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Ein Kernresonanzspektrograph mit hoher Auflösung
Teil I: Theorie der Liniendeformationen

in der hochauflösenden Kernresonanzspektroskopie

von H. Primas

Organ.-chem. Laboratorium der Eidg. Technischen Hochschule, Zürich.

Zusammenfassung. Es werden die Deformationen von Kernresonanzsignalen
durch inhomogene Magnetfelder (quadratisches Feld und räumlich stochastisches
Feld) und durch zeitlich stochastisch schwankende Magnetfelder behandelt. Die
für eine bestimmte Auflösung noch zulässigen Magnetfeldschwankungen werden
angegeben und die Frage diskutiert, welche Messtechniken die kleinsten
Signalverzerrungen ergeben.

Einleitung.

Mit zunehmender Auflösung eines Kernresonanzspektrographen
werden eine Reihe äusserer Störungseinflüsse merklich, die zu
Liniendeformationen Anlass geben. Von diesen Störeinflüssen sollen
im folgenden diejenigen genauer behandelt werden, die durch
geeignete experimentelle Massnahmen nicht ohne weiteres auf ein
zulässiges Mass reduziert werden können.

Als theoretische Grundlage für die Beschreibung der
Kernresonanzerscheinung nehmen wir immer die Gültigkeit der phänomenologischen

Blochschen Gleichungen1) an. Ausser in den Betrachtungen

des letzten Kapitels nehmen wir, falls nötig, weiter immer
an, dass das Kernresonanzexperiment nach der Blochschen
Kreuzspulenmethode mit der stationären Aufnahmetechnik durchgeführt
werde, wobei das Absorptionssignal beobachtet werde. Diese
Annahme ist ganz unwesentlich, die Resultate können sofort auf andere
Techniken übertragen werden.

In Übereinstimmung mit Mie und Sommerfeld bezeichnen wir den Feldvektor
B immer als Vektor der magnetischen Feldstärke. Alle Formeln sind durchwegs
in einem 4-dimensionalen Mass-System (z. B. Giorgi's MKSQ-System) geschrieben.

Die im folgenden benützten Sätze aus der Theorie der stochastischen Prozesse
finden sich alle z. B. bei Doob2).
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11. Liniendeformation durch die Inhomogenität des Magnetfeldes.

Das im Kernresonanzexperiment von aussen angelegte Magnetfeld

schreiben wir wie üblich als

B Bx e^-cos cot — Bx e^-sin mt+ B0 ez. (1)

Wie man sich leicht überlegt, ist die Annahme, dass diese drei Felder
rechtwinklig aufeinander stehen, nicht sehr wesentlich. Eine kleine
Richtungsinhomogenität bewirkt lediglich, dass die Grösse des
wirksamen Störfeldes Bx etwas geändertwird. Falls, wie wir im folgenden
immer annehmen werden, keinerlei Sättigungserscheinungen zu
berücksichtigen sind (d. h. wenn |yBi| <^co2 1/Ta ist), so tritt bei
einer beliebigen Inhomogenität des Bx-Feldes weder eine Liniendeformation

noch eine Linienverbreiterung auf3). Wir können uns
deshalb im folgenden auf die allein wesentliche räumliche Inhomogenität

des B0-Feldes beschränken. Ist F(B) die Linienform einer
Kernresonanzlinie in einem homogenen Magnetfeld B, dann findet man
die Linienform G(B) in einem inhomogenen Magnetfeld B(r)*) durch
Faltung von F mit der auf 1 normierten Dichte D(B) der Kerne im
Magnetfeld B(r) :

OO

G(B) I"f(B') D(B-B') dB' (2)

D(B')äB' 1.
— oo

Die Dichtefunktion D(B) gibt die relative Anzahl der Kerne im
Magnetfeld zwischen B und B + dB. In einfachen Fällen kann man
diese Dichtefunktion durch direkte Integration über diejenigen
Volumenelemente erhalten, die sich im Feldbereich (B, B + dB)
befinden. Im allgemeinen ist es aber bequemer, einen expliziten
Ausdruck für D(B) zu benützen. Einen solchen kann man leicht erhalten,

wenn man beachtet, dass die Deltafunktion ò(B' — B(r)) ein
Selektionsoperator ist, der diejenigen Volumenelemente auswählt,
bei denen der Wert der magnetischen Feldstärke B' beträgt, wenn
das von aussen angelegte, inhomogene Magnetfeld B(r) ist. Somit
gilt:

D(B') (ljV)fô[B'-B(r)-]dr (3)

*) Unter B(r) sei die z-Komponente des inhomogenen Feldes verstanden. Ein
räumlich inhomogenes Feld hat zwar notwendig nichtverschwindende x- resp.
«/-Komponenten, die jedoch bei kleinen Inhomogenitäten in der Kernresonanz
vernachlässigbar sind.
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wobei die Integration über das Probenvolumen V zu erstrecken ist.
Zur Auswertung dieser Beziehung können Funktionalrelationen der
ò-Funktion angewendet werden (siehe weiter unten).

