiste1), et qui ont servi de point de départ pour une
méthode de résolution approximative du problème de Bethe-
Salpeter8).

La forme que nous avons donné au problème de Bethe-Salpeter
permet aussi, en principe, une détermination approchée des correo-
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tions relativistes aux valeurs propres, basée sur un développement
de la fonction-poids g(u, z), solution de (2.23), autour d'une solution
de Téquation-limite (4.24). Cependant, cela nécessite des calculs
laborieux, et le caractère académique d'un modèle purement scalaire
restreint l'intérêt du résultat. Aussi n'avons-nous pas cherché à
traiter ce problème.

Le théorème d'existence des solutions de l'équation de Bethe-
Salpeter dans le cas de nucléons de spin 1/2 n'ayant pu être établi4),
une étude minutieuse de la structure mathématique du problème
est nécessaire9), avant qu'on puisse tenter d'étendre à ce cas les
méthodes utilisées ici.

2. La représentation intégrale.

Nous nous proposons de démontrer qu'une solution cp(p) à symétrie

sphérique (état S) de l'équation de Bethe-Salpeter (1.5) possède
la représentation intégrale suivante :

+1 eo

<p(p)= f dû f dM2g(û,M2)[p2 + u(p,P)+M2 + Q2Y3 (2.1)

-i o

avec Q2 m2—-J?2 > 0.u 4

Pour le prouver, nous introduisons (2.1) dans l'équation de Bethe-
Salpeter (1.5) et montrons que cette équation est identiquement
vérifiée si la fonction-poids g(u, M2) satisfait une certaine équation
intégrale. La méthode adoptée consiste à transformer, après
substitution, le second membre de (1.5) jusqu'à obtenir une expression de
même structure que le second membre de (2.1). Au cours de ces

transformations, nous faisons un usage répété des représentations
de Feynman:

(n+1),_(m+])= (»+«i+i)i r x"(i-xr
n\m\ J [ax + b(l-x)]"+m+2

o

(rc + m + 1)! „ f -, (l + yr(l-yr (9 O)
n\m\ J & l(a + b) + (a-b)y]n+m+2 ' *• ' '

-l
Ainsi, avec a k2 + û(k, P) + M2 + q2, b (k — p)2 + pi2, n

2, m-0, (2.2) donne:
+ 1 00 1

Z<p(p)^~~j dû f dM2g(û,M2) f dx f (dkf
-io o

x2[k'2 + x(l-x)Q(p)]-i (2.3)
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avec:

Q(p)=p2 + û(p,P)+T^(M2 + Q2 + ri2û2)+^pi2—ri2û2 (2.4)

et:

k' k + xû~P-(l-x)p. (2.5)

On a posé en (2.4) n2 1/4 E2. Après le changement de variables
k —> k', l'intégration sur k' en (2.3) est aisée et donne*) :

+ 1 00 1

3<p(p) =~f dûf dM2g(û,M2)f dx[(l-x)Q(p)]-2. (2.6)

-10 0

Il reste à multiplier 2>Ç>(p) Par E~1{p)- On transforme d'abord

F-» à l'aide de (2.2) :

+i
F-HV)=Y j' dy[p2 + y(p,P)+Q2]-2, (2.7)

-i
et l'on rend compact les dénominateurs de F~\p) et de 3ç>(i°) au

moyen d'une dernière transformation de Feynman (2.2). On obtient:

-1 oo 11+1
F-1(P)3?'(P)=4 fdu J dM2g(û,M2) j dx f dz J dy^=±

-10 0 0-1
[p2 + u(p,P) + M2 + Q2]-\ (2.8)

avec :

u uz + y(\—z) et M2 zD(û,M2, x) ;

D(u,M2,x)=^M2+^u2 + T^(o2 + ri2û2) (2.9)

Il convient maintenant d'effectuer une suite de changements de
variables tels que u et M2 deviennent variables d'intégration. Un
premier changement de variable élimine y au.profit de u. Après
permutation de l'ordre des intégrations sur u et z, les limites d'intégration

pour u deviennent — 1 et + 1, alors que l'intégrale en z s'étend
à l'intervalle (0, R(u, û)), avec:

R(u,u) friM. pour u^-u. (2-10)

*) On a de facon générale:

f (dk)i(k2 + A)-n Ì7i2[(n-l)(n-2)Y1A-n+2,
pour n > 3.



Vol. 30,1957. Limite non-relativiste d'une équation... 423

Un second changement de variable éliminant z au profit de M2
donne :

+ 1 oo +11 M,1

F-1(p)^cp(p)=^J dûJ dM2g(û,M2) J du fdxJ dM2M2

-10 -10 0

[(l-x)D(ü,M2,x]-2[p2 + u(p,P) + M2 + Q2]-i (2.11)

où la limite d'intégration Mi2 est donnée par:

Mj2 (S, M2, u,x) D (û, M2, x) R (u, u) (2.12)

Avant de permuter l'ordre des intégrations sur M2 et x, il est
commode d'écrire l'intégrale sur M2 comme une différence de deux
intégrales :

Af,2 oo oo

JdM2... f' dM2...-JdM2...
0 0 M,1

Après avoir effectué la permutation indiquée, on obtient :

+ 1 00 +1 oo

F-1(p)3f(p)=^fdüfdM2g(ü,M2)fdu{fdM2(M2L1(ü,M;i)-
-10 -10

-6(M2-M22)M2L2(u,M2;û,M2)) [p2+u(p,P)+M2+Q2]~i\. (2.13)

Les noyaux Lx et L2 sont définis par :

h
Lt= fdx[(l-x)D(û,M2,x)]-2 (2.14)

avec :

ax 0, bx l, (2.15 a)

a2 et b2 étant les deux racines de l'équation en x :

Mx2(u,M2,u,x) M2 (2.15b)

M22(û, M2, u) est le minimum de Mx2(û, M2, u, x) par rapport
à x (valeur, de M2 pour laquelle a2 b2). 0(z) est la fonction-seuil
usuelle: 0(z) 0 pour z < 0 et &(z) 1 pour z > 0.

On donne à (2.13) la structure de (2.1) en deux étapes, qui ont
pour but: 1°, d'abaisser la puissance du dénominateur de 4 à 3, et,
2°, de placer les intégrales sur u et M2 à gauche de celles sur u et
M2. La première étape se réalise par une intégration par parties sur
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M2. Les parties intégrées sont nulles (celle du second terme parce
que L2(u, M22; û, M2) 0). Il reste:

— 1 CO -i-l oo

F-1(p)%cp(p)=1If dûf dM2g(u,M2) J du J dM2 x

-io -10
x (lx (û, M2) -&(M2- M2) -fr^ (M2L2 (u, M2; û, M2))) x

x[p2 + u(p,P + M2 + Q2]-3. (2.16)

Après permutation de l'ordre des intégrations sur (u, M2) et
(û, M2), on obtient une expression de la forme:

+ 1 co

F-l(p)3cp(v) f du J dM2%[u,M2,g( )][p2 + u(p,P) + M2 + q2]~3.

