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Théorie de la résonance paramagnétique de ’europium et
du gadolinium soumis a un champ cristallin cubique

par Roger Lacroix.

(20 IV 1957.)

Résumé: L’effet d’'un champ cristallin cubique sur les ions Eut* et Gdt++ a été
étudié en tenant compte de la déviation du couplage Russell-Saunders.

Le spectre magnétique a été calculé par un développement en série pour un
champ magnétique élevé faisant un angle quelconque avec les axes cristallins.

La répercussion de la structure fine sur la structure hyperfine, par linter-
médiaire d’effets de second ordre, a également été mise en évidence.

Les 1ons d’europium bivalent et de gadolinium trivalent appar-
tiennent tous deux & la configuration 4f7. Leur état fondamental
est en premiére approximation un état 85z, huit fois dégénéré.

L’action d’un champ électrique de symeétrie cubique léve partielle-
ment cette dégénérescence, décomposant le niveau fondamental en
deux niveaux doubles et un quadruple. }

La dégénérescence restante est elle-méme levée par 'application
d’un champ magnétique statique, ce qui-donne lieu & huit niveaux
correspondant aux nombres quantiques magnétiques M =— F,
M=—% ....M=+1.

Enfin chacun des niveaux de structure fine se démultiplie sous
I’action du couplage entre moments magnétiques électronique et
nucléaire, provoquant une structure hyperfine particuliérement bien
observable dans le cas de I'europium.

I. L’état fondamental de la configuration % f7.

C’est un fait bien connu que les électrons 4f des ions des terres
rares présentent un couplage spin-orbite qui répond dans une large
mesure & 'approximation de Russell-Saunders. Les différents mul-
tiplets d’une configuration 4/ sont donec caractérisés par les nom-
bres quantiques L et S correspondant respectivement aux moments
cinétiques totaux orbital et de spin. Quant aux niveaux individuels,
ils sont décrits par le nombre quantique J, qui correspond au mo-
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ment cinétique total de I'ion. Chacun de ces niveaux est dégénéré
2 J + 1fois. Les 2 J + 1 états correspondants étant dénombrés par
le nombre quantique M qui est compris entre — J et + J et prend
des valeurs entiéres ou demi-entieres suivant que J est entier ou
demi-entier.

Le niveau fondamental de la configuration 4f7 est caractérisé par
les nombres quantiques L =0, S =J =1, en vertu de la loi de
Hund selon laquelle ce niveau est, parmi ceux qui ont la multiplicité
la plus élevée, celul pour lequel L est maximum. C’est donc un
niveau *Sz.

Selon la quantification [ LSJM >, l=s états appartenant & ce
niveau dégénéré huit fois s’écrivent | 0ZZ M >.

Cependant deux faits expérimentaux nous montrent que 1’appro-
ximation de Russell-Saunders est insuffisante pour expliquer le
spectre magnétique des 1ons considérés.

19 Le facteur spectroscopique g du niveau fondamental n’est pas
égal & la valeur prévue 2,0023, c¢’est-a-dire au rapport gyromagné-
tique du spin électronique. '

29 En présence d’un champ électrique cristallin la dégénérescence
du niveau fondamental est partiellement levée, ce qui ne devrait pas
étre le cas pour un état S.

L’approximation de Russell-Saunders est fondée sur ’hypothése
que l'interaction spin-orbite est suffisamment faible vis-a-vis de
I'interaction électrostatique des électrons pour qu’on puisse traiter
chacun des multiplets indépendamment des autres.

S1 tous les électrons de la configuration sont équivalents, I'inter-

action spin-orbite A est de la forme ¢ Y (1;- s_;) la sommation portant

sur tous les électrons de la configuration. Cet opérateur commute

avec J: il est done diagonal en J et M qui sont ainsi de bons nombres
quantiques. L’approximation de Russell-Saunders revient & ne
garder de la matrice de A que la partie qui est diagonale en L et S,

c’est-a-dire opérateur A(L-S), qui commute avec L? et S2 1),

Si on veut obtenir une meilleure approximation du niveau fonda-
mental, 1l faut tenir compte également, par un calcul de perturba-
tion, des éléments de matrice de 4 non diagonaux en L et S. Les
états résultants n’appartiendront évidemment plus & une valeur
déterminée de L et S et seuls J et M resteront de bons nombres
quantiques.

Les seuls éléments de matrice de A différents de zéro sont ceux
qui répondent aux restrictions AL =0, +-1let 48 =0, 4 1, en plus
de celles déja signalées: AJ = 0, AM = 0.
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Le tableau suivant nous indique quels sont les états qui, liés par
des éléments de l'Interaction spin-orbite, interviennent dans les
différents ordres du calcul de perturbation.

