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Eine Bemerkung zum CTP-Theorem

von Res Jost, ETH., Ziirich.
(22. V1. 1957.)

§ 1. Einleitung.

Das CTP-Theorem wurde zuerst von G. Liopers?) klar erkannt
und publiziert und weiterhin von W. Pavuri?) sehr eingehend dis-
kutiert. Es hat in der neulichen Diskussion tiber die Nichterhaltung
der Paritat eine Rolle gespielt.

Das Theorem sagt aus, dass in den lokalen Feldtheorien, falls sie
nur den richtigen Zusammenhang zwischen Spin und Statistik
wahren, aus der Invarianz gegeniiber der inhomogenen, ortho-
chronen Lorentzgruppe ohne Spiegelungen die Invarianz gegeniiber
dem Produkt der Ladungskonjugation C und der simultanen Um-
kehrung der sdémtlichen 4 Koordinaten (TP) folgt.

Die vorliegende Arbeit versucht, den Zusammenhang dieses merk-
wiirdigen Theorems mit den Grundlagen der quantisierten Feld-
theorie abzukléren.

Wir gehen dabei von den folgenden 2 Postulaten aus:

1. Invarianz beziiglich der schon erwahnten inhomogenen ortho-
chronen Lorentzgruppe {(4, a)}, Ae LA. Dabei besteht L4 aus den
orthochronen homogenen Lorentztransformationen der Determi-
nanten + 1. Es ist wohlbekannt, dass die beiden erwahnten Gruppen
zusammenhéngend sind.

2. Aus 1. folgt die Existenz eines Energie-Impuls-Vektors P,
mit der Eigenschaft [ P,, ] = 0y/0x” fiir jedes Feld y in der Theo-
rie. Wir fordern, dass P, keine negativen Eigenwerte besitze. Weiter
gehore zu P = 0 als einziger Eigenzustand das Vakuum®*).

Unser Resultat ist das folgende: Unter der Annahme von 1. und
2. ist das CTP-Theorem zu den folgenden lokalen Vertauschungs-
relationen dquivalent:

(i) wa(Z2) -« - - Pary (Tasa) Do
- - (—_ 1)6 WPy ($n+1) oo "Pz(mz) W1($1)>0 (1)

*) Der Bequemlichkeit halber wollen wir im Raum der Zustinde eine positiv
definite Metrik annehmen. Es ist leicht zu sehen, dass diese Annahme fiir unsere
Untersuchung, bei passender Neuformulierung des 2. Postulates, iiberfliissig ist.
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fir jedes (n + 1)-tupel von Punkten (ay, ..., ©,.4), fiir welches der
durch o, = 2, — x;,, = 1,2, ..., n definierte konvexe Korper

aus lauter raumartigen Vektoren besteht. Daber sind vy, v, ...,
Y, 1rgendwelche Felder aus der Theorie und ¢ ist die Zahl der
Transpositionen, welche die Felder mit halbzahligem Spin bei der
in (1) angedeuteten Permutation erfahren. <>, bedeutet den Va-
kuumerwartungswert™®).

Im folgenden werden wir der Einfachheit halber nur skalare
Felder betrachten. Felder mit beliebigem Spin kénnen in Anleh-
nung an W. Pavrr L. c. § 3 behandelt werden.

Unsere Analyse beruht auf Resultaten von V. BAramany, D. Harw
und A. WieaTMAN. Diese gestatten es uns im iibrigen. mit elemen-
taren Hilfsmitteln auszukommen.

§ 2. Folgerungen aus einem Satz von Bargmann, Hall und Wightman.

Nach einem Ergebnis von A. WienrMAN3) geniigt es, die Vakuum-
erwartungswerte von Produkten von Feldoperatoren zu betrachten.
Diese definieren die Feldtheorie schon vollstandig.

Wir werden also Funktionen**) betrachten

CA(xy) ... A@p)do = FlEy,. .0 8) (1)

wobel &, = 2, — x4, gesetzt ist. Dabei 1st mit A(x,) ein Skalarfeld
bezeichnet. Es ist aber nicht vorausgesetzt, dass alle in (1) vorkom-
menden Felder untereinander gleich sind.

Nach Voraussetzung (Postulat 1) gilt fir jede Lorentztransforma-
tion A & LA

B, o ;. 8 == I B asis Bls (2)
Weiter folgt aus Postulat 2, dass F'(&;, ..., &) Randwert einer ana-
lytischen Funktion F'({;, .. ., {,) 1st. Diese ist regulér in dem Gebiet

R,., das aus den Punkten mit Im[{,]eV | besteht. V', bedeutet dabel
den (offenen) Vorkegel.

