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Herstellung sehr homogener
axialsymmetrischer Magnetfelder

von H. Primas und Hs. H. Günthard
Organ.-chem. Laboratorium der Eidg. Technischen Hochschule, Zürich.

(27. III. 1957.)

Zusammenfassung. Eine Methode zur Herstellung von extrem homogenen
Magnetfeldern (Homogenität in der Grössenordnung 1:10~8) wird diskutiert. Es
wird theoretisch gezeigt, wie durch einfache Strom-Shims geeigneter Grösse der
Randabfall bei axialsymmetrischen Magnetfeldern kompensiert werden kann.
Die Theorie wird experimentell an einem praktischen Beispiel verifiziert. Der
Einfluss der stochastischen Unebenheiten der Polschuhe auf die Homogenität des
Magnetfeldes wird mittels statistischer Methoden berechnet und die Konsequenzen
für den Fall eines Kernresonanz-Experimentes mit hoher Auflösung werden
diskutiert.

Um die in der Kernresonanzspektroskopie durch die oft extrem
kleine natürliche Linienbreite vieler Substanzen mögliche sehr hohe
Auflösung experimentell erreichen zu können, werden Magnetfelder
benötigt, die über ein Probevolumen von ca. 0,1 cm3 eine
Homogenität in der Grössenordnung von 1:108 aufweisen. Die bei der
Realisierung eines solchen Magneten auftretenden Schwierigkeiten
sind im wesentlichen durch die endliche Ausdehnung der Polschuhe
(Randeffekte) und durch die Unebenheiten der Polschuhoberflächen
bedingt. Die Korrektur der Randeffekte kann in einfacher Weise
mittels geeignet konstruierter Current-Shims erzielt werden, worauf
im 1. Kapitel näher eingegangen sei. Kapitel 2 gibt eine theoretische
Analyse der Effekte der Unebenheiten der Polschuhe.

1. Inhomogenitäten eines Magnetfeldes im Grossen.

11. Notwendigkeit der Verwendung von Korrektorshims.

In der vorangehenden Arbeit1) wurde ein für die hochauflösende
Kernresonanzspektroskopie verwendeter Permanentmagnet
beschrieben, der ein in der Nähe des Zentrums sehr genau
axialsymmetrisches Magnetfeld liefert. Der Feldverlauf dieses Magneten ist
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bei einer Messgenauigkeit von ±0,1 mm und ± 1 mg im Bereich
von 0 5Ï [ z [ sS 5 mm und 0 ^ | x \, | y | :g 20 mm darstellbar als :

B(x,y,z) B0 + B2(x2 + y2-2z2) (1)

B0 5873 Gauss

B2 1,01 m Gauss/mm2

Verwendet man einen solchen Magneten ohne Korrektur für
Kernresonanzversuche, so kann eine Auflösung von 10~7 kaum
überschritten werden.

Von Rose, Andeew und Rushworth2) wurden Shims
vorgeschlagen, die durch eine Überhöhung der Polschuhe am Rande eine
Feldverbesserung erzeugen sollen. Wir haben nach den Berechnungen

von Andrew und Rushworth solche „Rose-type-shims"
aus reinem Nickelblech angefertigt, ebenso solche mit der doppelten
Dicke als gerechnet. Die Ausmessung des Feldes in dem oben
erwähnten Bereich des mit solchen Shims ausgestatteten Magneten
ergab keinerlei Verbesserung des Magnetfeldes. Abgesehen von einer
leichten Abweichung von der Axialsymmetrie (die auf kleine Fehler
der Axialsymmetrie der Shims zurückzuführen war) konnte das Feld
durch die oben erwähnte Relation 2. Ordnung mit derselben
Konstanten B2 dargestellt werden. Wir schliessen deshalb, dass, im
Gegensatz zu der oft geäusserten Ansicht, Rose-type-shims von
Dimensionen in der Grössenordnung, die aus den Rechnungen von
Rose oder Andrew und Rushworth zu entnehmen sind, bei
Magneten mit einem Verhältnis von Polschuhdurchmesser zu Polschuhabstand

von grösser als 5:1 für die Zwecke der Kernresonanz von
keinerlei Nutzen sind. Zwischen diesem experimentellen Resultat
und den erwähnten Berechnungen besteht keine Diskrepanz, da jene
Rechnungen unter absolut unzulässigen Annahmen durchgeführt
wurden (Ersatz eines 3-dimensionalen axialsymmetrischen
Potentialfeldes durch ein 2-dimensionales, unendliche Ausdehnung der
Polschuhe).