Falls die natürliche Linienbreite sehr klein ist im Vergleich zu der
Inhomogenität des Magnetfeldes, so ist D(B) eine gute Näherung
für die zu erwartende Linienform eines Absorptionssignals. Im
folgenden werden wir die Dichtefunktion für einige praktisch wichtige

Fälle angeben.

12. Linienform in einem axialsymmetrischen Feld 2. Ordnung.
Das Feld eines nicht durch Shims korrigierten Magneten lässt sich

oft in ausgezeichneter Näherung (vgl. Teil II) durch ein
axialsymmetrisches Magnetfeld zweiter Ordnung darstellen:

Bz(r, &,cp) B0+Bzr2(1-3 cos2 &) (4)

(x r sin & cos <p y r sin & sin cp, z r cos &

Benützt man eine kugelförmige Probe vom Radius R, die sich bei
r 0 befindet, so lautet die Dichtefunktion D(B') gemäss Gig. (3)

D(.B') (3/471E3) /V2 drfdcp Um &d & d[B'— B(r, &, cp)] (5)
o ob

Zur Auswertung dieser Relation wendet man auf die r-Koordinate
folgende Relation4) der <5-Funktion an

ar/(ry| y ^r-rj^ (6)

wobei rn die Stellen sind, bei denen f(r) das Vorzeichen wechselt,
d. h. im vorliegenden Falle einfach die Nullstellen. Damit erhält
man

6\B'- B(r)l -^—ïû + -^ZZîà (7)L K n 2£2|r1(l-3cos2#)| ^ 2jS2|?-2(1-3cos2^)| v '
mit

h,z ±(B'-Boyi*(Bll-3 cos2#])-^.

Die verbleibenden Integrationen können nun elementar ausgeführt
werden, und man findet für die Dichte D(B):

D(B') (]/i3l2R*B2)[l+(B0-B')IB2R*yiz für 0 <£ ^^ ^ 1

D(B')=(l/373E2B2){[l+(B0-B')/B2B2]1,2-l/3/2[(Bo-B')/B2Ba]1'2}

D(B') 0 sonst
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Dabei ergibt sich für die Halbwertsbreite der Wert 1,0074 B2B2.
Fig. la zeigt eine graphische Darstellung dieser Funktion.

£«'«,<*. I

ff'-"1} *o,y

Äpufll

stochastisches rein

1.5.-'«..»'.WJfl//sW.!

Fig. 1.

Linienform-Dichte D(B) in verschiedenen, räumlich inhomogenen Magnetfeldern.
(D(B) ist die Linienform eines Absorptionssignals, falls die natürliche Linienbreite

sehr klein ist.)

13. Linienform in einem linearen Magnetfeld.

Wird die zweite Ordnung eines Magnetfeldes durch Shims korrigiert,

so können durch unexaktes Zentrieren der Shims leicht
Feldinhomogenitäten erster Ordnung eingeführt werden, wobei bei
einer Rotation der Probe6) in einem Kerninduktionsexperiment nur
die lineare Variation in der Rotationsachse berücksichtigt zu werden
braucht. Man kann daher für das Feld ansetzen:

B(x, y, B0 + Bxy. (9)

Die resultierende Dichtefunktion kann für eine kugelförmige Probe
mit dem Radius R sofort angeschrieben werden:

D(B') (3/4BB1)[1-(B'-B0)2/E2B2]
fürO<|B'-B0|g|EB1| (10)

welche Funktion in Fig. 1 b ebenfalls dargestellt ist. Die Halbwertsbreite

ergibt sich zu /2 RBX.

14. Linienform in einem räumlich stochastischen Magnetfeld.

Soll in einem Kernresonanzexperiment eine sehr hohe Auflösung
erreicht werden, so muss meist der quadratische Term korrigiert
werden, wobei selbstverständlich darauf geachtet werden muss,
dass keine linearen Terme eingeführt werden. Wie in einer folgenden
Arbeit gezeigt werden soll, kann diese Korrektur so erfolgen, dass
der Anteil der übrig bleibenden höheren Ordnungen ausserordentlich

klein ist, so dass das Feld im Mittel als homogen betrachtet
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werden kann. Dagegen führen die unvermeidlichen Unebenheiten
der Polschuhe zu Feldinhomogenitäten, die wiederum zu
Liniendeformation Anlass geben. <. > bezeichne den Mittelwert in einem
Ensemble, das Ziel ist die Berechnung des Erwartungswertes <D(B') >

der Linienformdichte D(B') in einem stochastischen Feld B(r). Dabei

definieren wir <D(B')> als

<D(B')> (ljV)Jdr<:ô[B'-(Br-B0)]y (11)

mit
Br B(r), BQ B(0) (12)

Diese Definition von <D(B')> ist denjenigen Kernresonanzversuchen
angepasst, die nur eine Bestimmung der relativen Lage der Linien
bezwecken. Bei absoluten Messungen, z. B. bei einer absoluten
Kernmomentmessung, darf B0 nicht subtrahiert werden.

