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Aquivalente periodische Potentiale*)

von 0. Steinmann, Ziirich.
(26. VIIL. 1957.)

Zusammenfassung. Untersucht wird die Bewegung eines Elektrons in einem
eindimensionalen periodischen Potential. Es wird gezeigt, dass durch die effektive
Masse das Potential nicht eindeutig bestimmt ist.

1. Einleitung.

In der Festkorperphysik besteht die Tendenz, alle auftretenden
Grossen durch die effektive Masse auszudriicken, ohne die zugrunde-
liegenden Wechselwirkungen explizit einzufithren?). Dadurch er-
hebt sich die Frage, inwieweit die effektive Masse tiberhaupt das
dynamische Verhalten des untersuchten Systems beschreibt. Diese
Frage wird hier fiir ein Modell untersucht, namlich fir die Bewe-
gung eines Elektrons in einem eindimensionalen periodischen Po-
tential. Es zeigt sich, dass kontinuierliche Scharen von Potentialen
existieren, die zu der gleichen Energieabhéngigkeit der effektiven
Masse m*(E) fihren. Die Kenntnis von m*(E) liefert also keine
vollstandige Beschreibung des Systems.

2. Mathematische Hilfsmittel.

Die Schrodingergleichung in einem eindimensionalen periodischen
Potential lautet

'+ [E—V(r)y=0, V(z+1)="V(). (1)
Die benotigten Eigenschaften dieser Gleichung sollen hier ohne
Beweise?) zusammengestellt werden:

Zu jedem Wert des Parameters E existieren zwel Liosungen mit
der Eigenschaft (Theorem von Floquet)

w(x + 1) = e* u(x), 5

v(xz + 1) = e~*®v(x). 2)

E durchlauft beim Anwachsen abwechslungsweise Intervalle, wo

k reell, resp. komplex ist (die erlaubten, resp. verbotenen Béinder
der Festkorperphysik).

*) Auszug aus der ETH.-Diplomarbeit des Verfassers.
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u(x) und v(z) bilden im allgemeinen ein Fundamentall6sungs-
system (falls & + nx). Fin anderes Fundamentalsystem f(x), g(x)
wird definiert durch die Anfangsbedingungen

() =1 (0) =
90) =0 g0 -1 @
Es gilt bis auf konstante Faktoren in « und v:
w(z) = g(1) f(z) + [* —f(1)] g(x)
v(x) = g(1) f(x) + [e* —f(1)] g(2).
Die Funktion k(E) ergibt sich aus
2cos[k(E)] =11, E) +4¢'(1, E). (5)

Wird in (1) V(x) variiert, so gehorcht die Variation éy von o der
Gleichung

(4)

)+ (E—TV)op=9podV.
Fir p = f, g ergeben sich die Lisungen

a1 (&) = fG(:):, Hi oVt dt

x ©

d g(x) :fG(a:, tygt)o V() dt

mit 0
G(x, 1) = g() f(t) — f (=) g(B). (7)
3. Aquivalente Potentiale.
Die effektive Masse m* wird definiert durch
1 d* KB

Fy i ®)

m* 1st eine Funktion von k und damit von E. Aus dieser Funktion
lasst sich mit Hilfe der Definition (8) der Zusammenhang K = E(k)
ermitteln. Potentiale, fir die dieser Zusammenhang der gleiche
1st, nennen wir dquivalent.

Wir beweisen nun folgende Aussage:

Satz.

Zu jedem periodischen Potential Vj(z) existieren kontinuierliche
Scharen V(x, s), 0 < s < 8¢, 8 >> 0, von dquivalenten periodischen
Potentialen mit V(x, 0) = V().
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Zum Beweis dieses Satzes geben wir zuerst eine infinitesimale
Variation von ¥, an, die E(k) ungeéndert lasst und beweisen dann
die Integrierbarkeit dieser Variation.

Sei 6 = 0/0s. Nach (5) lautet die Aquivalenzbedingung
0f(1, E,s) + o6g'(1, K, 5) =0 (9)

fur alle E uns s. Mit Hilfe von (6) wird das

flK(t, E,s)oV(t s)dt=0, (10)
wobel 0
K(t) = g(1) f2(t) —[f(1) —g"(D]F (&) g () — (1) g2(2), (11)
oder mit (4) umgerechnet
K (t) = const - w(t) v (). (12)

Dabei sind noch tiberall die Argumente E und s hinzuzudenken.
Die Bedingung (10) wird erfdllt durch

0V(z,s) = K'(z, B, ) = K(z, 5), (18)

wobel E, eine beliebige, festgewihlte Energie bedeutet. Der Beweis
wird gefithrt nach einem Verfahren von Jost und Konx?3). Seien
y(x), 2(x) zwel Losungen von (1), die zu den Energiewerten E resp.
E, gehoren. Dann gilt

1 1

1
fy2(zz)’da: zj yz(yz) dx +fyz(yz’ —y'2)dzx.
0 0 0

Das erste Integral ist trivial, das zweite kann mit Hilfe der Schro-
dingergleichung umgeformt und schliesslich berechnet werden:

2/yz(yz’— y2)da = Z(E--—EO)/{y(az) 2(x) dm/y(t) z(t)dt}

= (B — E,) [/wyzdt}

= (B —Eo)~' (y&' —y'2)?