Im Gegensatz zu den Rose-type-shims führen die von J. T.
Arnold3) vorgeschlagenen sogenannten „Current-shims" zu dem
gewünschten Erfolg. Arnold verwendet je 9 flache, konzentrische
Spulen verschiedenen Durchmessers, die vor den beiden Polschuhen
angebracht werden. Durch langwieriges Probieren wurde versucht,
die Ströme in den einzelnen Spulen so einzustellen, dass eine gute
Homogenität erreicht wird. Uns erschien dieses Vorgehen nicht sehr
zweckmässig, da infolge der vielen Variablen kaum je die beste
Stromverteilung gefunden werden kann. Wir worden im folgenden
zeigen, dass mit einem einzigen Spulenpaar und mit einem zum
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voraus berechenbaren Strom ein Feld 2. Ordnung bis auf Korrekturen

6. Ordnung homogenisiert werden kann. Eine wesentliche
Voraussetzung ist dabei nur, dass das ursprüngliche Feld sehr exakt
axialsymmetrisch ist, was aber, wie erwähnt, erreicht werden kann.

12. Berechnung von Current-Shims.

Es soll das von zwei flachen, axialsymmetrischen Spulen, die
symmetrisch zwischen zwei Polschuhen liegen, erzeugte Feld berechnet
werden. Dazu setzen wir voraus, dass das gesamte System
axialsymmetrisch sei und eine Spiegelebene bei z 0 besitze. Der Durchmesser

der Polschuhe soll gross sein gegen den Spulendurchmesser
und die Permeabilität der Polschuhe soll sehr gross sein, was in praxi
hinreichend erfüllt ist. Der Polschuhabstand sei G, der Spulenradius
A und der Abstand der Spulen von der Spiegelebene sei F Gj2.
Zur Vereinfachung messen wir alle Längen in Einheiten von A, das

magnetische Feld B Einheiten von pt0nI/2 A*) (n Windungszahl
einer Einzelspule, I Strom durch eine Einzelspule) :

Z ZjA (P, Z resp. q, z sind Zylinderkoordinaten)

Q=PjA
g GjA (2)

f=FjA
ò 2 BAjnIpt0

Um den ganzen Feldverlauf zu kennen, genügt es, von der z-

Komponente b(o, z) des Feldvektors die Funktion b(g 0,z)
auszurechnen, da aus dieser mit den allgemeinen Relationen für
axialsymmetrische Felder leicht das gesamte Feld berechnet werden
kann. Die Randbedingungen dieses Potentialproblems können durch
Mitberücksichtigung aller Spiegelbilder erfüllt werden. Man findet
für das vorliegende Problem: (siehe Fig. 1)

b(Q,z) b(e,f + z) + b(o,g-f+z) + b{Q, -/—*) + b(o,-g+f-z) (3)

wobei b(o, z) das Feld von einem axialsymmetrischen System von
unendlich vielen Flachspulen vom Radius A ist, mit den Zentren
bei q 0 und z 0, ± 2 g, ± 4 g, Somit findet man für b:

°°
b(o,z) =2J[l + (z + 2mg) 2]~s'2 (4)

*) Alle Formeln sind in einem 4-dimensionalen rationalen Mass-System
geschrieben (z. B. Giorgi's MKSQ-System).
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Diese Reihe konvergiert für die praktische Auswertung unbequem
langsam. Eine Reihenumformung nach Poisson erweist sich als sehr
zweckmässig. Es gilt4) :

CO
oo m ta

2>M=-^ E / 9>(t/2w) exp (wit)(Ït (5)

Somit wird aus (4)
00
,-

b(o,z) (coj2n) 2J exP (—incoz) / exp (mcox)(l+a;2)~3/2da; (6)
B_-oo

co njg.
mit

Wegen
/ exp (incox)(l+ x2)~al2 dx —nHx(l) (i\nco\)-\nm\ (7)

o m

ô ©

Shimspulen '

Polschuhe

Fig. 1.

