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Herstellung sehr homogener
axialsymmetrischer Magnetfelder
von H.Primas und Hs. H. Giinthard

Organ.-chem. Laboratorium der Eidg. Technischen Hochschule, Ziirich.

(27. IIT. 1957.)

Zusammenfassung. Kine Methode zur Herstellung von extrem homogenen
Magnetfeldern (Homogenitdt in der Grossenordnung 1:10-8) wird diskutiert. Es
wird theoretisch gezeigt, wie durch einfache Strom-Shims geeigneter Grosse der .
Randabfall bei axialsymmetrischen Magnetfeldern kompensiert werden kann.
Die Theorie wird experimentell an einem praktischen Beispiel verifiziert. Der Ein-
fluss der stochastischen Unebenheiten der Polschuhe auf die Homogenitiat des
Magnetfeldes wird mittels statistischer Methoden berechnet und die Konsequenzen
fir den Fall eines Kernresonanz-Experimentes mit hoher Auflosung werden
diskutiert.

Um die in der Kernresonanzspektroskopie durch die oft extrem
kleine natiirliche Linienbreite vieler Substanzen mogliche sehr hohe
Auflosung experimentell erreichen zu kénnen, werden Magnetfelder
benotigt, die iiber ein Probevolumen von ca. 0,1 cm?® eine Homo-
genitdt in der Grossenordnung von 1:10% aufweisen. Die bei der
Realisierung eines solchen Magneten auftretenden Schwierigkeiten
sind 1m wesentlichen durch die endliche Ausdehnung der Polschuhe
(Randeffekte) und durch die Unebenheiten der Polschuhoberfldchen
bedingt. Die Korrektur der Randeffekte kann in einfacher Weise
mittels geeignet konstruierter Current-Shims erzielt werden, worauf
1m 1. Kapitel néher eingegangen sei. Kapitel 2 gibt eine theoretische
Analyse der Effekte der Unebenheiten der Polschuhe.

1. Inhomogenitiiten eines Magnetfeldes im Grossen.

11. Notwendigkeit der Verwendung von Korrektorshims.

In der vorangehenden Arbeit!) wurde ein fiir die hochauflésende
Kernresonanzspektroskopie verwendeter Permanentmagnet be-
schrieben, der ein in der N#ihe des Zentrums sehr genau axialsym-
metrisches Magnetfeld liefert. Der Feldverlauf dieses Magneten ist
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bel einer Messgenauigkeit von + 0,1 mm und 4+ 1 mg im Bereich
von 0 = |z =5mmund 0 <| z|,| y| = 20 mm darstellbar als:

B(x,y,2) = By + By(a® + y* —22%) (1)
B, — 5873 Gauss

By, = 1,01 m Gauss/mm?

Verwendet man einen solchen Magneten ohne Korrektur fiir Kern-
resonanzversuche, so kann eine Auflésung von 107 kaum iiber-
schritten werden.

Von Rose, ANprEw und Ruseworra?) wurden Shims vorge-
schlagen, die durch eine Uberhshung der Polschuhe am Rande eine
Feldverbesserung erzeugen sollen. Wir haben nach den Berech-
nungen von ANDREW und RusawortH solche ,,Rose-type-shims**
aus reinem Nickelblech angefertigt, ebenso solche mit der doppelten
Dicke als gerechnet. Die Ausmessung des Feldes in dem oben er-
wihnten Bereich des mit solchen Shims ausgestatteten Magneten
ergab keinerles Verbesserung des Magnetfeldes. Abgesehen von einer
leichten Abweichung von der Axialsymmetrie (die auf kleine Fehler
der Axialsymmetrie der Shims zuriickzufiihren war) konnte das Feld
durch die oben erwihnte Relation 2. Ordnung mit derselben Kon-
stanten B, dargestellt werden. Wir schliessen deshalb, dass, im
Gegensatz zu der oft gedusserten Ansicht, Rose-type-shims von Di-
mensionen in der Gridssenordnung, die aus den Rechnungen von
RosE oder ANprEw und RusaworTtH zu entnehmen sind, bei Ma-
gneten mit einem Verhéltnis von Polschuhdurchmesser zu Polschuh-
abstand von grosser als 5:1 fiir die Zwecke der Kernresonanz von
keinerlei Nutzen sind. Zwischen diesem experimentellen Resultat
und den erwidhnten Berechnungen besteht keine Diskrepanz, da jene
Rechnungen unter absolut unzuldssigen Annahmen durchgefiihrt
wurden (Ersatz eines 8-dimensionalen axialsymmetrischen Poten-
tialfeldes durch ein 2-dimensionales, unendliche Ausdehnung der
Polschuhe).