58

ordre 0 1

Lo
w

En se limitant au deuxiéme ordre, les huit états du niveau fonda-
mental s’expriment par le développement suivant:

Y S
T M>=[05

7M>

Vs (157 A8 IM|AI0F M
2 2 -

B¢~ Es

OFIM|A|13E My A3 M|A|0FTM>
(Fop—Fsg)?
P S

@ELM|AILELM> AZIM|A|0F LI
(Bop—sg) (Fop— Fs)

Ca231M[A[13IM>131M[A]0F LM
(Bap—Esg) (Hep—Esy)

ou J} exprime la sommation sur les six états Dz possibles dans la
> ;
configuration f.

Les états du miveau fondamental étant ainsi établis, 11 nous est
maintenant possible de calculer le facteur spectroscopique g.
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Rappelons que la contribution & I’hamiltonien due & la présence
d’un champ magnétique H est de la forme suivante:

S = B 1o H (L + g, 5)

ou B = 0,9273 10-23 Am? est le magnéton de Bohr,
po = 1,257 1078 Vs/Am, la perméabilité du vide,
et g, = 2,0023, le rapport gyromagnétique du spin électro-
nique. .

S1 on suppose H paralléle a I’axe de coordonnées Oz, on a:

Om = B uoH(L: +9,5,) = B o H[J. + (9, — 1) 5.

La variation d’énergie de 1’état | JM > en présence du champ
magnétique vaut en premiére approximation

AE = (IM | $] IMy = B o H{M + (g,—1) (JM|S,| JM}.

On définit le facteur spectroscopique g comme coefficient de pro-
portionnalité entre AE et M. '

TMI|S,|JM
AE = gBuHM  g=1+(g,—1)LHEID

Calculons le facteur g de1’état fondamental |+ M > en nous limitant
a la perturbation de premier ordre.

T My=(1—%) 075 My—a|1 5L M)

ol on pose - -
AIMIA|0LI My

-
EGP 8¢

a =

immdépendant de M. On obtient:
g =(1—a? g(®S;) +a?g(*Py).
Selon la théorie bien connue de l'effet Zeeman,
g(®Sg) =1+ (g, —1)-1 = 2,0023
g(°Py) = 1+ (g, —1)" = = 1,7160.

Essayons de donner une estimation numérique du ¢ de l'ion
Gd+++, Ce calcul nécessite la détermination de la constante a, ¢’est-
a-dire de 1’élément de matrice (153 M| A|0FF M) et de la

différence d’énergie Eﬁp — ESS'
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o .a |
L’opérateur A=, 3 (I;s;) étant somme d’opérateurs agissant
i=1 '

sur chaque électron séparément, il est nécessaire d’exprimer 1’état

|0%%% > sous forme du produit antisymétrique des états d’un
électron.

777\_++1~++++
lo???/“( 2 1 0-1-2-3)
On obtient:

OITIN 451N/ 51T 10777
AEOQ 2 2/"1?‘2‘“2_/\1?_2“"2"1/1]0‘ 2?>

I3[+ + + + + + — + o+ 4+ =

=0 /5 (8 21 0-1-2-2) - (31 0-1-2-3 3)

_1/5 [+ + + + + + — + + o+ o+ -

l/@ (8 2 1 0-1-3-1) - (3 2 0-1-2-8 2)]

————— [+ — + + 4+ 4+ k=

+V3 (3210230 - (32 1-1-2-3 1)_}-

D’ou i1l résulte:
5 7 1 77 7 e
<1 229 |‘1|0—2“W2"_2“>= V14 ¢C.

Quant & la valeur de ¢, une interpolation des valeurs tirées de
Iexpérience par B. R. Jupp?) pour les ions Eutt+ et Th+++ nous
donne pour Gd*+++ { = 1540 ecm~1.

Il reste & évaluer la différence d’énergie Eg, — Eg .. La méthode

de SpaTeRr3) permet d’exprimer cet écart en fonction de trois para-
meétres Fy, I, et F. |

Egp— Eyg = 15 Fy +165 F, + 8008 F.

Si on utilise I’estimation numérique de B. R. Jupp?) pour ces
parameétres, on trouve Ky, — Fg, = 31000 cm~1, alors que les
mesures d’absorption citées par C. K. JoreENseEN4) indiquent une

limite inférieure de 32000 cm—1. Nous adopterons donc cette der-
niére valeur.

