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Théorie de la résonance paramagnétique de l'europium et
du gadolinium soumis à un champ cristallin cubique

par Roger Lacroix.

(20IV 1957.)

Résumé: L'effet d'un champ cristallin cubique sur les ions Eu++ et Gd+++ a été
étudié en tenant compte de la déviation du couplage Russell-Saunders.

Le spectre magnétique a été calculé par un développement en série pour un
champ magnétique élevé faisant un angle quelconque avec les axes cristallins.

La répercussion de la structure fine sur la structure hyperfine, par
l'intermédiaire d'effets de second ordre, a également été mise en évidence.

Les ions d'europium bivalent et de gadolinium trivalent
appartiennent tous deux à la configuration 4/7. Leur état fondamental
est en première approximation un état 8&, huit fois dégénéré.

L'action d'un champ électrique de symétrie cubique lève partiellement

cette dégénérescence, décomposant le niveau fondamental en
deux niveaux doubles et un quadruple.

La dégénérescence restante est elle-même levée par l'application
d'un champ magnétique statique, ce qui donne lieu à huit niveaux
correspondant aux nombres quantiques magnétiques M — i,
M -f, ...,M= +1.

Enfin chacun des niveaux de structure fine se démultiplie sous
l'action du couplage entre moments magnétiques électronique et
nucléaire, provoquant une structure hyperfine particulièrement bien
observable dans le cas de l'europium.

I. L'état fondamental de la configuration 4/7.

C'est un fait bien connu que les électrons 4/ des ions des terres
rares présentent un couplage spin-orbite qui répond dans une large
mesure à l'approximation de Russell-Saunders. Les différents
multiplets d'une configuration 4/n sont donc caractérisés par les nombres

quantiques L et S correspondant respectivement aux moments
cinétiques totaux orbital et de spin. Quant aux niveaux individuels,
ils sont décrits par le nombre quantique J, qui correspond au mo-
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ment cinétique total de l'ion. Chacun de ces niveaux est dégénéré
2 J + 1 fois. Les 2 J + 1 états correspondants étant dénombrés par
le nombre quantique M qui est compris entre — J et + J et prend
des valeurs entières ou demi-entières suivant que J est entier ou
demi-entier.

Le niveau fondamental de la configuration 4/7 est caractérisé par
les nombres quantiques L 0, S J \, en vertu de la loi de
Hund selon laquelle ce niveau est, parmi ceux qui ont la multiplicité
la plus élevée, celui pour lequel L est maximum. C'est donc un
niveau 8Si.

2

Selon la quantification [ LSJM >, les états appartenant à ce
niveau dégénéré huit fois s'écrivent | 0|| M >.

Cependant deux faits expérimentaux nous montrent que
l'approximation de Russell-Saunders est insuffisante pour expliquer le

spectre magnétique des ions considérés.
1° Le facteur spectroscopique g du niveau fondamental n'est pas

égal à la valeur prévue 2,0023, c'est-à-dire au rapport gyromagné-
tique du spin électronique.

2° En présence d'un champ électrique cristallin la dégénérescence
du niveau fondamental est partiellement levée, ce qui ne devrait pas
être le cas pour un état S.

L'approximation de Russell-Saunders est fondée sur l'hypothèse
que l'interaction spin-orbite est suffisamment faible vis-à-vis de
l'interaction électrostatique des électrons pour qu'on puisse traiter
chacun des multiplets indépendamment des autres.

Si tous les électrons de la configuration sont équivalents, l'interaction

spin-orbite A est de la forme f 2J (h'st) lft sommation portant
i

sur tous les électrons de la configuration. Cet opérateur commute
avec J : il est donc diagonal en J et M qui sont ainsi de bons nombres
quantiques. L'approximation de Russell-Saunders revient à ne
garder de la matrice de A que la partie qui est diagonale en L et S,

c'est-à-dire l'opérateur A(L-S), qui commute avec L2 et S2 x).
Si on veut obtenir une meilleure approximation du niveau

fondamental, il faut tenir compte également, par un calcul de perturbation,
des éléments de matrice de A non diagonaux en L et S. Les

états résultants n'appartiendront évidemment plus à une valeur
déterminée de L et S et seuls J et M resteront de bons nombres
quantiques.