Setzt man in (3) die Fourierdarstellung der cS-Funktion ein, so
erhält man œ

<D(B')} (lj2nV) [dr fexrj(isB')(exv(-isBr + isB0)yds

(1/2 nV) j dr j exp (isB') <p(- s,s)ds (13)

f -co

wobei <p(s, t) die charakteristische Funktion der 2-dimensionalen
Wahrscheinlichkeitsverteilung W (Br, B0) ist :

CO CO

(p(s,t) <euB^itB«y I dx fdyeisx+UvW(x,y) (14)
— CO —CO

(Die Integrale sind immer im Lebesgue-Stieltj esschen Sinne zu
verstehen.)

Dabei ist W(x, y) die Wahrscheinlichkeit dafür, dass Br B(r)
den Wert x und B0 B(0) den Wert y aufweist. Setzt man (14) in
(13) ein, so erhält man

<D(B')> (1/7) [dr fdxW(x, x-W). (15)

Praktisch bedeutet es keine wesentliche Einschränkung, wenn wir
im folgenden annehmen, dass die Unebenheiten der Polschuhe einen
zweidimensionalen Gauss'schen stochastischen Prozess darstellen.
Dann folgt auch (vgl. 5)), dass das Magnetfeld eine Gauss'sche Ver-
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teilung hat. Mit den bekannten Beziehungen für eine zweidimensionale

Gauss'sche Verteilung W(x, y) mit <x> <t/> 0

W(x, y) (2 Tcaxaz /I^T2)-1 exp { \(1 - o2)"1 x
x[x%ja\ + 2/2/a| —2 Qxyjaxa^} (16)

wobei
a\ <x2>, of <î/2>, otTiO-2 <xî/>.

Damit folgt dann durch elementare Rechnung aus (15) :

<D(B')> (llV)fdr(]/2n\ß(r)\)^e-B"l^'^ (17)
F

wobei
/.2(r) <[B(r) - B(0)]2> (18)

In einer folgenden Arbeit5) werden wir zeigen, dass für alle praktisch

wichtigen Fälle die Funktion ß(r) wie folgt geschrieben werden
kann

ß\r) (z* + x2/2 + y*j2) x2 (19)
mit

GO

x2 (2tt:)3B2 fs(k)k5e~2kz'dk (20)
G
0

wobei B0 der Mittelwert des Feldes, 2z0 der Polschuhabstand und
S(k) die Spektraldichte der Polschuh-Randflächen t,(x, y) ist
(<C(a;, y)yXtV -Mo resp. — z0) :

co

S(k) (1/2 n)3 [k(q) J0(ok)odQ (21)
o

mit der Korrelationsfunktion K(g)

K(q) Ktyx* + y*) <£(*, 1?) C(l + a;, ^ + «/)>*„

wobei der Mittelwert über die gesamte Polschuhfläche zu erstrecken
ist. (Für eine ausführliche Diskussion vgl. 5).).

Die Ausführung der Integration in Gig. (8) über eine kugelförmige

Probe führt auf sehr komplizierte Funktionen, wogegen die
Integration über ein Ellipsoid mit den Hauptradien RK=RV=R und
Bz=B/)/2 einfach ist und auch für eine kugelförmige Probe genügend

genaue Resultate liefert. Durch Einführung von Ellipsoid-
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koordinaten x Rr sin & cos y>, y Rr sin & sin \p,z Rr cos #/|/ 2,
dr (E3/|/2>2 sin &drd&dip, 0 <r <1, wird

/3 ^Br/l/2
und damit aus Gig. (17)

i
<D(B')> (3[xR\/n) fre-z'^^dr

o
OO

(3/2 xR ]/n) f x-2 e-xB"lK'Rt dx

iCO

oder mit — Ei(— x) f (e~*jt) dt:

(D(B')y (3/2 ]/tixR) {e-B'2^R' + (B'2jx2R2) Ei(-B'2jx2R2)}. (22)

Die Halbwertsbreite beträgt 1,034 xR, der Funktionsverlauf ist in
Fig. 1 c dargestellt. Bemerkenswert ist, dass die Linienform im Detail

nicht vom Spektrum der Polschuhe abhängig ist, sondern nur
von der vom Spektrum der Randflächen abgeleiteten Grösse x.