_ V14-1540 cm—?
32000 em™1

g = 0,9675-2,0023 + 0,0325-1,7160 = 1,9930.

= 0,180 a? = 0,0325

Le calcul de g au deuxiéme ordre serait extrémement long, mais,
vu la petitesse de I'effet des termes de cet ordre, on peut les estimer
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assez grossiérement sans affecter sensiblement le résultat. On ob-
tient alors:

g = 1,9925
ce qui est bon accord avec le résultat expérimental de RyTER?)
g = 1,9918 4 0,0010.

Les données spectroscopiques nous manquent pour développer
un calcul semblable dans le cas de I’europium.

II. L’influence du champ électrique eristallin.

Etudions ’action d'un champ électrique de symétrie cubique sur
I’état fondamental de la configuration 4f7.

La majeure partie de ce probléme peut étre traitée par la théorie
des groupes.

Les huit états appartenant au niveau fondamental forment la
base d’une représentation Dz du groupe des rotations. Celle-c1 se

décompose selon les représentations Iy, I'; et I’y du groupe cubique,
dont les deux premiéres sont & deux dimensions et la derniére
quadridimensionnelle®).

Cela signifie, selon le théoréeme de Wigner, que le niveau fonda-
mental huit fois dégénéré se décompose sous 'action du champ cu-
bique en deux niveaux doubles et un quadruple.

S1 maintenant nous désirons connaitre la position relative de ces
niveaux, il nous faut procéder a un calcul de perturbation qui néces-
site un examen plus détaillé du potentiel cristallin et de ses éléments
de matrice.

Des considérations relevant également de la théorie des groupes
nous montrent que le potentiel électrique cubique doit se développer
en une série de polyndmes homogeénes en xyz, dont chacun est la
base d’une représentation identique Iy du groupe de transforma-
tions laissant un cube invariant.

Il résulte de plus de cette théorie que les termes de degré supérieur
a 6 du développement ne peuvent pas avoir d’action sur des élec-
trons f.

Nous écrirons donc le potentiel V(_’) en nous limitant aux termes
de degré inférieur ou égal & 6 qui seront exprlmes au moyen des
fonctions de Laplace Y7 (6, ¢).

T’(5)=“°”“[Y°+l/ (vt + 9|+ oo [T (0 v
= a V,(z) + bV, ( _
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Dans cette expression, les trois axes quaternaires de la symétrie
cubique ont été choisis comme axes de coordonnées.

Les constantes @ et b dépendent de la fagcon dont le champ est
créé, ¢’est-a-dire de la disposition des ions voisins et de leur distance.

Au premier ordre en V, le calcul de perturbation revient a re-
soudre I’équation séculaire

M| V| My — 6y, AE| = 0 |

ou (M’ |V| M) est I'élément de matrice du potentiel cristallin entre
les états |TM"> et |TM).

Les états | M) étant développés en états | LS & M), I'élément
de matrice (M'|V| M)> s’exprimera en fonction d’éléments de ma-
trice <L'S" 3 M'|V| LS ¥ M>.

Ceux-ci répondent & deux régles de sélection:

1048 =8"—8=0
20 I'+L >4 pour V() et L'+L >6 pour V().

Il en résulte que nous aurons des éléments de matrice de V, du type
(8D |V,|8 Dy, 8P|V, 6F) et 4D |V, $D), qui seront multipliés par
des facteurs du quatriéme degré quant aux éléments de matrice de
A. Ces termes nous donneront une approximation du cinquiéme ordre.

Les autres éléments de matrice de V,, ainsi que ceux de Vg, n’in-
terviennent qu’au sixiéme ou septiéme ordre.

On peut se demander quel est I’ordre de grandeur des termes que
fait apparaitre la deuxiéme approximation en V.

Comme 1l résulte de la théorie des groupes qu'un champ cubique
ne peut lever la dégénérescence d’un niveau S ou P, le terme de
degré le plus bas qui apparait au deuxieme ordre en V est de la
forme

Z(*‘PWI > |V | Dy
E-E,

multiplié par un facteur du troisiéme degré en 4. Nous avons donc
encore affaire a des termes de la cinquiéme approximation.

Cependant, comme les éléments de matrice de V sont au plus de
Pordre de 100 cm~1, alors que ceux de A dépassent 3000 cm—1, cette
deuxiéme partie en 1’2 A2 est de faible importance devant la pre-
miere, qui est en VA4
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Ecrivons les éléments de matrice (M’ quil apparaissent
dans I’équation séculaire, en nous limitant aux termes de cinquieme
ordre®).

