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Ein Kernresonanzspektrograph mit hoher Auflésung

Teil I: Theorie der Liniendeformationen
in der hochauflosenden Kernresonanzspektroskopie

von H. Primas

Organ.-chem. Laboratorium der Eidg. Technischen Hochschule, Ziirich.

Zusammenfassung. Es werden die Deformationen von Kernresonanzsignalen
durch inhomogene Magnetfelder (quadratisches Feld und raumlich stochastisches
Feld) und durch zeitlich stochastisch schwankende Magnetfelder behandelt. Die
filr eine bestimmte Auflosung noch zuldssigen Magnetfeldschwankungen werden
angegeben und die Frage diskutiert, welche Messtechniken die kleinsten Signal-
verzerrungen ergeben.

Einleitung.

Mit zunehmender Auflosung eines Kernresonanzspektrographen
werden eine Reihe dusserer Storungseinfliisse merklich, die zu Li-
niendeformationen Anlass geben. Von diesen Storeinfliissen sollen
1m folgenden diejenigen genauer behandelt werden, die durch ge-
eignete experimentelle Massnahmen nicht ohne weiteres auf ein zu-
lassiges Mass reduziert werden konnen.

Als theoretische Glundlage fir die Beschrelbung der Kernreso-
nanzerscheinung nehmen wir immer die Giiltigkeit der phéanomeno-
logischen Blochschen Gleichungen?) an. Ausser in den Betrach-
tungen des letzten Kapitels nehmen wir, falls notig, weiter immer
an, dass das Kernresonanzexperiment nach der Blochschen Kreuz-
spulenmethode mit der stationdren Aufnahmetechnik durchgefiihrt
werde, wobel das Absorptionssignal beobachtet werde. Diese An-
nahme 1st ganz unwesentlich, die Resultate konnen sofort auf andere
Techniken iibertragen werden.

In Ubereinstimmung mit M1t und SOoMMERFELD bezeichnen wir den Feldvektor
B immer als Vektor der magnetischen Feldstéirke. Alle Formeln sind durchwegs
in einem 4-dimensionalen Mass-System (z. B. Giorgi’'s MKS Q-System) geschrieben.

Die im folgenden beniitzten Satze aus der Theorie der stochastlsohen Prozesse
finden sich alle z. B. bei Doos?).
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11. Lintendeformation durch die Inhomogenitit des Magnetfeldes.

Das 1m Kernresonanzexperiment von aussen angelegte Magnet-
feld schreiben wir wie tiblich als

B = B e, cos ot — B, e, sin wt+ By e,. (1)

Wie man sich leicht tiberlegt, 1st die Annahme, dass diese dre1 Felder
rechtwinklig aufeimmander stehen, nicht sehr wesentlich. Eine kleine
Ruichtungsinhomogenitit bewirkt lediglich, dass die Grosse des wirk-
samen Storfeldes By etwas gedndert wird. Falls, wie wir im folgenden
immer annehmen werden, keinerlei Sattigungserscheinungen zu be-
riicksichtigen sind (d. h. wenn |y B,| < w, = 1/T, 1st), so tritt bei
einer beliebigen Inhomogenitit des B;-Feldes weder eine Liniendefor-
mation noch eine Linienverbreiterung auf?). Wir kénnen uns des-
halb im folgenden auf die allein wesentliche rdumliche Inhomogeni-
tit des By-Feldes beschrinken. Ist F'(B) die Linienform einer Kern-
resonanzlinie in einem homogenen Magnetfeld B, dann findet man
die Linienform G(B) in einem inhomogenen Magnetfeld B(r)*) durch
Faltung von F mit der auf 1 normierten Dichte D(B) der Kerne im
Magnetfeld B(r):

o0

G(B) = /”F(B') D(B—B') dB’ (2)

oo

f D(B)dB =1.

Die Dichtefunktion D(B) gibt die relative Anzahl der Kerne im
Magnetfeld zwischen B und B + dB. In einfachen Fillen kann man
diese Dichtefunktion durch direkte Integration iiber diejenigen Vo-
lumenelemente erhalten, die sich im Feldbereich (B, B + dB) be-
finden. Im allgemeinen ist es aber bequemer, einen expliziten Aus-
druck fiir D(B) zu beniitzen. Einen solchen kann man leicht erhal-
ten, wenn man beachtet, dass die Deltafunktion 6(B’ — B(r)) ein
Selektionsoperator ist, der diejenigen Volumenelemente auswihlt,
bei denen der Wert der magnetischen Feldstirke B’ betragt, wenn
das von aussen angelegte, inhomogene Magnetfeld B(r) ist. Somit
oilt:

D(B') = (1/V) / S[B'—B(r)]dr (8)

~ *) Unter B(r) sei die z-Komponente des inhomogenen Feldes verstanden. Ein
rdumlich inhomogenes Feld hat zwar notwendig nichtverschwindende z- resp.
y-Komponenten, die jedoch bei kleinen Inhomogenitéaten in der Kernresonanz ver-
nachlassigbar sind.
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wobei die Integration iiber das Probenvolumen ¥V zu erstrecken ist.
Zur Auswertung dieser Beziehung konnen Funktionalrelationen der
d-Funktion angewendet werden (siehe weiter unten).

