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Über die Lösungen der radialen Schrödinger- Gleichung
bei beliebigem Spin

von Bruno Bürgel.
(20. IV. 1957.)

Zusammenfassung. Die in r 0 verschwindenden Lösungen q>v{k2, r) des
folgenden Differentialgleichungssystems werden untersucht :

1^yo-J~ï—yv 2Jyfu[Vftv(r)-k!iôlzvHv l,...,n,).
Darin sind die Zahlen lv ganz und nicht negativ. Die reellen Funktionen Vf,v(r)
Vvß{r) sollen im Intervall 0 < r < B stetig und für R < r stückweise stetig sein
und den Bedingungen

iimrVßv(r) 0;
>o

rdtt«\VßV(t)\ <°o, *=[)
y I'm

(ìc * 0)

f-rnax — ^min +1 (^ — ")
B

genügen, h ist ein komplexer Parameter mit \h\ < oo.
Es wird gezeigt, dass für r > 0 die in r 0 verschwindenden Lösungen im 2 n-

dimensionalen Lösungsraum
d

vi,---,vn, ^vy-i-'-'-'-jr-y«
des gegebenen Differentialgleichungssystems eine genau m-dimensionale Teil-
mannigfaltigkeit von stetigen Lösungen bilden. Für r -> oo sind sie darstellbar als
Summe je einer ein- und auslaufenden Kugelwelle.

Einleitung.

In mehreren Arbeiten hat Heisenberg1) versucht, den
allgemeinen Rahmen einer divergenzfreien Theorie der Elementarteilchen

aufzuzeigen. Dazu wählte er als erstes unter den Begriffen der
gewöhnlichen Quantenmechanik diejenigen aus, von denen man
erwarten möchte, dass sie auch in einer zukünftigen Theorie ihren
Sinn beibehalten werden. Die ihnen entsprechenden Grössen nennt
er beobachtbar. Beobachtbar sind Streuquerschnitte und die
Energiewerte stationärer Zustände von Systemen. Die Streumatrix soll
in einer solchen zukünftigen Theorie eine ähnliche Stellung einnehmen

wie der Hamiltonoperator in der bisherigen Quantenmechanik.
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Zudem sollen aus ihr die beobachtbaren Grössen nach einfachen
Vorschriften herleitbar sein.

So sollten die Energiewerte der gebundenen Zustände durch die
Nullstellen der S-Matrix in der unteren Halbebene von ]/E gegeben
sein2). Es ist naheliegend, diese Aussage mit einfachen Beispielen
aus der gewöhnlichen nichtrelativistischen Quantenmechanik zu
vergleichen. Ma3) hat als erster gezeigt, dass hier „Falsche
Nullstellen" auftreten. Ter. Haar4), Jost5)6), Jost-Kohn7) und
Kodaira8) haben diese Schwierigkeit in verschiedenen Arbeiten
untersucht.

Bei einem Zweiteilchenproblem wirke eine Zentralkraft mit dem
skalaren Potential V(r). Im Räume der Relativkoordinaten gilt für
den radialen Teil der Wellenfunktion wenn man sich auf S-Zustände
beschränkt, die Gleichung

cp" + Ecp V(r) cp.

Hierbei ist E die Energie. Das Potential sei so beschaffen, dass die
im Nullpunkt verschwindende Lösung r_1 cp (r) für grosse r und
positives, reelles k |/£ das asymptotische Verhalten

<p(r) ~C(e-"r-S(fc) e+ikr)

habe. C ist eine hier bedeutungslose Konstante. Genügt nun f(k, r)
der radialen Wellengleichung und gilt für grosse r asymptotisch

f (k, r) ~e-ikr (lmk>0)
so ist6)

f(k, 0)S(k) f(-k,0)

Damit ist das Problem der „Falschen Nullstellen" geklärt. Die
richtigen Nullstellen der S-Funktion sind diejenigen des Zählers auf der
negativen imaginären fe-Achse; die falschen sind bestimmt durch
die Pole des Nenners auf dieser Achse. Nur für hinreichend kurz-
weitreichige Potentiale treten keine „falschen" Nullstellen auf7).

Nun erhob sich die Frage, wie weit das Potential V(r) durch den
Verlauf der S-Funktion auf der ganzen positiven fc-Achse und die
Energiewerte En der gebundenen Zustände bestimmt seien.