Les seuls éléments de matrice de A différents de zéro sont ceux
qui répondent aux restrictions AL 0, ± 1 et AS 0, ± 1, en plus
de celles déjà signalées: AJ 0, AM 0.
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Le tableau suivant nous indique quels sont les états qui, liés par
des éléments de l'interaction spin-orbite, interviennent dans les
différents ordres du calcul de perturbation.

ordre 0 1 2 3

En se limitant au deuxième ordre, les huit états du niveau
fondamental s'expriment par le développement suivant :

My- \°llM>-

410 — — M>
2 ' 2 2 '

5 7 -- <lljM\A\0j$M>
lX2 2 M> ~

E6 -Es

_<0| \M \A\ 1 4 | M} <11\M \A\ 0 ||i¥>
i'-Kfi _ — Ea

2I4M>

P SI

<2 ff jtaf | /i i i fi Jifxi 4-1 if |/i | o \\My
(E,

D
- Eq \ (Er — Ea \

E ~2~ ~2~«244-M>
< a 2-f-j-Jlf | /i 11 ff,- Jl/) <1 f l-tataf \A\0j-jM>

(EÌd-Ess)(Egp-%)

où 27 exprime la sommation sur les six états 4Z)i possibles dans la
oc 2'

configuration /7.

Les états du niveau fondamental étant ainsi établis, il nous est
maintenant possible de calculer le facteur spectroscopique g.
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Rappelons que la contribution à l'hamiltonien due à la présence
d'un champ magnétique H est de la forme suivante :

§m ß Po H (L + ge S)

où ß 0,9273 IO"23 Am2 est le magneton de Bohr,
fjt0 1,257 IO-6 Vs/Am, la perméabilité du vide,

et ge 2,0023, le rapport gyromagnétique du spin électro¬

nique.
Si on suppose H parallèle à l'axe de coordonnées Oz, on a:

§>m ßfi0H(Lz + geSz) ß,u0H[Jz + (ge - 1)flfj.

La variation d'énergie de l'état | JM > en présence du champ
magnétique vaut en première approximation

AE <JM ISJ JMy= ßFoH{M+(ge-l) <JM\S,\JM>}.

On définit le facteur spectroscopique g comme coefficient de
proportionnalité entre AE et M.

AE gß,0HM 9-l + (9,-l)<JMÌ8fM>.
Calculons le facteur g de l'état fondamental |i M> en nous limitant

à la perturbation de premier ordre.

|M> (l-^-)|0|4M>-a|l||M>
où on pose

<Al\M\A\0\\M>
Edp-Ess

indépendant de M. On obtient :

(7 (l-a,l)î7(8S|)+o«j/(«P-j).
Selon la théorie bien connue de l'effet Zeeman,

flf(«.S.j) -l + (flf.-i)-l 2,0023

0(6-P|) l + (ge-l)-y=1'7160-
Essayons de donner une estimation numérique du g de l'ion

Gd+++. Ce calcul nécessite la détermination de la constante a, c'est-
à-dire de l'élément de matrice <14|M|-4|0||-iH> et de la
différence d'énergie E6 — Es

Jr S



378 Roger Lacroix. H. P. A.

7 — —
L'opérateur A Ç £ (h's.) étant somme d'opérateurs agissant

i-l
sur chaque électron séparément, il est nécessaire d'exprimer l'état
[0|--7r|-> sous forme du produit antisymétrique des états d'un
électron.

+ + + +
0-1-4-4-)-(8 2 1 0-1-2-3).2 2 2/'

On obtient :

K n n \ i k n n4«ttt) lAltalx/italtall
2 2 2/\ 2 2 2 0^^2 2 2

;.h/~3~r+ + + + + + - + + + + + + -f j [/y [(3 2 1 0-1-2-2) - (3 1 0-1-2-3 3)

5~r+ + + + + + - + + + + + + -1
2 [(3 2 1 0-1-3-1) - (3 2 0-1-2-3 2)j

,— r + + + + + + - + + + + + + -1Ì+ K3 [(3 2 1 0-2-3 0) - (3 2 1-1-2-3 1)]}-

D'où il résulte:

(lllyl^lOyyD^flTC.
Quant à la valeur de £, une interpolation des valeurs tirées de

l'expérience par B. R. Judd2) pour les ions Eu+++ et Tb+++ nous
donne pour Gd+++ £ 1540 cm-1.

Il reste à évaluer la différence d'énergie E6 —E8 La méthode
de Slater3) permet d'exprimer cet écart en fonction de trois
paramètres F2, F4 et F6.

E6p - Ess 15F2 +165 F4 + 3003 Fe.

Si on utilise l'estimation numérique de B. R. Judd2) pour ces

paramètres, on trouve E —E8 31000 cm-1, alors que les

mesures d'absorption citées par C. K. Jörgensen4) indiquent une
limite inférieure de 32000 cm-1. Nous adopterons donc cette
dernière valeur.