Im Gegensatz zu den Rose-type-shims fithren die von J. T. Ar-
~NoLD?) vorgeschlagenen sogenannten ,,Current-shims* zu dem ge-
wiinschten Erfolg. ArNoLp verwendet je 9 flache, konzentrische
Spulen verschiedenen Durchmessers, die vor den beiden Polschuhen
angebracht werden. Durch langwieriges Probieren wurde versucht,
die Strome in den einzelnen Spulen so einzustellen, dass eine gute
Homogenitét erreicht wird. Uns erschien dieses Vorgehen nicht sehr
zweckmissig, da 1nfolge der vielen Variablen kaum je die beste
Stromverteilung gefunden werden kann. Wir werden im folgenden
zelgen, dass mit einem einzigen Spulenpaar und mit einem zum
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voraus berechenbaren Strom ein Feld 2. Ordnung bis auf Korrek-
turen 6. Ordnung homogenisiert werden kann. Eine wesentliche Vor-
aussetzung ist dabel nur, dass das urspriingliche Feld sehr exakt
axialsymmetrisch ist, was aber, wie erwiahnt, erreicht werden kann.

12. Berechnung von Current-Shims.

Es soll das von zwei flachen, axialsymmetrischen Spulen, die sym-
metrisch zwischen zwei Polschuhen liegen, erzeugte Feld berechnet
werden. Dazu setzen wir voraus, dass das gesamte System axial-
symmetrisch sei und eine Spiegelebene bel # = 0 besitze. Der Durch-
messer der Polschuhe soll gross sein gegen den Spulendurchmesser
und die Permeabilitat der Polschuhe soll sehr gross sein, was in praxi
hinreichend erfiillt ist. Der Polschuhabstand sei G, der Spulenradius
A und der Abstand der Spulen von der Spiegelebene sei F' = G/2.
Zur Vereinfachung messen wir alle Langen in Einheiten von A, das
magnetlsche Feld B Einheiten von uonl/2 A*) (n = Wmdungszahl
einer Einzelspule, I Strom durch eine Einzelspule):

z2=Z/4 (P, Z resp. p, z sind Zylinderkoordinaten)

o= P/4

g=Gl4 (2)
f=F/A

b=2BA/nly,

Um den ganzen Feldverlauf zu kennen, gentigt es, von der z-
Komponente b(p, z) des Feldvektors die Funktion b(p = 0,2) aus-
zurechnen, da aus dieser mit den allgemeinen Relationen fiir axial-
symmetrische Felder leicht das gesamte Feld berechnet werden
kann. Die Randbedingungen dieses Potentialproblems kénnen durch
Mitberticksichtigung aller Spiegelbilder erfiillt werden. Man findet
fiir das vorliegende Problem: (siehe Fig. 1)

b(e.2) = ble.f +2) + bleg—1+2) + ble, —f—2) + ble.—g+1—2) (3)
wobei b(g, z) das Feld von einem axialsymmetrischen System von

unendlich vielen Flachspulen vom Radius 4 ist, mit den Zentren
beip=0unde=0, 4-2¢g, +4g,... Somit findet man fiir b:

b(0,2) 2[1 (2 + 2 mg)2]-3/2 (4)

m=—00

*) Alle Formeln sind in einem 4-dimensionalen rationalen Mass-System ge-
schrieben (z. B. Giorgi's MK S Q-System).
*
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Diese Reihe konvergiert fiir die praktische Auswertung unbequem
langsam. Eine Rethenumformung nach Poisson erweist sich als sehr
~zweckméssig. Es gilt4):

2 olm) =5 3 [ o(v/2a) exp (inT)dv (5)

