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Uber die Losungen der radialen Schriodinger-Gleichung
bei beliebigem Spin
von Bruno Biirgel.
(20. IV. 1957.)

Zusammenfassung. Die in r = 0 verschwindenden Losungen ¢,(k?, r) des fol-

genden Differentialgleichungssystems werden untersucht:

d? L(,+1 = '

=) 3 V) =B 8] =1, m).

u=1

Darin sind die Zahlen I, ganz und nicht negativ. Die reellen Funktionen ¥, (r) =
Vyu(r) sollen im Intervall 0 < » < R stetig und fiir R < r stiickweise stetig sein
und den Bedingungen

lim rV,,(r) = 0;
r—0
o0

il (k £ 0)
fd”a’v’“‘”"’)' o °‘={zmax-zmm+1 (k = 0)
R

geniigen. k ist ein komplexer Parameter mit | k| < oco.
Es wird gezeigt, dass fiir r > 0 die in » = 0 verschwindenden Loésungen im 2 n-
dimensionalen Lésungsraum

d d
yl""syns "a_yls‘°'9 R";yn

des gegebenen Differentialgleichungssystems eine genau n-dimensionale Teil-
mannigfaltigkeit von stetigen Losungen bilden. Fiir r - oo sind sie darstellbar als
Summe je einer ein- und auslaufenden Kugelwelle.

Einleitung.

In mehreren Arbeiten hat HermsexBera!) versucht, den allge-
meinen Rahmen einer divergenzfreien Theorie der Elementarteil-
chen aufzuzeigen. Dazu wihlte er als erstes unter den Begriffen der
gewohnlichen Quantenmechanik diejenigen aus, von denen man
erwarten mochte, dass sie auch in einer zukiinftigen Theorie ihren
Sinn beibehalten werden. Die ihnen entsprechenden Grossen nennt
er beobachtbar. Beobachtbar sind Streuquerschnitte und die Ener-
giewerte stationdrer Zustinde von Systemen. Die Streumatrix soll
in einer solchen zukiinftigen Theorie eine dhnliche Stellung einneh-
men wie der Hamiltonoperator in der bisherigen Quantenmechanik.



396 Bruno Biirgel. H.P.A.

Zudem sollen aus ihr die beobachtbaren Grissen nach einfachen
Vorschriften herleitbar sein.

So sollten die Energiewerte der gebundenen Zustédnde durch die
Nullstellen der S-Matrix in der unteren Halbebene von JE gegeben
sein?). Es ist naheliegend, diese Aussage mit einfachen Beispielen
aus der gewdhnlichen nichtrelativistischen Quantenmechanik zu
vergleichen. Ma3) hat als erster gezeigt, dass hier ,,Falsche Null-
stellen®* auftreten. Ter Haar?), Jost%)8), Jost-Komn?) und
Koparra®) haben diese Schwierigkeit in verschiedenen Arbeiten
untersucht.

Bei einem Zweiteilchenproblem wirke eine Zentralkraft mit dem
skalaren Potential V(r). Im Raume der Relativkoordinaten gilt fiir
den radialen Teil der Wellenfunktion wenn man sich auf S-Zustande
beschriankt, die Gleichung

¢" + Ep=V0)g.

Hierbei ist F die Energie. Das Potential se1 so beschaffen, dass die
im Nullpunkt verschwindende Lésung #-1 ¢ (r) fiir grosse » und
positives, reelles k = JE das asymptotische Verhalten

@ (1) ~ Clem %" — 3 (k) e+ 77)

habe. C ist eine hier bedeutungslose Konstante. Geniigt nun f(k, r)
der radialen Wellengleichung und gilt fiir grosse r asymptotisch

fk,r) ~e " (Imk >0)
80 1st8)

k, O
S (k) = _wf{‘_k’ ()))

