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Limite non-relativiste d’'une équation de Bethe-Salpeter*)*¥)

par G. Wanders.
Institut de Physique de I’Université, Genéve (Suisse).

(5. VI. 1957.)

Summary. A bound state of two scalar particles with mass m is described
relativistically by a wave function @ (z;, «,), which is a solution of a Bethe-
Salpeter equation. Wick and CuTkoskyY were able to discuss the “ladder approxi-
mation” of this equation quite completely, in the special case of scalar photons as
binding particles. This article presents an extension of their results to the case of
a binding due to scalar mesons, with nonvanishing mass u. The wave function of
an S-state has a two-parameter integral representation, the Bethe-Salpeter equa-
tion being equivalent to an integral equation for the weight function of this repre-
sentation. In spite of the intricate structure of this equation, it is possible to in-
vestigate its nonrelativistic, or static limit, where the bound particles become
infinitely heavy (m —> oo). In this limit, the set of eigenvalues of the Bethe-Salpeter
equation corresponding to the value % = 0 of the new quantum number s is
identical with the spectrum of the Schroedinger equation with a Yukawa potential.
These results are the natural generalization of those obtained by Wick and
CuTrkosky. Moreover, the limit of the wave function @ (x,, ,) is identical, in the
plane {, = ¢, = ¢ with the corresponding ordinary Schroedinger wave function.

1. Introduction.

Les bases d’une description relativiste des états liés ont été for-
mulées en premier par BrTHE et SALPETER!) et GELL-MAN et
Low?). Un état 1ié de deux particules est décrit par une amplitude
D(x,, x,), qui est I’élément de matrice entre le vecteur d’état |a) du
systeme considéré et le vide | 0> d’un produit chronologique:

D (21, ) = 0| T[¥1 (1), Palx)] [ o). (1.1)

¥, (x) et Wy(x) étant les opérateurs des champs quantifiés associés
aux particules liées. Opérateurs et vecteurs d’état sont exprimés
en représentation de HHEeisENBERG (z; et z, sont deux points de

*) Recherche subventionnée par la Commission Suisse de 1’Energie Atomique
(C.S.A)).
**) Ce travail constitue une thése presentee a I'Université de Lausanne, le
28 mai 1957, pour I'obtention du grade de Docteur és Sciences. Un rapport pré-
liminaire a été publié dans Phys. Rev. 104, 1782 (1956).

&
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Vespace-temps: x; = (T ;, t;)). L'amplitude @(z;, x,) est solution d’une
équation intégrale homogene, dite équation de BETHE-SALPETER:

D (x,, xs) =f(d333)4 e (dxe)‘lDic(fUz—ws) D;"(mz—%)
I (23, 243 x5, 26) D (5, X4) - (1.2)

D;¢ et D sont les propagateurs effectifs, invariants et causaux
des particules liées, I est un noyau, également invariant et causal,
caractérisant leur intéraction.

Il n’existe aucun modeéle de théorie relativiste pour lequel on
connaisse une expression fermée de ce noyau d’interaction. Il est
toujours défini par une série de puissances d’une constante de
couplage, que I’on ne sait pas sommer et dont la convergence est
d’ailleurs douteuse. On est donc contraint, dans toute discussion
concréte de (1.2), de remplacer I par un ou plusieurs termes de son
développement. Du point de vue théorique,il est alors bon de cher-
cher & ne pas faire d’autres approximations, c¢’est-a-dire de discuter
rigoureusement I’équation (1.2) avec une forme approchée du noyau
d’intéraction, afin d’établir les propriétés exactes d’'un certain type
d’intéraction relativiste. Les premieres recherches positives dans ce
sens sont dues & GoLDSTEIN®) et & Wiok4) et CuTKOSKY?).

Ces derniers auteurs discutent essentiellement le cas d une théorie
purement scalaire, ol les particules liées sont des particules de
spin 0 et de masse m, que nous appelerons «nucléons», et ou la
liaison est due & des «mésons» de spin 0 et de masse u, couplés sca-
lairement avec les nucléons. Ils considerent la ladder approzimation
de I'équation de BETHE-SALPETER correspondante, dans laquelle I
est remplacé par le premier terme de son développement:

—4;—& (23— x5) O (14— x4) Dﬁ(ma‘“%)’ (1.3a)
et les propagateurs effectifs sont remplacés par les propagateurs
des particules libres:

D;*(2) = Dy?(a) —» Dg(a) %). (1.8b)

On voit, d’aprés (1.1), que si 'état lié est un état-propre de
I’énergie et de I'impulsion, correspondant au quadrivecteur-propre
P = (P, E), 'amplitude @(x,, z,) a la forme:

D (x4, T5) = @ () el '+ = %(371"5‘ Ty), T=x;—Tp. (1.4)

I(z3, 745 75, T6) = —(27)

*) Ona: DS (z)=(2n)"* f (dp)* (p2+m?—ie) lexp[i(p, x)]. € > 0, arbitraire-
ment petit, assure la causalité du propagateur.

**) Nous utilisons la métrique indéfinie (1,1,1,—1); le produit scalaire (a,b) de
deux quadrivecteurs a et b vaut done: (a, b) = a, b* = (;, B)—a, b,-
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En particulier, si nous choisissons comme référentiel le systéme
de repos de I’état 1ié, il vient: P = (0, E) avec E =2m — B, B > 0
étant 1'énergie de liaison.

(1.2) et (1.3) donnent alors une équation pour g@(z) qui s’écrit,
dans l'espace de Fourier: |

¢(p) =AF~1(p) J¢(p) (1.5)
7(z) = (27)°2 [ (@p)ip(p) 2, (1.6
F(p) = [(%P—l—p)ermg] [(3P—p)+m] @7
et:
3p() =— 5 [ @RI —R)*+ 12 (k). (1.8)

Dans ces equations, nous avons écrit m? et u® pour m?2 — 1¢ et
u®—1e.

A Taide d’'une méthode de prolongement analytique, Wick4) a pu
prouver que 1’équation (1.5) posséde un systéme complet de solu-
tions. De plus, Wick4%) et Curkosky®) ont montré que dans le cas
p = 0 (couplage par photons scalaires), les solutions de (1.5) posse-
dent des représentations intégrales & un parametre (voir équation
(8.5) du présent travail), ’équation de Bethe-Salpeter étant équi-
valente & un systéme d’équations intégrales en les fonctions-poids
de ces représentations. Les résultats essentiels de la discussion de ce
systéme sont:

a) les valeurs propres A*) sont caractérisées par quatre nombres
quantiques, les nombres quantiques usuels n, | et m, et un nouveau
nombre quantique » (» = 0,1, 2, ...).

b) Dans la limite non-relativiste (B - 0), les valeurs-propres
Ao n,1,m correspondant & x = 0 sont identiques a celles que donne
I’équation de Schroedinger (spectre de Balmer). Il semble d’autre
part établi 4)%)%)7) que les valeurs-propres correspondant & » > 1
convergent toutes vers une méme valeur finie dans la limite B—>0.

Le but du présent travail est de montrer que des résultats ana-
logues sont valables dans le cas général 4 + 0. Nous ne considérons
que les états S (I = m = 0), pour lesquels la fonction ¢(p) est &
symeétrie sphérique dans l’espace tridimensionnel du vecteurp (p =
(p, w): @(p) =@(p|, ), ce qui simplifie notablement les calculs
sans restreindre l'intérét des résultats. Nous montrons au § 2 que

*) L’énergie de liaison B intervenant de maniére compliquée dans I'équation
de Bethe-Salpeter, il convient de considérer B comme fixé et A comme paramétre
variable dont il s’agit de trouver les valeurs-propres.