211

l
|
10
1

0

Also:

2 [y da = (y2)*s + (H— B~ (y —y' 2% (19)

0
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Setzt man y = Au + Bv, z= Cu, + Dv,, so erhilt man durch
Koeffizientenvergleich und unter Berticksichtigung von (2) schliess-
lich y

1
/uv(uovo)’da} e consthKgd:B = ,
0 0

Damit ist die Behauptung (18) bewiesen, wenigstens fiir den Fall
E + E,. Fir E = E, ist der Beweis aber trivial:

1
szOK;dm: K2l=0,

da K, nach (12) periodisch ist.

Aus (18) lasst sich nun durch Integration eine Schar der im Satz
angegebenen Art gewinnen. Fir E = E, muss gelten:

g V(z, 8 = K'(&, 5)
f(e,5) + B (2 8) = Vi s) fa, 9) (15)
g"(x, s) + Eg(z, s) = V(z, 5) g(x, )
mit den Anfangsbedingungen (3) und
V(z, 0) = Wo(2),  [(x, 0) = fo(x),  g(x, 0) = go(x).  (16)

Dabe1 bedeutet 6 = 0/0s, ' = 0/0x. V,, f, ¢, sind das Ausgangs-
potential und die zugehorigen Liosungen der Schrodingergleichung.
Aus dem System (13) lasst sich V' eliminieren mit Hilfe der Be-
ziehungen (6). Es ergibt sich das neue System.

=fG(x, t;s) f(t, s) K'(t, §) dt

(17)
%! x’s) jGaz t; s) g(t, s) K'(t, s) dt.
Zur Losung dieser Gleichungen machen wir den Reithenansatz
[(x,8) = X fal@) 8, g(@,8) = X gal) 8°. (18)
n=0 n=0

Durch Einsetzen in die Definitionen (7) und (11) erhalt man die
weiteren Reihen

Gz, 1;8) = E‘ Gz, t) s, K(x,s) = 2 K,(x) s". (19)
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Einsetzen in (17) liefert durch Koeffizientenvergleich

&

(1) foy = [ X G,
h i+j+h=n
z (20)
(n+ 1) gug = 2 G, K dt.
§ t+ith-n

Da G,, K, bestimmt sind durch die f;, g; mit v < n, treten rechts
nur die f;, g, mit + < n auf. (20) erlaubt also die rekursive Bestim-
mung aller f,, ¢.. (fo, 9o sind bekannt geméss (16).)

Fir 0 < # < 1 konvergiert das Verfahren in einem endlichen
s-Intervall |s| << s, (Beweis sieche Abschnitt 4). Aus den so ermit-
telten f, g erhélt man schliesslich das gesuchte Potential

V(z,s) = ff o g, =L L F, - f K'(z,S)dS + V() (21)
0

in 0 < < 1. Die Ausdehnung auf die ganze z-Achse geschieht

durch periodische Fortsetzung und bietet keine Schwierigkeiten.

Trivialerweise erhélt man zu V,(z) dquivalente Potentiale durch
Verschiebung von V, lings der z-Achse. Es kann gezeigt werden,
dass unsere V(z, s) nicht von dieser trivialen Form sind.

Ein wichtiger Spezialfall ist noch zu erwéhnen: Fir ¥, = 0 (freie
Elektronen) ergibt unser Verfahren 67 = 0 und damit V(z, s) = 0.
Man kann allgemeiner zeigen, dass in diesem Fall keine Scharen
von dquivalenten Potentialen der in unserem Satz angegebenen Art
existieren konnen.

4. Konvergenz des Veriahrens.

Wir betrachten das Intervall 0 < z <C 1. Sei dort

L felb gl [ el 9] < A = const < oo
tir k < n (erfullt fir » = 0). Dann ist geméss Definition
|G| <23 4, 4,, |K,| <83 A, A4,4,.
iti-k i+ith=k

Die Rekursionsformel (20) liefert dann

1
1
lfn—i—ll < n+1f
0
Analog:

6
SGLE|dt<-2 ¥ T4, =A,.,.
. n+1 . v
i+jt+h=n 2ip=n h=1

| Gna | < Apsg -
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Wegen G,(x, x) = 0 folgt aus (20)

x

/ 0G;(z, t 1
(1) fra (0) = [ 3 200 K, () d
p trith=n
und daraus wie oben ’
| facal < 4nia
und analog )
| gn+1 } < Aﬂ+1 ¥

Die Reihen (18) werden also majorisiert durch

y(s) = X Aus".
n=0
Nach Definition ist
6
(n+1) duy =16 3 [T A,
Xip=n k=1
Multiplikation mit s® und Summation iber n ergibt

dy
?8—~16y6.

Diese Gleichung hat die Losung
y = A,(1 —80 45s)71°
y = D A,s" konvergiert also gleichméssig und absolut in
| s| < s < (B0A)1
und damit auch die Reihen fir f und g.
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