Der Satz von Baremann, HaLn und WicHTMANY) sagt nun aus,
dass dann F(&y, ..., £,) In einem grosseren Gebiet reguldr und be-

*) Insbesondere folgt aus dieser Aquivalenz, dass die Annahmen 1 und 2 zu-
sammen mit den iiblichen lokalen Vertauschungsrelationen (Verschwinden des
Kommutators resp. Antikommutators der Felder in raumartig gelegenen Punkten
bei richtiger Zusordnung von Spin und Statistik) die CTP-Invarianz zur Folge hat.

**) Es handelt sich dabei eigentlich um temperierte Distributionen.
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ziiglich einer grisseren Gruppe invariant ist. F(¢y, ..., £,) besitzt
ndmlich eine eindeutige analytische Fortsetzung in das erweiterte
Gebiet R,, das aus allen Punkten ({7, ..., Z) besteht, die sich
durch komplexe Lorentztransformationen A der Determinanten +1
aus Punkten des urspriinglichen Gebietes R, erhalten lassen:

Cil - ACi’ (C]» ey C'n) & ERn'

Die so definierte Funktion ist weiterhin invariant beziiglich der
komplexen Lorentzgruppe L, (C) der Determinanten + 1:

FAL; oo AL =F(Ey, - -5 L)y Al (0). (8)

Nun enthilt aber L, (C) offenbar die Transformation {; = — {,. Es
ist demnach in (3) der folgende Spezialfall enthalten:

F(— ¢y ooy, —C) =F(y, -0, 5) (4)

(Eip == vy L) 89{;.

Wihrenddem R, keine reellen Punkte enthilt*), enthilt R, solche,
wie man leicht auf Grund der folgenden Gleichung erkennt

0 —i 0 0° ¢ 0

- 0 0 0 0 1
o o 1.0) Vo] = \o] (5)

0o 0 0 1 0 0

Der transformierte Vektor hat offenbar einen Imaginirteil aus V
die Transformation gehort L_(C) an und das Resultat ist ein reeller
(raumartiger Vektor). Wir wollen die reellen Punkte in R, mit
(01;- - -, 0,) bezeichnen. Fiir diese gilt gemiss (4)

Fl—gy s — o) = Flow - ). (6)
Andererseits behauptet das CTP-Theorem
CA(— 2q) -+ A(—2011) D0 = <A(Tn1a) - - - A (21) D0 (7
oder
(=&, o — &) = (A(Zaya) - - A1) 20 (8)

und dies fiir beliebige reelle (&,,..., &,) also insbesondere fiir die
reellen Punkte (g, ..., g,) in R’. Durch Vergleich von (6) und (8)
folgt der

Satz 1: Eine notwendige Bedingung fir die Giiltigkeit des CTP-
Theorems lautet

(A1) - - - A1) >o = {A(Tnia) - - - A1) D0 )

*) Die Iia:ldpunkte gehoren nicht zu R, denn dort steht die Regularitit von
F(,, ..., {,) nicht fest.
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fiir alle reellen Punkte (01, -+ 0n) = (T3 — Xy -+ .y Ty — Tpyq) In R,
Von diesem Satz gilt aber auch eine verschirfte Umkehrung:

Satz 2: Falls (9) in einer reellen Umgebung?) eines Punktes (oy,- - .,
0.) € R, gilt, dann folgt daraus das CTP-Theorem, d. h. es folgt (7)
tir beliebiges reelles (&, ..., §,).

Beweis: Da R, offen ist, gehort mit jedem Punkt auch eine kom-
plexe (und eine reelle) Umgebung zu %,

Bis auf weiteres betrachten wir nur Punkte in ER,,’L, die der 1m Satz
erwihnten Umgebung angehéren. Das bezieht sich auch auf die
Punkte (z,...%,.;) die mit den betrachteten (o, .- ., 0,) und den
Gleichungen g, = x, — ;4 vertriglich sind. Die zu (9) konjugiert-
komplexe Gleichung lautet

(A(zy) . . -A(-’En+1)>3 = (A (xy) . . . AT (@n11) D0 (10)
wobel A+ das zu A adjungierte Feld 1st.

Gy - -0 &) = CA¥(2y) - .- AH(@ur)0 (11)

(hier sind die (z;...%,,;) ausnahmsweise beliebige reelle Vektoren)
hat natirlich Eigenschaften, die denen von F(&,, ..., &,) analog
sind. Die zu (6) konjugiert komplexe Gleichung und die Gleichungen
(10) und (11) implizieren also

Fe(— % o, — 0 =Ly, - v s ) (12)

far (&g, - -+, Cu) = (015 - - -5 0,) In unserer Umgebung. Die Gleichung
(12) lasst sich aber analytisch in ganz ER’ fortsetzen, und zwar gilt:
falls ({1, - .., &) € R,, dann auch (— 5, ..., —CF) e R,. (12) stellt
also eine Rela‘mon zwischen Funktionswerten in R, selbst dar. Das
erlaubt uns nun in R, wieder zu den reellen Randpunkten, d. h. zu

unseren urspriinglichen Variablen (&, . . ., &,) iberzugehen (vgl. (1)).
Damit hat man

Iw*(__ 51’ ceey T é:'n) = G(é:l; BRI En) (18)
oder

CA(—xy) - .. A(_$n+1)>3 = (A (xy) ... AN (Tpi1)D0 (14)

woraus durch Ubergang zum Konjugiertkomplexen die Gleichung
(7) folgt.