420 G. Wanders. H.P.A.

toute amplitude ¢(p), décrivant un état S, posséde une représenta-
tion intégrale (2.1) & deux paramétres et que ’équation de Bethe-
Salpeter (1.5) est équivalente & une équation intégrale en la fonc-
tion-poids g(u, M?) de cette représentation, (2.18). Le probléme de
Bethe-Salpeter est ainsi réduit & la discussion de cette équation.

Le fait que (2.18) est équivalente, dans la limite g = 0, au sys-
téme de Wick et Cutkosky (voir § 3), montre que les valeurs-propres
du probléme général sont aussi caractérisées par deux nombres
quantiques: le nombre quantique radial n et le nouveau nombre
quantique x. Il semble ainsi que I'apparition d’un nouveau nombre
quantique soit une caractéristique générale de la «ladder approxi-
mation» de I'équation de Bethe-Salpeter.

La complexité de 1’équation intégrale (2.18) est telle qu’il ne
semble guére possible d’en trouver des solutions, méme approchées,
pour des valeurs arbitraires des parameétres qui y interviennent.
D’autre part, il ne nous a pas été possible de construire une équation
simple, que l'on sait résoudre, et qui possede les caractéristiques
essentielles de 1'équation étudiée, de telle sorte qu’elle puisse en
servir de modéle.

Toutefois, un certain changement de variable (2.21) donne a
I’équation intégrale une forme (2.23) telle qu’il devient possible
d’en discuter la limite non-relativiste, ou statique (limite dans la-
quelle les nucléons deviennent infiniment lourds, m - oo, I’énergie
de liaison tend vers zéro, B = 0, de telle facon que (mB) reste fini).
En particulier, on peut construire une équation intégrale a une va-
riable (4.24) exprimant le probleme-limite pour une classe «régu-
liere» de fonctions-propres, correspondant a » = 0. (Voir §4 et § 5.)
D’autre part, il est possible de transformer I’équation de Schroe-
dinger avec potentiel de Yukawa en une forme équivalente qui se
trouve étre wdentique & (4.24) (§ 6). Nous avons ainsi établi qu'une
classe de valeurs-propres de 'équation de Bethe-Salpeter est 1den-
tique, dans la limite non-relativiste, au spectre de valeurs-propres
de I’équation de Schroedinger correspondante.

Ceci prouve que pour la classe correspondante de fonctions-
propres, le potentiel de Yukawa est équivalent, dans la limite sta-
tique, & I'intéraction relativiste de la «ladder approximation». Ce
résultat confirme les conclusions de certains arguments qualitatifs,
dans lesquels on néglige les effets de retard contenus dans l'intér-
action relativistel), et qui ont servi de point de départ pour une
méthode de résolution approximative du probleme de Bethe-
Salpeters). , ,

La forme que nous avons donné au probleme de Bethe-Salpeter
permet aussi, en principe, une détermination approchée des correc-
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tions relativistes aux valeurs propres, basée sur un développement
de la fonction-poids g(u, 2), solution de (2.23), autour d’une solution
de I’équation-limite (4.24). Cependant, cela nécessite des calculs la-
borieux, et le caractére académique d’un modeéle purement scalaire
restreint l'intérét du résultat. Aussi n’avons-nous pas cherché a
traiter ce probléme.

Le théoréme d’existence des solutions de l’équation de Bethe-
Salpeter dans le cas de nucléons de spin 1/2 n’ayant pu étre établi4),
une étude minutieuse de la structure mathématique du probléme
est nécessaire?), avant qu’on puisse tenter d’étendre & ce cas les
méthodes utilisées 1c1.

2. La représentation intégrale.

Nous nous proposons de démontrer quune solution ¢(p) & symé-
trie sphérique (état S) de I’équation de Bethe-Salpeter (1.5) possede
la représentation intégrale suivante:

+1 oo

:fda/dﬁzg(a,ﬂz) [p2+u(p, P)+ M2 4028 (2.1)
0
avec p%= mz—%Ez L

Pour le prouver, nous introduisons (2.1) dans I’équation de Bethe-
Salpeter (1.5) et montrons que cette équation est identiquement
vérifiée si la fonction-poids g(u, M?) satisfait une certaine équation
intégrale. La méthode adoptée consiste & transformer, apreés substi-
tution, le second membre de (1.5) jusqu’a obtenir une expression de
méme structure que le second membre de (2.1). Au cours de ces
transformations, nous faisons un usage répété des représentations
de Feynman:

ag—e+Dp—m+1y _ (vtm+ 1! fd (1—a)m

 nim! [a:r:+b lwx)]ﬂJrer2

(n+m-+1)! (I+y@d—y)™ 9
ntm! Qf [(a+b)+ a—b)yJrtmte (2:2)

Ainsi, avec a = k2 +u(k, P) + M2+ 0%, b= (k—p)2 + u% n =
2, m =0, (2.2) donne: :
1

34 r N2 (ir M 1 77\
I n—/d chu g(u,Mz)O/dxf(dk)

2%+ 2 (1—2x) Q(p)]~* (2.3)
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avec:

Q(p) =p>+u(p,P)+ li—w (M2 +0%+72u2) +—i.—u2—n252 (2.4)
et:

k'r—h%—afﬁ%P_(l»—w)p. (2.5)

On a posé en (2.4) n* = 1/4 E2. Apres le changement de variables
k — k', I'intégration sur k" en (2.3) est aisée et donne*):

Se) =3 [ du [ dM2g@. )2 [ dal1—n) Q)12 (26)

Il reste a multiplier J¢(p) par F~1(p). On transforme d’abord
F-1(p) a l'aide de (2.2):

F-1( fdy[p +y(p, P)+0%72, (2.7)

et l on rend compact les denomlna,teurb de F-1(p) et de Jg(p) au
moyen d’une derniére transformation de Feynman (2.2). On obtient:

F-1(p) S (p) = fdufd M2 g (u, M2) da:fldzfd ‘z’

[p®+u(p, P)+ M2+ 92]‘4; (28)
avec:

u=wuz+y(l—z) et M2=zD(u, J\_Jz,a:);
Diw, M2a) =it Lpey £ (geaqrmy  (29)

Il convient maintenant d’effectuer une suite de changements de
variables tels que # et M? deviennent variables d’intégration. Un
premier changement de variable élimine y au.profit de «. Apreés per-
mutation de 'ordre des intégrations sur « et 2, les limites d’intégra-
tion pour u deviennent — 1 et + 1, alors que I'intégrale en z s’étend
a I'intervalle (0, R(u, )), avec:

— 1Fu
R(u,u) = T

pour  w Z%. (2.10)

*) On a de facon générale:

f (dE)* (k2+ A) ™ = in2[(n—1) (n—2)]"1 A"+,
pour n > 3. :
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Un second changement de variable éliminant z au profit de M?
donne:

S +1 o0 +1 1 M,*®
3 _ — = .
F—l(p)3<p(p)=—2~ du [ dM?g(u,M?) | du [dz | d M?>M?
[ 95 4 [oufie]
[(1—2) D(w, M2, 2]-2[p* + u(p, P) + M>+¢%*  (2.11)
ou la limite d’intégration M,? est donnée par:
M,2(w, M2, u, ) = D (w, M2, z) R (u, ) (2.12)

Avant de permuter 'ordre des intégrations sur M2 et x, 1l est
commode d’écrire I'intégrale sur M? comme une différence de deux
intégrales:

M12 (]

fdM2...=deM2...—f2dM2...