" JS^ o.18° «2-°'°^
g 0,9675-2,0023 + 0,0325-1,7160 1,9930.

Le calcul de gr au deuxième ordre serait extrêmement long, mais,
vu la petitesse de l'effet des termes de cet ordre, on peut les estimer
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assez grossièrement sans affecter sensiblement le résultat. On
obtient alors :

g 1,9925

ce qui est bon accord avec le résultat expérimental de Ryter5)

g 1,9918 ± 0,0010.

Les données spectroscopiques nous manquent pour développer
un calcul semblable dans le cas de l'europium.

IL L'influence du champ électrique cristallin.

Etudions l'action d'un champ électrique de symétrie cubique sur
l'état fondamental de la configuration 4/7.

La majeure partie de ce problème peut être traitée par la théorie
des groupes.

Les huit états appartenant au niveau fondamental forment la
base d'une représentation Di du groupe des rotations. Celle-ci se

décompose selon les représentations Ta, -T7 et r8 du groupe cubique,
dont les deux premières sont à deux dimensions et la dernière
quadridimensionnelle6).

Cela signifie, selon le théorème de Wigner, que le niveau
fondamental huit fois dégénéré se décompose sous l'action du champ
cubique en deux niveaux doubles et un quadruple.

Si maintenant nous désirons connaître la position relative de ces
niveaux, il nous faut procéder à un calcul de perturbation qui nécessite

un examen plus détaillé du potentiel cristallin et de ses éléments
de matrice.

Des considérations relevant également de la théorie des groupes
nous montrent que le potentiel électrique cubique doit se développer
en une série de polynômes homogènes en xyz, dont chacun est la
base d'une représentation identique Tx du groupe de transformations

laissant un cube invariant.
Il résulte de plus de cette théorie que les termes de degré supérieur

à 6 du développement ne peuvent pas avoir d'action sur des
électrons /.

Nous écrirons donc le potentiel V(x) en nous limitant aux termes
de degré inférieur ou égal à 6 qui seront exprimés au moyen des
fonctions de Laplace Yf (0, cp).

V(x) ar* ï + 1/î (yî + Y4-4)] + hr* [y6 -|/y (y« + Yï*r?

a74(ï) + bV6(x).
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Dans cette expression, les trois axes quaternaires de la symétrie
cubique ont été choisis comme axes de coordonnées.

Les constantes a et b dépendent de la façon dont le champ est
créé, c'est-à-dire de la disposition des ions voisins et de leur distance.

Au premier ordre en V, le calcul de perturbation revient à
résoudre l'équation séculaire

|<M'|7|M>-dM^taGlJ5| 0

où <_M' | V\ M} est l'élément de matrice du potentiel cristallin entre
les états ||M'> et ||M>.

Les états ||-M> étant développés en états |LS|-M>, l'élément
de matrice (M' \V\ My s'exprimera en fonction d'éléments de
matrice (L'S' lM'\V\LSiMy.

Ceux-ci répondent à deux règles de sélection :

1° AS S'-S 0

2° L' + L>4 pour F4(ï) et L' + L>6 pour V6(x).

Il en résulte que nous aurons des éléments de matrice de F4 du type
<6D|F4|6D>,<6P|F4| 6F> et <*D|74|£D>, qui seront multipliés par
des facteurs du quatrième degré quant aux éléments de matrice de
A. Ces termes nous donneront une approximation du cinquième ordre.

Les autres éléments de matrice de F4, ainsi que ceux de V6,
n'interviennent qu'au sixième ou septième ordre.

On peut se demander quel est l'ordre de grandeur des termes que
fait apparaître la deuxième approximation en V.

Comme il résulte de la théorie des groupes qu'un champ cubique
ne peut lever la dégénérescence d'un niveau S ou P, le terme de

degré le plus bas qui apparaît au deuxième ordre en V est de la
forme

<gP|F| >< \v\*DyE- E-ESs

multiplié par un facteur du troisième degré en A. Nous avons donc
encore affaire à des termes de la cinquième approximation.

Cependant, comme les éléments de matrice de V sont au plus de
l'ordre de 100 cm-1, alors que ceux de A dépassent 3000 cm'1, cette
deuxième partie en V2 A3 est de faible importance devant la
première, qui est en Vyl4.
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Ecrivons les éléments de matrice <[M' \ V\ My qui apparaissent
dans l'équation séculaire, en nous limitant aux termes de cinquième
ordre*).

