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Théorie de la Radiation de Photons de Masse

Arbitrairement petite*)

par E. C. G. Stueckelberg
Institut de Physique de l'Université, Genève (Suisse).

(10. XL 1956.)

If the photon has a mass %\x + 0, a canonical transformation yields a Hamiltonian

containing the energies: 1. of the charged field (including the Yukawa potential

energy); 2. of the transversal and longitudinal photons and 3. an interaction
term. The interaction term between charge and longitudinal photons is smaller
than the transversa term by a factor ujco, if %u> is the photon energy. Thus the
limit /n -> 0, which replaces the Yukawa potential by the Coulomb potential, is
possible. The longitudinal photons, presenting no interaction, can pass freely
through the walls of a cavity and Planck's radiation law holds. The necessary and
sufficient condition for this result is the continuity equation for electric charge.

1. Introduction et Résultat.

Dans une électrodynamique dont les photons ont une masse Ufi**)
non nulle, les potentiels A et 0 apparaissent explicitement, multipliés

par n2, dans les premiers membres des équations inhomogènes
de Maxwell. Il s'ensuit que l'équation de continuité de la charge
électrique cesse d'être une conséquence de ces équations. Le but
de cet article est de démontrer que la conservation de la charge est
essentiellement la seule condition qui doit être réalisée pour que,
dans la limite où la masse du photon tend vers zéro (,«•->- 0), seules
les ondes de polarisation transversale (t) présentent une interaction
avec la matière. Les ondes longitudinales (l) ne sont ni émises, ni
absorbées. Ainsi, à la limite, une enceinte n'est en équilibre
thermique qu'avec les photons transversaux, les photons longitudinaux
traversant librement ses parois. La loi du rayonnement de Planck
est donc assurée. Bass et Schroedinger1) ont récemment illustré
ce phénomène en prouvant que, dans la limite considérée, les photons

longitudinaux ne peuvent être absorbés par un conducteur.

*) Recherche subventionnée par la Commission Suisse de l'Energie Atomique
(C. S. A.).

**) La vitesse de la lumière est choisie comme unité de vitesse.
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Nous avons montré ailleurs2) que la puissance rayonnée par un di-
pôle, oscillant avec la pulsation co, comporte le terme habituel dû à

l'onde transversale, et un terme plus petit dans le rapport fi2j2 ay2

dû à l'onde longitudinale.
Dans cet article, nous démontrons le théorème suivant. Si l'ha-

miltonienne covariante H, dont résultent les équations de Maxwell
et les équations du mouvement de la matière en interaction avec le
champ électromagnétique, est une somme de deux termes:

H Hem[A,E,Q]+Hnmt[p,q,A] (1.1)

où E est le champ électrique, q la densité de charge, et où p et g

symbolisent les variables canoniques décrivant la matière, il existe

une transformation canonique, transformant une grandeur X en X;

X==X + {F, X} + ^ {F, {F, X}}+ ¦¦¦*) (1.2)

telle que la transformée de H ait la forme:

H=Z E 4,nak,ntì)tc,n +
~fc » 1,2,3

+~L ffdV® dV^ e@) Y e-"rQ(x') + Hmat. [p, q, >] •*) (1.3)

avec: cok V/j2 + | k |2, r | x — x'\. akn sont les amplitudes
canoniques des ondes de vecteur d'onde k (compatible avec un volume
de périodicité V). Les indices n 1, 2 se réfèrent aux deux
polarisations transversales "ekl et "ei2, et n 3 à la polarisation longitudinale

~ek:S. H est donc formée de la somme des énergies de toutes
les ondes possibles, de l'énergie de Yukawa et de l'énergie de la

matière soumise au champ de radiation A{r) (dans lequel l'amplitude

longitudinale ~eks ak 3 apparaît réduite par le facteur fjtja>k par
rapport aux amplitudes transversales ~ek 1akl et ^j ak2-

Coester3) a trouvé ce même facteur fi2jcok dans le formalisme
d'interaction (matrice S). Dans ce formalisme, l'analogie formelle
entre fi 0 et lim /i 0a aussi été démontrée par Umezawa4) et
Glauber5). Ces trois auteurs sont obligés d'imposer une condition
supplémentaire à un champ ayant plus de trois «polarisations», dont
l'une correspond à des énergies négatives. Notre méthode évite ce

*) {F, X} est la parenthèse de Poisson correspondant à i[F, X]/H en théorie

quantique; (1.2) peut s'écrire dans ce cas: X eicp(iF/fl) X exj>( — iF/fr).
**) %~¦ ak n et %~*ak n sont, en théorie quantique, les opérateurs d'annihilation

et de création d'un photon dans l'onde (k, n). L'indice h symbolise le vecteur k en

ah „ et et „.
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détour. On peut obtenir une matrice S invariante en suivant une
méthode analogue à celle esquissée dans un article antérieur6).

