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Hauptreferat — Exposé principal — Main Lecture

Mathematical Structure of the Non-Symmetric Field Theory

by B. KAurmMaN (Princeton)

In the gravitational theory the field variables (¢;;, and I7,) are taken
to be symmetric in their subscripts. This symmetry property is natural
if we think of ¢;; as a metric tensor, and consider it to be the primitive
concept in the theory.

However, it is known that one can approach the theory from a different
point-of-view, in which the ‘displacement field’ /7, is the primary con-
cept. One sees then that the Rieman~ and Ricct tensors can be construc-
ted without making use of a metric tensor, and that at no point in this
procedure is symmetry in the indices required. In this sense, the gravi-
tational theory is a specialization of a more general theory — that of the
non-symmetric field.

I would like to give an account of the logical steps through which one
goes when trying to set up this generalization. The present account will
be based on recent work?!) in which I participated with Prof. EINSTEIN,
and in which the theory of the non-symmetric field is presented in a new
form.

A. The Formalism of the Theory

1. The primary concept is the parallel displacement of o (contravariant)

vector: When a vector 4 is displaced parallel to itself by an infinitesimal
distance dz' the change in its components is to be given by

3A* =Tt do' A*

We see, from the way the coefficients " enter here, that it would be
an unwarranted specialization to take I}, as symmetric in its lower indi-
ces. I, will, then, be considered as a non-symmetrical quantity.

1) Annals of Mathematics, 62 (1955), 128.
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When we displace the vector A parallel to itself around a closed infini-
tesimally small cycle, we find the total displacement

AAS = Rskmn Ak fmn
(where ™" is the infinitesimal surface element). The coefficient R®,,,, 18
the Riemann curvature tensor, and it has formally the same appearance
as in the symmetric field theory, except that it is now constructed from
non-symmetric I7,.
The curvature tensor can be contracted in two different ways. One of

these contractions gives a tensor analogous to the Ricci tensor of gravi-
tational theory:

S o . 8 8 8 t 8 7
kas = ka“‘st,m—ka,s_Fkthm+kajst'

The other contraction (which vanishes identically in the gravitational
theory) is:
RssmnEanIFs — I

sm,n sn,m *

From its definition, it is clear that V,,, is an antisymmetrical tensor.

2. In the definition of parallel displacement a certain duality enters.
One can displace vectors according to the definition given above; but,
with the same coefficients I, one can also define a displacement ‘dual’
to the previous one:

8A* = T do* A .

We can say that we have here two displacement fields: I77, and

ka = I';; . The second displacement field is obtained from the first by
the operation of ‘transposition’?).

A ‘dual’ curvature tensor can be constructed from the ‘dual’ displace-
ment field; this dual tensor and its contractions differ from the correspon-
ding tensors in the original displacement field:

Rskmn(ﬁ) :i: Rskmn([') ’ ka(ﬁ) :i: ka(r) g

A duality is thus introduced into the mathematical apparatus, and
with it an arbitrariness in the whole scheme. We avoid this arbitrariness
by postulating that all equations of the theory shall be invariant under the
operation of transposition. In other words, one would get to the same field-
equations whether one starts with the displacement-field I" or its trans-

pose .

1) Sometimes referred to as ‘Hermitian conjugation’.
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It is natural to define for tensors and other field quantities the property
of ‘transposition symmetry’. M ;. . (I") will be called transposition-
symmetric in the indices 1, £ if

M, (D) =M ().

If the tensor @), (T’) is transposition-symmetric, then the system of

equations: @;, (I') = 0 entails the system: @;;, (F ) =0, i.e., this system
of equations is transposition-invariant. Conversely, we will expect the
left-hand sides of our field-equations to be transposition-symmetric ten-
sors. The property of transposition-invariance is thus seen to be in some
sense a weaker form of the property of symmetry.

To give a physical interpretation of the duality which arises in the non-
symmetric field, we can say that it corresponds to the double sign of the
electric charge: + or —. The postulate of transposition-invariance would
then be interpreted to mean: all equations of the theory shall be invariant
under change of the sign of the electric charge.

3. In order to determine the behavior of the field-variables, we postu-
late, as usual, that the equations of the theory shall be derived from a varia-
tional principle. In other words, we construct from our field-variables a
‘variational function’ ; a variation on the field-variables induces a
variation in §, and we demand that

5[ dr=0,

when the (independent) variations of the field-variables vanish on the
boundaries of integration. This demand will have an invariant meaning
if § transform like a scalar density under coordinate-transformations.
Now, a scalar density can be constructed from the contracted RiEMANN
tensor if we multiply it by a contravariant tensor density (of rank 2). In
this way we are led to the introduction of new field variables g'*, by the
side of the I'f,; we then have the scalar densities g** R;;, a'* V;;,; and
others from which to form $.