Bargmann9), Jost und Kohn7)10) und Levinson11) zeigten, dass
die Streuphase zu einem Drehimpuls l als Funktion der Energie
zusammen mit der Lage der L gebundenen Zustände und L
willkürlichen Parametern das Potential eindeutig bestimmt ist, sofern
es von genügend kurzer Reichweite ist. Noch mehr : die Schar dieser
Potentiale kann konstruiert werden7), indem man eine Integralglei-



Vol. 30,1957. Lösungen der radialen Schrödinger-Gleichung... 397

chung von Gelfand und Levitan12) benutzt. Diese
Integralgleichung erlaubt die Bestimmung des Potentials V(r) aus der
entsprechenden spektralen Dichte P(E). Die Dichte hängt ihrerseits
mit der Streumatrix zusammen.

Newton und Jost13) haben diese Methode für Systeme von
gekoppelten, zum Drehimpuls Null gehörenden Differentialgleichungen

verallgemeinert. Bei diesen Problemen ist freilich die Bestimmung

der spektralen Dichte aus der Streumatrix im allgemeinen
nicht mehr eindeutig möglich, wie aus einem Satz von Plemelj14)
über eine Faktorzerlegung von Matrizen folgt. Dementsprechend
kann auch im allgemeinen Fall aus der Streumatrix kein eindeutig
bestimmtes Potential konstruiert werden. Newton15) hat im
Anschluss an diese Arbeit Systeme von zwei Gleichungen, die zum
Drehimpuls l resp. I + 2 gehören, untersucht. Solche Systeme
treten z. B. bei einer Kopplung durch Tensorkräfte auf. Er hat
gezeigt, dass das Matrixpotential V(r) durch die Streumatrix S(k)
als Funktion der Energie und die Lage der L gebundenen Zustände
sowie L symmetrische, positiv definite Matrizen eindeutig definiert
wird, sofern V(r) hinreichend kurzreichweitig ist. Zur Konstruktion
des Potentials wird wieder die Integralgleichung von Gelfand und
Levitan12) benutzt.

Über die weitere Frage nach hinreichenden Kriterien für die S-
Matrix, die ein bestimmtes Verhalten des Potentials V(r) für grosse
r sicherstellen, liegen ebenfalls noch keine abschliessenden Arbeiten
vor16)17).

In der vorliegenden Arbeit sollen für Systeme von n-Gleichungen,
die zu beliebigen Drehimpulsen gehören, die in der Zusammenfassung

aufgeführten Tatsachen bewiesen werden. Physikalisch folgt
damit aber nicht mehr als in der Arbeit von Newton15) zutage tritt.

Problemstellung.

Die Schrödingergleichung für den radialen Teil Y(E, r)*) eines

Zweiteilchenproblems, gekennzeichnet durch das Potential Vflv(r),
lässt sich bekanntlich in der Form

-^Y~Y±A Y(V-E1) (1)

schreiben. Darin sind:

A,, l,(l,+ l)a,,; Ix<---<1; J,ganz, >0;
V„. y,Ar) Vrß (r), reell.

*) Fettgedruckte Lettern bedeuten im folgenden quadratische Matrizen der
Ordnung n.
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Die Lösung &(E, r) der Volterraschen Integralgleichung

r
<P (E, r) d>0 (r) -i- j dt & (E, t) [V(t) - El] G (t, r) (2)

ü

mit
(*a)„, V,#,+ 1 ô»v-

(G(t,r))flv (2lß + l)-A{r(^-t(l-f}oltv;
genügt, sofern sie existiert, der Gleichung (1) mit dem Anfangswert
#(.©. 0) 0.

Damit die Gleichung (2) aber durch Iteration lösbar ist, ist offenbar

nötig, dass
i

J dt &~l" +1\Vßv(t)\<oo, (v,fi l,..., n).
o

Dann existiert nämlich die übliche erste Näherung

r
<PX fdt<P0(E,t) [V(t) -El] G(t,r).