(M'\V\My-
/6f>7\ 9 ArP^PiW'Sry

¦Eg (Et, — Eq \
P ss)

(2-Hm'\VA2ÌIm\

6 6

-EE
0.--1 /5-1

(%" si
<«^iG^>!<,ipii^8^l2<Bp|i^Dî>

2 2

e:

if Z_l_
2 2

s)(

3 7

Ea -E8 \^(Ei -EB '
SSJ \ ÌD S.

M'|F4|a2^M
X'F, \A\ 6D7)<Gi)7 \A\ «P^ylCPgjAl «A,)!2

(%-%) (E%-%) (Eep-E*s)2

• <6pi W ^) <:d| Ml 6^> Ì <fipi 1^1 s^> i'

a -1

Z, 5 7

(ER -Eq ,')(Al -R (A«-Efi _
— Ea

s! \ "P "s)'

X\lyiM'|F4]34|M).A

Trop d'éléments spectroscopiques nous manquent pour qu'il soit
possible de calculer les différents termes qui apparaissent dans cette
expression. Heureusement, la théorie des groupes nous permet de
calculer tous les éléments <M' | V\ My à un facteur près. Il sera
ainsi possible de connaître la position relative des niveaux.

L'action du potentiel Vt (x) auquel sont soumis les électrons peut
s'exprimer par un opérateur F4 opérant sur les vecteurs |£M>.

V± Vi+V- 14
:v* V^)

Les opérateurs V\, V\ et L"4 se transforment lors d'une rotation
des axes comme les fonctions de Laplace Y4, Y* et Y^4.

Les éléments de matrice <M' | V\\ M) sont proportionnels aux
coefficients de Clebsch-Gordan cJ

Et-1)" Y(J + M)l(J-M)l (j+m) (j - ro) {{''+ m') 1 (f - m')
v\ (X — v)\ (j — m-v)\ {j + m — }. + v)\ (j' + m' — v)l (j' — m' - ï. + v)

où on pose J j M' j' m' k l 4.

*) JVote ajoutée, à la correction: Une étude détaillée de la configuration /7, que
nous publierons prochainement, montre qu'en ne faisant intervenir que les états
de cette configuration, seules les approximations d'ordre pair sont différentes de
zéro. Il en résulte que l'expression qui suit est nulle et que le champ cristallin
n'apparaît qu'à la sixième approximation, les termes prépondérants étant en VAh.
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Le coefficient cJmm, n'est différent de zéro que si m — m' M,
c'est-à-dire si M — M' k.

Les opérateurs apparaissant dans F4 ne présentant d'autres
valeurs de k que 0 ou fr 4, les éléments de matrice de <M' \V\ My
répondent à la règle de sélection AM 0, fr 4.

Les éléments de matrice sont alors les suivants:

t+l\v\ +-\-\± 2
1 V\ ± 2/- 7ta4 <+4lF! ±A\

(±4iT/i±i)= -3,4 (±tI7I±t>
(±t"7i=Ft)- }/35g4 (±Ì|F|frÌ)

-13.4

9ta4

5 /3 ^

où -4 est une constante à déterminer par l'expérience.
L'équation séculaire présente, conformément à notre remarque

préliminaire, deux solutions doubles (14 A, —18 A) et une
quadruple-(2 A).

On peut se demander à laquelle des représentations Fs et T1
appartiennent respectivement les deux niveaux doubles. Pour le
savoir, il est nécessaire de calculer les états du système perturbé.

Le plus simple pour les obtenir est de chercher quelles sont les
combinaisons linéaires des états |M> qui se transforment les unes
dans les autres sous l'action des opérations qui engendrent le groupe
cubique.

Les états ainsi obtenus sont les suivants :

m>-V£
|w). i 5_

12

7l\

|7,2)

2

V»

8,1) n
8,2) / 12 |

-Y2/

2/ +

A\_T/
£\_"2/
1\_
2/
7\_
2/

]fï
7

HT

J_
2

1

"y
~5~

ItaT

lT

3,3) 2/ +
V'3

2

1\
2/ + /3

2

1\
2/
1\

"2V

1\
2/
*\
2/

1\
2/
L\
"2/

i-\
2/
A\
2/
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Si on calcule l'énergie du niveau rR on trouve :

^(r6)^A/;|F|l) + 1L(-||F|-|)
+ 2^(y|F|-i)=14^.

Les états utilisés pour ce calcul ne sont qu'une première
approximation, la solution exacte contenant en faible proportion des
états pour lesquels J est différent de 7/2 et qui sont introduits par
l'effet du champ cristallin. Il est du reste bien naturel que J ne soit
plus tout à fait un bon nombre quantique, puisque le système n'a
plus la symétrie sphérique.