Somit wird aus (4)

b(0,2) = \a)/Qn)Zw’ exp (—inwz) / exp (inwx)(1+22)-32dx (6

= —00 “
n — 00

mit
w = 7/g.
Wegen
/ exp (inwz)(1+ 22)-32dx = —aH,"Y (ijnw|) - |no) )

Shimspulerr

Polschuhe

[h==]

I
|
i
+—0
l
ATTTHTTITTTL L SRR tRLRs ey

26 =

Fig. 1.
Zur Berechnung der Current-Shims
(eingezeichnet sind die Shimspulen und die ersten Spiegelbilder beziiglich der
Spiegelung an den Polschuhen. Gleiche Motive haben die Periodizitat 2G.)

ind. Wagen lim 2 H,® (ix) = —2/x (8)
findet man 0o :
b(0,2) = ofn — o }cos (nwz)nwHP (inw) 9)
n=1 ;

wobel H{V eine Hankel’sche Funktion ist. |
Mit dieser Beziehung findet man nun mittels (4) fir das gesuchte
Feld der Spulenanordnung von Fig. 1:

b(o=0,2) =dwfn—4w Y cos (2nwz)-cos (2nwf)2nwHP (2inew) (10)
n=1

welche Reihe fiir alle Werte von z konvergiert und die fiir eine

numerische Auswertung sehr bequem ist. Experimentell ist die
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Grosse b(p,0) meist leichter zu messen als b(0, z). Mit Hilfe der fiir
alle axialsymmetrischen Felder giiltigen Beziehung?):

2
B, (0.¢) = (1/27) [ B, (0,2 + io cos ¢) dg (11)
0

kann man auch leicht eine Reithenentwicklung fir b(p, 0) erhalten,
die aber nur fiir ¢ < 1 konvergiert, was aber fiir die vorliegenden
Zwecke durchaus gentigt:

b(o.2=0) =4wfn—4w 3 cos 2nof)2nw-HY 2ino)Jy2inwg) (12)
n=1

w = 7/

wobei H{" eine Hankel’sche, J,, eine Bessel’'sche Funktion ist. Um
das urspriingliche quadratische Feld von Glg. (1) zu homogeni-
sleren, 1st es wiinschenswert, in der Potenzreithenentwicklung des
Korrektorfeldes

Q: &= 2 bzm sz (13)

die Koeffizienten by, /b, fiir m > 1 moglichst klein zu machen. Die
numerische Auswertung zeigt, dass die vierte Ordnung b, nur fiir
f ~ g/2 bei geeigneter Wahl von o verschwindet. Weiter findet man,
dass, wenn w, eine Nullstelle von b, ist

b4(w0, f)=0

die Grosse by(w, + ¢, f) fir festes ¢ im Limes ¢ > 0 fir f = ¢g/2 ein
Minimum ist. Somit sind die besten Resultate fiir f = ¢/2 zu er-
warten, d. h. wenn die beiden Spulen direkt an den Polschuhen an-
liegen. Fir diesen Spezialfall erhilt man:

b(0,0) = dwfn—4w 3 (—)*2na HO@inw)Jy2inwg)  (14)
n=1

oder wenn man b(p, 0) nach Glg. (13) nach Potenzen von ¢ ent-
wickelt:
by =4wjn —8w? 3" (—)"n H{ (2inw) (15)
n=1
by = — 8wt 2 (—)m3 HP 2inw) (16)

= —2w® 2 )”n5H(” (2inw) (17)
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Fig. 2 zeigt by, by, b, in Funktion von o = & 4/G aufgetragen. Bei
w = 1,35 hat b, eine Nullstelle, dabei ist by, = 1,23 und b, = 1,36.
Wihlt man somit fiir die Shimspulen einen Radius von 4 = 0,430G,
s0 kann man den Shimstrom so dimensionieren, dass die 2. Ordnung
des urspriinglichen Feldes exakt kompensiert wird, ohne dass dabei
eine Inhomogenitat 4. Ordnung eingefiithrt wird. Die Verwendung
von mehr als nur einem Paar von Shimspulen hat somit nur dann
einen Sinn, wenn man auch noch Feldinhomogenitédten 6. oder
hoherer Ordnung kompensieren will, was aber selbst fiir extremste
Auflésungen unnotig sein dirfte.