-1 ° (2.17)

(2.17) est de même structure que (2.1) et l'on voit que l'équation
de Bethe-Salpeter (1.5) est vérifiée si:

g(u,M2)=X%[u,M2,g( )]
+ 1 oo

y fdü fdM2Lx(û, M2) g (û, M2) -
-1 0

-^e(M2-M02)JJdûdM2^(M2L2(u,M2;û,M2))g(û,M2),
-t>(Û,M-) (2.18)

où:

%2-^
Mü2(u)=y2(l-\u\)

^[^ + Qpt^yJm2"^] (2.19)

et D(m, M2) est un domaine d'intégration du plan (û, M2) défini par :

0<M2<[(M2~— + Q2 + n2û2)i-pi^-(Q2 + r12û2). (2.20)

Ainsi, le problème de Bethe-Salpeter (1.5) pour des solutions cp (p)
à symétrie sphérique est réduit à l'équation intégrale (2.18) pour
la fonction-poids g(u, M2).

La forme de M02(u), (2.19), suggère de substituer à la variable M2
la variable z (g(u, M2) -> g(u, z)) définie par :

M2 z(l — \u\) (2.21)

L'efficacité de ce changement de variable se confirmera par la
suite; c'est essentiellement grâce à lui que la discussion de la limite
non-relativiste est pratiquement possible. Pour conclure ce
paragraphe, nous reformulons le problème en termes de la variable z.
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Les solutions à symétrie sphérique de l'équation de BetheSalpeter (1.5)
possèdent la représentation :

+ 1 CO

cp(p)= f du f dzg(u,z)(l-\u\)[p2 + u(p,P)+z(l-\u\)+Q2]-3
-i o

^ ^

(2.22)
g(u, z) étant solution de l'équation intégrale :

+1 co

g(u,z) =-çr\ / du J dzKx(u,z) g(u,z) —

-i o

— &(z — x2) I / dudzg(û,z)K2(u,z;u,z)\ (2.23)

avec: ®("'*>

Ki=(l-\û\)-^(zLi(U,z(l-\u\);û,-z(l-\û\))). (2.24)

Le domaine T>(u, z) du plan (u, z) est défini par :

0 <2 <,C(u,z;u)

C(u,z;û)=^1M[(z^^ + e2 + n2û2f-fiJ-(Q2 + n2û2).(2.25)

3. Discussion de l'équation intégrale (2.23).

Un point important a été omis au § 2; il s'agit, en effet, de savoir
si toutes les solutions à symétrie sphérique de l'équation de Bethe-
Salpeter peuvent être représentées selon (2.1), ou, en d'autres
termes, si l'ensemble des solutions de l'équation intégrale (2.18) conduit

à l'ensemble complet des fonctions <p(p) décrivant un état S.
Pour prouver ce résultat, il suffit de montrer qu'il est valable pour
une valeur particulière des paramètres t], q et pi apparaissant dans
l'équation (2.18). Nous choisissons le cas pi 0 (couplage par photons

scalaires), qui est celui traité par Wick et Cutkosky. Il faut
alors montrer que l'équation (2.18) définit un ensemble de fonctions
cp(p) identique à l'ensemble complet obtenu par Cutosky5).

Lorsque pi 0, on a %2 0 (voir (2.19)), et l'intégration sur x en
(2.14) est élémentaire et donne:

Lx(û, M2) -fr^- {(M2L2(u, M2;û, M2) [M2(M2 + Q2 + r]2û2)]~1.

(3.1)
(2 18) devient ainsi*) :x ' +1 oo

g (w, M2) T /'dû f'd M2 Lx (û, M2) g (û, M2). (3.2)

-i MniR
*) Il se trouve que pour cette discussion particulière, il est plus commode d'utiliser

la version (2.1) — (2.18) plutôt que la version équivalente (2.22) — (2.23) du
problème général.
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Nous montrons dans l'Appendice A que les solutions de (3.2) ont
la forme :

gn(u,M2)=nZ--^^gl(u)Ò^V(M2), (3.3)
k-0

les fonctions g* (u) étant solutions du système d'équations
intégrales :

«*(«,)= A y(n-k + l)\ (n-fc'-l)! 1

2,4^ (w-fc' + l)! (ra-fc-1)! (n-k)k =0

-1

-1

du[R(u,u)f~1c[Q2 + ri2û2ylc+v-1 gnk'(u). (3.4)

Introduisant (3.3) dans (2.1), on obtient:

n-l +1

<Pn(p) Z / dughn(u)[p2 + u(p,P)+Q2rn+k~2. (3.5)
k-0 J

Or, la représentation intégrale (3.5) et le système (3.4) définissant
les fonctions-poids sont identiques, aux notations près, à la représentation

(12) et au système (14) de Cutkosky3) pour l m 0.
Cutkosky ayant montré que l'ensemble des fonctions cp(p) ainsi
défini est complet, nous sommes assuré que (2.1) et (2.18) (ou (2.22)
et (2.23)) donnent toutes les solutions de l'équation de Bethe-Salpeter

à symétrie sphérique dans le cas général pi 4= 0.

En examinant les noyaux Lx et L2 pour u petit, il est possible de
voir comment les solutions g (u, M2) tendent «continûment» vers la
forme singulière (3.3) lorsque pi tend vers zéro. Nous n'avons toutefois

pas étudié ce point en détail.

Nous passons maintenant à un examen de la structure générale de

l'équation intégrale, dans sa version (2.23). Remarquons d'abord
que, Kx étant indépendant de u et de z, le premier terme du second
membre est une constante. Si cette constante est non nulle, on peut
normer g(u, z) de telle sorte qu'elle soit égale à un. On peut alors
reformuler le problème (2.23) comme suit :

g(u,z) l—^@(z~%2) f dudz K2(u,z;u,z)g(u,z) (3.6)

S(w,z)

+1 CO

l=-ô" / du / dzKx(u,z)g(u,z) (3.7)
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(3.6) est une équation inhomogène qui possède une solution
g(u, z, X) pour toute valeur de X. Introduisant cette solution dans
(3.7), on obtient une équation transcendante en X dont les racines
sont les valeurs-propres du problème. Ceci suggère une méthode
approximative de détermination des valeurs-propres qui consisterait

dans l'introduction en (3.7) d'une solution approchée de (3.6).
Cependant, la complexité du noyau K2 et du domaine -D rend
pratiquement impossible la construction d'une telle solution, dont on
soit sûr qu'elle ne diffère pas trop de la solution exacte.

