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Eine Bemerkung zum CTP-Theorem

von Res Jost, ETH., Zürich.

(22. VI. 1957.)

§ 1. Einleitung.

Das CTP-Theorem wurde zuerst von G. Lüders1) klar erkannt
und publiziert und weiterhin von W. Pauli2) sehr eingehend
diskutiert. Es hat in der neulichen Diskussion über die Nichterhaltung
der Parität eine Rolle gespielt.

Das Theorem sagt aus, dass in den lokalen Feldtheorien, falls sie

nur den richtigen Zusammenhang zwischen Spin und Statistik
wahren, aus der Invarianz gegenüber der inhomogenen, ortho-
chronen Lorentzgruppe ohne Spiegelungen die Invarianz gegenüber
dem Produkt der Ladungskonjugation C und der simultanen
Umkehrung der sämtlichen 4 Koordinaten (TP) folgt.

Die vorliegende Arbeit versucht, den Zusammenhang dieses
merkwürdigen Theorems mit den Grundlagen der quantisierten
Feldtheorie abzuklären.

Wir gehen dabei von den folgenden 2 Postulaten aus :

1. Invarianz bezüglich der schon erwähnten inhomogenen ortho-
chronen Lorentzgruppe {(A, a)}, ^deL*. Dabei besteht Lfr aus den
orthochronen homogenen Lorentztransformationen der Determinanten

+ 1. Es ist wohlbekannt, dass die beiden erwähnten Gruppen
zusammenhängend sind.

2. Aus 1. folgt die Existenz eines Energie-Impuls-Vektors Pv
mit der Eigenschaft i[Pv, y] dipjdx" für jedes Feld ip in der Theorie.

Wir fordern, dass P0 keine negativen Eigenwerte besitze. Weiter
gehöre zu P 0 als einziger Eigenzustand das Vakuum*).

Unser Resultat ist das folgende: Unter der Annahme von 1. und
2. ist das CTP-Theorem zu den folgenden lokalen Vertauschungs-
relationen äquivalent :

(y>x(xx) xp2(x2) ipn+x (x„+1)>0

(— 1)" <rpn+x (xn+x) f2(x2) Vx(xx)y0 (1)

*) Der Bequemlichkeit halber wollen wir im Raum der Zustände eine positiv
definite Metrik annehmen. Es ist leicht zu sehen, dass diese Annahme für unsere
Untersuchung, bei passender Neuformulierung des 2. Postulates, überflüssig ist.
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für jedes (n + l)-tupel von Punkten (xx, xn+x), für welches der
durch o, x{ — xi+x, i 1,2, n definierte konvexe Körper

n n
£ Z h Qi' 1-i °> Z h ii-l i-l

aus lauter raumartigen Vektoren besteht. Dabei sind y>x, ip2,

fn+i irgendwelche Felder aus der Theorie und o ist die Zahl der
Transpositionen, welche die Felder mit halbzahligem Spin bei der
in (1) angedeuteten Permutation erfahren. <>0 bedeutet den
Vakuumerwartungswert*)

Im folgenden werden wir der Einfachheit halber nur skalare
Felder betrachten. Felder mit beliebigem Spin können in Anlehnung

an W. Pauli 1. c. § 3 behandelt werden.
Unsere Analyse beruht auf Resultaten von V. Bargmann, D.Hall

und A. Wightman. Diese gestatten es uns im übrigen, mit elementaren

Hilfsmitteln auszukommen.

§ 2. Folgerungen aus einem Satz von Bargmann, Hall und Wightman.

Nach einem Ergebnis von A. Wightman3) genügt es, die
Vakuumerwartungswerte von Produkten von Feldoperatoren zu betrachten.
Diese definieren die Feldtheorie schon vollständig.

Wir werden also Funktionen**) betrachten

<A(xx)... A(xn+x)}0 F(ix,...,in) (1)

wobei Çk xk — xk+x gesetzt ist. Dabei ist mit A(xk) ein Skalarfeld
bezeichnet. Es ist aber nicht vorausgesetzt, dass alle in (1) vorkommenden

Felder untereinander gleich sind.
Nach Voraussetzung (Postulat 1) gilt für jede Lorentztransforma-

tion A e Lfr
F(AÇlt ...,AÇn)=F(Çx, ...,£„). (2)

Weiter folgt aus Postulat 2, dass F(£x, f„) Randwert einer
analytischen Funktion F(ÇX, f„) ist. Diese ist regulär in dem Gebiet
9.M, das aus den Punkten mit Im[Ck]eV+ besteht. V+ bedeutet dabei
den (offenen) Vorkegel.