Es sei noch erwihnt, dass das Feld eines Spulensystems im freien
Raum sehr wesentlich verschieden ist von dem Feld desselben

b(0,z ] =B, +byf0%-222) + b ‘@4.39212&.3. A

bJI
5
b,
4§
2 &
2 -
1 -
b,
] | B— T T T T
—_—
(4] 1 2 3 4 5

Fig. 2.
Verlauf der Entwicklungskoeffizienten b, b, und b, des Magnetfeldes von an Pol-
schuhen anliegenden Shims (¥ = G/2). (Vgl. Glg. 1—15 bis 1—17.)

Spulensystems zwischen zwei Eisenpolschuhen. In der Entwicklung
(Glg. 4) tir das Feld der Spulen zwischen den Polschuhen stellt der
erste Term das Feld der Spulen im freien Raum dar. Die oft sehr
schlechte Konvergenz dieser Reihe und die gute Konvergenz der
nach Poisson transformierten Reihe besagt, dass es keineswegs zu-
lassig ist, den Einfluss der Polschuhe zu vernachlissigen.

13. Konstruktion von Current-Shims und experimentelle Resultate.

Auf Grund dieser Rechnungen wurden nun Current-Shims her-
gestellt. Auf einem Plexiglasspulenkorper der Gesamtdicke 1,0 mm
(Wandstirke 0,3 mm, Wickelraum 0,4 mm) wurden auf einen Zy-
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linder von 20 mm Durchmesser 30 Windungen Cu-Draht 0,1 mm
Durchmesser maschinell gewickelt, wobei peinlich auf gute Axial-
symmetrie geachtet werden muss. Dabel empfiehlt es sich speziell
eisenfreien Kupferdraht zu verwenden. Dies ergab einen mittleren
Windungsdurchmesser von 21,25 mm, was bei unserem Polschuh-
abstand von 24,778 mm gerade das gewiinschte w = 1.35 ergibt.
Um das urspriingliche B, = 1,01 mG/mm? zu kompensieren, werden
nach Rechnung und nach Experiment 10,83 mA benotigt, dabei er-
niedrigt sich das By-Feld um ca. 0,2 Gauss. Fig. 3 zeigt das so kom-
pensierte Feld, wie ersichtlich sind die gemessenen Feldstarken in
bester Ubereinstimmung mit den theoretisch erwarteten.

! | 1 L
Feld
n mG
- ohne Shims
] mil Rose-lype Shims ™
mil current- Shims
50 —
4
40 q —
30 B
20 B
10 — —
0 | &t —e—rs ,
1.5 17 0.5 0 a.5 1 i5
Absiand vom Zentrum in ¢m
g3, '
Verlauf des Magnetfeldes ohne Shims, mit Rose-type-Shims und mit Current-Shims
' mit o = 1,35.

Wir moéchten noch auf eine Schwierigkeit hinweisen, die die Mon-
tage der Shims betrifft. Sind nédmlich die Shims nicht exakt zen-
triert, d. h. fallt die Shimachse nicht exakt mit der Achse des Ma-
gnetes zusammen, so treten lineare Feldverzerrungen auf, die sehr
unangenehm sind. Um dies zu vermeiden, wurden die Shimspulen
in eine 1 mm dicke runde Plexiglasplatte eingekittet, die dann sehr
genau zentriert werden konnte. Arbeitet man mit einer in der
y-Richtung rotierenden Probe?), so mitteln sich lineare Terme der
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Feldentwicklung in der z- und in der z-Richtung vollstéindig heraus,
so dass man dann nur fir die Abwesenheit linearer Terme in der
y-Richtung sorgen muss, was natiirlich viel leichter zu erreichen ist.

2. Inhomogenitiiten eines Magnetfeldes im Kleinen.

20. Statische stochastische Magnetfelder.

Im folgenden werden wir die durch kleine statistisch verteilte
Unebenheiten der Polschuhe verursachte Inhomogenitit genauer un-
tersuchen. Dabel werden wir immer annehmen, dass das Magnetfeld
im Mittel homogen sei, die praktisch immer vorliegende Inhomogeni-
tét im Grossen (die durch die Randeffekte der Polschuhe bedingt
1st) kann man in sehr guter Nidherung von den kleinen, stochasti-
schen ortlichen Schwankungen der magnetischen Feldstéirke sepa-
rieren. Ebenso gehen wir hier nicht auf die zeitlichen stochastischen
Schwankungen des Magnetfeldes ein, da wir diese an anderer Stelle
behandelt haben?).