Zur Berechnung der Current-Shims
(eingezeichnet sind die Shimspulen und die ersten Spiegelbilder bezüglich der

Spiegelung an den Polschuhen. Gleiche Motive haben die Periodizität 267.)

und wegen

findet man

lim xHxw (ix) —2/71

ò (o,z) cojn — co JJ cos (ncoz)-nco-H(l) (i,

(8)

(9)

wobei H(V eine HankePsche Funktion ist.
Mit dieser Beziehung findet man nun mittels (4) für das gesuchte
Feld der Spulenanordnung von Fig. 1 :

oo

b(q=o,z) =4o)/7T—4ft) JJ cos (2ncoz)-cos(2ncof)-2ncoH(V (2inco) (10)
n-l

welche Reihe für alle Werte von z konvergiert und die für eine
numerische Auswertung sehr bequem ist. Experimentell ist die
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Grösse b(g,0) meist leichter zu messen als b(0, z). Mit Hilfe der für
alle axialsymmetrischen Felder gültigen Beziehung5) :

2.1

Bz (q,z) (1/2ji) / Bz (0, z + io cos cp) dtp (11)
o

kann man auch leicht eine Reihenentwicklung für b(g, 0) erhalten,
die aber nur für q < 1 konvergiert, was aber für die vorliegenden
Zwecke durchaus genügt:

oo

b(Q.z 0)=icoJ7i—4o>27cos (2ncofy2nco-H{1'>(2inco)J0(2incoQ) (12)
n-l

co njg

wobei H<f> eine Hankel'sche, J0 eine Bessel'sche Funktion ist. Um
das ursprüngliche quadratische Feld von Gig. (1) zu homogenisieren,

ist es wünschenswert, in der Potenzreihenentwicklung des

Korrektorfeldes
oo

b(o,z 0) 2Jbzno2™ (13)
m= 0

die Koeffizienten b2m/b2 für m > 1 möglichst klein zu machen. Die
numerische Auswertung zeigt, dass die vierte Ordnung 64 nur für
/ (st. g/2 bei geeigneter Wahl von co verschwindet. Weiter findet man,
dass, wenn co0 eine Nullstelle von ò4 ist

Mwo>/) o

die Grösse &4(ft>0 + e, f) für festes e im Limes e -> 0 für / g/2 ein
Minimum ist. Somit sind die besten Resultate für / gj2 zu
erwarten, d. h. wenn die beiden Spulen direkt an den Polschuhen
anliegen. Für diesen Spezialfall erhält man:

oo

6(ß,0) icojn — 4:a) 2J (-)n^nco-H[1\2inco)J0(2incoQ) (14)
n l

oder wenn man b(g, 0) nach Gig. (13) nach Potenzen von q
entwickelt :

oo

ò0 4cü/ji- 8 co2 £ (-)"n H™ (2 into) (15)
n-l

oo

ba —Sa)*2J{—)«n»H11)(2ina>) (16)
n-l

oo

fc4 - 2 co« 27 H"™5 HÌ1' (2 »»o») (17)
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Fig. 2 zeigt b0, b2, bi in Funktion von m n A/G aufgetragen. Bei
co 1,35 hat bt eine Nullstelle, dabei ist b0 1,23 und b2 1,36.
Wählt man somit für die Shimspulen einen Radius von A 0,430G,
so kann man den Shimstrom so dimensionieren, dass die 2. Ordnung
des ursprünglichen Feldes exakt kompensiert wird, ohne dass dabei
eine Inhomogenität 4. Ordnung eingeführt wird. Die Verwendung
von mehr als nur einem Paar von Shimspulen hat somit nur dann
einen Sinn, wenn man auch noch Feldinhomogenitäten 6. oder
höherer Ordnung kompensieren will, was aber selbst für extremste
Auflösungen unnötig sein dürfte.

