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Théorie de la Radiation de Photons de Masse
Arbitrairement petite*)

par E.C. G. Stueckelberg
Institut de Physique de 1'Université, Genéve (Suisse).

(10. XI. 1956.)

If the photon has a mass iu + 0, a canonical transformation yields a Hamilto-
nian containing the energies: 1. of the charged field (including the Yukawa poten-
tial energy); 2. of the transversal and longitudinal photons and 3. an interaction
term. The interaction term between charge and longitudinal photons is smaller
than the transversa term by a factor u/w, if Zw is the photon energy. Thus the
limit u — 0, which replaces the Yukawa potential by the Coulomb potential, is
possible. The longitudinal photons, presenting no interaction, can pass freely
through the walls of a cavity and Planck’s radiation law holds. The necessary and
sufficient condition for this result is the continuity equation for electric charge.

1. Introduetion et Résultat.

Dans une électrodynamique dont les photons ont une masse au**)

non nulle, les potentiels Aet @ apparaissent explicitement, multi-
pliés par u?, dans les premiers membres des équations inhomogénes
de MaxwrLL. Il s’ensuit que I’équation de continuité de la charge
électrique cesse d’étre une conséquence de ces équations. Le but
de cet article est de démontrer que la conservation de la charge est
essentiellement la seule condition qui doit étre réalisée pour que,
dans la limite ol la masse du photon tend vers zéro (u > 0), seules
les ondes de polarisation transversale (1) présentent une intéraction
avec la matiére. Les ondes longitudinales (I) ne sont ni émises, ni
absorbées. Ainsi, & la limite, une enceinte n’est en équilibre ther-
mique qu’avec les photons transversaux, les photons longitudinaux
traversant librement ses parois. La loi du rayonnement de Prnanck
est donc assurée. Bass et SCHROEDINGER!) ont récemment illustré
ce phénomeéne en prouvant que, dans la limite considérée, les pho-
tons longitudinaux ne peuvent &tre absorbés par un conducteur.

*) Recherche subventionnée par la Commission Suisse de I’Energie Atomique
(C. 8. A)).

**¥) La vitesse de la lumiére est choisie comme unité de vitesse.
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Nous avons montré ailleurs?) que la puissance rayonnée par un di-
pole, oscillant avec la pulsation w, comporte le terme habituel dt a
I'onde transversale, et un terme plus petit dans le rapport p?2 w?
dt 4 I'onde longitudinale.

Dans cet article, nous démontrons le théoréme suivant. S1 ’ha-
miltonienne covariante H, dont résultent les équations de MAXWELL
et les équations du mouvement de la matiére en intéraction avec le
champ électromagnétique, est une somme de deux termes:

H :'He.m. [E’ Er’ Q] + Hmat [p’ q; E] (11)

ot I/ est le champ électrique, o la densité de charge, et ou p ct g
symbolisent les variables canoniques décrivant la matiére, @l existe
une transformation canonique, transformant une grandeur X en X;

XX AR XYY+ (1.2)

telle que la tmfnsfo'rmée de H ait la forme:

HZZ 2 a’:,nak,nwk,n+

5 =123

_’l o= }- _ - | ] 7
ta | [AVE AVE) @), e o(@) + Hy [0, A7) (13)
avec: wy = V;Tlik \2 r=|x—3z'] a,, sontles amplitudes ca-
noniques des ondes de vecteur d’onde k (compatible avec un volume
de périodicité V). Les indices n = 1, 2 se référent aux deux polari-
sations transversales €, et €,,, et =3 & la polarisation longitu-
dinale €. H est donc formée de la somme des énergies de toutes
les ondes possibles, de I’énergie de Yukawa et de I'énergie de la

matiere soumise au champ de radiation A® (dans lequel Iampli-
tude longitudinale € ; a; 3 apparait réduite parle facteur u/w, par
rapport aux amplitudes transversales € 4 4y 1 et €55 @ 5.
CoesTER®) a trouvé ce méme facteur u?/wi dans le formalisme
d’intéraction (matrice S). Dans ce formalisme, I'analogie formelle
entre u = 0 et lim g = 0 a aussi été démontrée par UMEZAWAY) et
Grausgr?®). Ces trois auteurs sont obligés d’imposer une condition
supplémentaire & un champ ayant plus de trois «polarisations», dont
I'une correspond & des énergies négatives. Notre méthode évite ce

*) {F, X} est la parenthése de Poisson correspondant & ¢[F, X]/% en théorie
quantique; (1.2) peut s’écrire dans ce cas: X — exp(iF/k) X exp(—iF/h).

k) 4 Ay et i %ak » Sont, en theorle quantique, les opérateurs d’annihilation
et de creatlon d’un photon dans I'onde (k n). L’indice k symbolise le vecteur ¥ en
@y, , € e,,c n
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détour. On peut obtenir une matrice S invariante en suivant une
methode analogue a celle esquissée dans un article antérieur®).