Apreés avoir effectué la permutation indiquée, on obtient:

+1 00 +1 o0

F1p)Sop) == [du [ aM2q@, M2 [dul [ aM2(M2L, (@, M?)—
p[d5] 2t [aul [ 43000,

— O (M2—DM,2) M2L, (u,M2;w,M?)) [p2+u(p, P)+M2+92]—4}. (2.18)

Les noyaux L; et L, sont définis par:

by
B f d z[(1— ) D (u, I2, z)]-2 (2.14)

avec:

ay et by étant les deux racines de 'équation en z:
M,2(w, M?,u, 1) = M2  (2.15Db)

M,2(u, M2, u) est le minimum de M,2(u, M?, u, x) par rapport
4 « (valeur de M2 pour laquelle ay = by). O(2) est la fonction-seuil
usuelle: @(z) = 0 pour z < 0 et @(2) = 1 pour z > 0.

On donne & (2.18) la structure de (2.1) en deux étapes, qui ont
pour but: 19, d’abaisser la puissance du dénominateur de 4 & 3, et,
29, de placer les intégrales sur u et M2 & gauche de celles sur % et

M?2. La premiére étape se réalise par une intégration par parties sur
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M?2. Les parties intégrées sont nulles (celle du second terme parce
que Ly(u, My2; w, M2) = 0). I reste:

F—l(p)Scp(p):%fdﬁfmdl\_ﬁg(u,l\_dz)jldufdﬂ/_fz X

X (Ll(a, M2) — O (M2 — M2) <o (M2 Ly (u, M2 %, M2)))><
< [p2+u(p, P+ M2+ 02]-3. (2.16)

Apres permutation de l'ordre des intégrations sur (w, M?) et

(w, M?), on obtient une expression de la forme:
o0

F-1(p) 39 (p) = fdu/dw [ M2, g ( V)[p* 1 (p, P) + M2+g2)>.
-1 (2.17)

(2.17) est de méme structure que (2.1) et I'on voit que I’équation
de Bethe-Salpeter (1.5) est vérifiée si:

g (u, M2) = 7 §[u, M2, 9( )] =

+1 00
A S
=“2‘fd“fdM2L1(%Jz)g(u,ﬂfz)—

——@(M2 M,2) ffdud (MzL (u, M2;u, M) g(u, M2),

D (u, M?) (2.18)
ou:
' Mo?(u) = x2(1—[u))
" 2 1 / —
%2:%2‘ {M2+Q,u;f—]/4m2——,u2] | (2.19)

et D(w, M2) est un domaine d’intégration du plan (@, M?) défini par:
5 1 —o\ % 2 —
0 M2 L [(M27{Tm + 02 +772u2) *M] —(p2+n2u?). (2.20)

Ainsi, le probléme de Bethe-Salpeter (1.5) pour des solutions ¢ (p)
a symeétrie sphérique est réduit a I’équation intégrale (2.18) pour
la fonction-poids g(u, M?).

La forme de My?(u), (2.19), suggére de substituer a la variable M?
la variable z (g(u, M?) — g(u, 2)) définie par:

M2=z(1—|u)) (2.21)

L’efficacité de ce changement de variable se confirmera par la
suite; c’est essentiellement grace a lui que la discussion de la limite
non-relativiste est pratiquement possible. Pour conclure ce para-
graphe, nous reformulons le probléme en termes de la variable z.
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Les solutions & symétrie sphérique de I'équation de BetheSalpeter (1.5)
possedent la Teprésentation'

+1

/dufd7g w,2) (1—|u|)[p2+u(p, P)+2(1—|u]) +0%

(2.22)
g(u, 2) étant Solumon de U equatwn wntégrale :

g(u,2) = fd‘u,fde w,2) g(u,z) —
—O(—y? / fdudzg(u 2 Ky(u,2;, z)} (2.23)
Q(u z)
K,-z(1—117[)%(ZLi(u,z(l——[u});ﬁ,z(l—]ﬂ]))). (2.24)

Le domaine D(u, z) du plan (%, z) est défini par:
0 <z < E(u,2; 17)

C(u,25u) = —l“l [( s LIRS BT ) —M]Z—(QZMWZ)- (2.25)

R{u,u)

avec:

3. Discussion de Péquation intégrale (2.23).

Un point important a été omis au § 2; il s’agit, en effet, de savoir
si toutes les solutions & symétrie sphérique de ’équation de Bethe-
Salpeter peuvent &tre représentées selon (2.1), ou, en d’autres
termes, s1’ensemble des solutions de I’équation intégrale (2.18) con-
duit a I’ensemble complet des fonctions ¢(p) décrivant un état S.
Pour prouver ce résultat, il suffit de montrer qu’il est valable pour
une valeur particuliere des parameétres 7, p et p apparaissant dans
I’équation (2.18). Nous choisissons le cas p = 0 (couplage par pho-
tons scalaires), qui est celul traité par Wick et Curkosky. Il faut
alors montrer que ’équation (2.18) définit un ensemble de fonctions
@(p) 1dentique & ’ensemble complet obtenu par Curosky3).

Lorsque g = 0, on a 2 = 0 (voir (2.19)), et 'intégration sur z en
(2.14) est élémentaire et donne:

L; (w, M2) — ()Mz (M2 Ly (u, M?; 0, M?) :[*\/—’2(‘4“924"?7 %2)](; i
(2 18) devient ainsi*): e
g(u,MZ)zgfdafd@L (w, M?) g (w, M?). (3.2)
—1 M21/R

*) 1l se trouve que pour cette discussion particuliére, il est plus commode d’uti-
liser la version (2.1) — (2.18) plutdt que la version équivalente (2.22) — (2.23) du
probléme général.
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Nous montrons dans I’Appendice A que les solutions de (3.2) ont
la forme:

uM2=

g () "1 (M3), (3.3)

l

a-‘

les fonctions gk (u) étant solutions du systéme d’équations inté-
grales:

2 k
B (n—k+1)! (n-k'=1)1 1
gy (1) “?2 K +1)! (—k=1)! (n—Fk)
+1

[ LR @ F [0+ 2 g, (). (3.4

—1

Introduisant (8.3) dans (2.1), on obtient:
n—1
onlp) = 3 [ dughi)[p*+ulp, P)+o2 2 (35)
k=0

Or, la représentation intégrale (3.5) et le systéme (3.4) définissant
les fonctions-poids sont identiques, aux notations pres, a la représen-
tation (12) et au systéme (14) de Curkosky?) pour [ = m = 0.
Curkosky ayant montré que l'ensemble des fonctions ¢(p) ainsi
défini est complet, nous sommes assuré que (2.1) et (2.18) (ou (2.22)

t (2.28)) donnent toutes les solutions de I’équation de Bethe-Sal-
peter a symétrie sphérique dans le cas général p =+ 0.

En examinant les noyaux I; et L, pour « petit, il est possible de
voir comment les solutions g (%, M?) tendent «contintiment» vers la
forme singuliére (8.8) lorsque u tend vers zéro. Nous n’avons toute-
fols pas étudié ce point en détail.

Nous passons maintenant & un examen de la structure générale de
I’équation intégrale, dans sa version (2.23). Remarquons d’abord
que, K, étant indépendant de » et de 2z, le premier terme du second
membre est une constante. Si cette constante est non nulle, on peut
normer g(u, ) de telle sorte qu’elle soit égale & un. On peut alors
reformuler le probléme (2.28) comme suit:

g(u,z):1_.’;_@(%%2)]fd‘@zdez(u,z;a,z)g@,z) (3.6)

D (u,2)

L1 e :
A
=?fdufde1(u,z)g(u,Z) (3.7)
S
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(8.6) est une équation inhomogéne qui posséde une solution
g(u, 2, 1) pour toute valeur de A. Introdwsant cette solution dans
(3.7), on obtient une équation transcendante en A dont les racines
sont les valeurs-propres du probléme. Ceci suggére une méthode
approximative de détermination des valeurs-propres qui consiste-
rait dans I'introduction en (3.7) d’une solution approchée de (3.6).
Cependant, la complexité du noyau K, et du domaine ® rend pra-
tiquement 1mpossible la construction d’une telle solution, dont on
soit str qu’elle ne différe pas trop de la solution exacte.