[6‘19 AP PASS
vy =€ (417 P15 PPy 14l

| (Bop=Tog) (Bo, = P

be
H
=1
=~
\/

(GD 1A Py [Py |A] 5855 PP Py |41 5D

6 6
+2
= (E“D B EBS) (EGP B E83)2 (E.‘éz) - ESS)

o

' T a7\
V4’ x 2 ) M/
(OFg14]°Dg> <GD% A1°Py 5[ <O Pl 4183y [?
(Bop=Bag) (Bsj, = Bsg) (Bopp = Hag)®

6, ("Frl4|gDgy Dy 14| PPy [P Py 14| *8 > [*
YA (B By (B, g (B e

o -1
/40T
Ngg
Trop d’éléments spectroscopiques nous manquent pour qu’il soit
possible de calculer les différents termes qui apparaissent dans cette
expression. Heureusement, la théorie des groupes nous permet de
calculer tous les éléments (M'|V| M> & un facteur prés. Il sera
ainsi possible de connaitre la position relative des niveaux.
L’action du potentiel V, (2) auquel sont soumis les électrons peut
“s’exprimer par un opérateur ¥, opérant sur les vecteurs |$M).

,\
Q?M/‘

V,=Vi+ |/ (VE+ V.

Les opérateurs V9, V+et V,* se transforment lors d’une rotation
des axes comme les fonctmns de Laplace Y9, Yiet Y 4.

Les éléments de matrice (M’ |V% M) sont proportlonnels aux
coefficients de Clebsch-Gordan ¢/ .

. VI T =M G+m)! (—m)! (+m)! (f—m)!
C”"m'zz(—]) VA=) (j—m—»)! (j+m—A+2)! (' +m =) (' —m = A+)!

ouonpose =j=% m=M =4 m=k AIA=4

*) Note ajoutée & la correction: Une étude détaillée de la configuration f7, que
nous publierons prochainement, montre qu’en ne faisant intervenir que les états
de cette configuration, seules les approximations d’ordre pair sont différentes de
zéro. Il en résulte que I'expression qui suit est nulle et que le champ cristallin
n’apparait qu'a la sixiéme approximation, les termes prépondérants étant en V.A5.
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Le coefficient ¢/ , n’est différent de zéro que si m —m’' = M,
cest-a-direst M — M' = k. :

Les opérateurs apparaissant dans 7, ne présentant d’autres va-
leurs de k que 0 ou -+ 4, les éléments de matrice de (M'|V| M)
répondent a la regle de sélection AM = 0, + 4.

Les éléments de matrice sont alors les suivants:

TN R S\
€3 V| + ty= T4 (5 |VIL5)=-184

3 1 1 |
(£51V£5)=—34 (Fy V1 £3)- 94

(+T1VIFL)=y854  (+21VIF=5y84

ou A est une constante a déterminer par ’expérience.

L’équation séculaire présente, conformément & notre remarque
préliminaire, deux solutions doubles (14 4, — 18 4) et une qua-
druple-(2 4).

On peut se demander a laquelle des représentaticns Iy et I7
appartiennent respectivement les deux niveaux doubles. Pour le
savoir, 1l est nécessaire de calculer les états du systéme perturbé.

Le plus simple pour les obtenir est de chercher quelles sont les
combinaisons linéaires des états |M> qui se transforment les unes
dans les autres sous I’action des opérations qui engendrent le groupe
cubique.

Les états ainsi obtenus sont les suivants:

6.1) = |/ 4 Z/*l/_fzi ;/
6’2/‘1/152'_’;‘%]/% %>
-2 - -3
-VE| DVED
-5 -Vl
o= 4| 2+ [-2)
e L3+ 35| B
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S1 on calcule Iénergie du niveau Iy on trouve:

AE(F6)=12\Z]VJ 172< \V\w‘—
V35 /7 1\
21,<2|V| 2>a14A

Les états utilisés pour ce calcul ne sont qu'une premiére appro-
- ximation, la solution exacte contenant en faible proportion des
états pour lesquels J est différent de 7/2 et qui sont introduits par
Ieffet du champ cristallin. Il est du reste bien naturel que J ne soit
plus tout & fait un bon nombre quantique, puisque le systéme n’a
plus la symétrie sphérique.
A 7
| (3+€)8

54

N

Fig. 1.

La répartition des niveaux est représentée sur la fig. 1, ot on a
posé 4 4 = ¢ et introduit le facteur ¢ €1 qui rend compte de la
modification des écarts relatifs due aux termes de deuxiéme ordre
du champ cristallin.