Der Satz von Bargmann, Hall und Wightman4) sagt nun aus,
dass dann F(ÇX, CJ in einem grösseren Gebiet regulär und be-

*) Insbesondere folgt aus dieser Äquivalenz, dass die Annahmen 1 und 2

zusammen mit den üblichen lokalen Vertauschungsrelationen (Verschwinden des

Kommutators resp. Antikommutators der Felder in raumartig gelegenen Punkten
bei richtiger Zusordnung von Spin und Statistik) die CTP-Invarianz zur Eolge hat.

**) Es handelt sich dabei eigentlich um temperierte Distributionen.
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züglich einer grösseren Gruppe invariant ist. F(CX, ¦ ¦ ¦. C«) besitzt
nämlich eine eindeutige analytische Fortsetzung in das erweiterte
Gebiet Wn, das aus allen Punkten (£[, ...,££) besteht, die sich
durch komplexe Lorentztransformationen A der Determinanten +1
aus Punkten des ursprünglichen Gebietes SHm erhalten lassen :

Çt' AÇt, (fj, ...,QeKn.
Die so definierte Funktion ist weiterhin invariant bezüglich der
komplexen Lorentzgruppe L+(C) der Determinanten + 1 :

F(A CX,...,A-Q= F(CX, Q, A sL+(C). (3)

Nun enthält aber L+(C) offenbar die Transformation Ç't — 'Qi- Es
ist demnach in (3) der folgende Spezialfall enthalten :

f(-cx, ...,-u= f(cv ...,:.) (4)

(C1( ...,Qe%.
Währenddem iR» keine reellen Punkte enthält*), enthält tR^ solche,
wie man leicht auf Grund der folgenden Gleichung erkennt

(5)

Der transformierte Vektor hat offenbar einen Imaginärteil aus V+,
die Transformation gehört L+(C) an und das Resultat ist ein reeller
(raumartiger Vektor). Wir wollen die reellen Punkte in 1R^ mit
(qx, Qn) bezeichnen. Für diese gilt gemäss (4)

F(— QX, - IJn) F(qx, ...,Qn). (6)

Andererseits behauptet das CTP-Theorem

<ta4(- sei).. .A(-xn+x)y0 (A(xn+X).. .A (xx)y0 (7)
oder

FHi. • • •. - In) <A(xn+x).. .A(xx)\ (8)

und dies für beliebige reelle (fx,. £n) also insbesondere für die
reellen Punkte (qx, q„) in 5R'. Durch Vergleich von (6) und (8)

folgt der
Satz 1: Eine notwendige Bedingung für die Gültigkeit des CTP-

Theorems lautet
<[A(xx). .A(xn+X)y0 <A(xn.hX).. .A(xx)}0 (9)

*) Die Randpunkte gehören nicht zu 1RTC, denn dort steht die Regularität von
F{ÇV C„) nicht fest.

0 — i 0 °\ / »

i 0 0 01 1 °
0 0 1 0 l °
0 0 0 1 / V 0
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für alle reellen Punkte (qx, q„) (xx — x2, xn — xn+1) in 5R^.

Von diesem Satz gilt aber auch eine verschärfte Umkehrung :

Satz 2: Falls (9) in einer reellen Umgebung5) eines Punktes (qx,

gn) e 9.^ gilt, dann folgt daraus das CTP-Theorem, d. h. es folgt (7)
für beliebiges reelles (£x, fj.

Beweis : Da 1R„ offen ist, gehört mit jedem Punkt auch eine
komplexe (und eine reelle) Umgebung zu SRre.

Bis auf weiteres betrachten wir nur Punkte in iR„, die der im Satz
erwähnten Umgebung angehören. Das bezieht sich auch auf die
Punkte (xx... xn+x) die mit den betrachteten (qx, gn) und den
Gleichungen Qk xk — xk+x verträglich sind. Die zu (9) konjugiert -

komplexe Gleichung lautet

(A(xx).. .A(xn+X)y; (A+(xx). .A+(xn+x)y0 (10)

wobei A+ das zu A adjungierte Feld ist.

G(ix. ...,!„) (A+(xx) A+(xn+x)y0 (11)

(hier sind die (xx. xn+x) ausnahmsweise beliebige reelle Vektoren)
hat natürlich Eigenschaften, die denen von F(£x, |„) analog
sind. Die zu (6) konjugiert komplexe Gleichung und die Gleichungen
(10) und (11) implizieren also

F*(-Ç*,...,-Q=G(Çx,...,;n) (12)

für (Ci, CJ (gì. •••>£?«) m unserer Umgebung. Die Gleichung
(12) lässt sich aber analytisch in ganz iR^ fortsetzen, und zwar gilt:
falls (Ci, • Cn) e 5Rn, dann auch (— C*, —C*) e 5R«- (12) stellt
also eine Relation zwischen Funktionswerten in 5Rre selbst dar. Das
erlaubt uns nun in iRn wieder zu den reellen Randpunkten, d. h. zu
unseren ursprünglichen Variablen (£x, |J überzugehen (vgl.(l)).
Damit hat man

F*(-Sv -!„)=(?(!!, ...,IJ (13)
oder

(A(- xx) A(-xn+x)y; (A+(xx) A+(xn+x)y0 (14)

woraus durch Übergang zum Konjugiertkomplexen die Gleichung
(7) folgt.