De fagon générale, la formulation (3.6)—(8.7) n’a de sens que pour
les solutions g(u, 2) symétriques en u. K, étant en effet symétrique
en u, le second membre de (8.7) est nul pour les solutions g(u, 2)
impaires en %. Dans la suite, nous supposerons toujours avowr affaire
a une solution g(u, 2) symétrique (g(u, 2) = g(— u, 2)). Du fait de la
fonction @ (2 — %2) apparaissant dans le second membre de (3.6), une
telle solution est une constante pour z < y2.

Afin d’étudier le comportement de g(u.z) pour z > 2%, nous
cherchons comment le second membre de (3.6) dépend de u.u
apparait dans K, par l'intermédiaire des limites d’intégration a,
et by en (2.14), définies par (2.15b). Cette équation s’écrit, en termes
des variables z et z:

o2 (1—la)+ L

St ntut) =g, (39

Cette équation montre que K, dépend de % uniquement par l'in-
termédiaire de 'expression en « et %:

o _ 1-]u]

F(u,u) = Fwm) (3.9)
et (2.25) montre qu’il en est de méme pour le domaine D (u, 2).
Supposons « > 0, alors:
, [ 1-u sl <u

B, w) = ] S50 2 i) si %> u,
c’est-a-dire: F(u, u) est indépendante de wu si w < u. Il s’ensuit
que st D(u, z) est tel que I'intégration dans le plan (%, z) s’étend a
des valeurs de u toutes inférieures & u, le second membre de (3.6)
ne dépend pas de u; autrement dit, g(u, 2) est indépendante de wu.
Par raison de symétrie, un résultat analogue est valable pour
% < 0; F(u, u) =1 + u, indépendante de w pour % > u, et g(u, 2)
indépendante de  si I'intégration s’étend & des valeurs de w toutes
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supérieures a w. Il s’agit donc de déterminer 8’1l existe des valeurs
de u et de z telles que le domaine D(u, 2) correspondant ait la pro-
priété énoncée plus haut. Nous démontrons dans I’Appendice B qne

de telles valeurs existent effectivement, caractérisées par:

u |

L+ , it~
AR A S Tl LA il v e ol
1
1t <<l + 20 +n*ud)] pour u > w.  (3.10)
A7
s
S
1 : >
-1 ‘ -ty 7 +1 o«

Fig. 1.
Courbes-limites du domaine d’indépendance J lorsque 92 = 1/4 u? et dans les cas:
n? = 2 u2, et 100 2.

Ainsi, dans le domaine J du plan (u, 2) défini par (3.10), g(u, 2)
est une fonction de z seulement (fig. 1). Nous nommons par conséquent

3 «domaine d’indépendance», et nous pouvons introduire la décom-
position:

g(u,2) =1(2) +h(u,z2)
avec: h(u,2) =0 lorsque (u,2) € 3. (3.11)

4. La limite non-relativiste.

Nous nous proposons maintenant d’étudier la limate non-relativiste
de I’équation intégrale (2.23). Il s’agit de la limite dans laquelle la
masse m des nucléons devient arbitrairement grande (m — oo).
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Nous pourrions donec aussi désigner cette limite par limite statique.
Dans ce cas p2=m? —1/4 £* — mB. Or, l'on sait que (mB) repré-
sente, dans le traitement de Schroedinger, l'inverse du carré du
rayon de 1’état 11é6*). Comme nous désirons étudier un systéme lié
d’extension finie, il faut que B tende simultanément vers zéro
(B—0), de telle sorte que (mB) reste fini. En termes des parameétres
n, w et g, la limite non-relativiste correspond donc & un 7 devenant
arbitrairement grand (n — o0), u et ¢ restant finis, arbitraires.

Examinons la forme que prend, dans cette limite, le domaine
d’indépendance  défini par (8.10). La définition (2.19) de x2 montre
que lorsque 7 — oo,

x2—>pi+2p0, (4.1)
de telle sorte qu’en (3.10), u, — 0. D’autre part, la limite supé-
rieure pour z, lorsque % > u,, devient, pour % suffisamment grand,
une fonction rapidement croissante de w. Il s’ensuit que si 'on
définit le domaine J par I'inégalité: |u| > u,(z), la borne u,(z)**)
tend vers zéro pour toute valeur finie de z:

lim u, (2) = 0. (4.2)
n—>00

Ainsi, le domaine d’indépendance J s’étend, a la limite, & toute
la bande du plan (u, 2) définie par: | | < 1,2 > u? + 2 po, & I'ex-
clusion du segment infini (u2 + 2 pe, oo) de l'axe Oz (fig. 1). Cela
signifie que la fonction g(u, z) est, dans la limite n — oo, indépendante
de w, mises & part d’ éventuelles singularités en u = 0, ¢’est-a-dire, elle
prend la forme:

lim g(u,2) = f,(2) + Zh 6" (u). (4.8)
7 —> 00 :

Il est maintenant plausible d’admettre I’existence d’une classe
de fonctions-propres g(u, z) de (2.23) (contenant en particulier la
fonction-propre de I'état fondamental) dont la limite ne présente
pas de singularités en u = 0%*¥), Avec la décomposition (8.11), ces
solutions sont donc caractérisées par:

lim g(u,2) =f(2) =lim f(2); lim h(u,z) = 0. (4.4)
n—> 00 7 —> o0

*) On peut montrer d’ailleurs qu'une fonction ¢(x) dont la transformée de
Fourier a la forme (2.22) (ou (2.1), se comporte asymptotiquement, dans le plan
¢t = 0, comme 1/r exp(— g r). Ainsi ¢ peut étre interprété en toute généralité comme
- inverse du rayon de ’état lié,

**) La détermination de u,(z) & partir de (3.10) constitue un probléme élémen-
taire, on obtient toutefois une expression trés compliquée que nous n’indiquons
pas, car elle n’intervient pas dans la suite. Elle permet de vérifier (4.2).

**%*) Ilsemble que les solutions caractérisées par un N ﬁxe dans (4. 3) correspondent
a une valeur définie de »:% = 2 N.
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Pour cette classe de fonctions-propres, la discussion de la limite
“non-relativiste se réduit donc & la recherche et a I’étude d’une équa-
tion intégrale définissant la fonction-limite fy(2). St la fonction
g(u, 2) tend vers sa limite f,(2) de fagon suffisamment réguliére, 1’on
présume que ’équation en fy(2) s’obtient en substituant dans (2.23)
fo(2) & g(u, 2), et en passant a la limite n - co. Ces conjectures sont
confirmées par le théoréme suivant, qui constitue un résultat central
de ce travail.

Théoreme. Les relations (4.4) sont valables pour les solutions de
(2.28) qui sont bornées dans tout le domaine de définition (—1 <
w <+ 1,0 <2z <o0) et pour toute valeur de 7, et pour lesquelles
la limite de Am/n est finie. I’équation intégrale pour les fonctions-
limites fy(2) correspondantes s’obtient de la fagon suivante; apres
avoir remplacé dans (2.23) g(u, 2) par fy(2), on effectue les intégra-
tions sur % dans le second membre, puis on passe a la limite % > oo.

Nous appelerons classe réguliere la classe des fonctions-propres
vérifiant les conditions de ce théoréme.