15. Linienform in einem stochastischem Magnetfeld
bei rotierender Probe.

Verwendet man eine um die y-Achse rotierende Probe6) mit dem
Zentrum bei x0, z0, so ist das stochastische Feld B(x, y, z) durch
seinen Rotationsmittelwert BR(P, Z)

CO

BR(P,Z) (1/2 .t) fßdcp (23)
o

(x x0 + P cos cp, y Z, z z0 + P sin cp)

zu ersetzen. Für dieses Feld findet man 5) in einer praktisch meist
gültigen Approximation (nicht zu grosse Proben) für die Funktion
/3(r) von Gig. (18)

ß\r) x2 Z2j2 + 0(xi Z\ *4 P4, x4Z2 P2)

mit demselben x wie in Gig. (20).
Die Integration (17) über eine kugelförmige Probe mit dem

Radius R ergibt damit:
R VR'-Z'

D(B') (SjtfnxR3) [dZ fz-ie-Wt'PdP.
o o

Die Substitution x 1/Z2 ergibt sofort

<D(B')> (3/2 ]/üxR) {-(l+B'2jx2R2) Ei(-B'2jx2R2) -e-*"1"'*'}.
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Diese Dichtefunktion divergiert bei B' 0 logarithmisch, erst durch
die Faltung (Gig. 2) mit der Linienform in einem homogenen Feld
erhält man ein physikalisch sinnvolles, nicht divergentes Resultat.
Diese Divergenz zeigt, dass eine bedeutende Verminderung der
Einflüsse der Inhomogenität erreicht wurde, da die Divergenz
jedoch nur logarithmisch ist, bleiben aber immer noch wesentliche
Anteile der Inhomogenitäten. Die Ausführung der Faltung führt
auf recht komplizierte Funktionen, i. A. resultieren Linienformen,
die in der Umgebung des Maximums sehr schmal sind, aber einen
sehr breiten Fuss aufweisen. Solche Linienformen werden
experimentell bei sehr hohen Auflösungen oft beobachtet.

2. Liniendeformation durch die zeitliche Instabilität des Magnetfeldes.

21. Einleitung.

Bei der Diskussion der zeitlichen Instabilität des Magnetfeldes
können wir uns wiederum auf das B0-Feld beschränken, da man
durch geeignete experimentelle Massnahmen eine genügend hohe
Konstanz des B-^-Feldes erreichen kann, worauf wir in der folgenden
Arbeit noch zurückkommen werden. Dagegen sind die stochastischen

Schwankungen des B0-Feldes von entscheidender Bedeutung
für die maximal erreichbare Auflösung eines Kerninduktionsspek-
trographen. Im folgenden werden wir zeigen, zu welchen
Liniendeformationen ein zeitlich stochastisch variables Feld Anlass gibt
und in welchen Grenzen sich die Magnetfeldschwankungen (Magnet-
feld-Noise) halten müssen, wenn man eine bestimmte Auflösung
erreichen will. Diese Resultate werden z. B. bei der Berechnung eines

Magnetfeldstabilisators benötigt7).

22. Der Erwartungswert der Magnetisierung in einem stochastischen

B0-Feld.

Wir führen die Rechnungen auf Grund der Blochschen Gleichungen

durch. Für den Fall kleiner B1-Felder, der für die hochauflösende
Spektroskopie ja allein in Frage kommt, lauten die Blochschen
Gleichungen bekanntlich8)

dFjdt+mìF + iAco(f)F m (1)

mit der Lösung

F(t) =m / exp {— / (coz + iAco) dT\dr (2)
— OO I T
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mit m — | y \ BXM0

w2 ljT2
Am(t) | y | BQ(t) — co

y gyromagnetisches Verhältnis des Kernes

Die Magnetisierung in der y-Richtung ist dann Mv Realteil
(Fe~iat). Das mit y multiplizierte Magnetfeld Aco(t) spalten wir nun
auf in einen konstanten (resp. zeitlichhinreichend langsam variablen)
Anteil co und in eine stochastische Funktion g(t)

A co(t) w + g(t) (3)

wobei wir von der Funktion g(t) voraussetzen, dass ihre Verteilungsfunktion

Gauss'sch sei. Weiter normieren wir den Mittelwert von
g zu Null, ig(t) > 0 wobei <. > wieder den Ensemblemittelwert
bedeuten soll. Nun gilt für eine Gauss'sche stochastische Funktion
G(t) mit <G> 0 bekanntlich immer

<exp (iG)} exp(-<G2>/2).

Da mit g auch G= fgdt eine Gauss'sche stochastische Funktion ist,
folgt aus (2) für den Erwartungswert von F

t t

<F} mfexVl~(t-r)(co2 + iœ)-(j[fg(T)dTy\j2Jdr.
— OO T

Für einen Gauss'schen Prozess gilt weiter

<ff(ti)0&)> «&-*.)
wobei R(t) R(— t) die Autokorrelationsfunktion von g(t) ist.

T

R(t) lim (1/2 T) fg(s) g(s + t)ds.