De façon générale, la formulation (3.6)—(3.7) n'a de sens que pour
les solutions g(u, z) symétriques en u. Kx étant en effet symétrique
en u, le second membre de (3.7) est nul pour les solutions g(u, z)

impaires en u. Dans la suite, nous supposerons toujours avoir affaire
à une solution g(u, z) symétrique (g(u, z) g(— u, z)). Du fait de la
fonction 0 (z — %2) apparaissant dans le second membre de (3.6), une
telle solution est une constante pour z < %2.

Afin d'étudier le comportement de g(u. z) pour z > %2, nous
cherchons comment le second membre de (3.6) dépend de u. u
apparaît dans K2 par l'intermédiaire des limites d'intégration a2
et b2 en (2.14), définies par (2.15b). Cette équation s'écrit, en termes
des variables z et- S:

Cette équation montre que K2 dépend de u uniquement par
l'intermédiaire de l'expression en u et û:

F^)=W) (3-9)

et (2.25) montre qu'il en est de même pour le domaine T>(û,z).
Supposons u > 0, alors:

I 1-S si S < u

F(u,û)= L
1 + W

(1 + 5)

c'est-à-dire: F(u,u) est indépendante de u si û < u. Il s'ensuit
que si Î)(m, z) est tel que l'intégration dans le plan (û, z) s'étend à

des valeurs de w toutes inférieures à u, le second membre de (3.6)
ne dépend pas de u; autrement dit, g(u, z) est indépendante de u.
Par raison de symétrie, un résultat analogue est valable pour
u < 0 ; F(u, û) 1 + û, indépendante de u pour ü > u, et g(u, z)

indépendante de u si l'intégration s'étend à des valeurs de ü toutes
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supérieures à u. Il s'agit donc de déterminer s'il existe des valeurs
de u et de z telles que le domaine !-D(m, i) correspondant ait la
propriété énoncée plus haut. Nous démontrons dans l'Appendice B que
de telles valeurs existent effectivement, caractérisées par :

X2<z<x\
Y*<Z<~t-

1 + 1«! ta y2(y2-p2)
—r > Pour M< uo fr-2frfrfr- >

'[/a2 + 2//(o2 + »?2M2)*],pour tt > w-0. (3.10)

AZ

7 u

Pig. 1.

Courbes-limites du domaine d'indépendance 3 lorsque o2 1/4 p.2 et dans les cas:

if 2 n2, et 100 [j,2.

Ainsi, dans le domaine 3 du plan (u, z) défini par (3.10), g(u, z)
est une fonction de z seulement (fig. 1). Nous nommons par conséquent
3 «domaine d'indépendance», et nous pouvons introduire la
décomposition :

g (u, z) =f(z) +h(u,z)
avec : h(u, z) 0 lorsque (u, z) £ 3- (3-H)

4. La limite non-rclativiste.

Nous nous proposons maintenant d'étudier la limite non-relativiste
de l'équation intégrale (2.23). Il s'agit de la limite dans laquelle la
masse m des nucléons devient arbitrairement grande (m —>¦ oo).
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Nous pourrions donc aussi désigner cette limite par limite statique.
Dans ce cas q2 m2 — 1/4 E2 -> mB. Or, l'on sait que (mB) représente,

dans le traitement de Schroedinger, l'inverse du carré du

rayon de l'état lié*). Comme nous désirons étudier un système lié
d'extension finie, il faut que B tende simultanément vers zéro
(B—> 0), de telle sorte que (mB) reste fini. En termes des paramètres
n, pi et q, la limite non-relativiste correspond donc à un n devenant
arbitrairement grand (n -> oo), pi et q restant finis, arbitraires.

Examinons la forme que prend, dans cette limite, le domaine
d'indépendance 3 défini par (3.10). La définition (2.19) de %2 montre
que lorsque n —> oo,

%%—> pi2+ 2,iQ, (4.1)

de telle sorte qu'en (3.10), u0 —> 0. D'autre part, la limite
supérieure pour z, lorsque u > u0, devient, pour n suffisamment grand,
une fonction rapidement croissante de u. Il s'ensuit que si l'on
définit le domaine 3 par l'inégalité: [u| >Ui(z), la borne ux(z)**)
tend vers zéro pour toute valeur finie de z :

lim%(^ 0. (4.2)
n—>oo

Ainsi, le domaine d'indépendance 3 s'étend, à la limite, à toute
la bande du plan (u, z) définie par: \ u\ < 1, z > pi2 + 2 pig, à
l'exclusion du segment infini (pi2 + 2 ptg, oo) de l'axe Oz (fig. 1). Cela
signifie que la fonction g(u, z) est, dans la limite n —>¦ oo, indépendante
de u, mises à part d'éventuelles singularités en u 0, c'est-à-dire, elle
prend la forme :

lim g (u, z) f0 (z) + £hk (z) <5<2*> (u). (4.3)
«—^°o k ¦ 0

Il est maintenant plausible d'admettre l'existence d'une classe
de fonctions-propres g(u, z) de (2.23) (contenant en particulier la
fonction-propre de l'état fondamental) dont la limite ne présente
pas de singularités en u 0***). Avec la décomposition (3.11), ces
solutions sont donc caractérisées par :

lim g(u,z) /0 (z) lim / (z) ; lim h (u, z) 0. (4.4)

*) On peut montrer d'ailleurs qu'une fonction cp(x) dont la transformée de
Fourier a la forme (2.22) (ou (2.1), se comports asymptotiquement, dans le plan
t 0, comme 1/r exp( — q r). Ainsi q peut être interprété en toute généralité comme
inverse du rayon de l'état lié.

**) La détermination de u^z) à partir de (3.10) constitue un problème élémentaire,

on obtient toutefois une expression très compliquée que nous n'indiquons
pas, car elle n'intervient pas dans la suite. Elle permet de vérifier (4.2).
***) Il semble que les solutions caractérisées par un N fixe dans (4.3) correspondent

à une valeur définie de x : x 2 N.
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Pour cette classe de fonctions-propres, la discussion de la limite
non-relativiste se réduit donc à la recherche et à l'étude d'une équation

intégrale définissant la fonction-limite f0(z). Si la fonction
g(u, z) tend vers sa limite f0(z) de façon suffisamment régulière, l'on
présume que l'équation en f0(z) s'obtient en substituant dans (2.23)
f0(z) à g(u, z), et en passant à la limite n -> oo. Ces conjectures sont
confirmées par le théorème suivant, qui constitue un résultat central
de ce travail.