o

Bei physikalischen Problemen jedoch verschwinden für r -> 0 i. A.
die betreffenden Funktionen Vßv(r) nicht hinreichend stark, so dass
sich Gleichung (2) nicht direkt bei solchen Problemen anwenden
lässt. Hat aber schon die erste Näherung 0X keinen Sinn, so ist auch
nicht zu erwarten, dass

r
lim fdt®(E, t)[V(t)-El]G(t, r) (3)

existiert. Für spezielle Systeme, bei denen

lx l

l2 l + 2

ist, hat R. G. Newton15) gezeigt, wie sich die divergierenden Terme
in (3) subtrahieren lassen. Man schreibt an Stelle von (2) :

r

A&(E,r) x(E,r)+ f dt A$ (E, t) V(t) G (E, t, r) (4)
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WO

'Ji + l(kr); 0

*0 7C-Ï-1 |/-^fcr [ 0 ;yt-2J/h|(fcr)

Z(fe2,r) =fdt[ê0(k2,t)V(t)G(k2, t,r) - *±i (0; Y') #0(fc2,r)]
u

+ (2Z + 3)ydU-1(J;Y))^o(/c2>'-);
ï

{G(k2,t,r))ßv -^[JI + i(fct) tfI + i(Är) - Jl + i(kr)Nu i(W)] <5„,*) ;

fe |/B, sx < arg fe < 2tt. (5)

Wendet man diesen Subtraktionsformalismus nicht an, so kann
man eine Fredholmsche Gleichung verwenden. Die Fredholmsche
Integralgleichung**) :

R

<P (E, r) <P0(r) + [ dt<P (E, t) [V(t) -El] K(t, r) (6)
5

mit:

W,,-MH + 1)^~1<lfr (7)

K^(i,r)=-(2^ + l)^ ' (8)

•(f)'' (t>r)

ist für beliebige n und iv brauchbar im Intervall 0 < r < R, solange
die Fredholmsche Determinante von (6) nicht verschwindet. Sie
soll im folgenden, neben anderem, benutzt werden, um die in der
Inhaltsangabe behaupteten Tatsachen zu beweisen.

Die in r 0 versehwindende Lösung <ï> (E, r).

Jede Zeile cp (E, r) (tpx, tpn) der Matrixfunktion 0 (E, r)
genüge einzeln dem Gleichungssystem:

R

V,(E, r) ßrMx +fdtZ n(E, t) [Vkß(t) - E oAß] Kßv(t, r) (9)
d '¦"
(1, ji, v 1,. n)

*) Jn, Nn, Hn bedeuten resp. die Bessel-, Neumann-, Hankeischen Funktionen
der Ordnung n.

**) Ich verdanke diese Bemerkung einer brieflichen Mitteilung von Herrn Prof.
Dr. R. Jost.



400 Bruno Bürgel. H.P.A.

mit konstanten ßv. Die in 0 < r < R stetige Lösung von (9) ist für
fast alle E gegeben durch die Fredholmsche Formel

R

<pr(E, r) ßvM1 + JdtZ ßß i'«+1 ^iifij—, (D(E) + 0). (10)
o" **

Dafür, dass diese Darstellung existiert, ist bekanntlich hinreichend,
dass die Elemente der Matrix [V(t) — El] K(t, r) im abgeschlossenen

Intervall 0 < t, r < R stetig sind. Nach (8) ist diese Bedingung
offenbar sicher erfüllt, wenn die Funktionen Vßv(r) in 0 < r < R
stetig sind und

limry„„(r)=0, (u, v 1,. n) (11)
T-r()

ist. Wir können im folgenden ohne Beschränkung der Allgemeinheit

D(E) + 0 annehmen.
Die Fredholmsche Determinante D(E) ist nämlich eine in R

stetige, nicht identischverschwindende Funktion. Es sei nun für
ein gewisses E0 D(E0) 0. Dann gibt es sicher ein R' aus dem offenen

Intervall (0, R), so, dass die diesem entsprechende Fredholmsche
Determinante für E E0 nicht verschwindet. Das (9) analoge, zum
Intervall 0<r< R' gehörende Gleichungssystem ist dann an der
Stelle E E0 für jede Inhomogenität ßv lösbar.