Damit findet man nach einer kleinen Umformung für den
Erwartungswert von F

OO SX
<F(i)> =m I exp j— co2s — ims— f dx I R(y) dy\ds. (4)

0

Gemäss dieser Beziehung ist es also bei Kenntnis des Spektrums
der Magnetfeldstörungen leicht möglich, den Erwartungswert der
Magnetisierung zu berechnen. Wir wollen hier nur zwei wichtige
Spezialfälle genauer diskutieren.
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a) Spezialfall, dass der Magnetfeldnoise „weiss" ist. Ist die
Spektraldichte des Magnetfeldnoise bis zu einer gewissen hohen
Frequenz co* konstant, so findet man aus Gig. (4) :

<F> iö) + co2 + ff2/4iJ
(5)

wobei a2jB die Varianz von g(t) pro Einheit der Bandbreite B ist.
Eine genauere Diskussion zeigt, dass diese Formel gültig ist, falls
m* ;> co, co* ^> co2, co* ;> o-2/4B. Somit zeigt im Fall von weissem

magnetischem Noise der Erwartungswert der Magnetisierung keine

Liniendeformation, dagegen tritt aber eine Linienverbreiterung von a>2

auf a>2 + ff2/4B auf.

b) Spezialfall, dass der Magnetfeldnoise sehr schmalbandig ist. Ist
der Magnetfeldnoise beinahe monochromatisch mit der Zentrumsfrequenz

coQ, so ergibt die Auswertung von (4) :

<Fy me-°!/ra2° y In(a2jml)
co2 + i (a> + n cu0)

(6)

Re <F>/m

Fig. 2.

Erwartungswert der Linienform eines Absorptionssignals, falls der Magnetfeldnoise
beinahe monochromatisch ist. (Zentrumsfrequenz a>0, Streuung des Noise a,
a>2 a>2 a.) Die gestrichelte Kurve ist die entsprechende Linienform ohne

Magnetfeldnoise.

wobei In die modifizierten Besselschen Funktionen sind und a2

<gf2> die Varianz des Noise bedeutet. Dieser Fall zeigt, dass sehr
beträchtliche Liniendeformationen auftreten können. Fig. 2 zeigt
als Beispiel die Liniendeformation eines Absorptionssignals, falls
a cor. — cor, ist.
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23. Zulässige stochastische Schwankungen des Magnetfeldes.

Die Betrachtungen im vorangegangenen Kapitel erlauben die
Berechnung der zu erwartenden Linienform bei einer bestimmten
Spektraldichte der Magnetfeldschwankungen. Experimentell ist aber
meist nicht die gesamte Spektraldichte in Funktion der Frequenz
bekannt, so dass es wertvoll ist, andere Kriterien der für ein
bestimmtes Auflösungsvermögen des Spektrographen zulässigen
Magnetfeldschwankungen zu besitzen.

Als Kriterium für die Güte eines Kernresonanzsignales wählen
wir den Ensemblemittelwert des totalen quadratischen Fehlers:

CO OO

f2=(J\F(t)-G(t)\2dt)l f\F(t)\2dt (1)

— CO —OO

wobei F(t) das hypothetische Kernresonanzsignal in Abwesenheit
der Magnetfeldschwankungen und G(t) das tatsächlich beobachtete
Signal ist. Im Gegensatz zu Kap. 22 berücksichtigen wir nun auch,
dass üblicherweise zur Aufnahme des Spektrums das B0-Feld*) zeitlich

variiert wird. Der Einfachheit halber nehmen wir an, dass die
absichtliche, nicht stochastische Magnetfeldvariation durch einen
linearen Sweep erzeugt werde, wobei wir der Sweepgeschwindigkeit
im Verlauf der Rechnung keinerlei Einschränkungen auferlegen. Daher

setzen wir das Magnetfeld B0 A co(t)/\ y \ wie folgt an:

Aco(t) at+S(t)+p (2)

wobei a die Sweepgeschwindigkeit, S(t) das stochastisch schwankende

Magnetfeld und p ein adjustierbarer Parameter sei. Ist der
Zweck des Kernresonanzexperimentes eine absolute Messung der
Lage einer Linie, so ist p 0 zu setzen. Interessiert man sich dagegen
lediglich für die relative Lage der einzelnen Kernresonanzlinien
zueinander, so erlaubt eine optimale Bestimmung des Parameters p
eine solche Zentrierung des Kernresonanzspektrums, dass der Fehler

/ möglichst klein wird. Diese Zentrierung des Spektrums
entspricht genau dem Vorgehen in der praktischen Spektroskopie (z. B.
bei Anwendungen auf chemische Probleme), wenn das Spektrum
z. B. durch eine Seitenbandtechnik ausgemessen wird. Die Blochschen

Gleichungen für F resp. G lauten mit Gig. (22.1) somit:

dFjdt + co2F + atF m (3)

dGjdt+co2G + atG + S(t) G + pG m. (4)

*) Man könnte auch die Senderfrequenz zeitlich variieren. Dieser Fall ist nicht
ohne weiteres auf den behandelten zurückzuführen, liefert aber für kleine Signalfehler

dieselben Schlussresultate.
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Eine Fouriertransformation dieser Gleichungen erweist sich als
bequem. Überstrichene Grössen bedeuten im folgenden immer die
Fouriertransformierten, z. B.

