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A Hyperon Model

by G. Wentzel, University of Chicago.*)

(7. IX. 1956.)

Abstract. A study is made of a nucleonic particle having three elementary states
of neutron, proton, and lambda character, coupled with a K-meson field by Yukawa
interactions. The binding of lf-mesons gives rise to a spectrum of states which
contains all levels of Gell-Mann's hyperon scheme, but also other levels, all of them
at higher energies with one exception.

The mass level scheme of hyperons, as known today, is
sufficiently complex to warrant the question whether it is perhaps de-
ducible from a field-theoretical model involving a smaller number
of "elementary particles". One possible approach would be to follow
M. Goldhaber's suggestion that the hyperons result from a binding
of K mesons by nucléons1). Here we propose to study a slightly
different model.

Assume a K-meson field to be coupled, by Yukawa interactions,
with a "baryon" which possesses three elementary states, to be
labelled as N, P, and A, having respectively the same physical
characteristics as a real neutron, proton, and /l0-hyperon. The
Yukawa interactions will give rise to the following first order transitions

: _N++A + K0, N + K°<+A,
P+>A + K+ P + K-++A.

Among the stationary states of this system, "isobaric states" will
occur, and we are interested in their mass and charge spectrum and
their isotopie spin assignment. It will be shown that there is, to
some extent, a qualitative resemblence with the observed spectrum.

In this preliminary study, no sophisticated field-theoretical treatment

is attempted. Attention will be focussed on the qualitative
features of the model. It is then justified to simplify the model as
much as possible. The K-mesons are taken to be scalar, and the

*) Temporarily at the Tata Institute of Fundamental Research, Bombay.
M. Goldhaber, Phys. Rev. 101, 433 (1956).
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baryon spin will be ignored. A "strong cutoff" will be adopted so
that no recoil problems arise. Introducing a lattice space2) this
implies that the baryon interacts only with mesons located in the
same space cell, and all other mesons can be disregarded as far as
the bound states are concerned.

The Hamiltonian of the free Jï-meson field can then be written
in terms of two complex variables ipv xp2, for the neutral and the
charged variety respectively, and the conjugate momenta nv n2 :

7t17t1 + pi 1f1 f1 + tt27l2 + pi \p2 %p2

This is equivalent to a four-dimensional oscillator. With the substitution

xp1 r1el9' r costpe1®' 1

f2 r2 e1*2 r sin cp el#2
(1)

(r>0, 0<<p<nj2, 0<#.<2a.)
one obtains:

H-~T^ + TWJ +^ +^ (2)

4 \Oq>2 ' Oq> cos2 95 0&,2 sin2 <p O &22 / v '

Interpreting the mesons K° and K+ as an isotopie spin düblet, we
can (by an infinitesimal rotation in "charge space" applied to the
Lagrangian) derive the isotopie spin vector operator (for the mesons
alone) :

K<° ~ YÏ (sin ^ ~êi>T^ + cos^2 ~ *i) (tan f ~d^ + cot f ~d~i%))

Kv= + YÏ (cos(&*~&J-d^-sin(^- #1) (tanV j#r + cot<P j^r))

z 2i\d&2 d»J
K2 + K2 + K2 K2.

Note that with the substitution

2<p x, &1 + &2 &+, d, —*! *_:

rr. lid. d 1 / d2 d2 0 d2 \\
\smydy /t d/ sin2y \d0+ Ô#2 Aà&+dêJ}

2) G. Wentzel, Helv. Phys. Acta 13, 269 (1940), §§ 2, 3.
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This is the Hamiltonian of a spherical top in terms of Eulerian
angles, whose eigenfunctions are well known. They have the form

eimê++inê-ff \ _ eim,d, + im2d,ff2 m)

where

m,n j, j'-l, j-2, ¦¦¦, -?'

if j(j + 1) is the eigenvalue of K2. Here, j, m, n can be all integral
or all half-integral, whereas m1 m — n and m2 m + n are integral.

Note that m2 is the charge of the meson field, whereas m1 +
m2 2 m stands for the total number of mesons minus antimesons,
i.e. the "strangeness" of the meson state:

sm=2m m1+m2 (jsm| < 2 j). (4)

Since Kz n \ (m2 — .%), the charge is m2 Kz + smj2.
To introduce the coupling with the baryon, we distinguish three

components of the state vector, F0, Fx, F2, referring to the cases that
the "bare" baryon is in the A, or N, or P state, and write the
Schrödinger equation as follows:

(-E + H)F1-gy>*.F0 0 I

(~E + H)F2-gy>*Fa=0 (5)

(-E + H + M)FQ-g(WlF1 + WiFa) 0. j

g is the coupling constant, and M is the mass difference of the bare
A and the bare nucléon. Regarding isotopie spin, A is a singlet and
N, P form a düblet. The baryon contribution to the isotopie spin,
T, is then easily constructed as a 3 X 3 vector matrix, involving
the Pauli 2x2 matrices tr/2 as submatrices, other elements being
zero. The total isotopie spin

I K+T
is conserved, and the eigenvalues of I2 are iii + 1), with i integral
or half-integral.