Was uns jetzt noch verbleibt, ist
1. das Aufsuchen aller reellen Punkte in SR,',,

2. der Nachweis, dass ohne Zusatzannahmen nicht geschlossen
werden kann, dass (9) auchnoch für andere als die erwähnten Punkte
gilt.

Das soll im nächsten Paragraphen geschehen.
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§ 3. Die reellen Punkte des SR,;.

Wir bezeichnen mit 9. das Gebiet 5R1# Ein Vektor C ist also in iR

falls Im [C] eV+. Die Frage, die sich dann stellt, lautet: welches sind
die reellen Vektoren in /151 wobei AeL+(C). In der Tat müssen
unsere reellen Vektoren qx, q2, gn bei passender Wahl von A
alle in /liR liegen.

Es scheint nun zweckmässiger, zu der wohlbekannten Darstellung
der L+(C) überzugehen, indem man jedem Vektor C eine Matrix X
zuordnet :

x= ixn x„\ /Co+Cs Ji-^\_ (1)
\ X2i X-22 \Cl+*C2 bo S3 /

Im folgenden wird zwischen X und C nicht unterschieden, wir werden
also z. B. sagen Xe'Si falls das zugeordnete Ce9.. Jedes AeL+(C)
stellt sich dann dar durch

Y AXB (2)

wobei A und B 2 X 2 Matrizen der Determinanten + 1 sind und
umgekehrt. Reelle Lorentztransformationen aus L* erhält man, falls
B A* gewählt wird. Für reelle Vektoren gilt Y* Y. iR ist
invariant gegenüber den Transformationen L\. Wir fragen nun:
welches sind bei gegebenen A und B und für JteiR die hermitischen Y.
Dabei interessiert uns die Orientierung von Y nicht, wir können also

von Y zu C*YC übergehen. Wählt man C B_1, dann nimmt (2)
die Form

Y A'X (3)

an. Schliesslich kann man noch die Invarianz von 9. ausnützen, und
statt X in (3) DXD* setzen, dann entsteht :

D-1 YD*-1 Y D-1 ADX. (4)

Durch passende Wahl von D bringt man A auf Normalform, und es

bleiben nur noch die folgenden Fälle*) :

Y (±o±i1)XundY (o U)x- (5)

Der erste Fall liefert für unsere Zwecke nichts von Interesse und
wir beschränken uns daher auf den zweiten. Setzt man (1) ein, dann
bedeutet die Hermitizität von Y, dass Xxxx und r\~xx22 reell sein

*) Die eben durchgeführte Transformation wurde von Baromanït et al. zu
anderem Zwecke eingeführt.
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müssen und dass weiter XxX2 (X~lxX2)* ist. Mit A exp (ice + v)
ist dann der allgemeinste Ansatz für X der folgende :

wobei

Mit (1) :

xxx ± Teue-i,p xX2 Qe~veiv

taüo, — W o o "^22 —

t/n ± Te(^"» t/12 Qe"^"»

2/2i ee-*+"» y22=Te-^"K

^=T[(_sÜ3cos99 + t("ch3sm'?']
m r/ Sh m\ ¦ / Ch u\ ¦ 1

C3=Ml-ChJCOS<?9^H-ShJSm<?j

(6)

(7)

(8)

Es soll aber Ce9. und das impliziert (ImC0)2 — (ImC3)2> 0, was nur
bei der unteren Alternative erfüllbar ist. Es ist also für xxi und yxx
in (6) und (7) das untere Vorzeichen zu wählen.

Nun setze man Y (%t% 'h~*'M woraus mit (6) und (7)

folgt :

C0 T(—Sh u cos 99 + i Ch w sin 95)

Ci Q Ch v cos y — t Sh v sin y>)

C2 Q{—Ch f sin y — t Sh -u cos y>)

C3 T(—Ch u cos 95 + i Sh m sin 99)

(9)

Vo — T Sh (u + v) nx Q cos (99 + xp)

rj% — T Ch (u + v) r\2 — Q sm (9? + v) •

CeSR besagt jetzt

T Ch m sin 93 > 0 oder T sin 9- > 0 (11)
und

T2 sin2 cp - Q2 Sh2 0 > 0. (12)

m und rp sind also beliebig variabel, dasselbe gilt für a — (cp + y>)

und w u + v. Da es in (11) keine Einschränkung ist n < cp < 2 n
anzunehmen, haben wir damit die folgende Darstellung:

rj0 [ T | Sh w r]\ Q 00s a
r)3 | T | Ch w r\i=Q sin a

*" >££«*¦ (13)