Théorème. Les relations (4.4) sont valables pour les solutions de

(2.23) qui sont bornées dans tout le domaine de définition (— 1 <
ta*.<+l,0<2< oo) et pour toute valeur de n, et pour lesquelles
la limite de Xjijn est finie. L'équation intégrale pour les fonctions-
limites f0(z) correspondantes s'obtient de la façon suivante; après
avoir remplacé dans (2.23) g(u, z) par f0(z), on effectue les intégrations

sur ü dans le second membre, puis on passe à la limite r, -> oo.

Nous appelerons classe régulière la classe des fonctions-propres
vérifiant les conditions de ce théorème.

Renvoyant la démonstration du théorème au paragraphe suivant,
nous terminons le présent paragraphe par l'établissement de l'équation

intégrale pour f0(z). D'après la règle énoncée plus haut, cette
équation a la forme suivante :

co

U(z)=o[jd~zGxÇ)U(-z)-
0

ÌIÌ.Z)

-0(z-pi2-2pio)jd^G2(z,-z)U(z-)\. (4.5)

Cx(z) est la cote du sommet de la limite du domaine D(û, z), c'est
donc la limite du maximum de C(u, z, û) (cf. (2.25)) par rapport à

û (on voit sans peine que ce maximum est indépendant de u) :

Cx(z) =\imM&xuC(u,z,û) =-- C(u,z,0) =[(z + o2)ì-pi]2-Q2 (4.6)

D'après le théorème, les noyaux Gx et G2 sont définis par:

s limGxÇz,n) (4.7)
rj—>00

Gx (I) lim
tj —>oo

-1-1 -,

-jp- / duKx(u,z)
¦ -i 1

G2(z, z) =lim -~- / duK2(u,z;u,z)
r/—>oo Au

slim G2(u,z,z,rj). (4.8)
n—>oo

En (4.8), A û représente l'intervalle (ou éventuellement les
intervalles) que le domaine D(tt, z) intercepte sur la droite de cote z
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(fig. 2). Les limites de ces intervalles sont donc solutions de l'équation

en û :

C(u,z,u) =z, |û|<l. (4.9)

Les facteurs r, apparaissant dans (4.7) et (4.8) sont nécessaires,
comme nous le verrons plus loin, pour que les limites envisagées
soient finies. Conformément à la règle de construction de (4.5) on a
alors :

a lim a (v) ; a (rf) — (4-10)

¦ C,(z,vl

aV»

02+a

Kg. 2.

Domaines d'intégration T) (trait plein) et 35* (pointillé) lorsque (u, z) se trouve
dans le domaine d'indépendance 3, dans le cas g2 1/4 pi2, r\2 100 /i2 et z 5 fi2.

Il se trouve que les noyaux Gx et G2 peuvent être évalués exactement

sans trop de difficultés.

Calcul de Gx(z). En vertu de (4.7), (2.24), (2.14) et (2.8), on a:

avec:
1 +i

Gx(z,n)= f dx / dûN(z,û,x) (4.11)
o -iavec

N(z,u,x) n
2 71 (l-\û\) x2[zx(l-\u\)+ pt2(l-x)+(Q2+n2u2)x2]-

Pour n suffisamment grand, le dénominateur de N est une fonction

rapidement croissante de û, de telle sorte que seules de petites
valeurs de û donnent une contribution sensible hG^z,?)). Il s'ensuit
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que l'on peut négliger û dans (1- | û |) sans altérer la limite de

Gx(z, rj) pour r\ -> oo. L'intégration sur û donne alors:
i

G^,V)=-^fdx[X{f+rlj2x2) +^frrtg-11gr] (4.12)
o

avec: X pi2 + (~z — pi2) x + g2 x2. Après transformation du
second terme par intégration par parties, il vient :

Gx^t])^ — — tgn qiz + Q2)1'2 & (Z + J?2)1'2
'

1

+ ~J^F2V [dx-z-r^, (4.13)
o

où: q 4 g2 pi2 — (z — pi2)2- Il est aisé d'effectuer l'intégrale
restante et de passer à la limite r\ —> oo. On trouve :

Gx(i)=\imGx(z,n)= 12-(~z + g2)-^{[(z' + Q2)i + pt^-g2}-1 (4.14)

Calcul de G2(z, ï). (4.8), (2.24), (2.14) et (2.8) donnent:

r h
r*

_ \ r _
G2{u,z,z,rj) / du^— z / dxN(z,u,x) (4.15)

A u

Les intervalles Au étant définis par (4.9) et les limites a2 et b2 par
(2.15b). Comme nous le montrons au § 5, la limite de G2(u,z, z, rj)
est indépendante de u ; il est donc permis de choisir (u, z) dans le
domaine d'indépendance 3> avec, par exemple, u > 0, de telle sorte
que G2(u, z, ~z, n) soit d'emblée indépendant de u. Dans ces conditions
(4.9) s'écrit:

z(l—û)+pi2 — 2pi(z(l-û) + g2 + rj2û2)i z(l—\û\). (4.16)

Pour n suffisamment grand, la racine carrée est une fonction
rapidement croissante de u, de telle sorte que les solutions de cette
équation en û sont très petites. L'intégration sur û en (4.15) s'étend
donc à de petites valeurs, et l'on obtient une limite G2(z,~z) correcte
si l'on néglige systématiquement û par rapport à 1. Les solutions
approchées de (4.16) sont alors:

û= ±a* ±-^-[(z-ì + pi2)2-±F2(z + e2)]i*). (4.17)

D'autre part, (2.15) devient:

xi + (1 - x) u2 + x2 (g2 + n2û2)=zx(l-x), (4.18)

*) Ces solutions définissent un domaine î)*(«,z représenté avec T>(û, z) dans
la figure 2.
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dont les solutions sont:

-1 [z — z + pi2 ±2pir](x*2—û2)i).

Comme a2* b2 lorsque u <x*, on peut écrire:

d

a2*/-2
[z + g2 + rj2u2)

G2(z,z,ri)gs±- : I du i dx N*(z, u, x)
' or a,-

433

(4.19)

(4.20)

ave c :

N*(z,u,x) =-^-x2[zx + pi2(\ — x) + (g2 + ri2u2)x2]~2.