III. Les niveaux dans le champ magnétique.

L’application du champ magnétique H fait apparaitre dans I’ha-
miltonien un terme de plus, de la forme

—_—

O =GB 1o HJ

Posons H, = H, + 1H,, H_ = H, — 1H,, et définissons J, et J_
de la méme maniére.

Hm gﬂyo[ (H,J_+H_J )+HZJ,,].

La position des niveaux d’énergie s’obtiendra par un calcul de
perturbation. L’effet du champ magnétique étant du méme ordre
de grandeur que celul du champ électrique cristallin, le calcul de la
premiére approximation doit se faire en considérant le systéme
comme quasi-dégénéré.

Seule la perturbation de premier ordre est & considérer, la contri-
bution des termes de deuxiéme ordre étant 30000 fois plus faible.
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—_

Notons I, m, n, les cosinus directeurs du champ magnétique H
par rapport aux axes xyz. .

S1 nous posons: p =1+ im, ¢ =1—vm, nous pourrons écrire:
H,=pH, H_=qH, H, = nH.

Introduwsons de plus les notations suivantes:
gBum g — 4E

; =

L’équation séculaire, calculée a partir des états de premiére appro-
ximation du chapitre précédent, est alors de la forme (page 384).

Le développement d’un tel déterminant est excessivement long.
On peut heureusement I’éviter au moyen de la méthode suivante:

Les coefficients de 1’équation séculaire sont des polyndmes en
[, m et n qu doivent étre invariants aux opérations du groupe cu-
bique, c¢’est-a-dire aux permutations des axes et a leur changement
de sens. L'invariance au changement de sens implique que les cosi-
nus directeurs apparaissent au carré. Les seuls invariants de per-
mutation linéairement indépendants qui peuvent se présenter dans
les coefficients sont alors

Pim24n2=1 PBm24+m2n2+n2l2=9¢ [Zm2n?=y.

U =

Comme chaque coefficient est combinaison linéaire de ces inva-
riants, 1l suffit de le déterminer pour trois directions particuliéres
de H, et il sera alors connu pour n’importe quelle autre.

Les trois directions les plus commodes sont celles de plus haute
symétrie, & savoir les axes quaternaires, ternaires et binaires.

VH[4 l-m=0 n-—1 ¢ —p—
= 1 1 1
20 H || 45 sz:nwl/—_?’— p=5 V=37
= 1 1
30 H || 4, l:’"%:ﬁ;n:() =g B0

Dans le premier cas, qui a déja été traité en détail par KITTeL et
LutTiNGER?), I'équation séculaire se décompose d’elle-méme en
quatre parties, qui sont:

(8+8+~Z—u——$) VT?)?M o
l/—?)@‘u, (5+%u-a})
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et deux équations qui se déduisent de celles-ci en remplacant u
par — w.

Dans ce cas, la résolution est particuliérement simple. Les ni-
veaux, que nous dénombrerons par le nombre M, qui est le bon
nombre quantique a la limite, pour un champ magnétique élevé,
s’expriment de la maniére suivante en fonction de .

M-ty oo EIC L ypx g s B8
M=i"g_ o — _i_u2+5 :l:" 4%22115?,1,71——243'
M:i% L= —jFE; & | 4%&2:}:0%4—&
M=tg o= 4 faur g 34 5+ 5.

Le deuxiéme cas ne se résoud pas si simplement. Pour que I’équa-
tion séculaire se décompose en facteurs, il faut la construire avec
d’autres états de base. Un tel changement d’axe est légitime, les
espaces de représentation appartenant a Iy, I'; et I'y étant définis
a une transformation unitaire prés.

|6,> =a]|6,1>+b]62>
16,8 =b]61>—al62)
| T,0> =b|7,1> +a|T72
7,85 =a|T1>—b | 7.2

8, o 2_%[5 18,15 —a|8,2> +ia|8,3>—ib|845]
|8,ﬁ>=7%_[a,|8,1>+b18,2>+ib|8,3>+7§a|8,4>]
|18, ) = V__[b 18,1y —a |82y —ia|8,3)+1ib]|84)]

18, 85 = V__[a|81>+b;82>ﬂb|83>nm184>]

ol a = V3+1 ei% b= ﬁ;l« evi%.
2)3 2)'3
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L’équation séculaire construite sur ces états se décompose en trois
facteurs qui sont les déterminants:

(8+8+—7,—u—a:) ygu 0
V_3_5_ 10 (5 —%u— a:) U ]/T?;u =0
0 —?]/gﬁb (—— %u - a:)

6

‘ --J/iu (5 —}—%«u——m)

(5_7_%__,,3) ”'_[ ” ]

et un troisitme qui se déduit du premier en remplagant u par — w.