Wir zeigen nun, dass

cpv(E,0)=0, (v l,...,n). (12)

Zu diesem Zwecke schreiben wir (9) in der Form:

cpf(E, r) ßv r'"+1 - ~~fdt tl>+1 Z n(E, t) PXr(E, t)
ü Ä

- ~TÏ Jdt rlvf f^E' *> P*> {E>l) (13)

r
worin

PAE,t)=VXv(t)-EÔXr

gesetzt ist, und nehmen, was wir ohne Beschränkung der Allgemeinheit

dürfen, an, (13) sei lösbar.
Die Fredholmsche Formel (10) liefert uns die im abgeschlossenen

Intervall 0 < r < R stetige Lösung tpr(E, r) (v 1, n). Daher
sind die Funktionen cpv in diesem Intervall auch beschränkt :

\<Pv(F,r)\ <C.
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Nun ist aber nach (11) auch \r PAv | < C so, dass aus (13) folgt:
r R

] cpv(E, r)\<\ß,\ rlv+1 + Cr'1' f dttl*+ Crl'+1 J dt t"1^1
0 r

< Cr (14)

worin C eine beliebige von Null verschiedene Konstante bedeutet.
Somit gilt also

vM o) o.

Aus (12) und (13) folgt, dass die Funktionen <pv(E, r) dem
Randwertproblem

<p,{E,0)=0 |

R9v'(E,R) + lME,R)-(2lv + l)ß^+Y 1'---,n) (15)*}

genügen.
Die für unsere Zwecke allgemeinste Inhomogenität der Gleichung

(6) lässt sich in der Gestalt

/(r) A{(2lß+1) M1 òj, (Het A + 0) (16)

schreiben. Ohne Beschränkung der Allgemeinheit können wir wieder

D(E) =t= 0 annehmen. Dann bezeichne 4> die durch (6) und (15)
definierte Matrix. Wir beweisen, dass

Rang (#.#')=*• (17)

Aus (6) folgt nämlich

AMr lr*IÂV(È,R) + R*;v(E,R). (18)

Diese Gleichungen fassen wir in eine Matrixgleichung zusammen.
Wir schreiben :

SS;:^;:}^'-1'---'^ (19)

Damit lautet die Gleichung (18)

/<&,<&'\ IM1,0\ _ (A,0\\o,oi \m2,o! ~ lo.oj-
Der Rang des Faktors rechts ist wegen (19) derjenige der rechten
Seite wegen (16) gleich n. Der Rang des Faktors links sei m < n.
Fasst man nun diesen Faktor als Vektoroperator auf, so gilt für den
Rang der Matrix A

n Rang A < m < n,
so, dass also m n ist.

*) cp' bezeichnet im folgenden dcpjdr.
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Jede stetige, im Nullpunkt verschwindende Lösung xp„ (E, r) der
Gleichung (13) ist in der Form a<P (a const.) darstellbar. ipv ist
im abgeschlossenen Intervall 0 < r < R stetig, also dort beschränkt.
Die Funktionen

r R

0 r

verschwinden in r 0. Denn es ist offenbar \fv | < Cr.
Weiter genügen sie der Gleichung (1) für V 0. Sie sind also von

der Form /„ ocrrlv+1. Setzen wir nun in (13) ßv a„; so genügen ihr
sowohl xpv als auch cpv. Also genügt die Differenz cpv — yv der homogenen

Gleichung. Wegen der Alternative ist aber <pv— y>v 0, also

<Pv - Wv
Nun sind aber die Gleichung (6) mit der Inhomogenität (9) und

das Differentialgleichungssystem (1) mit dem Anfangswert <P(E,0) 0
einander äquivalent. Es gibt daher im 2n-dimensionalen Raum
{Vv ¦ ¦ ¦ > Vn. y'v ¦ ¦ • ' y'ns ^er Lösungen von (1) eine genau w-dimensio-
nale Schar von stetigen Lösungen <pv (E, r).

Die Lösungen F(+ k, r), die sich wie ein- oder auslaufende

Kugelwcllcn verhalten.

Die Integralgleichung
oo

F(k,r) =F0(k,r)- fdtF(k,t)V(t)G(k2,t,r), (20)

r
wobei

(Fol, (-»1 ^ |/t- kr Htß+i (kr) h*' (2])

und G durch (5) definiert ist, lässt sich für

0 < e < r |

n < arg fe < 2 n

durch Iteration lösen, sofern

(22)

/d""ivwi<oo'«-lU+i(*-S. (28)

Die Matrixfunktion F(k, r) ist in r stetig, für Im fe < 0 in fe analytisch

und stetig in fe für Im fe < 0.
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Zum Beweis führen wir die folgenden Grössen ein : die Norm | M\
der quadratischen Matrix \M\ durch

|M! =n Max \M„„\ (24)

ferner die Matrizen H(a)

fi v l

v, ß l n

_ 11 (p, v <x)