Après avoir permuté l'ordre des intégrations sur u et x, on peut
évaluer cette intégrale en utilisant la technique employée pour Gx,

et l'on trouve un résultat indépendant de 77*), de telle sorte que l'on
a directement la limite G2(z, z) :

G2(z,-z)=^[z (ß^-^-i-—)]. (4.21)

Effectuant la dérivée, nous obtenons le résultat remarquable:

G2(z,-z)=Gx(z)=GÇz) (4.22)

qui montre, en particulier que G2(z, J) est en fait indépendant de z.
L'équation (4.5) devient ainsi:

/o(*0

î.fe)

dzG(z)fo(z)-0(z-pi2-2pig) dzG(z)f0(z) (4.24)

En résumé, nous avons établi dans ce paragraphe que la limite
non-relativiste du problème de Bethe-Salpeter est exprimée, pour
la classe régulière de fonctions-propres, caractérisées par (4.4), par
l'équation intégrale (4.24). Nous montrerons au § 6 que cette équation

intégrale est équivalente au problème de Schroedinger.

5. Démonstration du théorème.

Nous donnons maintenant une démonstration du théorème énoncé
au paragraphe précédent. Nous commençons par récrire l'équation
(2.23) en utilisant la décomposition (3.11) et en désignant par
K2(z; z, u) la valeur prise par K2(u, z;û,z) lorsque (u, z) se trouve
dans le domaine d'indépendance 3> Par exemple: u 1. D'autre
part, nous désignons dès maintenant le domaine T)(u, ~z) par -D(w, z),

*) Ce fait nous permettra d'utiliser, au § 5, le second membre de (4.20) comme
représentation de 02(z, z).
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indiquant par là les paramètres dont dépend ce domaine plutôt que
le plan dans lequel il est défini. Nous utiliserons aussi le symbole
T)(z) lorsque (u, z) est dans 3- Alors:

/w-4- f dz duKx(u,z) (f(z) +h(u,z~) —

-i
— 0(z — %2) / I dzdûK2(z;û,z) (f(z)+h(û,z))

5(z)

(5.1)

h(u,z)=^-0(z — x2) dzduK2(u,z;u,z) [(f(z) +h(u,z))
% (u, z)

dz duK2(z;u, z) (f(z)+h(u,z))
3>(z)

(5.2)

Utilisant (4.7), (4.8) et (4.6), (5.1) peut être mise sous la forme:

1,(2)

/to
V

avec

/ dz Gx(z)f(z)—0(z-pi2-2pig) j dzG2(z,z)f(z)
o o

+ A + B(z) + C + D(z) (5.3)

OO

A Jd-z-{GxÇz,rj)-Gx(z-))f(z) (5.4)
o

îi(z,n)

B(z)=-0(z-x2)jd-zG2(z,-z,ri)f(-z~) +

:,(z)

0(z — pi2 — 2ug) I dz G2(z, z)f(z)

C-
Ï7X.

dz duKx(u,z)h(u,z)

(5.5)

(5.6)

D(z) — -£-0(z — x2) / dz duK2(z;u, z)h(u, z) (5.7)
2.T

®(z)

En (5.5), Cx(z, v) est ie maximum, indépendant de u, de Ç(w, z, u)
par rapport à û (lim £1(2, rj) Cx(z)).

n-^-oo
On voit maintenant que le théorème annoncé est vrai, si A, B(z).

C, D(z) et h(u, z), définie par (5.2), tendent vers zéro dans la limite
où r\ devient infiniment grand, lorsque f(z) et h(u, z) sont bornées
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dans tout le domaine de définition (|w[ :£ 1, 0 ^ z < oo) et pour
toute valeur de n. Nous le prouvons en montrant que dans ces
conditions la valeur absolue de chacune des quantités A, B(z),
possède une borne supérieure dont la limite, lorsque n tend vers l'infini,
est nulle.

a) Borne supérieure pour \A\. f(z) étant bornée par hypothèse
(l/tol <7Pour 0 < x. < oo), on a:

\A\<fjdz\Gx(z,rj)-Gx(z)\ (5.8)
o

On vérifie sans difficulté que Gx(z), donné par (4.14), peut être
représenté par :

1 co

Gx(z) 2 fdx fduN*(z,u,x) (5.9)
o o

Après introduction de (5.9) et (4.11) dans (5.8), on peut écrire:

co 1

\A\<fIdz d x
0 0

du | N (z, u, x) — jV* (z, u, x) j

¦2 / duN* (z, u, x) (5.10)

On remplace \N — N*\ par sa majorante (AT — N* (1—2 | u |)) et
l'on intègre sur z. On effectue une nouvelle majoration en remplaçant,

dans les dénominateurs restant, (,w2(l — x) + g2x2) par son
minimum ß2 dans l'intervalle (0,1) (ß2 pi2 (1 — pi2j2 g2) ou g2,

suivant que pi2 < 2 g2 ou u2 > 2 g2). Il vient, après intégration
sur u :

A. ^/^[•^¦^(i+f^+Ki-t^T)]- (5-n)

On trouve sans peine une majorante de cette intégrale, qui donne:

MI<70(!(logl)2). (5.12)

La borne supérieure de \A\ ainsi obtenue tendant vers zéro lorsque
rj devient infiniment grand, on a:

lim .4=0. (5.13)
tj —>co
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b) Borne supérieure pour \C\. Si h est une borne supérieure de

\h(u, z)\, on a:

\C\<h fdzGx(z,rj) (5.14)

compte tenu de (4.7). Avec la représentation (4.11) de Gx(z,n),
et en utilisant les mêmes procédés qu'auparavant, on obtient:

i i
|C| <h^ fdx f dux[ß2 + r)2u2x2]-^ <^jh. (5.15)

0 0

Comme nous montrons sous e) que la borne h tend vers zéro

lorsque n -> oo, on a:
limC 0 (5.16)
r/—>oo

c) Borne supérieure pour | B(z)\. Nous supposons que

z<pirj(—\ avec 0 < ô < 1.

Le domaine d'intégration X(z) prend alors la forme indiquée dans
la fig. 2, et l'intégration sur ~z s'étend à des valeurs inférieures à z

(z < Cx(z, rj) < z). La borne que nous obtiendrons pour | B(z)\ sera
donc valable, r, croissant, dans un intervalle de plus en plus étendu
de la variable z: 0 < z < pin(ptjrj)a —»• oo.