Es sei noch erwähnt, dass das Feld eines Spulensystems im freien
Raum sehr wesentlich verschieden ist von dem Feld desselben

<¦> -**/a
Fig. 2.

Verlauf der Entwicklungskoeffizienten 6„, 62 und 64 des Magnetfeldes von an Pol¬
schuhen anliegenden Shims (F G/2). (Vgl. Gig. 1—15 bis 1—17.)

Spulensystems zwischen zwei Eisenpolschuhen. In der Entwicklung
(Gig. 4) für das Feld der Spulen zwischen den Polschuhen stellt der
erste Term das Feld der Spulen im freien Raum dar. Die oft sehr
schlechte Konvergenz dieser Reihe und die gute Konvergenz der
nach Poisson transformierten Reihe besagt, dass es keineswegs
zulässig ist, den Einfluss der Polschuhe zu vernachlässigen.

13. Konstruktion von Current-Shims und experimentelle Resultate.

Auf Grund dieser Rechnungen wurden nun Current-Shims
hergestellt. Auf einem Plexiglasspulenkörper der Gesamtdicke 1,0 mm
(Wandstärke 0,3 mm, Wickelraum 0,4 mm) wurden auf einen Zy-
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linder von 20 mm Durchmesser 30 Windungen Cu-Draht 0,1 mm
Durchmesser maschinell gewickelt, wobei peinlich auf gute
Axialsymmetrie geachtet werden muss. Dabei empfiehlt es sich speziell
eisenfreien Kupferdraht zu verwenden. Dies ergab einen mittleren
Windungsdurchmesser von 21,25 mm, was bei unserem Polschuhabstand

von 24,778 mm gerade das gewünschte co 1.35 ergibt.
Um das ursprüngliche B2 1,01 mG/mm2 zu kompensieren, werden
nach Rechnung und nach Experiment 10,3 mA benötigt, dabei
erniedrigt sich das B0-Feld um ca. 0,2 Gauss. Fig. 3 zeigt das so
kompensierte Feld, wie ersichtlich sind die gemessenen Feldstärken in
bester Übereinstimmung mit den theoretisch erwarteten.

Feld
in mG

60

50-

30

20

W

ohne Shims
mit Rose-type Shims

mil current- Shims

o i a e a e i o
t.S t 0.5 0 O.S t IS

Abstand vom Zentrum in cm

Fig. 3.

Verlauf des Magnetfeldes ohne Shims, mit Rose-type-Shims und mit Current-Shims
mit co 1,35.

Wir möchten noch auf eine Schwierigkeit hinweisen, die die Montage

der Shims betrifft. Sind nämlich die Shims nicht exakt
zentriert, d. h. fällt die Shimachse nicht exakt mit der Achse des
Magnetes zusammen, so treten lineare Feldverzerrungen auf, die sehr
unangenehm sind. Um dies zu vermeiden, wurden die Shimspulen
in eine 1 mm dicke runde Plexiglasplatte eingekittet, die dann sehr

genau zentriert werden konnte. Arbeitet man mit einer in der
«/-Richtung rotierenden Probe9), so mittein sich lineare Terme der
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Feldentwicklung in der x- und in der 2-Richtung vollständig heraus,
so dass man dann nur für die Abwesenheit linearer Terme in der
y-Richtung sorgen muss, was natürlich viel leichter zu erreichen ist.

2. Inhomogenitäten eines Magnetfeldes im Kleinen.

20. Statische stochastische Magnetfelder.

Im folgenden werden wir die durch kleine statistisch verteilte
Unebenheiten der Polschuhe verursachte Inhomogenität genauer
untersuchen. Dabei werden wir immer annehmen, dass das Magnetfeld
im Mittel homogen sei, die praktisch immer vorliegende Inhomogenität

im Grossen (die durch die Randeffekte der Polschuhe bedingt
ist) kann man in sehr guter Näherung von den kleinen, stochastischen

örtlichen Schwankungen der magnetischen Feldstärke
separieren. Ebenso gehen wir hier nicht auf die zeitlichen stochastischen
Schwankungen des Magnetfeldes ein, da wir diese an anderer Stelle
behandelt haben8).