Renvoyant la démonstration du théoréme au paragraphe suivant,
nous terminons le présent paragraphe par I’établissement de 1’équa-
tion intégrale pour fy(2). D’apres la régle énoncée plus haut, cette
équation a la forme suivante:

A —o| [dZ26,@) () -
4@
—O(—p*—2u0) [ dZ6,(2)o(3)]. (4.5)

,(2) est la cote du sommet de la limite du domaine D(u, 2), c’est
donc la limite du maximum de {(u, 2z, u) (cf. (2.25)) par rapport a
% (on voit sans peine que ce maximum est indépendant de w):

24 (2) = lim Maxg L (1, 2,70) = £ (w,2,0) =[(z + 09t — p*—®  (4.6)

17— 00

D’apres le théoréme, les noyaux G, et G, sont définis par:

G, (?) —~l1m[ fduK }_hm(}l(z,n) (4.7)

n—r 00 n—>00

Gz(z,z):lim[ / du K, (u,2; 4, z)} =lim Gy (u,2,7,7).  (4.8)

n—>00 n—>00

En (4.8), 4 u représente 'intervalle (ou éventuellement les inter-
valles) que le domaine D(u, z) intercepte sur la droite de cote z
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(fig. 2). Les limites de ces intervalles sont done solutions de 1’équa-
tion en %:

Eur2 ) =7, |u|< 1. (4.9)

Les facteurs # apparaissant dans (4.7) et (4.8) sont nécessaires,
comme nous le verrons plus loin, pour que les limites envisagées
solent finles. Conformément & la régle de construction de (4.5) on a
alors:

6 =lim o(n); o(n) = i;;_ . (4.10)

=00

A’

& (Z, 7])
\C]{Z)
\J

Fig. 2.
Domaines d’intégration D (trait plein) et D* (pointillé) lorsque (u,z) se trouve
dans le domaine d’indépendance 3, dans le cas g% = 1/4 u?, n* = 100 u2et z = 5 p?.

Il se trouve que les noyaux G, et G, peuvent étre évalués exacte-
ment sans trop de difficultés.

Caleul de G4(z). En vertu de (4.7), (2.24), (2.14) et (2.8), on a:

avec:

GiGn) = [ da ‘/IdiZN(E, . i) (4.11)
avec U = |
NG m) = 5L (1| |) 22[Fo(l—| 7)) + 2 (1— ) + o+ n?a%) %],

Pour 7 suffisamment grand, le dénominateur de N est une fone-
tion rapidement croissante de %, de telle sorte que seules de petites
valeurs de % donnent une contribution sensible & Gy(z, 7). Il s’ensuit
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que l'on peut négliger % dans (1-|w|) sans altérer la limite de
G,(z, n) pour n > oo. L’intégration sur « donne alors:

Gy (2,7) = 2 / dm[ (Xx+f,2x2) + g tg_l_)"c:%,?] (4.12)
0

avec: X = u?+ (7 — u? = + 0% 2% Aprés transformation du se-
cond terme par intégration par parties, il vient:
o 1 z+u? _ n
o) 2 g 18 s +
11 :
i 2
= 7 4u nu/ dx
0
ou: g =402 u?— (2 — u??2 1l est aisé d’effectuer l'intégrale res-
tante et de passer a la limite # — oo. On trouve:

613 =lim Gy (e,m) = & G+ H{[E4 oA+ WP —e?}t  (4.14)

7 —> 00

1

my (4:.13)

Calcul de Gy(z, 2). (4.8), (2.24), (2.14) et (2.8) donnent:

Gyt 2,2,) = | d%_[ /dmN 4, :1:)] (4.15)
dn

Les intervalles Aw étant définis par (4.9) et les limites a, et by par
(2.15b). Comme nous le montrons au § 5, la limite de Gy(u, 2, 2, )
est indépendante de u; il est donc permis de choisir (u, 2) dans le
domaine d’indépendance J, avec, par exemple, u > 0, de telle sorte
que Gy(u, 2, z,7) soit d’emblée indépendant de w. Dans ces conditions
(4.9) s’écrit:

2(1—u) + u2—2pu(2(1—u) + o2+ n2u) =2(1—|ul). (4.16)

Pour # sutfisamment grand, la racine carrée est une fonction ra-
pidement croissante de u, de telle sorte que les solutions de cette
équation en u sont trés petites. L'intégration sur w en (4.15) s’étend
donc & de petites valeurs, et I’on obtient une limite G5(2,2) correcte
st I'on néglige systématiquement w par rapport a 1. Les solutions
approchées de (4.16) sont alors:

[(e—2+p?)2—dp2(z+e®)}*). (417

= o = & 2un
D’autre part, (2.15) devient:
acz+(1—m),u2+r2(92—'—77 u?)=zz(l—ux), (4.18)

*) Ces solutions définissent un domaine D*(u,z ), représenté avec D(u, z) dans
la figure 2.
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dont les solutions sont:
*

by ,,,/ = (z+Q +n2u?) Tt (z—2+ 2 £ 2 pm @2 —u).  (4.19)

Comme a,* = by* lorsque u = «*, on peut écrire:

Gy(2,72,7) = [ Tc*luf*dmN*(z i, m)] (4.20)

avec:
N*(z,u,xz) = wz[za:er (1—2x) + (02 + n2u?) x?]-2.

Apres avoir permute I’ordre des intégrations sur % et z, on peut
évaluer cette intégrale en utilisant la technique employée pour G,
et 'on trouve un résultat indépendant de n*), de telle sorte que I'on
a directement la limite Gy(z, 2):

— J x 1
Effectuant la dérivée, nous obtenons le résultat remarquable:
Gy(2,2) = G1(2) =G (2) (4.22)

qu montre, en particulier que Gy(2,2) est en fait indépendant de z.
L’équation (4.5) devient ainsi:
c(2)
fa(2) —a[fde @folE)—6 (z— st —2 g fde(zm(z)]. (4.24)
0
En résumé, nous avons établi dans ce paragraphe que la limite
non-relativiste du probléme de Bethe-Salpeter est exprimée, pour
la classe réguliere de fonctions-propres, caractérisées par (4.4), par
I'équation intégrale (4.24). Nous montrerons au § 6 que cette équa-
tion intégrale est équivalente au probléme de Schroedinger.

5. Démonstration du théoréme.

Nous donnons maintenant une démonstration du théoréme énoncé
au paragraphe précédent. Nous commengons par récrire 1’équation
(2.28) en utilisant la décomposition (3.11) et en désignant par
Ky(2; 2, w) la valeur prise par Ky(u, z; %, z) lorsque (u, 2) se trouve
dans le domaine d’indépendance J, par exemple: u = 1. D’autre
part, nous désignons dés maintenant le domaine D(w, 2) par D(u, 2),

*} Ce fait nous permettra d’utiliser, au § 5, le second membre de (4.20) comme
représentation de Gy(z, z).
*
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indiquant par la les parametres dont dépend ce domaine plutdét que
le plan dans lequel il est défini. Nous utiliserons aussi le symbole
D(z) lorsque (u, 2) est dans J. Alors:

£(2) H-—[/dz/duK 2) (F@) +h(u,2)—

m@(z_xz)/_/ dzduK,(z;u,7) (f@+h(ﬁ,§))}. (5.1)
D (2)

hWJ%L%@wa%L//ﬂ?ﬁﬂﬁ@un@?Mﬁ@}+M@En—
D (u, 2)

/d?dﬁﬁg@ﬁLE)U@)+hﬁLE»}. (5.2)
D (2)

Utilisant (4.7), (4.8) et (4.6), (51) peut étre mise sous la forme:

o0 cl (=)
f@%=%?[]d5Gﬂ2)() O (z—p*— 2#9\/d2G 2,2)[(2)

+A+B@+O+D@} (5.3)
avec A f dz (Gy(z,m)—Gy(2)) (2) (5.4)
iz, m)

B(s) = —0(:—7?) [ dZCyle 2,0 f(7) +
fi(z)

+0O(z—u?—2 up) /dz (z,2)f(2) (5.5)
o0 +1
= | dE./dﬁKl(ﬂ,E)h(ﬁ,E) | (5.6)
_ 0 =1
D(z)=~—%@(z~——x2)f/dEdEKz(z;ﬁ,E)h(ﬁ,E) (5.7)
D(2)