Was uns jetzt noch verbleibt, ist
1. das Aufsuchen aller reellen Punkte in R/,
2. der Nachweis, dass ohne Zusatzannahmen nicht geschlossen
werden kann, dass (9) auchnoch fiir andere als die erwéhnten Punkte
oilt. '

Das soll im néchsten Paragraphen geschehen.
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§ 3. Die reellen Punkte des R, .

Wir bezeichnen mit R das Gebiet R;. Ein Vektor { ist also in R
falls Im [{] e V. Die Frage, die sich dann stellt, lautet : welches sind
die reellen Vektoren in AR wober AeL (C). In der Tat miissen
unsere reellen Vektoren g,, 05, ..., 0, bel passender Wahl von A
alle In AR liegen.

Es scheint nun zweckmaissiger, zu der wohlbekannten Darstellung
der L,(C) iiberzugehen, indem man jedem Vektor { eine Matrix X

zuordnet :
X — (xu xm) _ (C0+Cg Cl_iC.z). (1)

Ty Zyo L+l Lo— &

Im folgenden wird zwischen X und ¢ nicht unterschieden, wir werden
also z. B. sagen XeR falls das zugeordnete (eR. Jedes AeL (C)
stellt sich dann dar durch

Y=-AXB (2)

wobel 4 und B 2x2 Matrizen der Determinanten 4 1 sind und
umgekehrt. Reelle Lorentztransformationen aus L4 erhilt man, falls
B = A* gewshlt wird. Fiir reelle Vektoren gilt Y* = Y. R ist in-
variant gegeniiber den Transformationen L4. Wir fragen nun: wel-
ches sind bei gegebenen 4 und B und fiir XeR die hermitischen Y.
Dabel interessiert uns die Orientierung von Y nicht, wir kénnen also
von Y zu C*YC ibergehen. Wihlt man € = B-1, dann nimmt (2)
die Form

Y=4A'X ‘ (3)

an. Schliesslich kann man noch die Invarianz von R ausniitzen, und
statt X in (3) DXD* setzen, dann entsteht:

D-1YD*-! = Y' = D-! 4DX. (4)

Durch passende Wahl von D bringt man 4 auf Normalform, und es
bleiben nur noch die folgenden Falle*):

Y:(iéii)Xund Y=(g g_l)X- (5)

Der erste Fall liefert fiir unsere Zwecke nichts von Interesse und

wir beschrinken uns daher auf den zweiten. Setzt man (1) ein, dann
bedeutet die Hermitizitdt von Y, dass Az;; und A-lzy, reell sein

*) Die eben durchgefiithrte Transformation wurde von BARGMANN et al. zu
anderem Zwecke eingefiihrt.



414 Res Jost. H.P.A.

miissen und dass weiter Az, = (A71xy9)* 15t. Mit 4 = exp (1@ + v)
1st dann der allgemeinste Ansatz fir X der folgende:

Ty, = + Tevet? By = Qe? ei¥ ©)
Ty = Qe” etV Tog 5= Te~%et?

wobel
Y, = =+ Te w0 g = Qei(¢+w) (7)
Yoy = Qe—i(_w"i“%l’) Yo = T e—t?)

Mit (1):
wmr[ g Yerri(Fine]

Ege= T [(_EE Z) cos @ ~fé(_gg Z) Sinqa].

Es soll aber &R und das impliziert (Img,)2 — (Iml3)2> 0, was nur
ber der unteren Alternative erfillbar ist. Es ist also fir z;; und ¥y,
in (6) und (7) das untere Vorzeichen zu wihlen.