21. Darstellung statischer stochastischer Potentialfelder.

Mit der einzigen Ausnahme des Potentials 0(x, y, z) z nehmen
wir im folgenden immer an, dass die zugelassenen Potentialfunktionen

bezüglich der Variablen x, y zur Lebesgue'schen Klasse L2
gehören und dass sie gegenüber Translationen und Rotationen in
der (x, y)-Ebene stochastisch invariant seien. Dabei nennen wir eine
Funktion gegenüber einer Operation stochastisch invariant, falls die
transformierte Funktion dieselbe Spektraldichte hat wie die
Originalfunktion. Bezüglich der Abhängigkeit der Potentialfunktion
von z machen wir keine Voraussetzungen, denn diese folgt aus der
Potentialgleichung. Es wird sich zeigen, dass 0 dann auch in der
Variablen z einen stochastischen Prozess darstellt, der aber im
allgemeinen nicht invariant gegenüber einer Translation in der z-Achse
ist. Weiter nehmen wir an, dass die Potentialfunktionen 0(x, y, z)
bezüglich der Variablen x und y ergodisch seien. Dann dürfen wir
den Ensemblemittelwert < F > einer Funktion F immer durch den
Mittelwert über eine (x, y)-Ebene ersetzen.

p «

<F(x,y,z)>XtV Hm J_ I dx I dyF(x,y,z) (1)
W—rCO PI * ^

4^ co -P -1

Die Ergodizitätsvoraussetzung ist sicher immer dann korrekt, wenn
die Autokorrelationsfunktion im Unendlichen mindestens wie eine
reziproke e-Funktion verschwindet.
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Unter diesen Voraussetzungen folgt, dass sich eine solche stochastische

Potentialfunktion immer darstellen lässt als Linearkombination

von 0+ und ^"-Funktionen :

oo oo

0±(x,y,z)= fdkx fdk2Q(k) eix(k^> eik'x*ik*v e ±kz (2)

— oo —oo

mit
k \]/k\ + kt\

wobei Q und % reelle Funktionen sind. Die Darstellbarkeit folgt aus
den bekannten Sätzen der Theorie des Fourierintegrals, die
Invarianzeigenschaften und die Potentialeigenschaft sind evident6).

Bestehen die Quellen für das stochastische Potential aus zwei
rauhen planparallelen Polschuhen in der (x, î/)-Ebene bei z ± zQ

und hat das System eine stochastische Symmetrieebene bei 2 0

(dies ist genau der Fall, der für die Anwendungen wichtig ist), so

folgt die Darstellbarkeit eines solchen Potentials als:

0 f dkx f dk2Q(k)ei^x+ik'ìl {ei^-(z'~z)k—e-ix'--<z'-z)ii} (3)

wobei %x und %2 voneinander stochastisch unabhängige Funktionen
sind. Für die Autokorrelationsfunktion7) K(£, n, Ç; z)

K(Ç,ri,:;z) <0(x,y,z)0(x + Ç,y + r],z+:)>X!y (4)

der Funktionen 0+, 0~ von Gig. (2) erhält man
oo oo

K^($,nX; z) (2ti)2 f dkx f dk2G(k)eik^^ik"-r>±<2z + ->k (5)
— oo —oo

mit der zu &± gehörigen, gleichen Spektraldichte G(k)*)

ow-^-ïïïiewi" (6)
<j->oo

Durch Einführung von Polarkoordinaten kann eine Integration in
(5) sofort ausgeführt werden und man erhält:

oo

K(i,ri,Ci z) K(q,C; z) (2n)a f G(k)e~2kzJ0(ke) e~Kkdk (7)
o

mit k2 k\ + k\ und q2 i,2 - ri2

wobei J0 die nullte Besselsche Funktion ist.

*) Bequemlichkeitshalber definieren wir die Spektraldichte 67 (k) ohne den eigentlich

dazugehörigen Faktor exp (+ 2kz).
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Da in Glg. (3) zwischen den Funktionen %x und %2 keine Korrelation

besteht, findet man für die Autokorrelationsfunktion des
Potentials eines Magneten mit einer stochastischen Spiegelebene bei
2=0 und mit Polschuhen in der (x, ?/)-Ebene bei z ± £n:

oo

K (q,C; z) (2ny fG(k)e~ 2*Z»J0 (ko) Sinh[k (2z + ;)]kdk (8)

22. Die Berechnung des Spektrums des Feldes

aus den Randbedingungen.