00

F(co) (lj2 7z)112 fei0ltF(t) dt. (5)
— oo

Damit erhält man aus (3) :

dFjdco + (co2 — ico) Ffa j/2 n m ô(co)ja

mit der Lösung

F (co) ]/2 n (mja) exp {— coco2ja + ia>2ja} U(co)
wobei

17(a)) 0 für co < 0, U(co) =1 für co > 0 (6)

Aus (4) erhält man

d Gjd co + (co2 — ico) Gja y2 tz m ô(co)ja —
CO

- (ija yWor) f G(co — x) {S(x) + j/2~7r p ô(x)}dx. (7)
— oo

Nehmen wir an, dass der Signalfehler / hinreichend klein sei, so
dürfen wir die Integrodifferentialgleichung (7) iterieren und nach
dem ersten Iterationsschritt abbrechen. In dieser Näherung ist dann
der Signalfehler / linear abhängig von S(t), d. h. ist der Fehler bei
einer bestimmten Schwankungsfunktion S(t) gleich /, so ist der
Fehler bei xS(t) gleich xf (x reelle Zahl). In höherer Näherung ist
der Fehler eine nichtlineare Funktion von S. Die nullte Näherung
von Gig. (7) ist G(co) =F(co), somit die erste Näherung

CO

dGjdco + (co2 — ico) Gja \j27tmò(co)ja—(ija /2n) / F(co — x) x

x{S(x) + \/2npò(x)}dx. -°° (8)

Die Integration von Gig. (8) kann sofort ausgeführt werden und

ergibt nach Einsetzen von Gig. (6) mit G(co) —F(co) A(co) +
pB(co)

0) U

A(co) —i(mja2) e-«W«+i«>2/2« fdu fäxS(x)e*<°,la+ix>l2a-iuxla (9)

—00 —CO

B(m) -i]/2n(mja2)e-(ami'a+imtl2acoU(co) (10)
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Nach dem Parsevalschen Theorem gilt
oo CO

f\F(t)-G(t)\2dt f\A(co)+pB(co)\2dco a + 2py+p2ß (11)
— OO —OO

mit °°

a= j\A(co)\2dco (12)
— OO

oo

ß= f\B(co)\2dco=7im2j(2cola) (13)

y .Re / A(co)B(co)* dco. (14)
— CO

Der Ausdruck (11) stellt den quadratischen Fehler in einem einzelnen

Ensemblemitglied dar und hat bei p — yjß den minimalen
Wert von a — y2jß. Da ß keine stochastische Funktion ist, findet
man für den Ensemblemittelwert des quadratischen Fehlers bei
optimaler Zentrierung,

/2 <a>/77 - (y^jßn (15)

mit der Normierungskonstanten iq :

7]= \F(t)\2dt / \F(co)\2dco =jim2l(co2a) (16)
—oo —oo

während ohne Zentrierung (p 0) der quadratische Fehler grösser
ist und

/2 <«>/>? (17)
beträgt.

Zur Berechnung der Ensemblemittelwerte von a resp. von y2
benötigt man die Ensemblemittelwerte <S(cox) Sfa^*} resp.
(S(n>i) S(ß)g) >, welche durch Fouriertransformation leicht berechnet
werden können. Z. B. ist

OO CO

<S(cox)S(co2)*> (1/2») /'dtxl'd*,e*-'--*-«'<S(tl)i8(g>
-oo —CO

Für einen stationären Prozess ist die Korrelationsfunktion K(tx —12)

<S(tx) S(t2)y nur von der Differenz tx —12 abhängig, so dass wir
nach einer Variablentransformation schreiben können:

OO oo

<[S(cox)S(co2)*y (lj4:7i) fave1«*—M fdu eiu^+^'2 K(u).
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Das erste Integral ist die <5-Funktion, das zweite Integral ist nach
dem Satz von Wiener-Khintchine2)10) die Spektraldichte P(co) von

P(co) \/2nlim^¥\S(co)\^
somit wird :

_ _
(S(cox)S(co2)*y )/2tc ô(cox-co2)P(cox). (18)

Genau analog findet man :

<[S(cox) S(co2)y ]/2n ô(cox + co2) P(cox). (19)