Il est remarquable que la limite w - 0 n’existe pas pour I’hamil-
tonienne initiale H (cf. 2,4). Par contre, elle peut étre effectuée sans

difficulté dans H et conduit au résultat attendu: A® ne contient
plus que les amplitudes transversales €, a,, et €5 a; 5 ¢t ’énergie
de Yukawa devient 1’énergie de Coulomb. La démonstration vaut
en théorie classique aussi bien qu’en théorie quantique du fait de
la correspondance entre parenthéses de Poisson et commutateurs.

Les conditions pour que la transformation canonique donnant
(1.3) existe sont:

(B(#),0(@)}=0; {A(@),0()}=0 (1.4)
{e(x).0(2")}=0 (1.5)
é :{H’Q}:{Hnla‘o.’ Q}: —div j (16)
ott J est la densité de courant définie par:
T 6Hm t. i
Ji(@) =— —"8 =J,[p,q A4]. 1.7
(0) == am =P oAl (1.7)

Les conditions (1.4) & (1.6) sont vérifiées en théorie non-relativiste
et relativiste de particules ponctuelles, ainsi que par tous les types
de champs matériels, méme en présence d’intéraction mutuelle non
électromagnétique, & condition qu’elle préserve I’équation de conti-
nuité (1.6).

2. L’Hamiltonienne Covariante.
Sip + 0, 4 est canoniquement conjugué au champ électrique E;
{A4,2),E, (x")}= 8, 6(x —x'). (2.1)

S
Les autres parenthéses s’annulent. Le champ magnétique B et
le potentiel scalaire @ sont définis par:

e’

A — —
B[A]=rot 4 . (2.2)
®[H, o] = p 22— divE). (2.3)

H est la quatriéme composante du quadrivecteur impulsion-éner-
gie, le terme H, ayant la forme:

Hop[AB.g)= g [aV (BB e@say]

= HY,, [4,E]+, 2de 20 div i + 0?).
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Les équations du mouvement résultant de (2.4) sont, en vertu de
(1.4)—(1.7) et (2.1):

Z:{H,Z}:ﬁ%z—ﬁﬁ—gradQ (2.5)
= {H B} =% ot By d - (2.6)

(2.2) et (2.5) donnent les deux équations de Maxwell homogenes :

N S .
divB=0  B=-—rotE. (2.7)

(2.3) et (2.6) sont les équations inhomogénes de Maxwell, qui ont
pour consequence:

o +divJ = u¥(® + div 4) 2.8)
ce qui montre que la conservation de la charge n’est pas une con-
séquence des équations de Maxwell si p + 0.

Pour donner & ’hamiltonienne H? ., du champ électromagnétique
libre la forme:

HS m. 2 2 a’:,n ak,n wk (29)
x n-1,2,3
{a'k,ﬂ ’ “Z', n’} =1 al?,? an,ﬂ’; {a’k,n ’ a’k', n’} =0 (210)

il faut d’abord décomposer Eet A en parties transversale (t) et
longitudinale (I):
E—EOLE®; 4— A% 40, (2.11)
On obtient:
H®, [4,E]- / AV[AOY - 49 1 |[FOP 4
—|—M*2F(DY 1E(l)+/A2‘A(D|2] (2_12)
utilisant 'opérateur:
Ylop2—A; YletiFa_o2etiks (2.18)

(2.12) donne (2.9), compte tenu de (2.1'0), s1 I’on y introduit des
développements en ondes planes. Les développements des compo-
sontes transversales ont la forme habituelle:

2{“):2 Y 2Vt [ak,nei?.;_!_a;,ne_iﬁ‘ le®)  (2.14)
T n=12

EO=i Y X (0/2V)[a,, 6% —ar e"¥F7]6, %  (2.15)

T n=12
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La masse u apparait explicitement dans le développement des
composantes longitudinales:

AP = p A (@0/2V) [y, 5 € 2+ a7 0 %] e %) (2.16)
K40

E® = ’iﬂ_*Z 2V w,) Hay, 5 € e a5 emiF “Jers™) (2.17)
C F#0

4

—-

8

Les trois vecteurs €, sont orthonormaux, €, étant paralléle

3 k. On vérifie que ces développements conduisent effectivement
a (2.9) et que (2.1) est une conséquence de (2.10).