Im allgemeinen stellt die Berechnung des Spektrums des Feldes
aus den Randbedingungen ein schwieriges mathematisches Problem
dar. Falls aber — wie das bei den in der hochauflösenden
Kernresonanzspektroskopie verwendeten Magneten immer der Fall ist —
das resultierende Magnetfeld relativ homogen ist und gewissen Re-
gularitätsanforderungen genügt, kann man in einfacher Weise das

Spektrum des Magnetfeldes aus dem Spektrum der Randbedingungen
erhalten. Die Randflächen seien je eine „stochastische (x, y)-

Ebene" bei z z0 resp. bei z — z0 und auf diesen Randflächen sei
das Potential konstant. Dabei verstehen wir unter einer stochastischen

(x, y)-Ebene bei z z0 eine Fläche, die durch eine stochastische

Funktion £(#, y; z0) beschrieben werde, die den
Ensemblemittelwert z0 besitze :

<CO, y;z0)y z0

und deren Korrelationsfunktion C und Spektraldichte S gegenüber
Translationen und Rotationen invariant sei :

C (e) C (Yx2 + y2) <U^V) t{i + x,r, + y)>^ (10)

cc

S (k) (1/2.-T)3 fu (e) J0 (gk) od o

i)

Das Potential W(x, y, z) eines solchen Feldes lässt sich dann
darstellen als

W(x,y,z) Boz + 0(x,y,z) mit <0} O (11)

wobei 0 eine durch Gig. (3) beschriebene stochastische Potential-
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funktion ist. Da W eine Potentialfunktion ist, existieren die zweiten
Ableitungen und man kann entwickeln:

W(x,y,z0+C)=nx,y,z0)+CBz(x,y,z0) + ^2[dB (x,y,z)jdz]^Zù+^ (12)

Bz (x,y,z0) B0 + &2 Max \B0 — B (x,y,z0) |

WObei:
0 =g &x,2 ^ 1, Bz dWjdz

Sind die Korrekturglieder hinreichend klein, so definiert die Lösung
C(x, y) der Gleichung

B0z0 W(x, y, z0) + Ç (x,y) B0 (13)

eine Randfläche, auf der das Potential konstant und gleich Boz0 ist.
Diese Approximation ist offensichtlich immer dann gerechtfertigt,
wenn

Max | B0 — B(x, y, z0) | < B0

Max | dB (x,y,z0 + Ç)fd Ç | < 2 B0/CM auf der Randfläche (14)

mit 'Qu Max | £ (a;, y) | auf der Randfläche

Diese Bedingungen schränken die zugelassenen Inhomogenitäten
etwas ein und verbieten vor allem das Auftreten beliebig hoher
Wellenzahlen 7<;im Spektrum der Randfläche. Bei Magneten, die zur
Herstellung homogener Felder gebaut wurden, bedeuten sie jedoch
keine praktisch wichtige Einschränkung; so verbietet etwa die
zweite Forderung das Auftreten von Feldgradienten in der Grössenordnung

von 108 Gauss/cm (falls £M 1 pt und B0 10000 Gauss).

Gig. (13) ordnet jedem Potential ¥ eine Randfläche t,(x, y) zu.
Da jedes Randwertproblem der Potentialgleichung eine eindeutige
Lösung besitzt, erlaubt uns Gig. (13) auch die Berechnung des
Potentials W aus den Randwerten £ und damit die Berechnung der
Spektraldichte G(k) von W aus der Spektraldichte S(k) von £:

G(k) B20S(k) (15)

Unter den angegebenen Regularitätsvoraussetzungen haben wir also
das wichtige Resultat, dass das Spektrum des Potentials proportional
dem Spektrum der Randflächen ist.