Damit ist das Problem der ,,Falschen Nullstellen* geklart. Die rich-
tigen Nullstellen der S-Funktion sind diejenigen des Zéhlers auf der
negativen imagindren k-Achse; die falschen sind bestimmt durch
die Pole des Nenners auf dieser Achse. Nur fir hinreichend kurz-
weitreichige Potentiale treten keine ,,falschen‘ Nullstellen auf?).
Nun erhob sich die Frage, wie weit das Potential V(r) durch den
Verlauf der S-Funktion auf der ganzen positiven k-Achse und die
Energiewerte £, der gebundenen Zustédnde bestimmt seien.
Baramann?®), Jost und Koux?)1%) und LeviNson!l) zeigten, dass
die Streuphase zu einem Drehimpuls [ als Funktion der Energie
zusammen mit der Lage der L gebundenen Zustédnde und L will-
kiirlichen Parametern das Potential eindeutig bestimmt ist, sofern
es von gentigend kurzer Reichweite ist. Noch mehr: die Schar dieser
Potentiale kann konstruiert werden?), indem man eine Integralglei-
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chung von GeLFaAND und Luviran!?) benutzt. Diese Integral-
gleichung erlaubt die Bestimmung des Potentials V(r) aus der ent-
sprechenden spektralen Dichte P(E). Die Dichte héngt ihrerseits
mit der Streumatrix zusammen.

Newron und Jost!®) haben diese Methode fiir Systeme von ge-
koppelten, zum Drehimpuls Null gehérenden Differentialgleichun-
gen verallgemeinert. Bei diesen Problemen ist freilich die Bestim-
mung der spektralen Dichte aus der Streumatrix im allgemeinen
nicht mehr eindeutig moglich, wie aus einem Satz von PLEMELI!4)
tber eine Faktorzerlegung von Matrizen folgt. Dementsprechend
kann auch im allgemeinen Fall aus der Streumatrix kein eindeutig
bestimmtes Potential konstruiert werden. NEwron?) hat im An-
schluss an diese Arbeit Systeme von zwei Gleichungen, die zum
Drehimpuls ! resp. I+ 2 gehéren, untersucht. Solche Systeme
treten z. B. bei einer Kopplung durch Tensorkrafte auf. Er hat ge-
zeigt, dass das Matrixpotential V(r) durch die Streumatrix S(k)
als Funktion der Energie und die Lage der L gebundenen Zusténde
sowle L symmetrische, positiv definite Matrizen eindeutig definiert
wird, sofern V(r) hinreichend kurzreichweitig ist. Zur Konstruktion
des Potentials wird wieder die Integralgleichung von GELFAND und
LEeviTan!?) benutzt.

Uber die weitere Frage nach hinreichenden Kriterien fiir die S-
Matrix, die ein bestimmtes Verhalten des Potentials V(r) fiir grosse
r sicherstellen, liegen ebenfalls noch keine abschliessenden Arbeiten
vorl6)17),

In der vorliegenden Arbeit sollen fiir Systeme von n-Gleichungen,
die zu beliebigen Drehimpulsen gehéren, die in der Zusammenfas-
sung aufgefithrten Tatsachen bewiesen werden. Physikalisch folgt
damit aber nicht mehr als in der Arbeit von Nuwron1%) zutage tritt.

Problemstellung.

Die Schrodingergleichung fiir den radialen Teil Y (FE, r)*) eines
Zweiteilchenproblems, gekennzeichnet durch das Potential V,,(r),
lasst sich bekanntlich in der Form |

a2 1 )
schreiben. Darin sind :

A, =1,0,+1)0

py wrs <o <lp; I ganz, > 0;

vV = VM (r) = Vv# (r), reell.

o

*) Fettgedruckte Lettern bedeuten im folgenden quadratische Matrizen der
Ordnung =.
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Die Lisung @(F, r) der Volterraschen Integralgleichung

@ (E,r) = D, (1) + fdtcp(E, HIV(E) —E1G({tr (2

mit
(¢0) —OL 'rl"' +1 6

Gt 1), = @1, + 1)—1{o~({;)”— t(E)) 8,

gentigt, sofern sie existiert, der Gleichung (1) mit dem Anfangswert
@ (E,0) =0.

Damit die Gleichung (2) aber durch Iteration lésbar 1st, 1st offen-
bar notig, dass

1
fdt PtV (@) <oo, (mu=1,...,n).
0

Dann existiert namlich die tibliche erste Naherung
e fdt @, (E, 1) [V(t) — E1] G (7).
0

Be1 physikalischen Problemen jedoch verschwinden fiir » > 0 1. A.
die betreffenden Funktionen V,,(r) nicht hinreichend stark, so dass
sich Gleichung (2) nicht direkt bei solchen Problemen anwenden
lasst. Hat aber schon die erste Néherung @, keinen Smn, so ist auch
nicht zu erwarten, dass

hmfdm (E, ) [V() — E1] G (t, ») 3)

e—>
existiert. Fir spezielle Systeme, bei denen

1 ==
fig == o 8

ist, hat R. G. NEwron1%) gezeigt, wie sich die divergierenden Terme
in (3) subtrahieren lassen. Man schreibt an Stelle von (2):