Du fait des différentes limites d'intégration et des différents
arguments des fonctions 0 apparaissant dans (5.5), B(z) n'est pas, comme
A, l'intégrale d'une différence de deux noyaux, multipliée par f(z).
Remarquant que x2 < ß2 + 2 pig et Cx(z, v) > Cito. on es* conduit
à la décomposition suivante :

Bto Bito + B2to + ß3to (5.17)

où Bx(z) a une forme semblable à celle de A :

t. Os)

Bx(z) 0(z-u2-2/ug)JdJ(G2(z,J,r])-G2(z,z-))f(z-), (5.18)

G
U

et:
Cite >))

B2(z)=0(z-pi2-2pig) fäz~Gz(z,~z,'n)f(~z), (5.19)
fife)

B3to 0(/i2 + 2/io-f)<9(2-£2) l d~z~G2(z,~ï,ri)fÇz) (5.20)
o

La dérivée par rapport à « intervenant dans la définition (4.15)
de G2(z,~z,rj) et la représentation (4.20) de G2(z,~z) décomposent Bx(z)
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en une somme de deux termes, B[(z) et B[(z), provenant, le
premier de l'action de la dérivée sur le facteur z, le second de la dérivée
de l'intégrale sur û. On a pour B[(z) l'inégalité suivante:

f,(z)

\E'x{z)\<f / dz\ j dûdxN(z,û,x)— dûdxN*(z,û,x)\ (5.21)
o 'é é*

S et S* étant les domaines du plan (u, x) définis par:
S >u£A îi,a2<taE<o2 ; S*—>-1 u j *Ca.*,a2 <£<&*,

ou encore, par les courbes-frontières S et S*, d'équations:
(E >r(û,x) 7(1—5) x + u2(\ — x) + (g2 + n2û2) x2

—*(1 —5)3(1 —as) 0 (5.22)

(£*—>-jT*(m, x) =T(û,x) + zxû—zx(l — x) u 0.

Un examen de (5.22) montre que S* est entièrement contenu dans
S, ce qui permet d'écrire:

f,(z)
I b; to i < fJàiNÇs) (s—s*) +

o

+ f fdz fdûdx\N(~z,û,x) — N*(z,û,x)\, (5.23)
o ë*

où S et S* sont les surfaces des domaines S et S*, et où N(z) est
une majorante de N(z, û, x) dans S. Une telle majorante a la forme:

N(z)=r]N[z + y2]-2, (5.24)

N étant borné pour tout rj, et y2 ^(2 g — ^) ou o2 suivant que
g > /< ou g < pi. On a, d'autre part:

+ 0C*

S—S*'— / dû[b2(û) — a2(û)]— dû[bl(û) — al(û)]. (5.25)
Jm —a*

Lorsque, comme c'est le cas ici, ~z < Cito, Au est formé d'un seul
intervalle (voir fig. 2), de telle sorte qu'un certain changement de
variable linéaire, û —> r + tû, transforme les limites d'intégration
de la première intégrale en — a* et + a*. Alors :

+ 0C*

S-S*= fdû[t(b2(r + tû)-a2(r + tû))]-[(b*2(û)-a*2(û))]. (5.26)
-a*

Après remplacement des différentes fonctions intervenant dans
cette intégrale par leur expressions, un calcul assez laborieux donne
l'estimation suivante:
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ôx étant le minimum de (3 ô — 2) et (5/2; en choisissant ô > 2/3,
on a ôx > 0 (ce choix est compatible avec la rectriction 0 < ô < 1,
introduite plus haut).

On obtient une majorante du second terme de (5.23) en remplaçant

Cito Par °° et ®* Par ^e domaine (0 < x < 1, — 1 < û < 1).
L'expression ainsi obtenue est égale au premier terme de (5.10), dont
une borne supérieure est déjà connue, (5.12). Ainsi, avec (5.24) et
(5.27), on a:

!B;'to|<7[0(l;V0 + o(}(log|)2)] pour z<urì[fìò, (5.28)

l'intégration sur z dans le premier terme de (5.23) donnant une
quantité bornée, inférieure à 1/y2.

Bjto est définie par:
fi(z) r „ -i

B'i(z) z dz -y- IdudxN(~z,û,x)— I dûdxN*(z,u,x) f(z) (5.29)
o L© s*

Après avoir effectué la dérivation pour rapport à z, qui n'apparaît

que dans les limites d'intégration, on obtient une différence de
deux intégrales en û que l'on estime suivant le même procédé que
(S — S*), et l'on trouve:

fi(z)

Bïto<70(l/^')/aI[? + el]-1<7o(-i-log-2-). (5.30)
o

compte tenu de (4.6) et de ce que z < ptrj(pijrj)0. ô2 est le minimum
de 1/2(3 ô — 2) et (4 ô — 3) ; è2 est positif et non nul si l'on choisit
Ô > 3/4.

L'intégrant de B2(z), (5.18), étant d'ordre zéro en rj, B2(z) tend
vers zéro lorsque n-^oo, parce que le domaine d'intégration devient
de plus en plus petit; en effet, et par définition: lim (Cx(z,rj) —

Cito) o.

De même, B3(z), (5.19), tend vers zéro parce que, si z < pi2 + 2 pig:

Cx(z,r))<Cx(pi2 + 2pig,rj) et lim Cx(fi2 + 2/.g,rj) Cx(/n2 + 2pig) 0
î}—*oo

en vertu de (4.6). Ainsi:

lim B2 (z) lim B3 to 0 (5.31)
n—>co ïjta_>oo

Introduisant (5,28), (5,29) et (5,31) dans (5,16), nous voyons que:

limBto=0 (5.32)

pour toute valeur de z.
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d) Borne supérieure pour \D(z)\. On a, avec (5.7) et (4.8):

fi(z, v)

\D(z)\<h0(z-x2)JdJ\G2(z,-z-,rj)\. (5.33)
o

Le résultat établi sous c) montre que si l'on remplace le second
membre de cette inégalité par

0(z-pt2-2plg)Jd-zG2(z,-z),
o

on commet une erreur dont la limite, pour n —>oo, est nulle. D'autre
part, les expressions (4.22) et (4.14) de G2(z, 1) montrent que cette
intégrale est inférieure à I/o, de telle sorte que :

Setolai.
Tenant compte du résultat de e) déjà annoncé;

limDto=0

(5.34)

(5.35)

e) Borne supérieure pour | h(u, z) |. Utilisant la définition générale
(2.24) et (2.14) de K2(u, z, û, z), (5.2) donne:

z\ I dudxN(z,u,x)
Ktc

IM«»*)I<—$7J dz
o

d

~dz~

©(«)

— dudxN(z,u,x) (5.36)

où g est une borne supérieure de g(u, z) f(z) + h(u, z) (g < / + h).
<5(u) est le domaine du plan (û, x) défini par û G A û, a2 < x < b2,

(u, z) se trouvant hors du domaine d'indépendance 3- Ge domaine
est limité par la courbe G (m) :