En (5.5), {4(2, 5) est le maximum, indépendant de w, de {(u, 2, u)
par rapport a « (lim (2, ) = £,(2))-

7—>00

On voit maintenant que le théoréme annoncé est vrai, si 4, B(z).
C, D(2) et h(u, 2), définie par (5.2), tendent vers zéro dans la limite
ou 7 devient infiniment grand, lorsque f(2) et h(u, 2) sont bornées
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dans tout le domaine de définition (Ju] =1, 0 =2 < o0) et pour
toute valeur de 5. Nous le prouvons en montrant que dans ces con-
ditions la valeur absolue de chacune des quantités 4, B(z), ... pos-
séde une borne supérieure dont la limite, lorsque % tend vers I'infini,
est nulle. '

a) Borne supérieure pour |A|. f(z) étant bornée par hypothése
([f()] <fpour 0 <z < o0), on a: | |

41<T [ 216y (e —Ca (@) (5.8)

~ On vérifie sans difficulté que G,(2), donné par (4.14), peut étre
représenté par:

1 oo '
Gl(z)=2fdx/duN*(z,u,m) (5.9)
o 0
Aprés introduction de (5.9) et (4.11) dans (5.8), on peut écrive:

o 1 =1
| 4] <f / dzfdw[ /dulN(z,u,a:)——N*(z,u,x)|
i 0 -1 .

+2/_duN*(z,u,m)], L (5.10)
;

On remplace | N —N*| par sa majorante (N—N* (1—2| u|)) et
I'on intégre sur 2. On effectue une nouvelle majoration en rempla-
cant, dans les dénominateurs restant, (u2?(1 — x) 4+ 022%) par son
minimum £2 dans Uintervalle (0,1) (82 = u? (1 — u?/2 0% ou 2
suivant que p? < 2p2% ou u? > 2p?). Il vient, aprés intégration
sur aw: ' ,

A(?%flda: [ﬁ%log (1 e %Z—LBZ) +%(%_—tg—1 —%x—)J .- (5.11)
o

On trouve sans peine une majorante de cette intégrale, qui donne:

14| < ?o(;(logg)ﬂ. (5.12)

La borne supéricure de | 4| ainsi obtenue tendant vers zéro lorsque
7 devient infiniment grand, on a:

lim A4 = 0. | (5.13)
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b) Borne supérieure pour |C|. Si h est une borne supérieure de
|h(u, 2)|, on a:

!cgg_ﬁ[del(z,n) (5.14)

compte tenu de (4.7). Avec la représentation (4.11) de Gy(z, n),
et en utilisant les mémes procédés qu’auparavant, on obtient:

1 1
10| < ﬁg—fdmfdu:c[ﬂ2+n2u2x2]—1 < TZIB'E' (5.15)
0 0 '

Comme nous montrons sous e) que la borne h tend vers zéro
lorsque n — oo, on a:

limC=0 (5.16)
7—> 00
¢) Borne supérieure pour | B(z)|. Nous supposons que

7 < Mn(%_)a avec 0<o<1.

Le domaine d’intégration ®(z) prend alors la forme indiquée dans
la fig. 2, et 'imtégration sur z s’étend & des valeurs inférieures a z
(z < 4(2,m) < 2). La borne que nous obtiendrons pour | B(z)| sera
donc valable, 5 croissant, dans un intervalle de plus en plus étendu
de la variable 2: 0 < 2 < un(u/n)® — oc.

Du fait des différentes limites d’intégration et des différents argu-
ments des fonctions @ apparaissant dans (5.5), B(z) n’est pas, comme
A4, Vintégrale d’une différence de deux noyaux, multipliée par f(z).
Remarquant que 32 < u? + 2 po et {y(2, ) > £4(2), on est conduit
a la décomposition suivante:

B(2) = B;(2) + By(2) + B3 (2) (5.17)

ot B4(¢) a une forme semblable & celle de 4:
£ (2)
By(a)=0(z—u2—2p) [ 47 (Go(e7.0) — (2, D)) f(2),  (5.18)

]
et:
‘fl (zy ?7)

By(e) = 0 (e—p*—2u0) [ 47 Gy(e. 7.0 f(2), (5.19)
£, (2)
C (z,n)

By(2) =O(u2+2u0—2)0(z2—y /de2 5,2, f(z)  (5.20)

La dérivée par rapport & z intervenant dans la définition (4.15)
de Gy(2,7,7m) et la représentation (4.20) de Gy(2,2) décomposent B;(z)
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en une somme de deux termes, B;(2) et B](z), provenant, le pre-
mier de ’action de la dérivée sur le facteur z, le second de la dérivée
de 'intégrale sur #. On a pour B;(2) I'inégalité suivante:
&, (@
|B;(z)|<ffdz‘ fdﬂda:N(E,ﬂ,a:)—[d%&da;N*(E,ﬁ,:c)} (5.21)
0 ‘& e
S et S* étant les domaines du plan (u, x) définis par:

C—rucdu,a,<zr<b,; &*—|u|<a* o <z,
ou encore, par les courbes-frontiéres & et ©*, d’équations:
C——I'u,x)=2(1—u)x+ p2(1—1x)+ (02 +n2u?) a?
—z(1—u)x(1—x)=0 (5.22)
C*—>TI*(u,x)=I(u,2) +2z2u—2x(1—x)u=0.
Un examen de (5.22) montre que &* est entiérement contenu dans

€, ce qui permet d’écrire:
¢1(2)

| B, (2) |<f/dzN 7) (S—S*) +

€1 (2)
+fde[d&dxlN(E,ﬂ,m)—N*(E,ﬁ,:c)L, (5.28)
0 c*
ou S et S* sont les surfaces des domaines S et G*, et ot N(z) est
une majorante de N(z, %, z) dans &. Une telle majorante a la forme:

N(2) =n N[z +y2]2, : (5.24)

N étant borné pour tout 7, et 2 = u(2 p — u) ou p? suivant que
0> poup < u. On a, d’autre part:

S— %= f dulby (1) —ay ()] — [ dulby (@) —a3 @] (5.25)

Lorsque, comme c’est le cas ici, 2 < §,(2), Au est formé d’un seul
intervalle (voir fig. 2), de telle sorte quun certain changement de
variable linéaire, w — r -+ tu, transforme les limites d’intégration
de la premiére intégrale en — o* et 4 o*. Alors:

S‘*—fdu o (r + 1) —ay (r+ t%) ) ][ (b5(w) —as(@))].  (5.26)

Apres remplacement des dlfferentes fonctions intervenant dans
cette intégrale par leur expressions, un calcul assez laborieux donne
I’estimation suivante:

9% < 0( (5.27)

1)
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0, étant le minimum de (8 6 — 2) et 6/2; en choisissant § > 2/3,
on a d; > 0 (ce choix est compatible avec la rectriction 0 < é < 1,
introduite plus haut).

On obtient une majorante du second terme de (5.23) en rempla-
cant ;(2) par co et &* par le domaine (0 < z <1, —1 <u < 1).
L’expression ainsi obtenue est égale au premier terme de (5.10), dont
une borne supérieure est déja connue, (5.12). Ainsi, avec (5.24) et
(5.27), on a:

B | <F[00/)+0(5-(log)?)] powr 2<pun (L), (5.28)

I'intégration sur 2z dans le premier terme de (5.23) donnant une
quantité bornée, inférieure a 1/y2.

B](z) est définie par:

£ (2
Bl = zfd}?%{ / dudz N(z,u, :)3)—/ dudx N*(z,u, :n)]f(?) (5.29)
i S &

Apreés avoir effectué la dérivation pour rapport a z, qui n’appa-
rait que dans les limites d’intégration, on obtient une différence de
deux intégrales en % que 1’on estime suivant le méme procédé que
(S — S*), et 'on trouve:

£i1(2)
B! (2) <f0(1/n‘52)fd5[§+@2]—1<f0(%10g%). (5.30)
0

compte tenu de (4.6) et de ce que z < un(p/n)°. d; est le minimum
de 1/2(3 6 —2) et (4 6 — 3); 0, est positif et non nul si 'on choisit
d > 3/4.