21. Darstellung statischer stochastischer Potentialfelder.

Mit der einzigen Ausnahme des Potentials @(x, ¥, 2) = z nehmen
wir 1m folgenden immer an, dass die zugelassenen Potentialfunk-
tionen beziiglich der Variablen z, y zur Lebesgue’schen Klasse L2
gehoren und dass sie gegeniiber Translationen und Rotationen in
der (z, y)-Ebene stochastisch invariant seien. Dabel nennen wir eine
Funktion gegeniiber einer Operation stochastisch invariant, falls die
transformierte Funktion dieselbe Spektraldichte hat wie die Ori-
ginalfunktion. Beziiglich der Abh#ngigkeit der Potentialfunktion
von z machen wir keine Voraussetzungen, denn diese folgt aus der
Potentialgleichung. Es wird sich zeigen, dass @ dann auch in der
Variablen z einen stochastischen Prozess darstellt, der aber im all-
gemelinen nicht invariant gegeniiber einer Translation in der z-Achse
1st. Weiter nehmen wir an, dass die Potentialfunktionen @(z, y, 2)
beziiglich der Variablen x und ¥ ergodisch seien. Dann diirfen wir
den Ensemblemittelwert < F' > einer Funktion /' immer durch den
Mittelwert tiber eine (z, y)-Ebene ersetzen.

r

4 9,
<F(z,y,2)>,, = iim% / da:/ dy F(z,y,?) (1)

prcod P ,

q—>00

Die Ergodizitidtsvoraussetzung ist sicher immer dann korrekt, wenn
die Autokorrelationsfunktion im Unendlichen mindestens wie eine
reziproke e-Funktion verschwindet.
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Unter diesen Voraussetzungen folgt, dass sich eine solche stocha-
stische Potentialfunktion immer darstellen ldasst als Linearkombina-
tion von @+ und @—-Funktionen:

o= (:r:,y,z) _ fdkl fdkg@(k) ev:x(l-likg) eiklx:—ikzy e +kz (2)

o k=VI+ T3]
wobel @) und y reelle Funktionen sind. Die Darstellbarkeit folgt aus
den bekannten Sétzen der Theorie des Fourierintegrals, die Inva-
rianzeigenschaften und die Potentialeigenschaft sind evident$).
Bestehen die Quellen fiir das stochastische Potential aus zwel
rauhen planparallelen Polschuhen in der (z, y)-Ebene be1 2 = -+ 2,
und hat das System eine stochastische Symmetrieebene bei z = 0
(dies ist genau der Fall, der fiir die Anwendungen wichtig ist), so
folgt die Darstellbarkeit eines solchen Potentials als:

O — f' dh‘l [dk2Q(k)eikleik2y{eixi"(zﬂ"““'k-e"ix'*’_(z"_'z)k} (3)

wobel y, und y, voneinander stochastisch unabhéngige Funktionen
sind. Fir die Autokorrelationsfunktion”) K(&, , C; 2)

K(Enl ) =<@(@y.) @@+ by +me+ti)y,, @)
der Funktionen @+, @~ von Glg. (2) erhélt man

K= (£,m,8; 2) = (27)2 /dk fdek)e%kn+mn+(zz+f)k (5)

mit der zu @= gehorigen, glelchen Spektlaldlchte G(k)*)

Q'"—‘:-OO

(6)

Durch Emfiihrung von Polarkoordinaten kann eine Integration in
(5) sofort ausgefiihrt werden und man erhalt:

K (&n,8;2) =K (p,{;2) =(2n)3 /G(k)e—z’“Jﬂ (ko) e~ ¥kdk (7)
0

mit k% =Fk*4+ k% und p2=£&2% + 5t
wobe1 J,, die nullte Besselsche Funktion ist.