Falls die natiirliche Linienbreite sehr klein ist im Vergleich zu der
Inhomogenitiat des Magnetfeldes, so ist D(B) eine gute Ndherung
fiir die zu erwartende Linienform eines Absorptionssignals. Im fol-
genden werden wir die Dichtefunktion fiir einige praktisch wich-
tige IPélle angeben.

12. Limenform in einem axialsymmetrischen Feld 2. Ordnunyg.

Das Feld eines nicht durch Shims korrigierten Magneten lésst sich
oft in ausgezeichneter N#herung (vgl. Teil II) durch ein axial-
symmetrisches Magnetfeld zweiter Ordnung darstellen:

B,(r, 9, p) = By+ Byr?(1—3 cos? ¢) (4)
(x=7rsin ¢ cos ¢, y=rsin Fsing, z=r7rcos &

Beniitzt man eine kugelformige Probe vom Radius R, die sich bei
r = 0 befindet, so lautet die Dichtefunktion D(B’) gemiss Glg. (3)

R 27 7T
D(B) = (3/4n R?) / re dy f de [sin 8d9 8[B'— B(r, 8,9)] ()
0 0 0

Zur Auswertung dieser Relation wendet man auf die r-Koordinate
folgende Relation4) der -Funktion an

o(r—m, .
o[f(r)] = %’ W)'(T(—)/O;J—r);; (6)

wobei 7, die Stellen sind, bei denen f(r) das Vorzeichen wechselt,
d. h. im vorliegenden Falle einfach die Nullstellen. Damit erhilt
man

; B d(r—ry) O(r— 1)
o[ B _B(r)] T 2B IT1(1—310082 3)| = 2 B, |7'2(1—320032 9)| (7)

119 = (B — By)'2 (By[1—3 cos? 9]) 1z,

mit

Die verbleibenden Integrationen kénnen nun elementar ausgefiihrt
werden, und man findet fiir die Dichte D(B):

B'— B,
T,
D(B)=(y8/3R2By) {[1+(By—B')| ByR*]"*—/8/2[ (By— B')| B, R*|'* }

tir —2 <222 <0 (8)

DB)=0 . .. ... ... C e e e e e e . . sonst

D(B') = (y3/2R2By)[1+(B,—B')/ B, R"2 . . fiir 0 < <1



300 H. Primas, ; ' H.P.A,

Dabei ergibt sich fir die Halbwertsbreite der Wert 1,0074 R2B,.
Fig. 1a zeigt eine graphische Darstellung dieser Funktion.

!

-é #%,009 | ~;—R, 8,0/6)| %fmuyl
. ] ’

14

T T l T T ) T T T
2 4 0 | —- -1 ) : 2 o b 2 —
E—Ba 88— ) B—BQ
R?8, RB, *R
quadr. Feid iineares Feld stochastisches Feld
<o
Flimud 2543 2 =
e L B8y *ulrf Ba[S[t]kse 2KZa g
a
Fig. 1.

Linienform-Dichte D(B) in verschiedenen, rdumlich inhomogenen Magnetfeldern.
(D(B) ist die Linienform eines Absorptionssignals, falls die natiirliche Linienbreite
sehr klein ist.)

13. Linienform in einem linearen Magnetfeld.

Wird die zweite Ordnung eines Magnetfeldes durch Shims korri-
giert, so konnen durch unexaktes Zentrieren der Shims leicht Feld-
inhomogenititen erster Ordnung eingefiihrt werden, wobel bel
einer Rotation der Probe$) in einem Kerninduktionsexperiment nur
die lineare Variation in der Rotationsachse berticksichtigt zu werden
braucht. Man kann daher fiir das Feld ansetzen:

B(z, y, 2) = Bo+ B1y . )

Die resultierende Dichtefunktion kann fiir eine kugelférmige Probe
mit dem Radius R sofort angeschrieben werden:

D(B) = (3/4ARB)[1—(B'—By)¥R2B?] . . .
tir 0 <|B"— By| < | RB | (10)

welche Funktion in Fig. 1b ebenfalls dargestellt 1st. Die Halbwerts-
breite ergibt sich zu 2 RB;.

- 14. Lamienform in evnem rdumlich stochastischen Magnetfeld.