Le probléme se présente de la méme maniére dans le troisiéme
cas. Grice & un changement de base adéquat, 1’équation séculaire
se décompose en deux facteurs:

T ‘ V35 11/3
(8+6+-€U)—$) — -EZ_I/3 2 0
' 35 5 1 3
_— ;H+_w s —— e W) sopes
5 W () F g m) V3 5 U o
Ll/g_‘it —"L% '”—3u—ac) — ?u
5y 8 V3 (*’ F) ‘ 2
: 3 . V3 3
0 w =Sk (—2—u :fc)

et le méme déterminant ot on remplace u par — u.

Les équations séculaires des trois cas précédents sont aisées a
développer. On obtient ainsi trois valeurs particulieres pour chacun
des coefficients de ’équation générale, qui sont de la forme a + bg
+ cyp. Les nombres a, b et ¢ s’obtiennent immeédiatement par
identification. On trouve alors pour I'équation séculaire la forme
suivante:

— (36 + 2¢&) 27 + [— 21 w2 + (534 + 56¢ + e2)] 2
- [— (567 + % ) u? + (4180 + 620& + 206%)| a?

[987 o (12190 1946 427
( R 3 ¢T3

Nansiedt ™ )u2
+ (18225 + 3400 & + 150 82)]

+(
O 520+ 14044 )
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(33190 + 22+ 2 a2 u 4 (42000 + 9250 & + 500 )| 2

’11,6 4 {(1438117 4 12231 5 4 61143:) 82)
(17100 + 2500 ¢ + Iﬂ 82) (]D}%4 — ( 192;25 4 56200 €+ 79900 82) u?
+ (40000 + 10000 & + 625 62)] z?
_ [__{(4"14685 1 2% e)— (8570 + 665 ¢) ¢ + 8150 gw}us
+{(2144?65 + 20y B0 e2) — (67200 + 12800 & + 550 £2) q;}w:
— (142500 + 2257 ¢ + 1875 ¢2)u?] @

[11020 - _{ 25'7’6257+ 10425 gL 3025 82)_(20475+47258+ 17582)(}9

256 32 8 64
, ( 864225 21675 4325 82)

+(33075 + 14175 + 20 ¢ &) p Jus + {(F2 + Hge + 55

— (72000 +18000¢ + 11257 pu — (90000 +22500¢ + 2 2] 0.

A partir d’ic1, nous allons, par raison de commodlte changer de
systéme de quantlﬁcatlon Nous noterons | M) un état __propre de

la composante J, de J le long de 'axe 02" parallele a H. Ces états
| M>» sont ceux du systéme lorsque H est grand.

L’équation du huitiéme degré qui nous donne les niveaux en fonc-
tion de u, donc de H, peut étre résolue pour des champs élevés
(> 1), ce qui est le cas expérimental, par un développement en
série de 1/u. € et 1/u étant tous deux petits devant 1, nous néglige-
rons les termes a partir de 1/u?, ¢/u? et ¢2/u. Les huit solutions, que
nous numéroterons au moyen du nombre quantique de champ éleveé
M, sont alors de la forme suivante:

M-t3 a-tg+ati+s

M:i% $=i§;—+a2i%+%

Mr:j:% i = gj;ﬁ 3i_b_+f

M::[:—;- :c:iF; 4i_+n#
ou 27 45

7 35 175
a=F-3orel— 1Pt 10 Y)
15 15 35 315
- 4 +‘9("1€‘p_ 16 ’/))
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5 65 35 175
U= T PTe (48‘3” 16 ‘P)
fo 235 (5 35W_H35)
W= T ¥ S(E*EGD 16 ¥
5 1155 10870 3675
by = + T
( 6965 20125 o . 20225 146125
382 7 384 ¥ 384 )
15 405 6045 , . 2205
T T A T
1855 8435 , 12915 64575
+8(128 ?— 198 P 128 ¥ i3s )
75 2465 18265 , 735
bs=%x o6 P T 12 ¥ 16
7945 36085 , , 9415 47075
+ (— 152 % T 152 9 T 382 ¥ T3ma )
35 4375 23135 , . 105
bi=%r+ 96 ¢ 15z ¢ T 16 ¥
35 8225 21665 , | 5705 28525
T (WJ“ 152 ? 152 ¢ T 38 ¥ 384 )
o 35 45675 . 472075 ,
1~ 7 512 512 ¥ 512
1170625 o 72275 361375
512 7 128 ¥ 128
o, 315 23265 381645 ,
2= T 12 512 ¥ 512
1210275 5 99225 496125
512 ¥ 128 ¥ 138
375 1260055 2774425
3= T 52t 2608 ¢ 1536 ¥
12813125 , 20825 104125
g ¥ 138 ¥ T8
. _ 4 35 _ 1058365 2500435
4 512 2608 7 7 1536
_ 13169075 . 6125 30625
608 ¥ 128 ¥ 128