AB (B, 1) =y (B, 1) + fdt AD(ENVHGELY  (4)
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WO

AD —D—,
- Ty (k) s 0
D, = k"—ll/%kr ( 0 k- JH (’”))
5 (2, 7) ] (2, V() G (k2 1, 7) — Ei}_?i(gjvlg(")&30(k2,o~)]
U

+(@148) [dt (g 20) @y ()

i
(C 0 1)), = 7,3 (6t) N 1r) — Ty 1) N 106)18,,9)
k=)E, an<argk <2m. (5)

Wendet man diesen Subtraktionsformalismus nicht an, so kann
man eine Fredholmsche Gleichung verwenden. Die Fredholmsche
Integralgleichung®*):

@ (E,r) = Dy(r) + [ deed (E,0)[V()—E1] K(t,1) (6)

mit :
(Do), = 2,21, + )75 s (7)

K, (tr)=—(@21,+1)9,

mv

1st fiir beliebige » und [, brauchbar im Intervall 0 <r < R, solange
die Fredholmsche Determinante von (6) nicht verschwindet. Sie
soll 1m folgenden, neben anderem, benutzt werden, um die in der
Inhaltsangabe behaupteten Tatsachen zu beweisen.

Dieinr =0 versehwindehde Losung @ (E, r).

Jede Zeile ¢ (K, r) = (¢, ..., ¢,) der Matrixfunktion @ (F, r)
geniige einzeln dem Gleichungssystem:

: R
BAE) = Bt [0 3 g B0 [V, (0= B0, ) K, (6)  (9)
‘ 0 “ult ,

(A, uy v =1,...,m)
*) Jp» N,,, H, bedeuten resp. die Bessel-, Neumann-, Hankelschen Funktionen
der Ordnung =.

**) Ich verdanke diese Bemerkung einer brieflichen Mitteilung von Herrn Prof.
Dr. R. Josr.
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mit konstanten £,. Die in 0 <r < R stetige Losung von (9) ist fir
fast alle B/ gegeben durch die Fredholmsche Formel

R
PABD) = B a3 g0t A B0 (b o). (10
u

v
0

Dafiir, dass diese Darstellung existiert, ist bekanntlich hinreichend,
dass die Elemente der Matrix [V(t) — E 1] K(t, r) im abgeschlosse-
nen Intervall 0 <t, r < R stetig sind. Nach (8) ist diese Bedingung
offenbar sicher erfiillt, wenn die Funktionen V,(r) in 0 <r <R
stetig sind und
limr ¥V, () =0 (4v=1,...,n) (11)
r—>0
ist. Wir konnen im folgenden ohne Beschrinkung der Allgemein-
heit D(E) + 0 annehmen.

Die Fredholmsche Determinante D(FE) ist ndmlich eine in R
stetige, nicht identischverschwindende Funktion. Es sei nun fiir
ein gewisses E, D(E;) = 0. Dann gibt es sicher ein R’ aus dem offe-
nen Intervall (0, E), so,dass die diesem entsprechende Fredholmsche
Determinante fiir £/ = E, nicht verschwindet. Das (9) analoge, zum
Intervall 0 <<r<{ R’ gehorende Gleichungssystem ist dann an der
Stelle I/ = K fiir jede Inhomogenitéat 8, losbar.

Wir zeigen nun, dass

@, (,0)=0, (»=1,...,n). (12)

Zu diesem Zwecke schreiben wir (9) in der Form:
QDV(E,’T') :ﬁv Y _|_1>/\dttﬁl E: )PM(Eat)

I,4+1
2rl +=T fd” ¥ Z(PJ(E t) ;.;»(E’t) (13)

worln

PAV(E’ t) = Vﬂr(t) _ Eaﬂv

gesetzt 1st, und nehmen, was wir ohne Beschréankung der Allgemein-
heit diirfen, an, (13) sei losbar.