Soll in einem Kernresonanzexperiment eine sehr hohe Auflésung
erreicht werden, so muss meist der quadratische Term korrigiert
werden, wobel selbstverstindlich darauf geachtet werden muss,
dass keine linearen Terme eingefiihrt werden. Wie in einer folgenden
Arbeit gezeigt werden soll, kann diese Korrektur so erfolgen, dass
der Anteil der iibrig bleibenden hoheren Ordnungen ausserordent-
lich klein ist, so dass das Feld im Mittel als homogen betrachtet
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werden kann. Dagegen fithren die unvermeidlichen Unebenheiten
der Polschuhe zu Feldinhomogenitaten, die wiederum zu Linien-
deformation Anlass geben. <...> bezeichne den Mittelwert in einem
Ensemble, das Ziel ist die Berechnung des Erwartungswertes <D(B’)>
der Linienformdichte D(B") in einem stochastischen Feld B(r). Da-
bei definieren wir <D(B’)> als

(DB = (1Y) [ dv¢8[B'—(B.— By)l) (11)
mit 4

B, = B(r), By= B(0). (12)

Diese Definition von ¢(D(B’))> ist denjenigen Kernresonanzversuchen
angepasst, die nur eine Bestimmung der relativen Lage der Linien
bezwecken. Bei absoluten Messungen, z. B. bei einer absoluten
Kernmomentmessung, dart B, nicht subtrahiert werden.
Setzt man in (3) die Foumerdarstellung der d-Funktion ein, so
erhéalt man &5
(D(BYS = (122 V) f dv f exp (isB’)(exp(—isB, + isBy)> ds

— 00

— (1/2xV) [ dv (isB') g(—s,s) ds (13)
 fin o

—00

wobel ¢(s, t) die charakteristische Funktion der 2-dimensionalen
Wahrscheinlichkeitsverteilung W (B,, B) ist:

@(s,1) = e Brrithoy — / A /dy eiSTHLI (1) . (14)

—OO

(Die Integrale sind immer im Lebesgue- Stieltjesschen Sinne zu ver-
stehen.)

Dabei 1st W(zx, y) die Wahrscheinlichkeit dafiir, dass B, = B(r)
den Wert x und By, = B(0) den Wert y aufweist. Setzt man (14) in
(13) ein, so erhélt man

(D(B)> = (1/T/’)fdr / daW(z, 1 — B'). (15)

Praktisch bedeutet es keine wesentliche Einschrankung, wenn wir
1m folgenden annehmen, dass die Unebenheiten der Polschuhe einen
zweidimensionalen Gauss’schen stochastischen Prozess darstellen.
Dann folgt auch (vgl. 5)), dass das Magnetfeld eine Gauss’sche Ver-

*
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teilung hat. Mit den bekannten Beziehungen fiir eine zweidimensio-
nale Gauss’sche Verteilung W(z, y) mit <x> = <> =0

W(x,y) = (2701051 — 0%~ texp{3(1—0?) " x
x [22[o} + y?lo]—2 oxyloy 0p]}  (16)
wobel
03 = {x?y, o = <Y?>, po,0, = <TY).

Damit folgt dann durch elementare Rechnung aus (15):

DBy = (V) [dr(y2a| B(r)l) o2 20 (17)

wobel

p2(r) = <[B(r) — B(0O)]*>. (18)

In emner folgenden Arbeit3) werden wir zeigen, dass fiir alle prak-
tisch wichtigen Falle die Funktion §(r) wie folgt geschrieben werden
kann

BAr) = (224 222 4 y?/2) »? (19)

mit
X% = (27)3 Bg/S(k) s 2% d (20)
0

wobel B, der Mittelwert des Feldes, 2z, der Polschuhabstand und
S(k) die Spektraldichte der Polschuh-Randflachen ((z, y) 1st

(<§(m’ y)>x,y = + Zp resp. = —ZO):

[o.9]

S(k) = (1/2 ﬂ)3fK(9) Jo(ok) e de (21)

0

mit der Korrelationsfunktion K(p)

K(o) =K(Va?+y2) = <& n) &+ 2,9+ y)de.,

wobel der Mittelwert iber die gesamte Polschuhfliche zu erstrecken
1st. (Fir eine ausfithrliche Diskussion vgl. 5).).

Die Ausfihrung der Integration in Glg. (8) tber eine kugelfor-
mige Probe fiihrt auf sehr komplizierte Funktionen, wogegen die
Integration iiber emn Ellipsoid mit den Hauptradien B,=E,=R und
R,=R/y 2 einfach ist und auch fiir eine kugelférmige Probe genii-
gend genaue Resultate liefert. Durch Einftthrung von Ellipsoid-
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koordinaten £ = Rr sin & cos p, y = Rrsin & sin g, 2 = Rr cos 9/)/ 2,
drv = (R3[)2)r? sin ddrdddy, 0 <r <1, wird

B = =Rrjy2
und damit aus Glg. (17)
1

(D(B)> = (3R Vz) / re-B xR gy

=(3/2xR Y x) fa:‘z e—*B" ¥R dp

1

oder mit — Ev(— x) =f(e—*/t) dt:

(D(B")y = (8/2 ymxR) {e~B"1* R 1 (B'x?R?) Bi(— B'¥»*R?) }. (22)

Die Halbwertsbreite betrigt 1,084 xR, der Funktionsverlauf ist in
Fig. 1¢ dargestellt. Bemerkenswert ist, dass die Linienform im De-
tail nicht vom Spektrum der Polschuhe abhingig ist, sondern nur
von der vom Spektrum der Randflachen abgeleiteten Grosse ».