Q

(S*e)à

Sa

Kg. 1.

La répartition des niveaux est représentée sur la fig. 1, où on a
posé 4 A ô et introduit le facteur e <^ 1 qui rend compte de la
modification des écarts relatifs due aux termes de deuxième ordre
du champ cristallin.

III. Les niveaux dans le champ magnétique.

L'application du champ magnétique H fait apparaître dans l'ha-
miltonien un terme de plus, de la forme

§m gß/j0H-J.
Posons H+ Hx + iHy, H_ Hx — iHy, et définissons J+ et J_

de la même manière.

$m 9ßßo [y (H+J_ + H_J+)+H,Jz].

La position des niveaux d'énergie s'obtiendra par un calcul de

perturbation. L'effet du champ magnétique étant du même ordre
de grandeur que celui du champ électrique cristallin, le calcul de la
première approximation doit se faire en considérant le système
comme quasi-dégénéré.

Seule la perturbation de premier ordre est à considérer, la contribution

des termes de deuxième ordre étant 30000 fois plus faible.
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Notons l, m, n, les cosinus directeurs du champ magnétique H
par rapport aux axes xyz.

Si nous posons : p l + im, q l — im, nous pourrons écrire :

H., pH, H_ qH, Hz nH.
Introduisons de plus les notations suivantes :

_ 9ß»oH r^AE(Al ^ Jj ta

0 O

L'équation séculaire, calculée à partir des états de première
approximation du chapitre précédent, est alors de la forme (page 384).

Le développement d'un tel déterminant est excessivement long.
On peut heureusement l'éviter au moyen de la méthode suivante:

Les coefficients de l'équation séculaire sont des polynômes en
l, m et n qui doivent être invariants aux opérations du groupe
cubique, c'est-à-dire aux permutations des axes et à leur changement
de sens. L'invariance au changement de sens implique que les cosinus

directeurs apparaissent au carré. Les seuls invariants de
permutation linéairement indépendants qui peuvent se présenter dans
les coefficients sont alors

l* ¦m' 1 ¦m' i2n2 + n2l2 cp l2m2n2 y>.

Comme chaque coefficient est combinaison linéaire de ces
invariants, il suffit de le déterminer pour trois directions particulières
de H, et il sera alors connu pour n'importe quelle autre.

Les trois directions les plus commodes sont celles de plus haute
symétrie, à savoir les axes quaternaires, ternaires et binaires.

1° H\ IA l m 0 n 1 <P v 0

2° H\ \AZ ll m n —=/3
1 y=i

3° H\ \A l m —-= ; n 0
1/2

i
Tf 0.

Dans le premier cas, qui a déjà été traité en détail par Kittel et
Luttinger7), l'équation séculaire se décompose d'elle-même en
quatre parties, qui sont :

(/35
(s

fiTu

/35 u
3

i
H+ -g- u — x\

3
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et deux équations qui se déduisent de celles-ci en remplaçant u
par — u.

Dans ce cas, la résolution est particulièrement simple. Les

niveaux, que nous dénombrerons par le nombre M, qui est le bon
nombre quantique à la limite, pour un champ magnétique élevé,
s'expriment de la manière suivante en fonction de u.

M=±| x + 3u+13+e 1/. o-r/Q \u i
(3+c)2- 2 fr [/4M2=F(3+e) g + 4

M=±| X ±u + 5 1 / 2 __ ,25
2 ±|/4w2Tow+^-

M=±| X ™2+5 ±)/4^±5tat+245

M=±l X T3«+i3+e ±U4tt.±(8.|c) J ,<8+«)«

Le deuxième cas ne se résoud pas si simplement. Pour que l'équation

séculaire se décompose en facteurs, il faut la construire avec
d'autres états de base. Un tel changement d'axe est légitime, les

espaces de représentation appartenant à rR, J"7 et T8 étant définis
à une transformation unitaire près.

| 6, a> a | 6,1> + b | 6,2>

|6,0> ò|6,l>-5|6,2>
| 7, a> 6 | 7,1> + a | 7,2>

j 7, y9> a | 7,1> — Ò | 7,2>

] 8, a> =—[6 ] 8,1> — a\ 8,2> + iä| 8,3> — il [ 8,4>]
1/2

| 8, ß} -±=[a | 8,1> + 6 i 8,2> + io | 8,3> + ia\ 8,4>]
K2

I 8, y> =4= [6 |8,l>--5|8,2>-iä|8,8> + *& | 8,4>]

| 8, c5> -4=[o I 8,1> + ö |8,2> —»ô | 8,3>-ta|8,4>]
V 2

où a l/3±ï e*T b l/ïlS e-*1.