£(«)—>r(u;û,x) =F(û,x)+zx(l — x) [l—û—F(u,û))=0, (5.37)

r(û, x) étant définie par (5.22), F(u,û) par (3.9). Comparant
(5.37) avec (5.22), on peut voir que <5(u) est entièrement contenu
dans S, ce qui permet d'écrire :

fi(2.i)r
N(z) (S-S(u)) +\h(u,z)\ < —~g I dz

o

+ z
d

dz du dxN(z, u,x]
©(«)—©

(5.38)
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La discussion se poursuit comme celle de Bjto sous c), et donne:

IM«.«l<^ta7((o(i/i.'0 + o(W'))- (^9)

Ainsi, si g reste bornée pour rj —>oo, et si lim Xnftt] a est finie, ce

qui est admis par hypothèse : ^00

limfc(u,*) 0. (5.40)
ri—>oo

Ce résultat achève la démonstration du théorème. D'autre part,
(5.39) prouve le résultat utilisé au § 4, lors du calcul de G2(z, z) :

lim (G, (u, z,l,rj)-G2 (z, I,??)) =0 (5.41)

6. Comparaison avec l'équation de Schroedinger.

Nous nous proposons de comparer le spectre des valeurs-propres
de l'équation intégrale (4.24), limite non-relativiste du problème de

Bethe-Salpeter pour une certaine classe «régulière» d'états S, avec
le spectre des valeurs-propres de l'équation de Schroedinger
correspondante, contenant le potentiel de Yukawa:

-~AW(x) + V(r)W(Ì)^-BW(x) (6.1)

avec:

V{r)=-^\-e-<"v ' v,7iz mi r

Comme on ne connaît pas les solutions exactes de (6.1), ni celles
de (4.24), cette comparaison ne peut se faire directement, et il n'y
a pas grand intérêt à chercher à comparer des valeurs-propres approchées.

Nous sommes ainsi conduit à chercher une équation intégrale
équivalente à (6.1), ayant une structure analogue à (4.24), de telle
sorte qu'une comparaison des noyaux permette d'établir une relation

entre les valeurs-propres.

Pour cela, nous écrivons (6.1) dans l'espace de Fourier:

y(p)=é^[\p\2+e2r1f(dm\p-k~\2+v2rink)> (6.8)
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où g2 mB, et nous cherchons si les solutions à symétrie sphérique
de cette équation peuvent être représentées par :

eo

W(p)= fdzs(z)[\p\2 + z + g2]-2 *). (6.4)
Ö

Paraphrasant les calculs faits au § 2, on obtient, à l'aide d'une
représentation de Feynman:

J(dk)3[(p-k)2 + pi2]-^W(k)

oo 1

1

2n2 / dzs(z) j dxx\p\2[x(l-x) + pi2(l-x) + (z+g2)x]-si2
0 0

oo

n2 f d^s(z~) (z~ + g2)-i[\p\2 + ((J + g2)* + pi)2]-1 (6.5)
ò

On multiplie cette expression par (\p\2 + g2)-1 et l'on rend
compacts les dénominateurs au moyen d'une seconde représentation de

Feynman. (6.3) peut alors s'écrire:

co (<z+g*y"+f)-Q*

Y(P) ^f di-sÇ) f dzG(z)[\p\2 + z + g2]-2 (6.6)
0 0

ßto étant défini par (4.22)—(4.14). Après permutation de l'ordre
des intégrations sur ~z et z et comparaison avec (6.4), on voit que
(6.4) vérifie (6.3) si la fonction-poids s(z) est solution de l'équation
intégrale :

oo {.(z)

s to a d z G (z) s (z) — 0 (z — pi2 — 2 pi g) / dz G(z)s(z) (6.7)

avec a X njm. Nous constatons le fait remarquable que cette
équation intégrale, équivalente à l'équation de Schroedinger pour
les états S, est identique à l'équation intégrale (4.24). Désignant par
crs les valeurs-propres de cette équation et par X£S(rj) les valeurs-
propres de l'équation de Bethe-Salpeter pour un rj quelconque

*) s(z) est essentiellement la transformée de Laplace de *F (:?). En effet:
oo

V(x)~ f dz(z + Q2)-H2s(z)exv[-(z + g2)ll2r].
o

Il s'ensuit que toute solution à symétrie sphérique de (6.3) peut être représentée
selon (6.4) puisque l'on sait que toute fonction-propre, solution de (6.1), décrivant
un état S, possède une transformée de Laplace.
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iaBs{v) ^Bs(rÙ7tlrl). nous avons établi que les valeurs-propres
oBS(rj), correspondant aux fonctions-propres de la classe régulière,
peuvent être mises en correspondance avec les valeurs propres
as du problème de Schroedinger de telle sorte que :

\im.oBS(rj) os *); lim g (u, z) =f0(z)= s (z). (6.8)
rj—> CO ri—> oo

En d'autres termes, dans une théorie scalaire, le spectre de

valeurs-propres de la limite non-relativiste, ou statique, de la «ladder
approximation» de l'équation de Bethe-Salpeter contient le spectre
de valeurs-propres de l'équation de Schroedinger, avec potentiel de
Yukawa. Or, l'on sait que dans la limite statique d'une théorie
scalaire, le potentiel de Yukawa décrit exactement l'interaction de deux
particules10). Ainsi, dans la limite considérée, la «ladder approximation»

fournit, par sa classe régulière de solutions, une description
rigoureuse des états liés.

La comparaison de ce résultat avec celui de Wick4) et Cutkosky5),
et le fait que notre formulation contient le cas pi 0, montre que
la classe régulière de fonctions-propres que nous avons isolée
correspond à la valeur % 0 du nouveau nombre quantique.

Pour terminer, nous interprétons l'égalité des fonctions-poids
/oto et s(z). La fonction cp(x) est donnée dans le plan t 0 par:

<p(x,Q>) (2frr3'2 / (dp)3x(v) eiiv'x) (6-9)

avec :
+0O

X(p) (27z)-i fdcocp(p,co) (6.10)
— oo

Introduisant la représentation (2.22), on obtient:
oo +1

x(p) — const / dz / dug(u,z) (1 — \u\)
o -i

[| p |2 + g2 + 2(1 - 1 u |) + n2u2]-5!2 (6.11)
et:

lim*© const. / dzf0(z) [ | p |2 + z + g2]~2 (6.12)
JJ^OO J

*) On remarque que ag ne dépend que de jx et de q: as as (fi, q), et Us est
une fonction linéaire de m. ajjs dépend par contre de p, q et rj : aBg aBg(fi, q, rj).
Comme lim m/rj 1, (6.8) montre que ).g et ).BS tendent vers l'infini de la même

^—>oo
facon lorsque rj -*- oo :

lim XsßBS lim osm/oBSrj l.
rj -^- CO r/ —> OO
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Compte tenu de f0(z) s(z), un choix convenable des constantes
de normation donne, en vertu de (6.4) :

lira X(P) Vip) (6.13)
rj—s-co

ou :

\imcp(x,0) W(x) (6.14)
n—>oo

c'est-à-dire dans la limite non-relativiste, l'amplitude de Bethe-
Salpeter devient égale, dans le plan t 0, à la fonction d'onde de

Schroedinger.
En terminant, je tiens à remercier mon maître, Monsieur le

Professeur E. C. G. Sttjeckelberg, pour l'aide constante qu'il m'a
accordée au cours de l'élaboration de ce travail.