15. Lanienform in einem stochastischem Magnetfeld
beu rotierender Probe.

Verwendet man eine um die y-Achse rotierende Probe®) mit dem
Zentrum bel x,, 25, so ist das stochastische Feld B(z, y, 2) durch
seinen Rotationsmittelwert BE(P, Z)

BE(P, Z) = (1/2 7) fw Bdg (23)

(x=xy+Pcosp, y=27, z=2z,+Psing)

zu ersetzen. Fiir dieses Feld findet man 5) in einer praktisch meist
giiltigen Approximation (nicht zu grosse Proben) fiir die Funktion
B(r) von Glg. (18)
BUr) = 22 Z2/2 + O(x* Z2, »* P4, x4 72 P?)
mit demselben » wie in Glg. (20).
Die Integration (17) iiber eine kugelférmige Probe mit dem Ra-
dius R ergibt damit:
: R VR-Z*

D(B) = (3)yz »R?) [ dZ [ Z-*e=2"#2 PiP.
o
0 0

Dre Substitution z = 1/Z2 ergibt sofort
<D(B’)> = (3/2 ]/Ex R) {_ (1+BI2/%2R2) E?}(_ sz/xg R?) _B_B:a/ngz}.
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Diese Dichtefunktion divergiert bei B” = 0 logarithmisch, erst durch
die Faltung (Glg. 2) mit der Linienform in einem homogenen Feld
erhdlt man ein physikalisch sinnvolles, nicht divergentes Resultat.
Diese Divergenz zeigt, dass eine bedeutende Verminderung der
Einfliisse der Inhomogenitidt erreicht wurde, da die Divergenz je-
doch nur logarithmisch ist, bleiben aber immer noch wesentliche
Anteile der Inhomogenitéaten. Die Ausfithrung der Faltung fiihrt
auf recht komplizierte Funktionen, 1. A. resultieren Linienformen,
die in der Umgebung des Maximums sehr schmal sind, aber einen
sehr breiten Fuss aufweisen. Solche Linienformen werden experi-
mentell bei sehr hohen Auflésungen oft beobachtet.

2. Liniendefiormation durch die zeitliche Instabilitit des Magnetieldes.

21. Eainleitung.

Bei der Diskussion der zeitlichen Instabilitdt des Magnetfeldes
kénnen wir uns wiederum auf das By-Feld beschréinken, da man
durch geeignete experimentelle Massnahmen eine gentigend hohe
Konstanz des B;-Feldes erreichen kann, worauf wir in der folgenden
Arbeit noch zurtickkommen werden. Dagegen sind die stochasti-
schen Schwankungen des By-Feldes von entscheidender Bedeutung
fiir die maximal erreichbare Auflésung eines Kerninduktionsspek-
trographen. Im folgenden werden wir zeigen, zu welchen Linien-
deformationen ein zeitlich stochastisch variables Feld Anlass gibt
und in welchen Grenzen sich die Magnetfeldschwankungen (Magnet-
feld-Noise) halten miissen, wenn man eine bestimmte Auflésung er-
reichen will. Diese Resultate werden z. B. bei der Berechnung elnes
Magnetfeldstabilisators benotigt?).

22. Der Erwartungswert der Magnetisierung wn einem stochastischen
BU'FBld.

Wir fithren die Rechnungen auf Grund der Blochschen Gleichun-
gen durch. Fiir den Fall kleiner B;-Felder, der fiir die hochaufldsende
Spektroskopie ja allein in Frage kommt, lauten die Blochschen
Gleichungen bekanntlichs)

dFjdt+ 0y F +ido() F =m (1)

mit der Losung

F(t) = mftexp

—f(werMa)) ar! ax C@©

i B
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mit m = —|v| B;M,
wy, = 1/T,
Ao(t) =y [ Bo(t) —
Y = gyromagnehsches Verhaltnis des Kernes

Die Magnetisierung in der y-Richtung ist dann M, = Realteil
(Fe—t*?), Das mit y multiplizierte Magnetfeld Aw(f) spalten wir nun
auf in einen konstanten (resp. zeitlich hinreichend langsam variablen)
Anteil ® und in eine stochastische Funktion g()

Aw(t) = o +g(t) (3)

wobel wir von der Funktion ¢(t) voraussetzen, dass ithre Verteilungs-
funktion Gauss’sch sei. Weiter normieren wir den Mittelwert von
g zu Null, <g(f) > = 0 wobei <...> wieder den Ensemblemittelwert
bedeuten soll. Nun gilt fiir eine Gauss’sche stochastische Funktion
G(f) mit <G> = 0 bekanntlich immer

Cexp (iG)y = exp (—(G?/2).

Da mit g auch G'= [gdt eine Gauss’sche stochastische Funktion ist,
folgt aus (2) fir den Erwartungswert von F

Fy = m[exp { (t—17) (wy + 1 @) — fg(T)dT)z>/2}dr

Fiir einen Gauss’schen Prozess gilt weiter

Y(t) g(ts)> = Bty — 1)
wobei R(f) = R(—t) die Autokorrelationsfunktion von g(f) 1st.