Dans les expériences de résonance paramagnétique, I’échantillon
est soumis & un champ magnétique H, de fréquence » perpendicu-

laire au champ statique H, et aux dépens duquel de I'énergie est
absorbée par des transitions dipolaires magnétiques entre les diffé-
rents niveaux du systéme.



390 Roger Lacroix. _ - HPA

Comme nous avons choisi un systéme de quantification ou les
¢tats de premiére approximation pour un champ élevé sont les
M, états propres de J,, et que le champ magnétique de haute

z q P gnetlq
fréquence est perpendiculaire & I’axe Oz', I'intensité des raies est
proportionnelle en premieére approximation au facteur

VMuﬂMvh

L’élément de matrice (M | J,| M"> n’est différent de zéro que
st M — M’ = 4 1. Donc seules les transitions entre niveaux pour
lesquelles M différe d’une unité auront une intensité importante.
Ces intensités sont dans les rapports suivants:

(i%«——»i%) 7 (:1:—3—<———> ﬂ:—;—) 15
(£5«—>=5) 12 (53— +5) 16

Kcrivons enfin les écarts d’énergie entre les niveaux consécutifs,
ce qui nous déterminera pour chacune des sept transitions la valeur

du champ de résonance H, = u,0/9p u,.
Posons X = hw/d

( —g~—> »;—) X=‘LL1+A1+Z+3%
(53— 3) X-wmtd+it4+ 3
( ;mﬂ %) X—u3+A3+»‘§§—+—g§
(1} xew B
(-3 s 5 X:%—&+2—%
( %——» %) Xmus—A2+%~%
(%_ﬁ_g XA% m+ﬁ—%
oL A =5(1—5¢) +-25(@—Tg—63yp)
Azﬁfwﬂ— )—#8(¢m21w)
Ay=—8(1—5¢) —4-e(@—15 ¢+ 105 y)

Blz'g“( 14 114 ¢ — 345 @2 + 84 p)
35

o7 &£ 2+ 7T ¢ — 275 ¢* — 53 p + 265 py)

_{_



Vol. 30,1957. Théorie de la résonance paramagnétique... 391

By = (—92 ¢ + 455 ¢ — 441 y)
+ B e (— 929 +100 ¢ + 1291;;——645991,0)
By=<(1+ 7899—423 P2 + 588 )
oo (—4+ 358(;9-—]498()9 — 1942y + 9710 py)
By = o (T — 462 ¢ + 2175 g2 — 2940 y)
+ e (4 —199 ¢ + TT5 ¢ + 835 y — 4175 gy)
Oy = i (— 158 — 115921 ¢
| 1791229 2 — 1299155 ¢® -+ 26460 3 — 132300 gy)
Oy = o (675 + 105067 ¢
488847 ¢ + 192065 ¢* — 432180 + 2160900 @)
O = o (—17 + 8447 ¢
— 42781 g? + 119045 ¢ + 84300 y — 171500 ¢)
(001) o (on)
22
20 -\\ -
i S ——
16
i —— /// 5 /’——‘_—
12
—/
0L
0 10 20 30 40 50 60 70 40 /)

Fig. 2.

Dans chaque cas numeérique particulier, I'inversion de la relation
X(u) en u,(X) se fait aisément par itération, la convergence étant
trés rapide.
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Dans les applications a I'expérience, ot X est au moins de ’ordre
de 10, l'erreur relative faite en négligeant les termes en 1/u® dans
les développements est au plus égale & 10-4.

La figure 2 représente la valeur du champ H pour les sept raies
en fonction de ’angle que fait 'axe 0z" avec la direction (001) lors-
qu’l tourne dans le plan normal a la direction (011). Les valeurs
choisies des parameétres sont X = 16, ¢ = 0.

IV. La strueture hyperfine.

L’ion considéré étant soumis a un champ cristallin de symétrie
cubique, '’hamiltonien d’interaction entre les moments électronique

J et nucléaire I est 180trope.