j/ 2/3 |/ 2 J/3
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L'équation séculaire construite sur ces états se décompose en trois
facteurs qui sont les déterminants :

1/35

/35

7

0

c) i ]/ 3 u

2 j/y
")

;]/8u (-
2 i/T

x)

(Ô -f-g-M— X)

0

et un troisième qui se déduit du premier en remplaçant u par — u.
Le problème se présente de la même manière dans le troisième

cas. Grâce à un changement de base adéquat, l'équation séculaire
se décompose en deux facteurs :

0

(8 + e + ^u- x\ 1/35
6

M 1FÎ» »

l/TJïf
(« +4«-

1 3

/3 2 a

1 1/35" i— u («-
3 \ /3"
2

U Xj —^-

0
3

Yu
1/3" /3

et le même déterminant où on remplace u par — u.
Les équations séculaires des trois cas précédents sont aisées à

développer. On obtient ainsi trois valeurs particulières pour chacun
des coefficients de l'équation générale, qui sont de la forme a + bcp

+ cip. Les nombres a, b et c s'obtiennent immédiatement par
identification. On trouve alors pour l'équation séculaire la forme
suivante :

+

(36 + 2e) x7 + [—21 u2 + (534 + 56e + e2)] x6

[- (567 + ~s) u2 + (4180 + 620fi + 20e2)] x5

["987 ._4 /12191 1946
(;L 8 \ 2 ' 3

(18225 + 3400 e + 150 e2)

9939 1211

e + -

427
36" •)¦

[|(j 8 )- (1320 + 140 e)cp\ui
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- (33190 +l5^-e + ^°-e2) u2 + (42000 + 9250 e + 500 e2

3229 a f /143117 12331 6139 ,\
a ~ a c{(16 l \ 8 6

'

144 /

-(17100 + 2500e+^e2)y}u^(^ + ^e + ^e2)u2
+ (40000 + 10000 £ + 625 e2)

1 x2

_ "_jj^6 +
6525

cj_ (3570 + 665 £) ^ + 3150£y,jM6

f/ 214065 34535 3805 2\ ,ßr7or,n .nano -n » 1

+ 11— 1 g— £ H—-g— e2) — (67200 + 12800 £ + ooO £2) cplu*

- (142500 + iüCüe + 1875 e2)w2] x

[11025 f/ 257625 10425 3025 2\ ,on/|r7,- .rroc 1W «+ [-26tTtt "|h2"- + —8^e+^^e2)-(2047o + 472o£ + 17o£>
/oorv7c 1H7K 1575 „\ 1 „ 1/864225 21675 4325 2\+ |^33075 + 1417o e + —j- e2j y m6 + j ^—jg— H ^— £ + —g— e2J

-(72000 + 18000e + 1125e2) tpìu* - (90000 +22500e + ^e2W2l 0.

A partir d'ici, nous allons, par raison de commodité, changer de

système de quantification. Nous noterons |M> un état propre de

la composante Jz de J le long de l'axe Oz' parallèle à H. Ces états
\My sont ceux du système lorsque H est grand.

L'équation du huitième degré qui nous donne les niveaux en fonction

de u, donc de H, peut être résolue pour des champs élevés

(u^> 1), ce qui est le cas expérimental, par un développement en
série de \ju. e etl/w étant tous deux petits devant 1, nous négligerons

les termes à partir de lju3, sju2 et e2/u. Les huit solutions, que
nous numéroterons au moyen du nombre quantique de champ élevé
M, sont alors de la forme suivante :

OU

M=±y x=±^+a2±^ + %

M=±y x=±^+ai±^ + ^
27 45 /7 35 175/7 35 175 \
4 -T?

15 15 /35 315 \
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5 65 /35 175 \

25 35 / 5 35 35 \

389

35 1155 10875
Òi=-6T-^2-9'

12

3675l^* Ï6-V

Ò2= 6iT
405
-32"?'