23. Folgerungen für die Realisierung sehr homogener Magnetfelder.

Im folgenden soll am Beispiel der Kernresonanz die Bedeutung
der Unebenheiten der Randflächen (Polschuhe) auf die Inhomogenität

des Magnetfeldes genauer diskutiert werden.
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Wie wir in einer früheren Arbeit8) gezeigt haben, ist der
Erwartungswert der Linienform L(B) eines Kernresonanzsignals mit einer
hinreichend kleinen natürlichen Linienbreite für ein räumlich sto-
chastisches Magnetfeld gegeben durch

<L(B)> (1/7) fäT-j=l—*-*'*™ (16)
J, ]/2n\ß(r)\

wobei die Integration über das Probenvolumen V zu erstrecken ist
und wobei

/?2(r) <[B(r)-B(0)]2>

<B(r)2>+<B(0)2>-2<B(r)B(0)> (17)

Ist 2 R eine obere Grenze für den Probendurchmesser und ist das

Spektrum S(k) der Randflächen (Abstand der Probe von den
Randflächen ist z0) so beschaffen, dass für m 5, 7, 9, gilt:

00 oo

| f S(k)kme-2kz°dk\^>\ fS(k)km + 2 e~2kz'dk\ R2 (18)
0 0

dann kann man die aus (8) und (15) folgende Korrelationsfunktion
für B d0ldz

< B(x,y,z) B(x + Ç,y + n,z + £)>

OC

(2nYBl fs(k)ks J0(ok)e-2kz°Cosh[(2z + Ç)k]dk (19)
o

(g2 I2 + n2)

nach Potenzen von q und f entwickeln und nach den quadratischen
Termen abbrechen. Dabei erhält man für ß2 von Gig. (17)

ß2 (z2 + Q2j2) x2 (20)

wobei
oo

x2 B2(2ji)z [S(k)k2e-2kz°dk (21)

Für die Halbswertsbreite eines Kernresonanzsignals einer
kugelförmigen Probe mit dem Radius R folgt dann (vgl.8)) der Wert xR
(genauer: 1,034 xR), sofern die natürliche Linienbreite viel kleiner
ist. Unter der .^nnahme (18), die wie weiter unten gezeigt wird, fast
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immer berechtigt ist, folgt also, dass in einem Kernresonanzexperiment
nicht etwa die Streuung von B, sondern das x von Gig. (21)

eine für die Inhomogenität des Magnetfeldes massgebende Grösse
ist. Um zu beurteilen, welche Wellenzahlen im Spektrum von S(k)
einen wesentlichen Beitrag zu x liefern, diskutieren wir den Fall, wo
die Spektraldichte S(k) eine Deltafunktion ist.

S(k)=--o%ô(k~k0)i(27i)sk0 (22)

wobei aR die Streuung der Unebenheiten der Randflächen ist

oo

4=(2tt)3 [S(k)kdk (23)
5

Damit folgt für die Linienbreite AB xR

ABIB0 aRRklexp(-k0z0) (Rk0 < 1) (24)

Diese Relation ist wegen der Voraussetzung (18) nur für Rk0 <^j 1

gültig.
Falls Bfc0> 1 ist, folgt aus Gig. (19), dass

| <B(0)B(r)>| <<B(r)2>^<B(0)2> 4
also ist ß2(r) 2 ajund somit folgt aus Gig. (16), dass die Linienform

<_L(B)> unabhängig von der Form der Probe ist, sofern deren
Durchmesser nur wesentlich kleiner als 2 z0 Polschuhabstand)
ist:

1
2,<L(B)>= -=— exp(-B2/4(T^

2 |/ n aB

Die Linienform ist in diesem Falle also eine Gauss'sche Fehlerkurve
mit der Halbwertsbreite

AB 3,33 aB oder ABjB 3,33 aRk0 exp (—k0z0)

Fig. 4 zeigt die Linienbreite zlB in Funktion der Wellenzahl k0
gemäss Gig. (23) in logarithmischer Darstellung. Daraus ist zu
ersehen, dass die wesentlichsten Beiträge zur Linienbreite von
Unebenheiten mit reziproken Wellenzahlen in der Grössenordnung des
Polschuhabstandes kommen. Damit folgt auch, dass in den meisten
praktisch vorkommenden Fällen die Voraussetzung (18) erfüllt sein
dürfte. Fig. 5 gibt ein numerisches Beispiel mit plausiblen Werten :