Bezeichnen wir weiter mit ;. den absoluten Betrag von Im fe, so

gilt*) :

I M-i)Y^r ff «è (fer) I < Cfr" [iÄf (26)

| G„ (fe2, t,r) | < Ce"™ (1-r^-)^+1 (l±i^-)S (t > r). (27)

Nun lösen wir (20) durch Iteration, indem wir sehreiben:

oo

AF(k,r)=f(k,r)- fdtAF(k,t)V(t)G(k2,t,r) (28)

wo A F F—F0

f j dtF0(k,t)V(t)G(k2,t,r); (29)

und bilden damit
oo

AF= JTF(m) ;

oo

jp(o) ftF(m) fätf-VQct) V(t)G(k2,t,r). (30)

r

Da nach (24)-(29)
OO

|il(oc)F™(k,r) <°^e—(1ÄJ»|df | V|(1_i_y»-i«+1 x

xllHWüW"
*) Vgl. z. B. R. G. Newton, 1. c.
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gilt, ist

n(0.)AF(k,r) | «72e— (l±^Lf J dt \ V(t) j ^Jl^1--1^1

¦expCfdtW^lj^rj-. (31)

r

Daraus folgen ohne weiteres die Behauptungen. Aus den
asymptotischen Darstellungen

(ik)lae~ikr -hOfr-1 k1**1 e-"r] (r+r-oc)

na

folgen nach (31) für r -> oo*) :

JI(a)((ilfc)i,e-ü'lTO[r1e"w]) (k 4= 0)
iI(a)F(fc,r) /(21,-1)!! -l-2\ (32)

'/J(«)( i l+o[r '« 2] (i 0).

Für reelle fe gilt, da das Potential V(r) reell ist,

F(-k,r)=F*(+k,r); (33)

so dass sich für solche fe die Funktionen F(— fe, r) und F(+ fe, r) für
grosse r wie ein- resp. auslaufende Kugelwellen verhalten.

Verhalten der Lösung 0 (E, r) für grosse r.

Setzt man für zwei Lösungen 0 und xp von (l)13) :

W(<P,ip)=&(xpT)'-®'tpT (34)

(xf)T bedeutete die zu ip transponierte Matrix), so folgt wegen V= VT
aus (1)

4-W=0.dr

Mit der asymptotischen Darstellung (32) ergibt sich daher:

W(F(±k,r),F(±k,r)) =0; (35)

*) Of/] bedeutet eine Matrix, bei der alle Elemente 0[f] sind. Entsprechend
ist die Matrix o[/] definiert.
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und weiter nach (32) und (33) :

f(-lc)h \

(WF(+fc,r),Ffr-fe,r))=2tfe 0". °

\ (-k)ln/
2ikT(k) (fe reell). (36)

Aus (35) und (36) folgt daher für reelle fe :

<P(k2,r)=^F[FT(+k)F(-k,r)~-FT(-k)F(+k,r)] (37)

worin
F(fe) =T(fc) W(F(+k,r),<P(k2,r)) (38)

gesetzt ist. Damit sind nun alle aufgestellten Behauptungen
bewiesen.

Es wäre nun freilich noch zu zeigen, dass die so bestimmten
Lösungen cpv(E, r) für das Intervall 0 < r < oo ein vollständiges
Funktionensystem bilden. Um die Vollständigkeit z. B. mit der Methode
von Titchmarsh18) zu beweisen, wäre es nötig, 0(E, r) als in E
ganze Matrix zu definieren, und ferner ihr asymptotisches Verhalten
für E->oozu kennen. Das erste Problem lässt sich*) im wesentlichen
mit den im Appendix B der Arbeit von Newton15) dargestellten
Gedanken und den dort zitierten Sätzen von Helmer19) erledigen.

Ich möchte nicht versäumen, auch hier meinem hochverehrten
Lehrer, Herrn Prof. Dr. M. Fierz, von dem die Anregung zu dieser
Arbeit stammt, für seinen liebenswürdigen Beistand herzlich zu
danken. Ebenso fühle ich mich auch Herrn Prof. Dr. R. Jost für
sein liebenswürdiges und wertvolles Interesse, das er meiner Arbeit
entgegenbrachte, zu grossen Dank verpflichtet.
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