R(t) = lim (1/2 1) / g(s) g(s +1) ds.

Damit findet man nach einer kleinen Umformung fiir den Erwar-
tungswert von F ?

T

() = m/pexp {— Wy S—1 WS — /Sda:f R(y) dy}ds § (4)
0 0 0

Gemiss dieser Beziehung ist es also bei Kenntnis des Spektrums
der Magnetfeldstorungen leicht moglich, den Erwartungswert der
Magnetisierung zu berechnen. Wir wollen hier nur zwei wichtige
Spezialfille genauer diskutieren.
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a) Spezialfall, dass der Magnetfeldnoise ,,weiss ist. Ist die Spek-
traldichte des Magnetfeldnoise bis zu einer gewissen hohen Fre-
quenz o* konstant, so findet man aus Glg. (4):

m &
<F> - tw+ wy+0%/4 B (O)

wobel ¢?/B die Varianz von g(t) pro Einheit der Bandbreite B ist.
~ Eine genauere Diskussion zeigt, dass diese Formel giiltig ist, falls
0*> 0, 0* > w,, 0¥ > ¢%4B. Somit zeigt im Fall von weissem
magnetischem Noise der Erwartungswert der Magnetisierung kewne
Liniendeformation, dagegen tritt aber eine Linienverbresterung von wy
auf wy + 0%/4B auf.

b) Spezialfall, dass der Magnetfeldnoise sehr schmalbandig st. Ist
der Magnetfeldnoise beinahe monochromatisch mit der Zentrums-
frequenz w,, so ergibt die Auswertung von (4):

1
Wg+ 4 (@ + 1 ay)

<I{1> _ memg2lw202 In(O-Z/wg)

7= —00

(6)

Re (F)/m

-4 -2 0 2 4 wfw,

Fig. 2.
Erwartungswert der Linienform eines Absorptionssignals, falls der Magnetfeldnoise
beinahe monochromatisch ist. (Zentrumsfrequenz w, Streuung des Noise o,

wy = wy = 0.) Die gestrichelte Kurve ist die entsprechende Linienform ohne
Magnetfeldnoise.

wobel I, die modifizierten Besselschen Funktionen sind und o2 =
<g%> die Varianz des Noise bedeutet. Dieser Fall zeigt, dass sehr
betrachtliche Liniendeformationen auftreten kénnen. Fig. 2 zeigt
als Beispiel die Liniendeformation eines Absorptionssignals, falls
0 = wy = W, ist.
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23. Zulissige stochastische Schwankungen des Magnetfeldes.

Die Betrachtungen im vorangegangenen Kapitel erlauben die Be-
rechnung der zu erwartenden Linienform bei einer bestimmten Spek-
traldichte der Magnetfeldschwankungen. Experimentell ist aber
meist nicht die gesamte Spektraldichte in Funktion der Frequenz
bekannt, so dass es wertvoll ist, andere Kriterien der fiir ein be-
stimmtes Auflosungsvermogen des Spektrographen zuldssigen Ma-
gnetfeldschwankungen zu besitzen.

Als Kriterium fiir die Giite eines Kernresonanzsignales wihlen
wir den Ensemblemittelwert des totalen quadratischen Fehlers:

f2=( fm |F(t) — G(t)|2 dty / ﬁF(t)lzdt (1)

wobei F(t) das hypothetische Kernresonanzsignal in Abwesenheit
der Magnetfeldschwankungen und G(f) das tatsachlich beobachtete
Signal ist. Im Gegensatz zu Kap. 22 beriicksichtigen wir nun auch,
dass iiblicherweise zur Aufnahme des Spektrums das By-Feld*) zeit-
lich variiert wird. Der Einfachheit halber nehmen wir an, dass die
absichtliche, nicht stochastische Magnetfeldvariation durch einen
linearen Sweep erzeugt werde, wobel wir der Sweepgeschwindigkeit
1m Verlauf der Rechnung keinerlei Einschrankungen auferlegen. Da-
her setzen wir das Magnetfeld By, = 4 w(f)/|y| wie folgt an:

Aw(t) = at+ S{t) +p (2)

wobel a die Sweepgeschwindigkeit, S(f) das stochastisch schwan-
kende Magnetfeld und p ein adjustierbarer Parameter sei. Ist der
Ziweck des Kernresonanzexperimentes eine absolute Messung der
Lage einer Linie, so ist p = 0 zu setzen. Interessiert man sich dagegen
lediglich fiir die relative Lage der einzelnen Kernresonanzlinien zu-
einander, so erlaubt eine optimale Bestimmung des Parameters p
eine solche Zentrierung des Kernresonanzspektrums, dass der Feh-
ler f moglichst klein wird. Diese Zentrierung des Spektrums ent-
spricht genau dem Vorgehen in der praktischen Spektroskopie (z. B.
bei Anwendungen auf chemische Probleme), wenn das Spektrum
z. B. durch eine Seitenbandtechnik ausgemessen wird. Die Bloch-
schen Gleichungen fiir I resp. G lauten mit Glg. (22.1) somit:

dF/dt+ wy F +atF =m (3)
dGldt+ w, G+at G+ St G+pG =m. (4)