*) Bequemlichkeitshalber definieren wir die Spektraldichte @ (k) ohne den eigent-
lich dazugehorigen Faktor exp (+ 2kz).
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Da mn Glg. (3) zwischen den Funktionen y; und y, keine Korrela-
tion besteht, findet man fiir die Autokorrelationsfunktion des Po-
tentials eines Magneten mit einer stochastischen Spiegelebene bei
¢z = 0 und mit Polschuhen in der (z, y)-Ebene bel z = + &;:

K (0,C:2) = (2n)3fG(lﬂ)e“ 2k20,J (ko) Sinh[k (22 + O)]kdk (8)

22. Die Berechnung des Spektrums des Feldes
aus den Randbedingungen.

Im allgemeinen stellt die Berechnung des Spektrums des Feldes
aus den Randbedingungen ein schwieriges mathematisches Problem
dar. Falls aber — wie das bei den in der hochauflésenden Kern-
resonanzspektroskopie verwendeten Magneten immer der Fall 1st —
das resultierende Magnetfeld relativ homogen 1st und gewissen Re-
gularititsanforderungen genitigt, kann man in einfacher Weise das
Spektrum des Magnetfeldes aus dem Spektrum der Randbedingun-
gen erhalten. Die Randflachen seien je eine ,,stochastische (z, y)-
Ebene* bel 2 = 2, resp. bei 2 = — 2z, und auf diesen Randflachen sei
das Potential konstant. Dabei verstehen wir unter einer stochasti-
schen (z, y)-Ebene bei 2z = z, eine Fliache, die durch eine stocha-
stische Funktion {(x, y; 2,) beschrieben werde, die den Ensemble-
mittelwert z, besitze:

und deren Korrelationsfunktion C und Spektraldichte S gegeniiber
Translationen und Rotationen invariant sei:

Clo)=C(z2+y2)=<EMEE+ 2 n+y)>,, (10)
S (k) = (1127)° [ 0 () Jo (ok) ede

Das Potential ¥(z, y, z) eines solchen Feldes ldsst sich dann dar-
stellen als

VY(z,y,2) = Bz + D(z, y,2) mit <D>=0 (11)

wobel @ eine durch Glg. (3) beschriebene stochastische Potential-
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funktion ist. Da ¥ eine Potentialfunktion ist, existieren die zwelten
Ableitungen und man kann entwickeln:

P(z,y,20+ 0) =P (x,Y,20) + L B, (2,4,2,) + 3} 0B (7,Y,2)[02], _ , , 5 (12)
B, (x,y,29) = By + 95 Max | By— B (2,9,2) l

wobeL: 0=, <1, B,=0%0z

Sind die Korrekturglieder hinreichend klein, so definiert die Losung
{(z, y) der Gleichung

Bozo = P(x, y, 2) + & (2,) By (18)

eine Randfléche, auf der das Potential konstant und gleich Bz, ist.
Diese Approximation ist offensichtlich immer dann gerechtfertigt,
wenn

Max | By — B(x, y, 29) | < By |
Max | 0B (x,y,2y + £)/0L | €2 By/C,, . auf der Randflache (14)
mit {,, = Max |{(x, )| - . . . . . . auf der Randflache

Diese Bedingungen schrinken die zugelassenen Inhomogenitaten
etwas ein und verbieten vor allem das Auftreten beliebig hoher
Wellenzahlen & im Spektrum der Randfliache. Bet Magneten, die zur
Herstellung homogener Felder gebaut wurden, bedeuten sie jedoch
keine praktisch wichtige Einschrinkung; so verbietet etwa die
zwelte Forderung das Auftreten von Feldgradienten in der Grossen-
ordnung von 108 Gauss/em (falls {3, = 1 g und B, = 10000 Gauss).

Glg. (18) ordnet jedem Potential ¥ eine Randfliache &(x, y) zu.
Da jedes Randwertproblem der Potentialgleichung eine eindeutige
Losung besitzt, erlaubt uns Glg. (18) auch die Berechnung des Po-

tentials ¥ aus den Randwerten { und damit die Berechnung der
Spektraldichte G(k) von ¥ aus der Spektraldichte S(k) von :

G (k) = B2S (k) (15)

Unter den angegebenen Regularitidtsvoraussetzungen haben wir also
das wichtige Resultat, dass das Spektrum des Potentials proportional
dem Spektrum der Randflichen ist.