Die Fredholmsche Formel (10) liefert uns die im abgeschlossenen
Intervall 0 <r <R stetige Losung ¢, (E,r) (v =1, ...,n). Daher
sind die Funktionen ¢, in diesem Intervall auch beschrinkt:

lo, (B, r)| <C.
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Nun ist aber nach (11) auch |r P,, | < C so, dass aus (18) folgt:

r R
2 B < 1,107 40 [dtdr ot [aret
0 T
< Cr (14)

worin C eine beliebige von Null verschiedene Konstante bedeutet.

Somit gilt also
CP’,(E, 0) = O’

Aus (12) und (13) folgt, dass die Funktionen ¢,(¥, r) dem Rand-
wertproblem
@, (E,0) =0

Ry, (E,R) +1,¢(E,R) = (21,+1) ,R"***

gentigen.
Die fiir unsere Zwecke allgemeinste Inhomogenitéit der Gleichung

(6) lasst sich in der Gestalt
I(r) = A{@L+1)r*"5,} (DetA +0) (16)

schreiben. Ohne Beschrinkung der Allgemeinheit konnen wir wie-
der D(E) + 0 annehmen. Dann bezeichne @ die durch (6) und (15)
‘definierte Matrix. Wir beweisen, dass-

Rang (®,®") =n. (17)

(r=1,...,m) (15)%

Aus (6) folgt ndamlich
A, =1®, (E,R+LRd, (ER). (18)

Diese Gleichungen fassen wir in eine Matrixgleichung zusammen.
Wir schreiben:
(My)ny = Rouy } _
Mo = LSy (s BTy s oy B) (19)
Damit lautet die Gleichung (18)

(0.5) (1;0) = (60):

Der Rang des Faktors rechts 1st wegen (19) derjenige der rechten
Seite wegen (16) gleich n. Der Rang des Faktors links ser m <n.
Fasst man nun diesen Faktor als Vektoroperator auf, so gilt fiir den .

Rang der Matrix A

n = Rang A <m <,
so, dass also m = n 1st.

*) ¢” bezeichnet im folgenden dg/dr.
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. Jede stetige, im Nullpunkt verschwindende Losung v, (E, r) der
Gleichung (13) ist in der Form a® (a = const.) darstellbar. y, 1st

im abgeschlossenen Intervall 0 < r < R stetig, also dort. beschrankt.
Die Funktionen

r R
fep+o | Attt Zy, P L gz p
» % 2l,,+1 ]‘QP/‘. Ay 2vl+1 p ?/)1 - Av

0 T

verschwinden in 7 = 0. Denn es ist offenbar |f, | < Cr.

Weiter gentigen sie der Gleichung (1) fiir V = 0. Sie sind also von
der Form f, = a,rb+1. Setzen wir nun in (18) B, = «,; so gentligen ihr
sowohl y, als auch ¢,. Also gentigt die Differenz ¢, — o, der homo-
genen Gleichung. Wegen der Alternative ist aber ¢,— y, =0, also
Pr = Y-

Nun sind aber die Gleichung (6) mit der Inhomogenitéat (9) und
dasDifferentialgleichungssystem (1) mit dem Anfangswert @ (1,0)=0
einander dquivalent. Es gibt daher im 2n-dimensionalen Raum
{Y1>-- > Yn> Y1>- - -» Y, } der Losungen von (1) eine genau n-dimensio-
nale Schar von stetigen Losungen ¢, (I, 7).

Die Losungen F (& k, r), die sich wie ein- oder auslaufende
Kugelwellen verhalten.

Die Integralgleichung

F(k,r) = F, (k,r) — f dtF (e, ) V() G (k2,t,7), (20)
wobel '
(FO),uv _ (—%) kl,u I/—Z— kr Hgii_% (k’f‘) (3!” 3 (2])
und G durch (5) definiert ist, lisst sich fiir
0<e<r | 22)
m<argk <2n l
durch Iteration losen, sofern
> 5 1 (k +0) ‘
fdtt V@Ol <oo,a=ly , ., &*0 (28)

Die Matrixfunktion F(k, r) ist in r stetig, fir Im k < 0 in k analy-
tisch und stetig in k fiir Im k <0.
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Zum Beweis fithren wir die folgenden Grossen ein: die Norm | M|
der quadratischen Matrix | M| durch

M| =n Max |M, | (24)

vop=1,...,M

ferner die Matrizen II(«)

1 =y =q
(H(a))"“’ - {0 Ei, v ;: o). ) (25)