Mit Hilfe von (9), (10), (12), (14), (18), (19) können nun die Grössen
<<x> und <y2> berechnet werden. Es ist dies eine längere, völlig
elementare Rechnung, die hier übergangen sei. Das Resultat ist:

oo

<«>/,- (1/2.)-4/lg^ (20)
0

oo

(y2yjß n (1/2 n) ^J^^C(co) e~2 ^"dco (21)

mit
C(co) =^- 3te ico + -

a
+ -£-} (-Ly ' a { 2co2 + ia> 2 coA { 2 co 2 a)2 — ia>

Somit wird der mittlere quadratische Fehler ohne Zentrierung gleich
CO

/2 (1/2^).4|^|^- (23)
o

während für optimale Zentrierung der Fehler sich berechnet zu
CO

/2 (1/2 n)4^^ {1 - C(co) e-2 —/«} dco. (24)
o

Mit Zentrierung ist der Fehler abhängig von der Sweepgeschwindigkeit

a, den kleinsten Fehler erreicht man bei sehr grossen Sweep-
geschwindigkeiten, im Grenzfall a -> oo findet man :

oo

f2 (lj2n)-?, f /^ .-—g-^do,. (25)' y ' ' J 4cü| + o>2 4tü| + co2

o

Fig. 3 zeigt die Auswertung dieser Relationen, falls P(co) nur eine

einzige Frequenz a>0 enthält

P(co) o-2 \/2n[ô(co + co0) + ô(co- co0)][2 (26)
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mit der Streuung a2 <S(t)2 >. Da sich /2 additiv aus den einzelnen
Anteilen der verschiedenen Frequenzen zusammensetzt, kann für
ein bestimmtes Powerspektrum P(co) der Magnetfeldschwankungen
der zugehörige Signalfehler sofort berechnet werden.

A

- b/ / /
0.1- / 7 // D/

/ /i i i li lll| I l'lllllll
0.01. 0.1 10 100

Fig. 3. >Oj/(Or.

Fehler eines Kernresonanzsignals, falls das Powerspektrum des Magnetfeldnoise
nur bei der Frequenz co nicht verschwindet und die Streuung a aufweist. (Vgl.
Gig. 23—26.) T2 l/co2 ist die Relaxationszeit, a die Sweepgeschwindigkeit

(vgl. Gig. 23—2).
Kurve A: ohne Zentrierung (absolute Messung!)

Kurve A : mit Zentrierung, a -> 0 Kurve G : mit Zentrierung, a co\

Kurve B: mit Zentrierung, a co§/4 Kurve D: mit Zentrierung, a -> oo

(Im Falle B treten erstmals keine Einschwingvorgänge (Wiggels) mehr auf.)

In Fig. 3 ist in logarithmischer Darstellung der Fehler gegen die
Kreisfrequenz co0 aufgetragen. Kurve A gibt den Fehler ohne
Zentrierung, wie ersichtlich sind die Anforderungen der Magnetfeldstabilität

bei tiefen Frequenzen sehr hoch. Für einen bestimmten
Fehler ist in allen Fällen (A, B, C und D) für Kreisfrequenzen
co > 2 co2 eine Zunahme der Streuung a der Magnetfeldschwankungen

von 6dB/Octave mit zunehmender Frequenz zulässig. Kurve D
gilt für sehr grosse Sweepgeschwindigkeiten und optimale Zentrierung.

In diesem Falle ist ausserdem für co < 2 co2 für konstanten
Fehler eine Vergrösserung von a um 6d B/Octave mit abnehmender
Frequenz zulässig. Die Kurven B resp. C sind für Sweepgeschwindigkeiten

von a ft)|/4 resp. a co2 und für den Fall optimaler
Zentrierung gültig, somit ist für a co2 der Fehler bereits nahe dem
theoretisch möglichen Minimum.
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Zusammenfassend können wir also feststellen :

1. Bei absoluten Messungen (d. h. ohne Zentrierung) ist der
quadratische Signalfehler durch die Magnetfeldschwankungen streng
unabhängig von der Sweepgeschwindigkeit.

2. Bei Relativmessungen kann durch geeignetere Zentrierung des

Spektrums der Signalfehler vermindert werden. Den kleinsten Signalfehler

erreicht man dann bei unendlicher Sweepgeschwindigkeit,
doch unterscheidet sich der Fehler bei einer Sweepgeschwindigkeit
von a co2 nur wenig von diesem Minimum. Da bei Sweepgeschwin-
digkeiten von a > cof/4 Einschwingvorgänge8) (Wiggels) auftreten,
die die Interpretation eines Spektrums ausserordentlich erschweren,
wird man nicht mit unnötig hohen Sweepgeschwindigkeiten arbeiten.