23. Folgerungen fiir die Realisierung sehr homogener Magnetfelder.

Im folgenden soll am Beispiel der Kernresonanz die Bedeutung
der Unebenheiten der Randflichen (Polschuhe) auf die Inhomo-
genitit des Magnetfeldes genauer diskutiert werden.
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Wie wir in einer fritheren Arbeit8) gezeigt haben, 1st der Erwar-
tungswert der Linienform L(B) eines Kernresonanzsignals mit einer
hinreichend kleinen natiirlichen Linienbreite fiir ein rdumlich sto-
chastisches Magnetfeld gegeben durch

== e 1 _ B*2B%(r)
LBy S = (W | dr-—e 16
CL(B)> = (1 )JTVe?ﬂiﬁ(r)Ee (16)

wobeil die Integration iiber das Probenvolumen V' zu erstrecken ist
und wobel

p2(r) = <[B(r) — B(0)]*>
= ¢B(1)® +<B(0)>>—2¢ B(r) B(0)> (17)

Ist 2 R eine obere Grenze fiir den Probendurchmesser und ist das
Spektrum S(k) der Randfldchen (Abstand der Probe von den Rand-
flachen 1st 2,) so beschaffen, dass fiirm = 5,7, 9, ... gilt:

|f3(zc)kme—2kzudk] >|fS(k) pmt2e=2kndlk| B2 (18)
0 0

dann kann man die aus (8) und (15) folgende Korrelationsfunktion
tir B = 09/0z

{B(x,y,2) Bz +&y+n2+0)>
— (27)3 B2 [S(k) k3 Jy(ok) e~ 2% Cosh[(22 + O)k]dk  (19)
0

(* = &% + n?)
nach Potenzen von g und { entwickeln und nach den quadratischen
Termen abbrechen. Dabei erhélt man fiir g% von Glg. (17)
2 = (% + %2) (20)

wobel

#? = B2 (27)3 /"S (k)kze— 2k d; (21)

0

Fir die Halbswertshreite eines Kernresonanzsignals einer kugel-
formigen Probe mit dem Radius R folgt dann (vgl.8)) der Wert xR
(genauer: 1,034 xR), sofern die naturliche Linienbreite viel kleiner
1st. Unter der Annahme (18), die wie weiter unten gezeigt wird, fast
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immer berechtigt ist, folgt also, dass in einem Kernresonanzexperi-
ment nicht etwa die Streuung von B, sondern das x» von Glg. (21)
eine fiir die Inhomogenitiat des Magnetfeldes massgebende Grosse
1st. Um zu beurteilen, welche Wellenzahlen im Spektrum von S(k)
einen wesentlichen Beitrag zu x liefern, diskutieren wir den Fall, wo
die Spektraldichte S(k) eine Deltafunktion ast.

S(k) = 036 (k—ko)/(27)%k, (22)

wobel o die Streuung der Unebenheiten der Randfldchen ist
0% = (27)* [ S(k) kdk (23)
0

Damit folgt fiir die Linienbreite 4B = xR
A B|By =0, Rk2exp (—koz,) (Rky<<1) (24)

Diese Relation ist wegen der Voraussetzung (18) nur fiir Rk, < 1
otiltig.
Falls Rky> 1 ist, folgt aus Glg. (19), dass

| <B(0)B(r)> | € <B(r)® = <B(0)% = 0%

also 1st f2%(r) = 2 o2 und somit folgt aus Glg. (16), dass die Linien-
form <I(B)> unabhéngig von der Form der Probe ist, sofern deren
Durchmesser nur wesentlich kleiner als 2z, (= Polschuhabstand)
1st:

1

<L(B)> = vy

exp (— E2/4 o 2)

Die Limienform ist in diesem Falle also eine Gauss’sche Fehlerkurve
mit der Halbwertsbreite

AB =33306, oder AB/B = 3,33 0,k exp (—Fky2)