*) Man kiénnte auch die Senderfrequenz zeitlich variieren. Dieser Fall ist nicht
ohne weiteres auf den behandelten zuriickzufiihren, liefert aber fiir kleine Signal-
fehler dieselben Schlussresultate.
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Eine Fourlertransformation dieser Gleichungen erweist sich als
bequem. Uberstrichene Grossen bedeuten im folgenden immer die
Fouriertransformierten, z. B.

oo

Flw) = (1/2 n)”zfei‘“‘F(\t) dt. (5)

Damit erhélt man aus (3):

AF|dw + (w, — i) Fla = Y27 mé(w)/a
mit der Losung | |

F(w) = V27 (mfa) exp {— wwyfa+ina} Ulw)
wobel
U(w) =0 fir o <0, Ulw) =1 firew > 0. (6)

Aus (4) erhélt man
AdGld o + (w, — i) Gla = Y27 mé(w)/a —

— (ija Y9 ) / G(o — @) {S() + Y27 p 8(a)} . (7)

Nehmen wir an, dass der Signalfehler f hinreichend klein sei, so
dirfen wir die Integrodifferentialgleichung (7) iterieren und nach
dem ersten Iterationsschritt abbrechen. In dieser Néherung ist dann
der Signalfehler f linear abhéngig von S(f), d. h. ist der Fehler bei
einer bestimmten Schwankungsfunktion S(f) gleich f, so ist der
Fehler bei %#S(t) gleich »f (x reelle Zahl). In hoherer Néherung ist
der Fehler eine nichtlineare Funktion von S. Die nullte Néherung
von Glg. (7) ist G(w) = F(w), somit die erste Naherung

dGFdw + (0y—iw) Gla=y2zmd(w)a—(ijay2z) f Flo—x) x
x {S(z) + 2 pd(x)}dx. 7 (8)

Die Integration von Glg. (8) kann sofort ausgefiithrt werden und

ergibt nach Einsetzen von Glg. (6) mit G(w) — F(w) = A(w) +
pB(w)

w w V
A(w) = —i(m/a?) e-oolatiotiza / du / daS(z)er wletizize=ivaa  (9)

B(w) = — 127 (mfa)e-vwationze o U(aw) . (10)
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Nach dem Parsevalschen Theorem gilt

J1F@) —6)]2dt = [|4(w) +pBlo)Pdo = a+2py+p*p  (11)

mit =
o :f[A(w)Pdw (12)
B~ [1Bo)?do —am¥@efa) (13
y = ‘RefA(w)B(a))*dw. (14)

Der Ausdruck (11) stellt den quadratischen Fehler in einem einzel-
nen Ensemblemitglied dar und hat bei p = — y/ den minimalen
Wert von « —92%/8. Da B keine stochastische Funktion ist, findet
man fir den Ensemblemittelwert des quadratischen Fehlers bei
optimaler Zentrierung,

2= <ay/n— y%/fn (15)

mit der Normierungskonstanten #:
n=[IF@dt = [ |F@)]?do = 2 m¥(wy0) (16)

wihrend ohne Zentrierung (p = 0) der quadratische Fehler grosser
15t und

2 = Cayin (17)
betragt. .

Zur Berechnung der Ensemblemittelwerte von « resp. von y2
bendtigt man die Ensemblemittelwerte <S(w;) S(wg)*> resp.
(8(w,) S(wy)>, welche durch Fouriertransformation leicht berechnet
werden konnen. Z. B. ist

(Slon) S(wg)*y = (12m) [ty [atyeioteiont (S(h) S(ta)

Fiir einen stationaren Prozess ist die Korrelationsfunktion K(t; —i,)
= <S(t) S(t)> nur von der Differenz t,—1, abhéngig, so dass wir
nach einer Variablentransformation schreiben kénnen:

{8(wy) S(wy)*> = (1/4 7) f dv eivm—2/2 f du gumtadl2 K (y)
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Das erste Integral ist die 6-Funktion, das zweite Integral ist nach
dem Satz von Wiener-Khintchine?)1?) die Spektraldichte P(w) von

S(0) L

somit wird: -

(Slwy)S(we)*> = V2m 6(w;— wy) Plwy). (18)
Genau analog findet man:

<§(w1) S—(w2)> = 27 6(wy + wy) Ploy). (19)

Mit Hilfe von (9), (10), (12), (14), (18), (19) konnen nun die Gréssen
{a» und <y?> berechnet werden. Es ist dies eine langere, vollig ele-
mentare Rechnung, die hier iibergangen sel. Das Resultat ist:

P(w)d
(o= (1j27) 4 f T (20)
@Ipn = (1/27)" 4f dot s Clo) e 2o do (21)
mit
a a 1 1
Ote) = {w+ 2+iw+2w2}{2w2 T 2wz——iw+