Il est remarquable que la limite pt -> 0 n'existe pas pour l'hamil-
tonienne initiale H. (cf. 2,4). Par contre, elle peut être effectuée sans

difficulté dans FL et conduit au résultat attendu: AM ne contient
plus que les amplitudes transversales ~ekl akl et "efc2 ak2 et l'énergie
de Yukawa devient l'énergie de Coulomb. La démonstration vaut
en théorie classique aussi bien qu'en théorie quantique du fait de
la correspondance entre parenthèses de Poisson et commutateurs.

Les conditions pour que la transformation canonique donnant
(1.3) existe sont:

{É(x),q(x')}^0; {A(x),Q(x')}=0 (1.4)

{Q(x),oÇx')}=0 (1.5)

e={xï,o}={ifmat.,e}=-divJ (1.6)

où J est la densité de courant définie par:

Ji(*)=-^- Ji[V,q,A]. (1.7)
ôA{(x)

Les conditions (1.4) à (1.6) sont vérifiées en théorie non-relativiste
et relativiste de particules ponctuelles, ainsi que par tous les types
de champs matériels, même en présence d'interaction mutuelle non
électromagnétique, à condition qu'elle préserve l'équation de continuité

(1.6).

2. L'Hamiltoniennc Covariante.

Si n + 0, A est canoniquement conjugué au champ électrique E;

{Ai(x):Ei,(x')}-:ôii,ô(x~x'). (2.1)
G*.

Les autres parenthèses s'annulent. Le champ magnétique B et
le potentiel scalaire 0 sont définis par:

B [A] - rot A (2.2)

0 [Ê, q] ii-2 (q - divE). (2.3)

H est la quatrième composante du quadrivecteur impulsion-énergie,
le terme He m ayant la forme:

H^[A,E,Q]~~fdV[B'+E* + fi:{0' + A*)]

HlmXA,Ê] + ^fdV(-2odwÊ + o*).
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Les équations du mouvement résultant de (2.4) sont, en vertu de

(1.4)-(1.7)et(2.1):

A {H, A} - if, _ E - grad 0 (2.5)

È-={H,Ê} ~ rot B-,-/*2 A- J. (2.6)

(2.2) et (2.5) donnent les deux équations de Maxwell homogènes:

divB 0 B -rotE. (2.7)

(2.3) et (2.6) sont les équations inhomogènes de Maxwell, qui ont
pour conséquence:

q + div J ^(0 + div A) (2.8)

ce qui montre que la conservation de la charge n'est pas une
conséquence des équations de Maxwell si fi * 0.

Pour donner à l'hamiltonienne B° m_ du champ électromagnétique
libre la forme :

X » x>2>3

K,»> 4, n'}=io£i?0n,n''> {%,«>«*',«'} ° (2-10)

il faut d'abord décomposer E et A en parties transversale (t) et
longitudinale (ï) :

E=E« + EW; A A^ + AW. (2.11)
On obtient :

H°m [A,Ê] i- fdV[Am Y-11« + JE«>|2 +

+ p-»E«> Y-1 Êm + fi111® [2] (2.12)
utilisant l'opérateur :

Y-1 lM2-J; Y-*e±i~i-'=(ole±i*-* (2.13)

(2.12) donne (2.9), compte tenu de (2.10), si l'on y introduit des

développements en ondes planes. Les développements des composantes

transversales ont la forme habituelle :

A"=Z E (2VoJk)-ï[ak!ne^+alne-^*]êk,n*) (2.14)

t »"1.2

1 »-1.2
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La masse p, apparaît explicitement dans le développement des

composantes longitudinales :

2» r'JJ K/2F)i [oM ^-' + al g e-**-] eki 3 *) (2.16)
T#o

Ê® ip i;(2ya,J)-i[aMei*'*-<3e-i^]ei/) (2.17)
T+o

Les trois vecteurs e^fc„ sont orthonormaux, ~ek3 étant parallèle
à fe. On vérifie que ces développements conduisent effectivement
à (2.9) et que (2.1) est une conséquence de (2.10).