Fig. 4 zeigt die Linienbreite AB in Funktion der Wellenzahl k, ge-
méass Glg. (28) in logarithmischer Darstellung. Daraus ist zu er-
sehen, dass die wesentlichsten Beitrige zur Linienbreite von Un-
ebenheiten mit reziproken Wellenzahlen in der Gréssenordnung des
Polschuhabstandes kommen. Damit folgt auch, dass in den meisten
praktisch vorkommenden Fillen die Voraussetzung (18) erfiillt sein
diirfte. Fig. 5 gibt ein numerisches Beispiel mit plausiblen Werten:
Polschuhabstand 2 2z, = 2 cm, Probenradius R = 0,1 cm, relative
Linienbreite 4B/B, = 10-8. Aufgetragen sind die dann zuldssigen
Streuungen der Unebenheiten der Polschuhe gegen ithre Wellenzahl.
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Fig. 4.
Linienbreite 4B eines Kernresonanzsignals in Funktion der Wellenzahl %, der
Unebenheiten der Polschuhe. (22, =Polschuhabstand, oy = Streuung der Rand-
fliche, R — Probenradius, B, = Feldstirke des Magneten) (ohne Rotationder Probe).
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Fig. 5.
Zulissige Streuung op der Randflichen in Funktion der reziproken Wellenzahl der

Unebenheiten der Polschuhe fiir eine Auflésung AB/B,= 1078, Probenradius
£ = 0,1 cm und Polschuhabstand 2z,= 2 em (ohne Rotation der Probe).
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Im Gegensatz zu Fig. 4 zeigt Fig. 5 die Funktion auch im Gebiet
Rky> 1, das Zwischengebiet bei Rk, ~ 1 wurde lediglich inter-
poliert. Dieses Beispiel zeigt, wie wichtig die Oberflachengiite der
Polschuhe fiir eine gute Feldhomogenitit ist. In dem erwéhnten
Beispiel ergeben sich fiir 1/k, &~ 0,5 cm beinahe unerfillbare Forde-
rungen fiir die Polschuhe. In einem Kernresonanzexperiment mit
rotierender Probe?) liegen aber die Verhéltnisse etwas giinstiger, wir
werden im Anhang kurz darauf zuriickkommen.

ANHANG.

Effekt der Rotation der Probe
Verwendet man in einem Kerninduktionsexperiment eine um die y-Achse ro-
tierende Probe®) mit dem Mittelpunkt bei z,, z,, so ist bei geniigend grosser Rota-
tionsfrequenz die wirksame Feldstirke BRder Rotationsmittelwert um die y-Achse

2n
BR(P,Z) = (1/27) [ Bdg (A1)
J |
wobei 2= x,+Pcosg
y =12

z=2zy+Psing

Geht man von einem stochastischen Magnetfeld B(z, v, z)

oc oo

B(z,y.2) = By [ dky [ dkgk?8(k)eir (talke) +ikiatikiy —kz (A9
— 00 — 0
(ke = & +3)

aus, so erhélt man mit (A 1) nach kurzer Rechnung fiir den Rotationsmittelwert

2) -+ ik; o —]CZO +ik2Z

0o o0 o
BR(P,Z) = [ dk, [ dkyk? (ke " Jo(iky,P) (A 3)
—“00 —o00

wobei J, die nullte Besse’sche Funktion ist. Damit erhilt man fiir die Korrelations-
funktion folgenden Ausdruck:

” (BE(Py,Z,) BR(Py, Z5) > = (A 4)
w -
= @a)? [ dkksS(k)e” [ dg .ot TIV O g ik Prcos ¢) T, (ikPycos )
0 0

Der fiir Kernresonanzexperimente massgebliche Ausdruck (16) wird damit

([BR (0,0)= BR (P,Z)]*y = x* 222 (A5)
(» siehe Glg.20)

falls man Terme der Ordnung Z¢, P4, Z2 P2 vernachlissigen darf, was wiederum
wegen der meist giiltigen Gleichung (18) oft zuléssig ist.

Wie zu erwarten war, ergibt die Rotationsmittelung des Feldes eine wesentlich
hohere Korrelation des Feldes (vgl. Glg. A5 mit Glg.19). Auf die Linienform eines
Kernresonanzsignals fiir diesen Fall sei wiederum auf 8) verwiesen.

Wir danken der Emil-Barell-Stiftung, Basel, der Firma Hoffmann-La Roche &
Cie. AG., Basel sowie dem Schweiz. Nationalfonds zur Férderung der Wissen-
schaften (Projekt Nr. 201, 721) fiir die Unterstiitzung dieser Arbeit.
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