Nun setze man Y = (Z:i:’;z Z;:;jz) ,, woraus mit (6) und (7)
folgt :
fo = T'(—Sh u cos ¢ + ¢ Ch u sin ¢)
£, =@Q( Chwo cosyp—1 Shwv sin p) )
fo = Q(—Ch v sin w — 1 Sh v cos y)
{3 = T(—Ch % cos ¢ + 1 Sh u sin @)
und
np =— T Sh(u+0v) 27, =0Qcos(p+y) (10)
1y = — 1T Ch (u + v) Ny = — @ sin (¢ + y).
LeR besagt jetzt
TChusing >0 oder T'sing > 0 (11)
und
T2 sin? ¢ — Q2 Sh2v > 0. (12)
u und y sind also beliebig variabel, dasselbe gilt fir « = — (¢ + )

und w = w + ». Da es in (11) keine Einschrankung ist # < ¢ < 2=
anzunehmen, haben wir damit die folgende Darstellung:

no=|T|Shw 1 =Qcosa| my - Shiv
?]‘::|T|Chw ﬂzZQSiHOC T >Sin2(pQ' (13)

Nach unseren Vorbetrachtungen erhalten wir den folgenden

Hilfssatz: Notwendig und hinreichend dafiir, dass ein Punkt
(01, -+ +» 0n) In R, liegt, 1st die Bedingung, dass fiir die Kompo-
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nenten (gx), und ()3 nach passender reeller Lorentztransformation
aus L, gilt

(Qk)3 > | (Qk)o . (14’)
Beweis: Falls (14) gilt, gibt es T, W;, @, und o, so, dass
(ox)o = | T | Shay (o)1 = @y cos “k} (15)
(@r)a=1|T) | Chwy (0r)2 = @y 8in oy,

wobel [T = |T| > 0. Es lasst sich dann ein » und ein ¢ so be-
stimmen, dass die letzte Gleichung (13) fir alle T, und @, erfiillt
1st. Zu A = exp (i + v) gehort eine Lorentztransformation A der
Form (5). Die Vektoren ¢4, ..., o, liegen also alle in AR und das
bedeutet (o, - .., 0,) R, gemiss der Definition von R, im Satz
von BARGMANN et al.

Willkommener ist uns die invariante Bedingung, die der folgende
Satz gibt

Satz 3: Der Punkt (o, - .., 0,) liegt genau dann in R, falls der
konvexe Korper

E= X Moo =0, 3 A =1
k-1 k=1

aus lauter raumartigen Vektoren basteht.

Beweis: Die Nofwendigkeit folgt aus (14). Es bleibt zu zeigen, dass
die Bedingung auch hinreicht. Dazu betrachten wir den Kegel

Rié= 5 Do =0
k-1

durch den konvexen Kérper. Dieser Kegel ist selbst konvex und
enthdlt nur raumartige Vektoren. Er hat also mit dem Vorkegel V',
und mit dem Nachkegel V' _ nur deren Spitze gemein. Dann gibt es
aber eine Stiitzebene an V , die mit V', eine Erzsugende gemein hat
und die & und V, separiert. Diese laute «, & =0. Dasselbe gilt fiir
V_ und die entsprechende Stiitzebene heisse £, & = 0. Da o, & =
V. und V_separiert, also V_und & nicht separiert, miissen « und g
linear unabhéngig sein. « und g sind Nullvektoren und die durch sie
erzeugte Ebene enthalt zeitartige Vektoren. Da weiter

(a B) = O‘0160*2‘%' oy fs < 0

=1
gibt es ein Koordinatensystem in welchem o = (1,1,0,0) und g =
(—1,1,0,0) 1st. In diesem Koordinatensystem gilt offenbar
(0x)o + (01)a > 0 und  — (gx)y + (02)3 > 0 also (14).
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Schliesslich bleibt noch zu zeigen, dass ohne Zusatzannahmen
eine analytische Fortsetzung von F({y, ..., £,) zu reellen Punkten
ausserhalb des Gebietes R, unmoglich ist. Ausserhalb dieses Ge-
bietes braucht also, vom Standpunkt unserer Untersuchung aus,
(2.6) nicht mehr zu gelten und (2.9) lasst sich nicht verschérfen. Um
das zu zeigen, gentigt es, eine beziiglich LA invariante und in R, regu-
laire Funktion anzugeben, die an einem beliebig vorgegebenen, reel-
len Punkt (&, ..., &) ausserhalb R, eine Singularitét besitzt. Nach
Satz 3 hat ein solcher Punkt die Eigenschaft, dass sich nicht nega-
tive A; bestimmen lassen, fiir die & = X' A; &, zeitartig wird. Wir be-

stimmen die 4; etwa so, dass &2 = &2 — 52 = 1 wird. Nun behaupten
wir, dass [(2'A; {;)2—1]-! die gewiinschte Eigenschaft hat. Die
Funktion wird sicher an der vorgegebenen Stelle singulér (dass die
Singularitit ein Pol ist, ist natiirlich irrelevant). Die Funktion ist
lorentzinvariant. Sie ist aber in R, regular. Um das zu sehen be-
achte man, dass R selbst ein konvexer Kegel ist. Falls (y, ..., {,)
eR,, dann {eRund £ =2 1, £, eR. Falls aber {eR, dann ist {2 nie
reell positiv. Daraus folgt, dass (X'4; {;)% = 1 fir (&, - .., §,)eR,.
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