3. Zur Frage der besten Messtechnik der Kernresonanz.

Es sei noch kurz auf die Frage eingegangen, durch welche Technik
eines Kernresonanzexperimentes die optimale Information über ein
Kernspinsystem gewonnen werden kann. Als Störquellen seien dabei
lediglich stochastische zeitliche Schwankungen des Magnetfeldes
und das Johnson- und Shotrauschen des elektronischen Eingangskreises

in Betracht gezogen. Dagegen sei das Magnetfeld als exakt
homogen vorausgesetzt und es sei ausdrücklich erwähnt, dass die
meisten der folgenden Resultate in einem wesentlich inhomogenen
Magnetfeld unrichtig werden. Weiter setzen wir voraus, dass der
Experimentator die stochastischen Magnetfeldschwankungen weder
messen noch beeinflussen könne, und dass bei den verschiedenen zu
vergleichenden Methoden die Rauschleistung und der fillingfactor
dieselben seien. Das Kernspinsystem sei durch ein System von
linearen Differentialgleichungen beschrieben, die den Blochschen
Gleichungen analog sind, aber wesentlich komplizierter sein dürfen.
Die durch das Experiment zu beschaffende Information sind dann
die Konstanten, die zu diesem System von Differentialgleichungen
gehören, das seiner prinzipiellen Struktur nach bekannt sei.

Bei der Diskussion dieser Fragen sind zwei Begriffe genau zu
unterscheiden: der Informationsgehalt und der Fehler eines Signals.
Information verstehen wir dabei im Sinne von Shannon9), dagegen
sei der Fehler als ein Mass (z. B. die mittlere quadratische Abweichung)

für den Unterschied des Signals mit den Störeinflüssen und
dem hypothetischen Signal ohne Störeinflüsse definiert. Ist der
Informationsgehalt eines Signals klein, so ist notwendig der Fehler
des Signals gross, wobei aber die Umkehrung nicht wahr zu sein



Vol. 30,1957. Ein Kernresonanzspektrograph mit hoher Auflösung. 313

braucht*). Mit Hilfe der Informationstheorie9) und Methoden der
mathematischen Statistik2)10) können unter den obigen
Voraussetzungen folgende Sätze bewiesen werden :

a) Der optimale Informationsgehalt eines Kernresonanzsignals ist
ausschliesslich durch das thermische Rauschen des Eingangskreises
bestimmt. Diese optimale Information kann durch die stationäre
Messmethodik erreicht werden.

b) Verschiedene Messmethoden, die Signale mit demselben
Informationsgehalt liefern, können verschiedene Signalfehler ergeben.

c) Durch realisierbare nichtlineare Filter ist es bei jeder
Messmethode, die die maximale Information ergibt, möglich, den durch
das schwankende Magnetfeld bewirkten Anteil des Signalfehlers
völlig zu eliminieren. Falls das Spektrum der Magnetfeldschwankungen

im wesentlichen weiss ist, kann durch lineare Filter keine
Verbesserung des durch den magnetischen Noise bedingten Signalfehlers

erreicht werden.
Diese Resultate sind für die hochauflösende Kernresonanzspektroskopie

von einiger Bedeutung, da dabei oft die maximal erreichbare

Auflösung durch das zeitlich schwankende Magnetfeld
bestimmt wird.

Der Beweis der obigen Sätze ergibt keinerlei Hinweise, auf welche
Weise eine Messmethode abgeändert werden könnte, um einen
kleineren Signalfehler zu erhalten. Dieser Sachverhalt war ja zu
erwarten, da wir bis heute keine allgemeine Theorie der nichtlinearen
elektronischen Filter besitzen. Dagegen ist es für den hypothetischen
Fall, dass man das thermische Eingangsrauschen vernachlässigen
kann, nicht schwer, Methoden anzugeben, die die Elimination des

Signalfehlers ermöglichen. Z. B. erhält man bei der stationären
Methode ein trägerfrequentes Signal, das gleichzeitig amplituden- und
frequenzmoduliert ist. Sowohl durch AM- als auch durch FM-De-
modulation kann man ein Absorptionssignal des Kernspinsystems
erhalten, die aber eine voneinander verschiedene funktionelle
Abhängigkeit von den Schwankungen des Magnetfeldes B0 zeigen.
Durch gleichzeitige Anwendung der beiden Demodulationsarten und
durch eine geeignete, nichtlineare Kombination der beiden Signale
kann ein fehlerfreies Absorptionssignal erhalten werden. Eine
elektronische Einrichtung, die dies ermöglicht, ist in diesem Fall angebbar,

aber ziemlich kompliziert. Ausserdem ist die erwähnte
Voraussetzung, dass kein thermisches Rauschen zu berücksichtigen sei, sehr
wesentlich und die Mitberücksichtigung des Johnson-Rauschens er-

*) Jedes nichtsinguläre Filter ändert den Signalfehler, nicht aber den
Informationsgehalt.
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gäbe eine ganz wesentliche Komplikation bei der Konstruktion eines
nichtlinearen Filters. Eine praktische Konstruktion eines
fehlervermindernden nichtlinearen Filters erscheint uns zur Zeit als kaum
möglich; die Ausführungen dieses Kapitels sollten lediglich dazu
dienen, einige Begriffe des Signalfehlers in Kerninduktionsexperimenten

klarzustellen.
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