Iti '

/35 6965 27125 29225
e (-96- - W* + ^584" V* + -agi-'

6045 "™-

/ 1855

2205

8435

146125 \
-384-H

W*
75 2465 18265 „

12915

+ .(- 7945

735

36085

,,.„,., 64575
-Ì28-V +

Ì4575 \

i. 35
0*=Ü4

1152 * + 1152 *
4375 23135 9 105
-96-* Ì92~*

/ 35 8225
+ e(-

9415 47075 \
^84"^ 384-H

cx

e,

c3

35 8225 21665 2
"96" + 1152 * 1152 *

35 4567535 45675 472975 9

5Ì¥ 5Ï2-*+-5L2-9'
1170625 72275 361375

6Ï2- * 128- V + "li28- * V

375 23265 381645

W + -15Ì2-*--5L2-*
1210275

5705 28525 \
-384" V 384-*r)

.10275 99225 496125

375 1260055 _ 2774425
512 "" 4608" * 1536

C4

I536-*
12813125 20825 104125

+ 4608 * 128-^+^28-^
35

_
1058365 2500435 2

"5Ï2" 4608— * + —1536 *
13169975 6125 30625

—46ôr-*—m-y + ^ncT^
Dans les expériences de résonance paramagnétique, l'échantillon

est soumis à un champ magnétique Hv de fréquence v perpendiculaire

au champ statique H, et aux dépens duquel de l'énergie est
absorbée par des transitions dipolaires magnétiques entre les différents

niveaux du système.



390 Roger Lacroix. H.P.A.

Comme nous avons choisi un système de quantification où les
états de première approximation pour un champ élevé sont les

\My, états propres de Jz, et que le champ magnétique de haute
fréquence est perpendiculaire à l'axe Oz', l'intensité des raies est
proportionnelle en première approximation au facteur

| <M\ Jx\M'y j2.

L'élément de matrice <M | Jx \ M'y n'est différent de zéro que
si M — M' fr 1. Donc seules les transitions entre niveaux pour
lesquelles M diffère d'une unité auront une intensité importante.
Ces intensités sont dans les rapports suivants :

i

fr

± 12

(fr
(fr

fr)
"> + -7T 16

Ecrivons enfin les écarts d'énergie entre les niveaux consécutifs,
ce qui nous déterminera pour chacune des sept transitions la valeur
du champ de résonance Hk %<5/gf/?,w0-

Posons X hvjò

2
>

3

2

1

2
1

2

3

2

5

2

7
>-

fr)
fr)
fr)

X ux

X u2

X u3

X W4

X u5

X ue

X u.

Ax

A2

A,

¦A,

«1 ^1
+

% m;

A Çs.+
«2 «2

R) <k.+
«3 uï
B,

Ä, Ca

ou Ax 5 (1 JL
"24 e (2 — 7 y — 63 r/,)

ub u%

Uq Uq

M, Ml

A
A,

5

3(1

(1
35

""24
7

"24

e (99 — 21 y)

£ (2 — 15 cd + 105 ip)

Bi (—1 + 114 93 — 345 <p2 + 84 y>)

35
+ ^e(2 + 77.

192
27. 53 ^ + 265 93 y)
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B2 4- (- 92 cp + 455 cp2 - 441 y,)

391

35
+ -^ £ (— 22 cp + 100 cp2 + 129 y) — 645 cpip)

36

B3 -iL (1 + 78 cp — 423 y2 + 588 xp)

35
+ we (-4 + 358 <p -im <p2 -1942 V + 9710 w)

B4 .JL. (7 tata. 462 cp + 2175 «p2 - 2940 y»)
32

35
.f -£L.B (4 — 199 <p + 775 cp2 + 835 f — 4175 9>y>)

192

C^—(-158-1159211152

791229 y2 - 1299155 <pB + 26460 y> —132300 cprp)

C2- ~î (675 + 105067 ?>

— 488847 9>2 + 192065 ç>8 -432180 y + 2160900 cpxp)

C3=iM?+ 3447 9>

- 42731 9>2 + 119045 ^3 + 34300 y - 171500 9. y»)

(001) (m) (Ott)

10 20 30 HO 50 60 70 SO 90

Fig. 2.

Dans chaque cas numérique particulier, l'inversion de la relation
X(uk) en uk(X) se fait aisément par itération, la convergence étant
très rapide.
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Dans les applications à l'expérience, où X est au moins de l'ordre
de 10, l'erreur relative faite en négligeant les termes en lju3 dans
les développements est au plus égale à 10^4.

La figure 2 représente la valeur du champ H pour les sept raies
en fonction de l'angle que fait l'axe Oz' uvee la direction (001) lorsqu'il

tourne dans le plan normal à la direction (011). Les valeurs
choisies des paramètres sont X 16, e 0.

IV. La structure hyperfine.

L'ion considéré étant soumis à un champ cristallin de symétrie
cubique, l'hamiltonien d'interaction entre les moments électronique
J et nucléaire I est isotrope.