3. La Transformation Canonique.
Nous allons montrer que la transformation canonique (1.2) en-
gendreée par:
P[4, o] = de@ div YA~ — /'dvj orad Y o (8.1)
ou Y est I'opérateur intégral associé au potentiel de Yukawa:
~ R A, IR
Yo(@) = g5 [AVE) e e(®) (3.2)
Y 1Y -1=(u2-4)Y—-1=0 (3.3)
transforme (1.1) en (1.8) si H, ,, est donnée par (2.4) et si 1'équa-

tion de continuité (1.6) est valable. Désignant les champs trans-
formés par A,...,(1.2) et (3.1) donnent:

A=A B4
(3.5)
0=0. (3.6)

E est maintenant le champ électrique de radiation, qui s’obtient
en soustrayant de E le champ de Yukawa da & la distribution de
charge o. Le remplacement de A, E et o par A, E, et o dans (2.4)

N k;,=2amlL; m;=-o00, ..., —=1,0,1,2,..., +00. V = L L,L;. Les
composantes transversales sont définies par div AY = div B® = 0, les dévelop-
pements de A® et E® contiennent trois polarisations pour k&= 0, alors qu’il n’existe
pas de terme correspondant a % = 0 dans AD et BV, Voir équation (3.13).
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donne H,,, [A }L, 0); utilisant (3.4)—(8.6), on obtient 1’expression
de H,,, en fonction de A, E et o:

(4, E,¢]=HY.,, [4, ] +
+ [aVe Y —u2(AY +1)] divE (3.7)

H,,[4.E o —H

e.n. €. 1.

1 7 . : ,
+Q/M@pdmy+#4wyy+ﬂ4@AY+np.

Le deuxiéeme terme (couplage entre E et o) est nul en vertu de
(3.3). En appliquant deux fois I'identité (3.3) on réduit le troisiéme
terme & 5/ dV ¢ Yp. Ainsi, la transformée de H,,,, exprimée en
termes des grandeurs initiales, est identique & la somme des deux
premiers termes de (1.2).

Pour le troisieme terme de (1.2), on démontre 'identité, terme a
terme, des deux développements:

Bn]at.[p’ q’ Z] Hmat [:p Q’ —} + {F Hlnat.} +
7'2"( {F {F Hnlat }} +- (38)

| A 6Hma
Hmat- [p’q’A(r)} :Hmat p Q’ + /dVZ & D
YN S
avec A” = 4 + D, et ot V'on a écrit 4, A" pour A(Z) et A(Z").

Cette démonstration utilise (1.6) et (1.7). Pour la premiere paren-
thése de (3.8) on trouve:

et

{FJ@M}:/ﬂVémvyzsjdvmvfvaj’

:_/dngmdmvyje/ﬁvﬁf§h.AYZW. (3.10)

Les developpement% (3.8) et (8.9) sont donc identiques au pre-
mier ordre si: D = AY AP, ¢’est-a-dire:

AP 40 4O 4y 4O - A(‘)+/L2YA(I) (3.11)
En vertu de (cf. 2.13):

Yeiii:';= w}ﬁ—z 6@‘?-; (312)
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le développement de A s’écrit:

—

"7 ik a
A"z (QV“’k [(Zaﬁne}.n w,5‘;«:3‘%5)‘3t N

}6 n=1,2

+ compl. oonj.] ; (3.13)

Les amplitudes longitudinales apparaissent réduites par le facteur
pt/w,. Vu la définition des sommes sur & (cf. la note relative a I'éq.
(2.14)), I'onde longitudinale ne contient pas de terme correspondant
ak=0 (pour lequel p/w; = 1). Ainsi, dans la limite x—0, on a
rigoureusement :

lim (49— 4%) = lim p? YA®© =0 (8.14)
u—0 u—0

c’est-a-dire: le champ de radiation qui intéragit avec la matiére
est uniquement composé de la composante transversale Aw,

Pour les termes suivants de (3.8), on a:

{F.{F, Hyp }}= [av [F, 222 | D

’ 02 Hpg, '
/dV]dV 22 sa o DiDis ete. (8.15)

du fait que {F, D} 0. Remarquons pour terminer que des cal-
culs analogues donnent pour le courant transformé, a l'aide de
(1.7), 'expression:

J = dJ[p,q, A7]. (8.16)
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