We now proceed to construct such solutions F of the equations
(5) which are also eigenfunctions of I2 K2 + 2 K- T + T2. First
we observe that in the A component of I2 F, the matrices T and T2
give no contribution: {I2F)0 K2F0. Hence F0 must be an eigen-
function of K2, belonging to the eigenvalue j i. Therefore, let

^ «W«(^!^ (6)
where

K2 u i (i + 1) u.
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For a given i-value, there are (2 i + l)2 such eigenfunctions u.
Substituting (6) and (1) into (5), we expand

cos c?e {*'tt ZbjVjitp&iftz)
i

sin q> e~xê* u Z ci wi ("P ^i #2)
j

K2 v, j(j + 1) t.,, K2 w,- j(j + 1) w,.

(7)

Actually, the expansions have (at most) two terms each: j i ± I
(see Appendix). Now, letting

Fx-ZhßM*,
i

F* Zc.-YAr)™.
j

the first two equations (5) yield

(-B+H,)A(f)-sira(r)=0 (8)

(-E + H,) ys{r) -grx(r)=0
where (see (2))

n>- 4 Ur2 + r dr)+ r2 + •"¦ r ¦

Since obviously y^r) — ß}{r), the combination %p1 Fx + ip2 F2 occurring

in the last equation (5) can be written

r Z ßj(r) \pj Vj cos cp e*''1 + c} w} sin qo ei&*].
j

Here, the expression in square brackets reduces, for each /-value,
to u times a constant a,- (for details see the Appendix). Thus with (6) :

(-E+Hi+M)x(r)-grZa,ßi(r) 0. (9)
3

It remains to solve the ordinary differential equations (8), (9) for
the three functions /5i±j (r) and oc(r).

Each such stationary state is characterized essentially by the
function u, or its quantum numbers i, mv m2, which specify the
meson field in the presence of a bare A. Since the A has no charge
nor isotopie spin, and its strangeness is — 1 (by definition), the total
system has isotopie spin i, strangeness s sm — 1 m1 + m2 — 1,
and charge m2 Iz + sj2 + \. The energy E will depend on i and s,
but not on m9.



Vol. 30,1957. A Hyperon Model. 139

Table I lists, in the third and fourth columns, the values of the
constants % appearing in (9) for i 0
allowed s-values (js + 1/ <2 i, see (4)).

|, 1, and for the various

Table I.

i s ai-i "*+* «M «0

0 -1 0 i 0 g¥

Vi
0

-2
7i
0

Vi
1

1

2

0

fi + M

i
+ 1

-1
-3

7.
Va

0

Va

Va
1

3

4

5

u
ß

2/J. + M

In order to see qualitatively how the level scheme changes with
varying coupling strength g, we have studied the limiting cases

g -> oo and g -> 0. In the strong coupling case2, for the low energy
states, because the center of the wavefunction is shifted to large
r-values, the "centrifugal" terms j(j + l)jr2 may be considered as
small perturbations, and the same is true for the mass term M,
provided that M is of the order p or smaller. Neglecting these
perturbations :

/5,(r) «(r), (-E + r70-gr)a(r)=0;
the effective potential p2r2—gr has its minimum at r gj2 p2, and
the ground state energy is roughly — g2/4 p2 (the strong coupling
condition is g2^> p3). Then, adding the perturbations, their lowest
order contributions to E are found to be

àE ~ + lj£- [Z afj(j +l)+i{i + l) + const.) + • • •

In other words, the strong coupling mass spectrum is essentially
given by the expression

^-Z^j(j + i) + i{i + i)-^. (io)
i

This is listed in the fifth column of Table I (also see Appendix).
As the coupling strength decreases, the perturbations, which act

as repulsive potentials, will favour the probability amplitude with
the lowest /-value, i. e. ß{_± provided that b{_ j t 0. Also, a is somewhat

disfavoured (but less than ßi+i) owing to the mass term, if
we assume M > 0 (but M < p if the A is to be stable against K-
meson decay in the weak coupling case). It is then easily seen which
amplitude survives as g+»0, i.e. which free particle state results
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in this limit. This is indicated in the last column of Table I. The
appearance of M means, of course, that the -4-state survives; this
is the case whenever «,-_j 0. The zeropoint energy of the oscillator
(2 p) has been substracted, so p indicates the presence of a free
meson, for g -y 0. It should be noted that not all free particle states
appear in the list because some of them do not give rise to bound
states when coupled.

The result is qualitatively summarized in Figure 1 which pictures
the mass and charge spectrum for the two extreme cases (large g

:—!—!1—1 — +

2 -1 O I 2

Fie. 1.

Z -J O 1 2

to the left, small g to the right). The units and zero levels on either
side are unrelated. M has been arbitrarily chosen as 0.8 p. The
straight lines connecting the two sides are meant only to illustrate
the transition qualitatively, in the sense of an assignment.
Nevertheless, the general character of the spectrum for intermediate g-
values can be inferred.