ö, ^-(J-^=^-[j.I. + 4-(J+I-+J-I+)]

L'énergie d'un niveau caractérisé par les nombres quantiques
magnétiques électronique M et nucléaire m vaut alors, si on développe
le calcul de perturbation jusqu'au troisième ordre,

K'2
4

EMm(H)=EM(H) + K'Mm
F(M)f(-m) F(-M)f{m)

EM (H) - EM_X (H) EM+1 (H)- EM (H)

K'3
frT {EM(H)-EM_x(H)}l{l ] {EM+1{H)-EM(H)Y{ + '

où EM est l'énergie du niveau de nombre quantique M en l'absence
d'interaction nucléaire, et où on note :

F(M) (J+ M)(J-M + l) et f(m) (I + m)(l-m + l).

Considérons la transition permise par les règles de sélection
M—1 -> M, m->met notons

AEMm(H) EM^m(H)~EMm(H) AEM(H)=EM_X(H)-EM(H).

Lorsqu'on applique le champ magnétique oscillant de fréquence
v, la résonance a lieu pour un champ statique HMm déterminé par
hv AEMm(HMm).

Définissons de plus les champs HM et H0 par les relations
hv AEM(HM) et hv gßpt0H0. Posons enfin K K'jgß.
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On obtient alors pour valeur du champ HMm :

X2H H — Km F (M) f(-m)+F(-M + l)f (m)

AEm(Hm) „.,, iW, x AEm(Hm)
-F(-M)f(m)-Am "\Z\ -F(M-l)f(-m)AEM+l{-HMl "' AEM-X{-HM>

K3 'F (M) f(—m)(M—m — l)+F (- M + 1) / (m) (M- m)4ffî

-*<-^.'<">Uctöi,(M-~ + 1)

-F (M-!) /(-,)( ^ffl^ f (m'-.-2)

Lorsque l'écart (2?^— HM_X) entre les raies de structure fine est
petit par rapport au champ i70, on a AEMjAEM±1 ^ 1 et HMm se
réduit à la formule habituelle :

HMm HM - K™ -y^ {[-f (I + 1) - ™2] - m[2 M - 1] j

_-^{(2M-l)[2/(I + l)-3m2]

- m [J J+l) + J (I + 1) - 3 M (M - 1) - 2 - m2] 1.

Cependant, l'expérience montre5) que la structure fine peut
être assez importante pour que le rapport AEMjAEM±l soit très
différent de 1. Dans le cas cité, il est compris entre 0,7 et 2.

Utilisant les valeurs expérimentales de Ryter5) pour K et ô,

nous avons représenté sur la figure 3 la structure hyperfine
théorique d'une raie du spectre de l'ion 151Eu++ (I 5/2) pour H parallèle

à la direction (001). C'est celle qui apparaît pour le champ le
plus bas ; elle correspond à la transition 5/2 -> 7/2 si ò est positif.

Les trois schémas ont été calculés :

1° au premier ordre,
2° au troisième ordre en négligeant la structure fine,
3° au troisième ordre en tenant compte de la structure fine.

Il n'est pas sans intérêt de remarquer que, bien que l'hamiltonien
§jv soit isotrope, la structure hyperfine ne l'est pas, son anisotropie
étant due également à l'influence de la structure fine sur les termes
de deuxième ordre.
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La largeur totale de la structure hyperfine présente des extre-
mums opposés lorsque le champ statique est orienté selon les directions

(001) et (111). Si on utilise les mêmes valeurs de K et ô que

-100
r

-50 50

Fig. 3,

100

->h'(oersteds)

pour la figure 3, on trouve une variation de la largeur de la structure

hyperfine avec la direction de H comprise entre 5 et 10 gauss
suivant la raie considérée8). On voit ainsi que cet effet n'est pas
négligeable.

L'accord très satisfaisant des mesures de Ryter avec les résultats
de cette étude théorique nous montre l'intérêt qu'il pourrait y avoir
à approfondir certains points laissés en suspens, en particulier
l'évaluation théorique des constantes ô et e. Pour notre part, nous avons
commencé un travail dans ce sens, dont nous espérons qu'il nous
permettra de tirer des résultats expérimentaux le maximum de

renseignements sur les ions Eu++ et Gd+++.

Je tiens en terminant à remercier M. J. C. Holy pour l'aide
précieuse qu'il m'a apportée en effectuant une partie des longs calculs
algébriques nécessités par cette étude.

Institut de Physique de l'Université, Genève.
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