+ 27 (L—exp[—iw?a])}- (22)
Somit wird der mittlere quadratische Fehler ohne Zentrierung gleich
1/2 7)-4 f e (23)

wahrend fiir optimale Zentmerung der Fehler sich berechnet zu
f2=(1/2x)- 4/ 5 2+ - {1 — C(w) e—2ww2/a}dw (24)

Mit Zentrierung ist der Fehler abhéngig von der Sweepgeschwmdlg-
keit a, den kleinsten Fehler erreicht man bei sehr grossen Sweep-
geschwindigkeiten, im Grenzfall @ > co findet man:

2= (1/27)-3 / 460%(?&)2 T et Ll (25)
0

Fig. 3 zeigt die Auswertung dieser Relationen, falls P(w) nur eine
einzige Frequenz w, enthalt

P(w) = 62Y2r[8(0 + o) + 8w — ) ]2 (26)
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mit der Streuung o2 = (S(#)2 >. Da sich f* additiv aus den einzelnen
Anteilen der verschiedenen Frequenzen zusammensetzt, kann fir
ein bestimmtes Powerspektrum P(w) der Magnetfeldschwankungen
der zugehorige Signalfehler sofort berechnet werden.

2
g 13
':é\ B
5 |
..{
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T T \]lTVII T T l]\!]il T f{llllll T I T TTTTT
001. o1 1 10 100

Fig. 3. > w/o,
Fehler eines Kernresonanzsignals, falls das Powerspektrum des Magnetfeldnoise
nur bei der Frequenz o nicht verschwindet und die Streuung o aufweist. (Vgl.
Glg. 23—26.) T, = 1/w, ist die Relaxationszeit, @ die Sweepgeschwindigkeit
(vgl. Glg. 23—2). '
Kurve A: ohne Zentrierung (absolute Messung!)
Kurve 4: mit Zentrierung, ¢ - 0 Kurve C': mit Zentrierung, a = w3
Kurve B: mit Zentrierung, @ = ®w§/4  Kurve D: mit Zentrierung, ¢ — oo
. (Im Falle B treten erstmals keine Einschwingvorgiange (Wiggels) mehr auf.)

In Fig. 3 ist in logarithmischer Darstellung der Fehler gegen die
Kreisfrequenz w, aufgetragen. Kurve 4 gibt den Fehler ohne Zen-
trierung, wie ersichtlich sind die Anforderungen der Magnetfeld-
stabilitat bei tiefen Frequenzen sehr hoch. Fiir einen bestimmten
Fehler ist in allen Fillen (4, B, C und D) fiir Kreisfrequenzen
w > 2 wy eine Zunahme der Streuung o der Magnetfeldschwankun-
gen von 6dB/Octave mit zunehmender Frequenz zulassig. Kurve D
gilt fiir sehr grosse Sweepgeschwindigkeiten und optimale Zentrie-
rung. In diesem Falle ist ausserdem fiir w < 2 w, fiir konstanten
Fehler eine Vergrdsserung von ¢ um 6d B/Octave mit abnehmender
Frequenz zuldssig. Die Kurven B resp. C sind fiir Sweepgeschwin-
digkeiten von a = w%/4 resp. a = w2 und fiir den Fall optimaler
Zentrierung giiltig, somit ist fiir a = w? der Fehler bereits nahe dem
theoretisch moglichen Minimum.
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Zusammenfassend konnen wir also feststellen:

1. Bei absoluten Messungen (d. h. ohne Zentrierung) ist der qua-
dratische Signalfehler durch die Magnetfeldschwankungen streng
unabhéngig von der Sweepgeschwindigkeit.

2. Bei Relativmessungen kann durch geeignetere Zentrierung des
Spektrums der Signalfehler vermindert werden. Den kleinsten Signal-
fehler erreicht man dann bei unendlicher Sweepgeschwindigkeit,
doch unterscheidet sich der Fehler bei einer Sweepgeschwindigkeit
von @ = o2 nur wenig von diesem Minimum. Da bei Sweepgeschwin-
digkeiten von a > w?2/4 Einschwingvorgiange?®) (Wiggels) auftreten,
die die Interpretation eines Spektrums ausserordentlich erschweren,
wird man nicht mit unnétig hohen Sweepgeschwindigkeiten arbeiten.

3. Zur Frage der besten Messtechnik der Kernresonanz.

Es se1 noch kurz auf die Frage eingegangen, durch welche Technik
eines Kernresonanzexperimentes die optimale Information iiber ein
Kernspinsystem gewonnen werden kann. Als Storquellen seien dabei
lediglich stochastische zeitliche Schwankungen des Magnetfeldes
und das Johnson- und Shotrauschen des elektronischen Eingangs-
kreises in Betracht gezogen. Dagegen sei das Magnetfeld als exakt
homogen vorausgesetzt und es sei ausdriicklich erwidhnt, dass die
meilsten der folgenden Resultate in einem wesentlich inhomogenen
Magnetfeld unrichtig werden. Weiter setzen wir voraus, dass der
Experimentator die stochastischen Magnetfeldschwankungen weder
messen noch beeinflussen kénne, und dass bel den verschiedenen zu
vergleichenden Methoden die Rauschleistung und der fillingfactor
dieselben seien. Das Kernspinsystem sei durch ein System von li-
nearen Differentialgleichungen beschrieben, die den Blochschen
Gleichungen analog sind, aber wesentlich komplizierter sein dirfen.
Die durch das Experiment zu beschaffende Information sind dann
die Konstanten, die zu diesem System von Differentialgleichungen
gehoren, das seiner prinzipiellen Struktur nach bekannt sei.