Polschuhabstand 2 z0 2 cm, Probenradius R 0,1 cm, relative
Linienbreite ABjB0 10-8. Aufgetragen sind die dann zulässigen
Streuungen der Unebenheiten der Polschuhe gegen ihre Wellenzahl.
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*»«»

Fig. 4.
Linienbreite AB eines Kernresonanzsignals in Funktion der Wellenzahl k0 der
Unebenheiten der Polschuhe. (2z0 Polschuhabstand, aR Streuung der
Randfläche, R Probenradius, jB0 Feldstärke des Magneten) (ohneRotationder Probe).

rul&siges G

'/«.W

Fig. 5.

Zulässige Streuung aR der Randflächen in Funktion der reziproken Wellenzahl der
Unebenheiten der Polschuhe für eine Auflösung AB/B0= 10~8, Probenradius

R 0,1 cm und Polschuhabstand 2z0= 2 cm (ohne Rotation der Probe).
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Im Gegensatz zu Fig. 4 zeigt Fig. 5 die Funktion auch im Gebiet
Rk0^> 1, das Zwischengebiet bei Rk0 «. 1 wurde lediglich
interpoliert. Dieses Beispiel zeigt, wie wichtig die Oberflächengüte der
Polschuhe für eine gute Feldhomogenität ist. In dem erwähnten
Beispiel ergeben sich für lß0 pu 0,5 cm beinahe unerfüllbare
Forderungen für die Polschuhe. In einem Kernresonanzexperiment mit
rotierender Probe9) liegen aber die Verhältnisse etwas günstiger, wir
werden im Anhang kurz darauf zurückkommen.

ANHANG.

Effekt der Rotation der Probe
Verwendet man in einem Kerninduktionsexperiment eine um die y-Achse

rotierende Probe9) mit dem Mittelpunkt bei x0, z0, so ist bei genügend grosser
Rotationsfrequenz die wirksame Feldstärke .RR der Rotationsmittelwert um die y-Achse

2.1

BR (P, Z) (1/2 n) j Bdcp (AI)
o

wobei
y Z
Z 2(T

Geht man von einem stochastischen Magnetfeld B(x, y, z)

oo oo

B(x,y,z) B0 J dkxj dktk*S(k)eix(kllk>) + «-*+»*>»-** (A2)
— OO —OO

(ki k\+kl)
aus, so erhält man mit (A 1) nach kurzer Rechnung für den Rotationsmittelwert

00 °° rr

BR(P,Z) =fdk1f dk^k^S(k)eix(klM +UlX°~iCZ'+ - J0(ikzP) (A3)
— oo —oo

wobei J0 die nullte Besse'sche Funktion ist. Damit erhält man für die Korrelationsfunktion

folgenden Ausdruck :

<BR(P1,Z1)BR(P2,Z2)>= (A4)
OO CO

(2n)*fdkk!>S(k)e~2]CZ°Jd<p.eik(Zl~Z*>COS'PJ0(ikP-Lœs<p) J0(ikPzcoscp)
0 0

Der für Kernresonanzexperimente massgebliche Ausdruck (16) wird damit

< [BR (0,0) - BR (P, Z)f > x2 22/2 (A 5)

(x siehe Gig. 20)

falls man Terme der Ordnung Z1, Pé, Z2 P2 vernachlässigen darf, was wiederum
wegen der meist gültigen Gleichung (18) oft zulässig ist.

Wie zu erwarten war, ergibt die Rotationsmittelung des Feldes eine wesentlich
höhere Korrelation des Feldes (vgl. Gig. A5 mit Gig. 19). Auf die Linienform eines

Kernresonanzsignals für diesen Fall sei wiederum auf 8) verwiesen.

Wir danken der Emil-Barell-Stiftung, Basel, der Firma Hoffmann-La Roche &
Cie. AG., Basel sowie dem Schweiz. Nationalfonds zur Förderung der
Wissenschaften (Projekt Nr. 201, 721) für die Unterstützung dieser Arbeit.
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