Nach unseren Vorbetrachtungen erhalten wir den folgenden

Hilfssatz: Notwendig und hinreichend dafür, dass ein Punkt
(qx, Qn) in .R^ liegt, ist die Bedingung, dass für die Kompo-
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nenten (ok)0 und (pfc)3 nach passender reeller Lorentztransformation
aus L+ gilt

(-?*)s > I (e*)o I- (14)

Beweis : Falls (14) gilt, gibt es Tk, Wk, Qk und onk so, dass

(ta?*)o Tk I Sh ics. (^)x ö* cos ctk\
(Qk)s i ^fclChw«.

(15)

wobei \Tk\ S: |T | > 0. Es lässt sich dann ein v und ein 9? so
bestimmen, dass die letzte Gleichung (13) für alle Tk und Qk erfüllt
ist. Zu X exp (icp + v) gehört eine Lorentztransformation A der
Form (5). Die Vektoren qx, q„ liegen also alle in g43î und das
bedeutet (qx, gn) e 9?^ gemäss der Definition von 9.^, im Satz
von Bargmann et al.

Willkommener ist uns die invariante Bedingung, die der folgende
Satz gibt

Satz 3: Der Punkt (o1; o„) liegt genau dann in SRM falls der
konvexe Körper

h n

I Z ^k Qm K 0, Z ^fc 1

kl k-1

aus lauter raumartigen Vektoren besteht.

Beweis: Die Notwendigkeit folgt aus (14). Es bleibt zu zeigen, dass
die Bedingung auch hinreicht. Dazu betrachten wir den Kegel

Ä:l= Z KQiaK ^0
k 1

durch den konvexen Körper. Dieser Kegel ist selbst konvex und
enthält nur raumartige Vektoren. Er hat also mit dem Vorkegel V+
und mit dem Nachkegel V_ nur deren Spitze gemein. Dann gibt es

aber eine Stützebene an V+, die mit V+ eine Erzeugende gemein hat
und die R und V+ separiert. Diese laute a.„ C" 0. Dasselbe gilt für
V'_ und die entsprechende Stützebene heisse ßv I" 0. Da a„ |* 0

V+ und V_ separiert, also V_ und il nicht separiert, müssen a und ß
linear unabhängig sein, a und ß sind Nullvektoren und die durch sie

erzeugte Ebene enthält zeitartige Vektoren. Da weiter

(xß) =O.0ßQ~Z*sßs < 0
s-l

gibt es ein Koordinatensystem in welchem a (1,1,0,0) und ß
(—1,1,0,0) ist. In diesem Koordinatensystem gilt offenbar

(ta?*)o + (Qk)a > 0 und — (êt)o + (e*)s > ° also (l4)-
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Schliesslich bleibt noch zu zeigen, dass ohne Zusatzannahmen
eine analytische Fortsetzung von F(CX, Cn) zu reellen Punkten
ausserhalb des Gebietes iR^ unmöglich ist. Ausserhalb dieses
Gebietes braucht also, vom Standpunkt unserer Untersuchung aus,
(2.6) nicht mehr zu gelten und (2.9) lässt sich nicht verschärfen. Um
das zu zeigen, genügt es, eine bezüglich L* invariante und in 5Rn reguläre

Funktion anzugeben, die an einem beliebig vorgegebenen, reellen

Punkt (Ii, ...,£„) ausserhalb 9ÎM eine Singularität besitzt. Nach
Satz 3 hat ein solcher Punkt die Eigenschaft, dass sich nicht negative

Xf bestimmen lassen, für die £ E Xt Ç{ zeitartig wird. Wir
bestimmen die Xi etwa so, dass |2 £2 — I2 1 wird. Nun behaupten
wir, dass [(I,X{ Ci}2 — l]-1 die gewünschte Eigenschaft hat. Die
Funktion wird sicher an der vorgegebenen Stelle singular (dass die
Singularität ein Pol ist, ist natürlich irrelevant). Die Funktion ist
lorentzinvariant. Sie ist aber in 9.n regulär. Um das zu sehen
beachte man, dass 91 selbst ein konvexer Kegel ist. Falls (Cx, Cn)

e9ln, dann C*«^ und C EXt d «9.. Falls aber Ce9., dann ist C2 nie
reell positiv. Daraus folgt, dass (Z Xt Ci)2 + 1 für (Cx, ¦ ¦ -, C«)e9.n.
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