Bezeichnen wir weiter mit % den absoluten Betrag von Im k, so
gilt*):

) o A e s S
nTE

(26)

|Gﬂ,u(k2,t,fr)l{Oex(t—q-)( t )lﬂu}-l(lﬂklr)l#’ (t>r). (27)

T+|]c|t r

Nun losen wir (20) durch Iteration, indem wir schreiben:

AF (k,v) = f(k,r)— f dtAF(,) VG (k) (28)
WO AF=F—F,
f = [ dtFy(kt) V() G2, 1,7) (29)
und bilden damit
AF = ¥ Fm
m=0
FO — f, Fom — f AtF™ D (k) V() G (5%, 1, 7). (30)

Da nach (24)—(29)

)In~la+1

! (Trtﬁc"ﬁ

/

X(foodt|V‘T_|"_liT|{)m

*) Vgl. z. B. R. G. NEwTon, 1. c.

m+2 ; o
| (o) F(k, 1) | << e—"f(ii#f_)lﬂ Jauvi
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gilt, 1st

) AR ()| <Ot (e [ ) ()

cexp C / dt | V(i) (31)

| t
1+ |kt

Daraus folgen ohne weiteres die Behauptungen. Aus den asym-
ptotischen Darstellungen |

(ﬁc)l‘x e T Lot g1 e "l (r—>o00)

= !
~—~(21°‘—-—ll) o2 (r > 0)
ric

(Fﬂ(k’ﬂ)oco: =

folgen nach (31) fir r > co*):

] ) (ke "1 0 e™™"]) (K + 0)

() F(k,r) = _ e 32
@) F (k1) lﬂ(m)((zlarl:)” 1+ o[r 2]) k=0, O

Fiir reelle k gilt, da das Potential V(r) reell ist,
F(—k,r) = F*(+k,r); (33)

so dass sich fiir solche k die Funktionen F(— k, r) und F(+ k, ») fiir
grosse r wie ein- resp. auslaufende Kugelwellen verhalten.

Verhalten der Losung @ (E, r) fiir grosse r.

Setzt man fir zwei Losungen @ und ¢ von (1)13):
W(@,¢) = @) —2'9p* (34)

(T bedeutete die zu ¥ transponierte Matrix), so folgt wegen V= V7
aus (1)

0
5 W=0.
Mit der asymptotischen Darstellung (82) ergibt sich daher:
W(F(4k,r), F(+k,r)=0; (85)

*) O[f] bedeutet eine Matrix, bei der alle Elemente O[f] sind. Entsprechend
ist die Matrix o[f] definiert. ;
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und weiter nach (32) und (33):
(- k)l
(WF(+k,7),F(—kn)=2ik | , . °

(—k)ln
=2ikT(k)  (kreell). (36)

Aus (35) und (86) folgt daher fiir reelle k:.

@ (k%,1) = 57 [F7(+ ) F(—k,") —FT(—K) F(+kn)]  (37)

Worin
F(k) =T (k) W(F (+k,r), @ (k2,7)) (38)

gesetzt 1st. Damit sind nun alle aufgestellten Behauptungen be-
wiesen.

Es wire nun freilich noch zu zeigen, dass die so bestimmten Lo-
sungen ¢, (), r) fir das Intervall 0 <<r < oo ein vollstandiges Funk-
tionensystem bilden. Um die Vollstdndigkeit z. B. mit der Methode
von Tircamarsa'®) zu beweisen, wire es notig, @ (H, r) als in B
ganze Matrix zu definieren, und ferner ihr asymptotisches Verhalten
fiir E/ - oo zu kennen. Das erste Problem lésst sich*) im wesentlichen
mit den im Appendix B der Arbeit von NEwTon!®) dargestellten
Gedanken und den dort zitierten Sitzen von HErLMER!®) erledigen.

Ich mochte nicht versiumen, auch hier meinem hochverehrten
Lehrer, Herrn Prof. Dr. M. Fierz, von dem die Anregung zu dieser
Arbeit stammt, fiir seinen liebenswiirdigen Beistand herzlich zu
danken. Ebenso fiihle ich mich auch Herrn Prof. Dr. R. Josrt fiir
sein liebenswiirdiges und wertvolles Interesse, das er meiner Arbeit
entgegenbrachte, zu grossen Dank verpflichtet.
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