Bei der Diskussion dieser Fragen sind zwei Begriffe genau zu
unterscheiden: der Informationsgehalt und der Fehler eines Signals.
Information verstehen wir dabei im Sinne von SmaNNoN?®), dagegen
sel der Fehler als ein Mass (z. B. die mittlere quadratische Abwei-
chung) fiir den Unterschied des Signals mit den Storeinfliissen und
dem hypothetischen Signal ohne Storeinflisse definiert. Ist der
Informationsgehalt eines Signals klein, so ist notwendig der Fehler
des Signals gross, wobei aber die Umkehrung nicht wahr zu sein
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braucht*). Mit Hilfe der Informationstheorie?) und Methoden der
mathematischen Statistik2)1?) kénnen unter den obigen Voraus-
setzungen folgende Sétze bewiesen werden:

a) Der optimale Informationsgehalt eines Kernresonanzsignals ist
ausschliesslich durch das thermische Rauschen des Eingangskreises
bestimmt. Diese optimale Information kann durch die stationére
Messmethodik erreicht werden.

b) Verschiedene Messmethoden, die Signale mit demselben Infor-
mationsgehalt liefern, konnen verschiedene Signalfehler ergeben.

¢) Durch realisierbare nichtlineare Filter ist es bei jeder Mess-
methode, die die maximale Information ergibt, moglich, den durch
das schwankende Magnetfeld bewirkten Anteil des Signalfehlers
vollig zu eliminieren. Falls das Spektrum der Magnetfeldschwan-
kungen im wesentlichen weiss ist, kann durch lineare Filter keine
Verbesserung des durch den magnetischen ¢\01se bedingten Signal-
fehlers erreicht werden.

Diese Resultate sind fiir die hochauﬂ('jsende Kernresonanzspek-
troskopie von einiger Bedeutung, da dabel oft die maximal erreich-
bare Auflésung durch das zeitlich schwankende Magnetfeld be-
stimmt wird.

Der Beweis der obigen Sétze ergibt keinerler Hinweise, auf welche
Weise eine Messmethode abgeindert werden kénnte, um einen klei-
neren Signalfehler zu erhalten. Dieser Sachverhalt war ja zu er-
warten, da wir bis heute keine allgemeine Theorie der nichtlinearen
elektronischen Filter besitzen. Dagegen ist es fiirden hypothetischen
Fall, dass man das thermische Eingangsrauschen vernachlassigen
kann, nicht schwer, Methoden anzugeben, die die Elimination des
Signalfehlers ermoglichen. Z. B. erhiilt man bei der stationidren Me-
thode ein trigerfrequentes Signal, das gleichzeitig amplituden- und
frequenzmoduliert ist. Sowohl durch AM- als auch durch FM-De-
modulation kann man ein Absorptionssignal des Kernspinsystems
erhalten, die aber eine voneinander verschiedene funktionelle Ab-
hiangigkeit von den Schwankungen des Magnetfeldes B, zeigen.
Durch gleichzeitige Anwendung der beiden Demodulationsarten und
durch eine geeignete, nichtlineare Kombination der beiden Signale
kann ein fehlerfreies Absorptionssignal erhalten werden. Eine elek-
tronische Einrichtung, die dies erméglicht, 13t in diesem Fall angeb-
bar, aber ziemlich kompliziert. Ausserdem ist die erwahnte Voraus-
setzung, dass kein thermisches Rauschen zu berticksichtigen sei, sehr
wesentlich und die Mitberiicksichtigung des Johnson-Rauschens er-

*) Jedes nichtsingulire Filter &ndert den Signalfehler, nicht aber den Infor-
mationsgehalt.
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gibe eine ganz wesentliche Komplikation bei der Konstruktion eines
nichtlinearen Kilters. Eine praktische Konstruktion eines fehler-
vermindernden nichtlinearen Filters erscheint uns zur Zeit als kaum
moglich; die Ausfithrungen dieses Kapitels sollten lediglich dazu
dienen, einige Begriffe des Signalfehlers in Kerninduktionsexperi-
menten klarzustellen.

Ich danke dem Schweizerischen Nationalfonds zur Foérderung der Wissen-
schaften (Projekt Nr. 201 und 721) und der Firma F. Hoffmann-La Roche & Cie.
AG., Basel fiir die Unterstiitzung dieser Arbeit. Herrn Prof. Hs. H. GUNTHARD bin
ich fiir viele Diskussionen zu Dank verpflichtet.
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