All this is entirely analogous to the procedure used in the gravitational
theory, except that in that theory R;, is the only available 2-index
covariant tensor formed from the I;,. In the present theory R;; (I') is
a nonsymmetric tensor, and it would be an unjustified specialization to
take g'* as symmetric, since in that case the antisymmetric part of R;;
would drop out of ¢°* R;;, (and g** V¥, would vanish altogether). There-
fore, g'* is taken to be a mon-symmetric tensor-density. ¢'* and I}, are
16 + 64 field variables which are to be determined by the differential
equations derived from the variational principle.
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4. The last remaining question is that of the particular choice of the
function §. Here the postulate of transposition-invariance plays a deci-
sive réle. In order to obtain transposition-invariant equations from the
variational principle, we choose §) so that it itself is invariant under trans-
posttion. It is in this step that the new formulation of the theory appears.
In previous versions of the theory, the final field-equations were brought
into a transposition-invariant form; however, the variational function
from which these equations were derived was not itself invariant under
transposition, and this necessitated various artifices in the procedure of
the derivation. These artifices are now avoided by the introduction of
more natural field-variables U}, instead of the I3),; and we understand
the transposition of indices to refer to the U’s rather than to the I"s.

We can define the U’s from the /s so:

Uhy =135 — 0, 17, .
And now we can replace the /by the U in the Ricc1 tensor, and we find :
Ry =Ug,,— Uz Ustk + 3 3 Ui

When the Uj, in this expression are replaced by their transposes, we
find: ‘

R (ﬁ) = Ry, (U)

That is to say: R;; (U) is symmetric with respect to the transposition of
the variables U.

What we have done here is to change our understanding of the duality
discussed in § 2. From now on we will understand a ‘dual quantity’ to
mean: a quantity obtained by the transposition of the variables U (and
not I"). Similarly, in the postulate of transposition-invariance, we will
understand that the U}, are the variables which are bemg transposed.
(The g** are assumed to be transposition-symmetric: §** = g**). With this
in mind we can rephrase (most of) the preceding discussion, so that it
refers to the variables (g, U) rather than to the variables (g, I7).

One might then ask: why not introduce the variables U right from the
start, rather than define them through the I'? Indeed, this is what we
will proceed to do, — and it makes the procedure more transparent and
natural. The one advantage which the variables I" have over the U’s is
a more direct geometrical meaning, in terms of the parallel displacement
of vectors?).

1) V. BARGMANN has pointed out that the variables U}, are related to the dis-
placement-field of a vector-density.
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We can, however, define the U’s formally through their transforma-
tions law under coordinate-transformations?):

Ur orl* oxt QxR Dl ox’* 0%xs 5 e 0Tt d2xs
R T T aul i oukt xS oxt* oxkt oxs ozt dxk*
dut* o2z
I*
) 5 E* dxs  dxt oxt* (1)

We then show, in a straightforward manner, that the quantity
Ry =Ufh,,— Ui, U + 3 3 Ui, U (2)

transforms like a tensor. Furthermore, R,;,.(U) is transposition-symme-
tric, and therefore

P = gik Ry (3)

is a transposition-invariant scalar density, and can be used as a varia-
tional function.

5. These few steps sketched above contain the complete formalism of
the theory. The rest (field-equations, conservation-laws and identities)

follows from the variational principle by straightforward, classical,
methods. |

First one has for the variation of £

09 = (8" 8UY) o + ¥ 8US + Rip 0g:s (4)

where
WE =g, + o (Vs —g ol U) + g4 (Uh—3 8/ UR). )

Next, one requires ¢ [$ dv =0, under the condition that the indepen-
dent variations dU;, and 8g** vanish on the boundary. This gives the
‘Field Equations’:

: 6
mzk . I ( )

Assuming that the field-equations are satisfied, we find from (4) that

(6% 06U, =0. | (7)

1) From the transformation-law one might think that we are here introducing a
different connection between U and I than the one defined above. However, these
relations are seen to be identical, when one takes the A-transformation into account.
See below; cf. also the paper cited above.
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Different specializations of dU;, (no longer required to vanish on the
boundary!) give us the ‘Conservation Law’:

z;,s = (gik Ufisk,a)ﬂs == 0 (8)
as well as

T =(0" Uy 0s— 9" Ug— 6" Uxa),s (9)
and the ‘Divergence Equation’!):
g =0 (10)

((8) and (9) are due to infinitesimal coordinate transformations; (10) — to
an infinitesimal A-transformation).

One sees that the conservation law (8) has a particularly simple form
in the new variables.

Finally we get the ‘Bianchi Identities’ (which are given here modulo
the field-equations 9t** = 0)

Qik Rik,t—— (gis Riz .k QSi Rzi),s =0

and another differential identity

Il

(gjE gﬁs),k 0 .