L'intégrant de B,(z), (5.18), étant d’ordre zéro en 7, By(z) tend
vers zéro lorsque 9 — oo, parce que le domaine d’intégration devient
de plus en plus petit; en effet, et par définition: lim (£y(2, ) —
£i(2)) = 0. e

De méme, By(2), (5.19), tend vers zéro parce que, si 2 << u2® + 2 po:
Glem) <&i(p®+2pem) et lim &y (u®+2p0,7m) =Ly (uP+2p0) =0

n—> 00
en vertu de (4.6). Ainsi:

Iim B, (2) =lim B;(2) =0 - (5.81)
7—> 00 H— 00
Introduisant (5,28), (5,29) et (5,31) dans (5,16), nous voyons que:
lim B(z) =0 (5.32)
7—>00

pour toute valeur de z.
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d) Borne supérieure pour | D(z)|. On a, avec (5.7) et (4.8):
£z m)
ID(z)\gh@(z—xz)de\Gz(z,E,n)|. (5.33)
0
Le résultat établi sous ¢) montre que si I’on remplace le second
membre de cette inégalité par
; £1(2)
@(z“—ungMe)fd?Gz(z, 2),
0
on commet une erreur dont la limite, pour 5 —oo, est nulle. D’autre

part, les expressions (4.22) et (4.14) de G5(2, 2) montrent que cette
intégrale est inférieure & 1/g, de telle sorte que:

D) | <R (5.34)
Tenant compte du résultat de ¢) déja annoncé;
lim D(z) =0 (5.85)
7n— 00

e) Borne supérieure pour | h(u, 2)|. Utilisant la définition générale
(2.24) et (2.14) de Ky(u, 2, u, 2), (5.2) donne:

51(3,’7)
A= [ 4= | d — — —
0

& (w)

—@/du dx N (z,u, a:)ﬂ

ol g est une borne supérieure de g(u, 2) = f(2) +h(u, 2) (g < f+h).
S(u) est le domaine du plan (w, ) défin1 par w € Au, ay << & < by,
(u, ) se trouvant hors du domaine d’indépendance J. Ce domaine
est limité par la courbe € (u):

C(u)—>I'(u;u,2) =I'(u,2) +z2(1—x) (1—u—F (u,u)) =0, (5.37)

I'(w, ) étant définie par (5.22), F(u, u) par (3.9). Comparant
(6.37) avec (5.22), on peut voir que S(u) est entierement contenu
dans &, ce qui permet d’écrire:

& (&) |
|7 (u,2) | <ig_§fd5 [N(E) (S—8(u)) +

0

, (5.36)

+z 307( fdadmN(z,a,m)m. (5.8)

&w)—6
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La discussion se poursuit comme celle de B,(#) sous c¢), et donne:

Am —
| h(w, 2| <—,;z~g((0(1/?7§1)+0(1/77‘5*))- (5.39)
Ainsi, si g reste bornée pour 7 — oo, et si lim As/n = o est finie, ce
qui est admis par hypothése: e :
lim h(u,2) =0. (5.40)
7 —>00

Ce résultat achéve la démonstration du théoreme. D’autre part,
(5.39) prouve le résultat utilisé au § 4, lors du calcul de Gy(z, 2):

lim (Gy(u,2,2,m) —Gy(2,2,m)) =0 (5.41)

77— 00

6. Comparaison avee I’équation de Schroedinger.

Nous nous proposons de comparer le spectre des valeurs-propres
de I’équation intégrale (4.24), limite non-relativiste du probléme de
Bethe-Salpeter pour une certaine classe «réguliére» d’états S, avec
le spectre des valeurs-propres de I’équation de Schroedinger cor-
respondante, contenant le potentiel de Yukawa:

——%A Y(zx)+V(r)¥(z)=—B¥(x) (6.1)
avec:
A
Vi) =—gm 7€ "=
12 . -
:_—Wmf(dp)3[lp|2_|_ﬂ2]u—lez(ﬁ,x)_ (6.2)

Comme on ne connait pas les solutions exactes de (6.1), ni celles
~de (4.24), cette comparaison ne peut se faire directement, et il n’y
a pas grand intérét a chercher & comparer des valeurs-propres appro-
chées. Nous sommes ainsi conduit & chercher une équation intégrale
équivalente & (6.1), ayant une structure analogue & (4.24), de telle
sorte qu’une comparaison des noyaux permette d’établir une rela-
tion entre les valeurs-propres.

Pour cela, nous écrivons (6.1) dans 'espace de Fourier:

V(F) = g 1B 12027 [ (@02 [F—FI+u2) ¥F), (69

2n m2
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ot p2 = mB, et nous cherchons si les solutions & symétrie sphérique
de cette équation peuvent &étre représentées par:

P(F)= [des@UBP+e+ei2 %), (6.4)

Paraphrasant les calculs faits au § 2, on obtient, & 'aide d’une
représentation de Feynman:

[ @RAFE—F) + 2 ¥ () =

1
%:ﬂfd?s('z-) /dmm@iz[m(l—m) + u2(1—x) + (2 +0?) x] 312
i 0

=n? [AZ5(3) 2+ [1P1+ (F+ e+ )7t (65)

On multiplie cette expression par (|p |% + 0%~ et 'on rend com-
pacts les dénominateurs au moyen d’une seconde représentation de
Feynman. (6.3) peut alors s’écrire:

p oo (E+e 2 +p)—e? ;
— e — —_ s
Y(@) =1 [d75() [ GBI +2+e%  (6.6)
0 0 |

(:(2) étant défini par (4.22)—(4.14). Aprés permutation de l'ordre
des intégrations sur z et z et comparaison avec (6.4), on voit que
(6.4) vérifie (6.3) si la fonction-poids s(2) est solution de I’équation
intégrale :

o0 L 6@

s(z)=0 [/dEG(E)S(E)—@(z—,uZ——Q,uQ) -/dEG(E)s(E)J (6.7)
0

0

avec o = A m/m. Nous constatons le fait remarquable que cette
équation intégrale, équivalente & ’équation de Schroedinger pour
les états S, est identique a 1’équation intégrale (4.24). Désignant par
og les valeurs-propres de cette équation et par Agzg(n) les valeurs-
propres de l'équation de Bethe-Salpeter pour un % quelconque

*) s(z) est essentiellement la transformée de Laplace de ¥ (@). En effet:
oo
V(%) ~ [ dz(z+ oM s (z) expl - (2 + o) 21,
0
Il s’ensuit que toute solution & symétrie sphérique de (6.3) peut étre représentée

selon (6.4) puisque I’on sait que toute fonction-propre, solution de (6.1), déerivant
un état S, posséde une transformée de Laplace.
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(0ps(n) = Agg(n)m/n), nous avons établi que les valeurs-propres
o ps(n), correspondant aux fonctions-propres de la classe réguliére,
peuvent &tre mises en correspondance avec les valeurs propres
og du probleme de Schroedinger de telle sorte que:

lim o p4(n) =05 *); lim g(u, 2) =fo(2) = s(2). (6.8)
7—> 00 7 —> 00
En d’autres termes, dans une théorie scalaire, le spectre de va-
leurs-propres de la limite non-relativiste, ou statique, de la «ladder
approximatiom» de ’équation de Bethe-Salpeter contient le spectre
de valeurs-propres de ’équation de Schroedinger, avec potentiel de
Yukawa. Or, I'on sait que dans la limite statique d’une théorie sca-
laire, le potentiel de Yukawa décrit exactement I'intéraction de deux
particules!?). Ainsi, dans la limite considérée, la «ladder approxima-
tion» fournit, par sa classe réguliere de solutions, une description
rigoureuse des états liés.