.z = W z
Sy=a (@D =K [LL+ (I + J_L)]

L’énergie d’un niveau caractérisé par les nombres quantiques ma-
gnétiques électronique M et nucléaire m vaut alors, si on développe
le calcul de perturbation jusqu’au troisieme ordre,

By (H) = EM(H) + K" Mm
K [ F(M)f(—m) F(—M)f(m) ]
B

—

% u E)=Ey_ (H) By (H)- By (H)
K3 F(M) f(-m) 1y F(=M) f(m) it
T 4 [{EM(H)“EM—1(H)}2(M " 1) {EMH(H)'EM(H)}z(M m+ )]

ol H;; est I’énergie du niveau de nombre quantique M en ’absence
d’interaction nucléaire, et ol on note:

FM=WJ+M T —M+1) et fim)=T+m)I—m=+1).

Considérons la transition permise par les régles de sélection
M—1— M, m — m et notons

AE.Mm(H) = EM-1,m(H)”""EMm (H) 4 EM (H) :_EM~1 (H)hEM(H)

Lorsqu’on applique le champ magnétique oscillant de fréquence

v, la résonance a lieu pour un champ statique H, déterminé par

Définissons de plus les champs H, et H, par les relations
hv = AE(H,,) et hy = g B uyH,. Posons enfin K = K'/gf.
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On obtient alors pour valeur du champ H,,,, :

K2
id,

Hiypp = Hy— Em—J | () f (—m) + F (— M + 1) f (m)

‘ AEy (Hy,
—F(=M) i) g s —F (M —1) f (—m) g2 |
- | F o m) L 1) 4 F (- M 1) f ) (M m)
ABy (Hy) |2
mF(—M)f(m){AEM"iI (g{M)} (M —m+1)

—F(M—l)f(—m){ A"Ei I“E(IM;) }2 (M;m-z)].

Lorsque V'écart (Hy,— H,,_,) entre les raies de structure fine est
petit par rapport au champ Hy, on a AE/AK, ,~ 1 et Hy,, se
réduit a la formule habituelle:

H,, = HM—Km—-W{[I(IH)—mﬂ—m[z M_1]1

K3

— 5ar {(2 M—1)[21 (I+1) — 3m?]

—~m[J(J+1)+I(I+1)—8M(M——1)—z—mz]}.

Cependant, l'expérience montre?) que la structure fine peut
étre assez importante pour que le rapport 4K, /AE,, . soit trés dif-
férent de 1. Dans le cas cité, il est compris entre 0,7 et 2.

Utilisant les valeurs expérimentales de RyTer3) pour K et 9,
nous avons représenté sur la figure 3 la structure hyperfine théo-
rique d’une raie du spectre de I'ion 31Eut++ (I = 5/2) pour H paral-
lele & la direction (001). C’est celle qui apparait pour le champ le
plus bas; elle correspond a la transition 5/2 - 7/2 si 6 est positif.

Les trois schémas ont été calculés:

1° au premier ordre,

2% au troisieme ordre en négligeant la structure fine,

3% au troisiéme ordre en tenant compte de la structure fine.

Il n’est pas sans intérét de remarquer que, bien que I'hamiltonien
9 soit isotrope, la structure hyperfine ne I’est pas, son anisotropie
etant due également a I'influence de la structure fine sur les termes
de deuxiéme ordre.
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La largeur totale de la structure hyperfine présente des extre-
mums opposeés lorsque le champ statique est orienté selon les direc-
tions (001) et (111). Si on utilise les mémes valeurs de K et 6 que

J

s rd II
. 4
!
1
I

2

\
\

~100 -50 a 50 100

——>H foersteds)

Fig. 3,

pour la figure 3, on trouve une variation de la largeur de la struc-

ture hyperfine avec la direction de H comprise entre 5 et 10 gauss
suivant la raie considérée8). On voit ainsi que cet effet n’est pas
négligeable.

L’accord trés satisfaisant des mesures de RYTER avec les résultats
de cette étude théorique nous montre 'intérét qu’il pourrait y avoir
a approfondir certains points laissés en suspens, en particulier I'éva-
luation théorique des constantes d et &. Pour notre part, nous avons
commencé un travail dans ce sens, dont nous espérons qu’il nous
permettra de tirer des résultats expérimentaux le maximum de
renseignements sur les ions Eutt et Gd+++.

Je tiens en terminant & remercier M. J. C. HouLy pour I'aide pré-
cieuse qu’il m’a apportée en effectuant une partie des longs calculs
algébriques nécessités par cette étude.

Institut de Physique de I'Université, Geneve.
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