Appendice A: Limite pi 0.

Nous montrons en premier lieu que g(u, M2) 0 dans l'intervalle
e < M2 < oo avec e > 0. Le changement de variable x — 1/M2 (g(u,
M2) -> g(u, x)) transforme (3.2) en :

+ 1 xR

g(u,x) =X du dz L(u, x)g(u, x) (A.l)
-i b

avec :

L(u,x)=^[l + x(g2 + r]2u2)]-1<l (A. 2)

On peut choisir x dans l'intervalle (0,1/e), et, du fait que R <1,
(A. 1) est une équation intégrale homogène en g(u, x) sur l'intervalle
fini (0,1/e) et à noyau borné L(u, x). Or, cette équation homogène
ne possède pas de valeurs propres*). Pour le prouver, il suffit de
montrer la convergence pour toute valeur de X de la série de
Neumann:

oo

§>(u, x;u, x,X) — £Hn+X(u, x;u,x)Xn. (A-3)
n 0

Hn(u, x;u,x) et le nième itéré du noyau Hx(u, x; û, x) :

TT \ I L Vü, x) pour x < x B (u, S)
Hx(u,x;,u,x) fr - fr - (A.4)1 v ' ' ' I 0 pour x > x R (u, u) v '

G-l lie
Hn+X(u,x;u,x)= / dux / dxxHn(u,x;uxxx)Hx(ux,xx;u,x) (A.5)

fr ù

*) La structure de l'équation intégrale (A. 1) est analogue à celle d'une équation
intégrale à une variable de Volterra. Aussi la démonstration de l'absence de
valeurs-propres est-elle une paraphrase de la démonstration du même résultat pour
une équation de Volterra11).
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Utilisant (A.2) et (A.4), on montre sans peine que :

Hn+X(u,x;û, x) <^rla;""Sin
d'où

$>(u,x;û,x,rr)<±re^x-*\<±-exle<oo (A.6)

Ainsi, la seule solution de (A.l) dans l'intervalle (0,1/e) est
g(u, x) 0. On ne peut cependant pas conclure à l'inexistence de

valeurs-propres de l'équation (3.2) dans l'intervalle (0 < M2 < oo)
car le noyau Lx(u, M2) a un pôle en M2 0. Nous avons seulement
prouvé que le support de g(u, M2) est contenu dans l'intervalle
0 < M2 < e, avec e arbitraire, positif. Il s'ensuit que g(u, M2) doit
avoir la forme (3.3), ou, plus précisément*) :

n—1 ta

gn(u,M*)-=\im£.--^g*(u)ô*~><-l>(M2-el2) (A.7)
~oï=o (—*+!)'

On a:
oo

lim /

lim Y ;
''

r lR(v'^r? -, ò(m)(M2-e/2) (AArLj (m+1)1 ïo2 + n2u2V-m~1 v ' ' v

dM2Lx(u,M2)b(v>(M2-e\2)
HR

„ (m+1)! [^+.^a2]*e-M) m-0 /le / J

On vérifie cette égalité en appliquant les distributions apparaissant

dans les deux membres à une même fonction f(M2) et en
constatant l'identité des résultats.

Introduisant (A.7) dans (3.2) et utilisant (A.8), on obtient le

système (3.4).

Appendice B: Détermination du domaine d'indépendance J.

(2.25) montre que l'intégration dans le plan (û,~z) s'étend à des
valeurs de ü telles que :

[(zF(u,û)+g2 + rj2û2)ï-pi]2—(g2 + rj2û2)>0

Cette inégalité s'écrit aussi:

zF(u, û) >pi2 + 2pi(g2 + rj2m2)* s J(û) (B. 1)

*) Cette définition est nécessaire pour donner un sens défini aux intégrales
sur M2 s'étendant à l'intervalle (0,oo), par exemple en (2.1) ,et pour éviter la
cïoncidence des singularités de g(û, M2) et de Lx(ü, M2) en (3.2) et (A. 8).
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Fig. 3.

Détermination graphique du domaine d'indépendance 3 lorsque u > u0. Pour
obtenir une figure claire, on a choisi: q2 1/4 /j,2, tj2 2 p2. Alors u0 0,29

X2 1,78 /<2 (m 3/2 u, B 0,2 pi).

i.Z

-u0 U -HÀ,0 tl u

Fig. 4.

Détermination graphique du domaine d'indépendance 3 lorsque u < u0.
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Dans une représentation graphique, ces valeurs correspondent à
la portion de la ligne brisée z F(u, û) située au-dessus de la courbe
J(û). Si u > 0, cette ligne brisée est formée du segment AB de la
droite passant par le point P d'abscisse 1 de l'axe horizontal et par
le point d'ordonnée z de l'axe vertical, et du segment BC de la droite
issue du point Q d'abscisse — 1 de l'axe horizontal, et coupant la
droite précédente en un point B d'abscisse u. Si z < x2, 1& ligne
ABC est toute entière au-dessous de la courbe J(û), et, lorsque
z X2' ie segment AB est tangent à J(u) en un point D d'abscisse
— u0 < 0. Pour déterminer dans quelles conditions l'intégration sur
u s'étend à des valeurs inférieures à u, il faut examiner dans quelles
circonstances le segment BC est tout entier au-dessous de J(û). Si

u > u0 (fig. 3), il en est ainsi aussi longtemps que B est situé au-
dessous du point E de la courbe J(w) d'abscisse u, et cette condition
s'exprime par la seconde inégalité (3.10). Si u < u0 (fig. 4), il faut
que BC soit au-dessous de la tangente QF à J(û) issue de Q, ce qui
donne la première inégalité (3.10). On obtient les graphiques
correspondant à u < 0 par une symétrie relativement à l'axe vertical
dans les fig. 3 et 4.
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