La comparaisonde ce résultat avec celui de Wick?) et Cutkosky5),
et le fait que notre formulation contient le cas u = 0, montre que
la classe réguliere de fonctions-propres que nous avons isolée cor-
respond & la valeur » = 0 du nouveau nombre quantique.

Pour terminer, nous interprétons 1’égalité des fonctions-poids
fo(2) et s(2). La fonction ¢(x) est donnée dans le plan ¢t = 0 par:

p(#,0) = @m)=2"2 [ (dp)y (P) " (6.9)
avec: ;oo '
1) =27 [dog(F, ) (6.10)

Introduisant la représentation (2.22), on obtient:

oo +1

%(ﬁ):constfdz/dug(u,z) (1—|u])

(P24 e2+2(1—|ul)+n2u2]>"2 (6.11)
et:

lim % (p) :const.fdzfo(z)[l§[2+z+92]‘2 (6.12)

n—>00

*) On remarque que og ne dépend que de u et de g: o5 = os(u, 0), et g est
une fonction linéaire de m. opg dépend par contre de u, o et n: ogg = opglu, 0, 1).
Comme lim m/n =1, (6.8) montre que Ag et Apg tendent vers I'infini de la méme

—> 00
facon lorsque 7;7 —>00:
lim )'S/]"BS = lim O’Sm/O’Bs?’] =
n—=0Q 77— 00
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Compte tenu de fy(2) = s(2), un choix convenable des constantes
de normation donne, en vertu de (6.4):

—_ —

lim y (p) = ¥ (p) (6.13)
ou:
lim ¢ (z,0) = ¥ () (6.14)

¢’est-a-dire dans la limite non-relativiste, I’amplitude de Bethe-
Salpeter devient égale, dans le plan ¢ = 0, & la fonction d’onde de
Schroedinger. :

En terminant, je tiens & remercier mon maitre, Monsieur le Pro-
fesseur E. C. G. SrurckELBERG, pour l'aide constante qu’ll m’a
accordée au cours de I’¢laboration de ce travail.

Appendice A: Limite © = 0.

Nous montrons en premier lieu que g(u, M?) = 0 dans I'intervalle
¢ << M2< oo avec ¢ > 0. Le changement de variable x = 1/M? (g(u,
M?) > g(u, x)) transforme (3.2) en:

+1 z R
g(u,x):zfda [dzL(a,aa)g(a,E;) (A1)
-1 0
avec:
L{u, @) = +[1 + z(e* + 72u?)] <1 (A.2)

On peut choisir £ dans Uintervalle (0,1/¢), et, du fait que B <1,
(A. 1) est une équation intégrale homogeéne en g(u, ) sur 'intervalle
fini (0,1/¢) et & noyau borné L(u, x). Or, cette équation homogéne
ne posséde pas de valeurs propres*). Pour le prouver, il suffit de
montrer la convergence pour toute valeur de 4 de la série de Neu-
mann:

$ (w30, 5, 4) = 3 Hyy (w, 5, ) 27 (A.3)
n=20

H,(w, x;u, T) et le n'®® itéré du noyau H,(u, z; %, Z):
. | L(u,x) pour T < x B(u, u) _
Hy(w, x5, u, ) _{ 0 pourZ >z R(u,u) (A.4)
+1 1/e

H,, (u2;%,%) = /du1 /'dmlﬂn(u,x;ulml)Hl(ul,ml;a,za) (A.5)
=1 0

*) La structure de I’équation intégrale (A. 1) est analogue a celle d’une équation
intégrale & une variable de Volterra. Aussi la démonstration de I’absence de va-
leurs-propres est-elle une paraphrase de la démonstration du méme résultat pour
une équation de Volterrall).
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Utilisant (A.2) et (A.4), on montre sans peine que:

Hy on (8ley Ti U &) <L| T—1 |™

2n!
d’ol

$(u, 23%,7,7) < & et T8l < L et < oo " (A.6)

Ainsi, la seule solution de (A.1) dans l'intervalle (0,1/e) est
g(u, ) = 0. On ne peut cependant pas conclure & I'inexistence de
valeurs-propres de 1’équation (8.2) dans I'intervalle (0 << M2 < o0)
car le noyau L;(«, M?) a un pole en M? = 0. Nous avons seulement
prouvé que le support de g(u, M?) est contenu dans l'intervalle
0 << M2 < g, avec ¢ arbitraire, positif. Il s’ensuit que g(uw, M?) doit
avoir la forme (3.3), ou, plus précisément*):

1

gn (u, M?) _hn%kZ' DT 9n (W) 00T D(M2—e[2) (A7)
On a:
lim /szL (u, M2) 6P (M2 —¢/2) =
¢=>0 jreyR
5 1 (R, @)™ o
ll_tfém=0 (m+1)! [p2+n2u)l—m+1 0 ( _"8/2) (AS)

On vérifie cette égalité en appliquant les distributions apparais-
sant dans les deux membres & une méme fonction f(M?) et en cons-
tatant 'identité des résultats. ,

Introduisant (A.7) dans (3.2) et utilisant (A.8), on obtient le
systeme (3.4).

Appendice B: Détermination du domaine d’indépendance J.

(2.25) montre que l;intégration dans le plan (u, z) s’étend a des
valeurs de u telles que:

[(zF(u, u) + 0% + nzﬁz)%mu]z— (e2+n2u?% >0
Cette inégalité s’écrit aussi:
B (w,w) > w2+ 2u (0 + n2u)t =J(u) (B.1)

*) Cette définition est nécessaire pour donner un sens défini aux intégrales
sur M? s’étendant & l'intervalle (0,00), par exemple en (2.1) ,et pour éviter la

cioncidence des singularités de g(u, M?) et de L, (w, M?) en (3.2) et (A. 8).
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-1 —t, u "+l a
Fig. 3.
Détermination graphique du domaine d’indépendance J lorsque % > u,. Pour
obtenir une figure claire, on a choisi: g2 = 1/4 u?, 5% = 2 u? Alors %, = 0,29
22 =178 u® (m = 3/2 u, B = 0,2 p).
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Fig. 4.

Détermination graphique du domaine d’indépendance J lorsque u < u,.
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Dans une représentation graphique, ces valeurs correspondent &
la portion de la ligne brisée z I'(u, u) située au-dessus de la courbe
J(w). 8i u > 0, cette ligne brisée est formée du segment 4B de la
droite passant par le point P d’abscisse 1 de ’'axe horizontal et par
le point d’ordonnée z de I’axe vertical, et du segment BC de la droite
issue du point ¢ d’abscisse — 1 de 1’axe horizontal, et coupant la
droite précédente en un point B d’abscisse w. S1 2 < %2, la ligne
ABC est toute entiere au-dessous de la courbe J(u), et, lorsque
z = %2 le segment 4B est tangent & J() en un point D d’abscisse
— 1y < 0. Pour déterminer dans quelles conditions I'intégration sur
u s’étend & des valeurs inférieures & u, 1l faut examiner dans quelles
circonstances le segment BC est tout entier au-dessous de J(u). St
% > U, (fig. 8), il en est ainsi aussi longtemps que B est situé au-
dessous du point E de la courbe J(u) d’abscisse u, et cette condition
s’exprime par la seconde inégalité (3.10). 81 w < u, (fig. 4), il faut
que BC soit au-dessous de la tangente QF a J(u) issue de (), ce qui
donne la premiére inégalité (3.10). On obtient les graphiques corres-
pondant & u < 0 par une symétrie relativement & l’axe vertical
dans les fig. 3 et 4.
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