3. La Transformation Canonique.

Nous allons montrer que la transformation canonique (1.2)
engendrée par:

F[A, q] fdVg div YA~ - fdVA grad Yq (3.1)

où Y est l'opérateur intégral associé au potentiel de Yukawa:

Ye (2) 4^/dF(2') |*-*reK) (3-2)

Y-iY-l (/ta.2-Zl) Y-1 0 (3.3)

transforme (1.1) en (1.3) si ffe m est donnée par (2.4) et si l'équation

de continuité (1.6) est valable. Désignant les champs
transformés par A, (1.2) et (3.1) donnent:

2=2 (3.4)

É Ê-gr&dYo (3.5)

B est maintenant le champ électrique de radiation, qui s'obtient

en soustrayant de E le champ de Yukawa dû à la distribution de

charge q. Le remplacement de A, E et q par ^4, E, et j>~ dans (2.4)

*) ki 2n mJLf, mi=-oo, -1, 0,1, 2, + oo. V L^LZ. Les

composantes transversales sont définies par div A^ div E^1 0, les développements

de A"' et E^ contiennent trois polarisations pour k 0, alors qu'il n'existe

pas de terme correspondant à k 0 dans A® et E^\ Voir équation (3.13).
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donne Be.m. [^> E* utilisant (3.4)—(3.6), on obtient l'expression
de Hem en fonction de À, E et g:

He.m.[I,B,e]=Be.m.[I,B,e] Be0m.[ZB] +

+ fdVo[Y~p-2(AY + l)] div E (3.7)

+ y fdVe[- YzlY + /<-2(taGlta/)2 + /(-2(2zlY+l)]o.

Le deuxième terme (couplage entre E et g) est nul en vertu de

(3.3). En appliquant deux fois l'identité (3.3) on réduit le troisième
terme à §/ dV g Yg. Ainsi, la transformée de Hem, exprimée en
termes des grandeurs initiales, est identique à la somme des deux
premiers termes de (1.2).

Pour le troisième terme de (1.2), on démontre l'identité, terme à

terme, des deux développements:

Hm.t.[P, q, 2] Bmat [p, q, 2] + {F, Bmat} +

ir{B,{B,Bma,}} + (3.8)

et
ffma, [V, 3- >] Bmat. [p, q, 2] + fdVjJ -*§f±- D,

+ 2JdvfdV JJZSj'T*W + ¦¦¦ (3-9)

avec Aw A + D, et où l'on a écrit A, A' pour A(x) et A(x').
Cette démonstration utilise (1.6) et (1.7). Pour la première parenthèse

de (3.8) on trouve:

{F, Bmat} - fd V g div Y2 fdV div J div Y2=

- [dV Jgrad div Y2= fdV iH*«-
¦ A y21) (3.10)

J J ôA

Les développements (3.8) et (3.9) sont donc identiques au
premier ordre si: D AY A c'est-à-dire :

i>> 2(t> + 2{l) + A YA^l) 2l) + fi2Y2w. (3.11)

En vertu de (cf. 2.13) :

Ye±ik-x=co-2eik-x (3>12)
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le développement de A r s'écrit:

2"x Z(2Voh)-ï\tZaktJktn + ^a^ek,\e^t [U=l,2 * '

+ compi, conj. (3.13)

Les amplitudes longitudinales apparaissent réduites par le facteur
fifoik. Vu la définition des sommes sur fe (cf. la note relative à l'éq.
(2.14)), l'onde longitudinale ne contient pas de terme correspondant
à fe 0 (pour lequel /ajmk 1). Ainsi, dans la limite /u->0, on a
rigoureusement :

lim (4« - 2{t)) lim a% Y2m 0 (3.14)
/.-?0 fi-+0

c'est-à-dire: le champ de radiation qui intéragit avec la matière
est uniquement composé de la composante transversale A^\

Pour les termes suivants de (3.8), on a:

{F,{F,Hm&t}}=fdv{F,ljf^}D

[dvfdV'gZ^J^D.Dl etc. (3.15)

du fait que {F, D} 0. Remarquons pour terminer que des
calculs analogues donnent pour le courant transformé, à l'aide de

(1.7), l'expression:

J J[p, q, 2(r>]. (3.16)
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