The similarity with the Gell-Mann scheme is best noticeable at
gr-values close to the weak coupling side (arrow in the figure). The
proton-neutron, A, Z{i 1, s — 1), and S(i \, s — 2) are
immediately recognizable. However, below the S there appears
another charge triplet of strangeness +1 which is not observed*).
For the sake of discussion, let us call this hypothetical hyperon (with
i 1, s + 1) E'. According to (8) and (9), its mass is certainly
below the Z-mass (because this is so for both large and small g-
values). It is conceivable that its mass is even below the A and
below the nucléon plus pion mass making it stable against pion

*) Note added in proof : The same difficulty arises in a "iT-meson pair
theory" corresponding to Goldhaber's model1).
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decay. A very long lifetime might have prevented the detection of
such a particle. Nonetheless, the associated production of E' plus
K, conserving strangeness, should then be expected to occur with
a threshold much lower than for K plus K production. On the other
hand, the asymmetry in K and K would still pertain since only K
can be created in association with A, and this is by far the most
frequent process. Indeed, if we apply perturbation theory since we
found g rather small, N-+A + K is a first order process whereas
N -> E + K and jV ~> E' + K are of higher order (going through the
steps N+»A + K+>-N + K + K where either N + K can bind to
form a E, or jV + K can form a E'). We tend to believe, therefore,
that the existence of a hyperon E' is not entirely ruled out by the
present experimental information. The same can be said of the
higher states (e. g. i 3/2, 2, predicted by our model whose
excitation would require processes of still higher order, with the
exception of states with s — 0, whose lifetimes are presumably very
short.

If no E' exists below the E, this may mean that mesons of the
same strangeness have a strong repulsive interaction. To give an
example, let the interaction energy (of mesons in the same space
cell) depend on

t K + m2y= [±-(-±- + ^-)]2

in such a way that it vanishes for \sm\ =0 and 1 (there should be

no "interaction" in a single-particle state) but rises very sharply as

\sm\ becomes 2, 3, (Since sm commutes with the vector K, iso-
tropy in charge space is maintained). This interaction will appear
as an additional term in the meson energies H, in (8) and Hf in (9),
and will depend on the sm-values of the respective meson states.
Comparing now the stationary states E and E', all component functions

u, Vj, w, of E belong to either sm 0 or sm — 1, whereas in
E' the component u belongs to sm 2. Consequently, the energy of
E will be unaffected (the same is true for the nucléon and the A),
whereas the E' level is raised, due to the meson repulsion, maybe
substantially so, though not beyond the N + K level. Hence, this
E' would still be stable against X-decay, but the threshold for E' + K
production might be almost as high as that for K + K production.
Incidentally, this meson repulsion would also lift the level of the
S(i |, s —2), but S would remain stable against the decay
into A + K.



142 G. Wentzel. H.P.A

Appendix.
In regard to the computation of the constants 6,- and c,- in (7), we

observe that the matrix elements of

f1 cos <pelû', f2 sin^e**2,

can be derived from the commutation relations

[f1,Jf,]=if1, [fa,ZJ -||2,
[|1,K_] 0 [|2,K_] |1;

[fx,j:+] fa r^2,K+j o.

(iïT iTj, -p iüry). Selection rules follow immediately. In particular,
the identity -, „

[[£, K2], K2] 4 (ÇK* + K21) + -f6- f,
valid for both £x and f2, yields the selection rule Zl j -Jt

Characterizing the eigenstates of K2 by the quantum numbers
j, m, n, as defined in the text (viz. 2 m m1 + to2, 2 n m2 — mx;
note the symmetry under the substitution #+ •*> &_, mon), one
finds the following non-vanishing matrix elements of fj and |2:

lei-, 1\ r (j-m+1) (?'+» +1) li

{j,m,n\èx\j--^, TO-y. w + y) [

(/,m,n||2|j

2 * 2 * ' 2; L 2(2^+1)0+1)
1 1 1 \ r (j+m) (j—n) '

2(2j+l)j
1 1 1\ [ (j-m+l) (j-n+ 1)
2 ' 2 ' 2/ L 2(2 ?'+l) (7 + I)

/• i j, i 1 1 1 \ r (?' + m) (j+n) lì^,m,n||2|?-y,m-T, «-T).= -[ 2(£.+ 1). j

If the function u, in (6) and (7), is the state function | i, m, n),
then Vj I j, m — J, n + |) and w} =\],m — \, n — \), with j
i zk i- The coefficients ò3- and c,- in (7) are matrix elements of f*
and I*, e.g. 1

b, m - y, n + y j I I i, m, n 1

I i, TO, W 1^1 7, TO
1 1

and are immediately given by the four matrix elements listed above,
with j replaced by i. The coefficients a, appearing in (9) are then
given by % I2 + c2; hence

i—m + \ i + m
ai+h ~2iTT '• ai-ì 27+T

Inserting this into (10), the strong coupling energy spectrum is
found to be „.,,eœ 2 % (1 + 1) — to
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