(This identity is a trivial consequence of (5), since N2, = g% , as one
can readily verify).

The existence of identities is due to the invariance properties of .
On the one hand [ § dv is invariant under coordinate transformations,
so that its variation vanishes identically under these transformations, and
gives rise to four identities among the field equations. As a result, four
of the field variables remain undetermined, so that four arbitrary coordi-
nate choices can be made; fields which differ from one another only by a
coordinate-transformation are thus essentially the same.

On the other hand, it is easy to verify that § remains invariant under
the so-called ‘2-transformations’ defined by

A Uisk g Uisk T (61',8 A;k_' aks lm‘)
gt > qit, (11)

This invariance leads to one more identity among the field equations.
Similar to the case of the 4 Brancar identities, it suggests that U-fields

1) This equation is also a consequence of the system 93: ko,
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which differ from one another only by a i-transformation are to be con-
sidered as the same field.

What we have done is to extend the group of transformations of gene-
ral relativity. Under the extended group, the variables U], no longer
decompose into symmetric and anti-symmetric parts which transform
separately.

In concluding this summary of the formalism of the theory, it is impor-
tant to remark that the system of field-equations (6) is entirely equiva-
lent to the system

g+ T+ gt T =0 | (11a)
FiE%(Ffs—Fs%):O (11b)
Ri_k: 0 By, + By + By =0 (11c)

in EINSTEIN’S previous version of the theory; and one can pass from (6)
to (11) by a suitable substitution of variables.

B. A Few Remarks concerning Physical Interpretation

6. From the relation (9) which gives the components of the density &,
one can calculate [ ¥} dr, and we find (assuming that the field behaves
as a SCHWARZSCHILD solution for large distances) that

fifd‘rwm.

It is then natural to look upon &) as an ‘energy-momentum tensor-
density’ (really a pseudo-tensor).

The Divergence Equation (10) corresponds to the vanishing of the
magnetic current-density in MAxweLL’s theory— provided one identifies
gé* (¢ =1, 2, 3) with the components of the magnetic field.

To satisfy the continuity equation for electric charge, one identifies the
electric current-density with the vector density?)

1

6

Ss s T/ﬁkls (

Gikt + Geri T Grip) -
We have then identically:

3 =0,

1) 5tk3 is the Luvi-Civira tensor density, antisymmetric in all indices.
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In order to make further connections with electromagnetic theory, one
has to use approximation methods. We assume that g;, is a weak field of

first order, and that ¢;, differs from the MiNKOWSKI values by quantities

of the first order. When the field equations are written out to first order,
we find that they decompose into two sets: (1) ‘gravitational equations’
which are identical with the symmetric-field equations (to that order of
approximation); (2) ‘MAXWELL equations’?)

s Jis,s = 0 and o (g@,z =+ Jrvi -+ gﬁ,k),ss =1}

The second set of these equations is weaker than the corresponding one
in MAXWELL’s theory. Of course, this first approximation, in a non-linear
theory, tells us nothing about the interaction of the symmetric and anti-
symmetric fields. For that one has to make complicated calculations to
higher orders of approximation.

C. Results in the Theory

7. When we attempt to solve the equations in this theory, we are faced
with difficulties which are even greater than those of the gravitational
theory. The usual approach is to treat the system of equations as con-
sisting of two parts. The first part (/¥ = 0 in our presentation) is quite
simple in prineiple. It is a system of linear, non-homogeneous algebraic
equations for the U}, (or correspondingly the I';,) as unknown variables,
to be solved in terms of g'* and g'* ,. In principle, one has only to invert
the matrix of coefficients of the unknown U’s (or I”s), and to state the
exceptional cases when this inversion cannot be carried out (due to the
vanishing of the determinant of the coefficients). In practice, however,
the inversion 1s quite a laborious task. Several papers have appeared [1],
expressing the inverted matrix in different forms.

The complexity of the expressions for U in terms of g**, ¢** | makes it
impossible in general to substitute for U in the other part of the system
of equations (R;, = 0). Such substitutions have only been carried out in
very specialized cases.

Nevertheless, some general information about the system R;;, =0 can
be obtained by analyzing the way in which the derivatives g;; 4and g;; 44
enter into the equations. One can then treat the Cauchy problem relative
to this system, and it has been shown [2] that, just as in the gravitational
field theory, so also in the non-symmetrical theory, the Cauchy problem
(the question of ‘relativitic determinism’) has a unique solution.

Y my = g = Ay = =l =gy,
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A considerable amount of work has been done on special solutions in
the theory. Rigorous solutions in various forms have been given for the
static, spherically-symmetric case [3]. All of these solutions show singu-
larities. Similarly, for the axially-symmetric static case we have shown
that the assumption of regularity at the origin is incompatible with the
field-equations. For time dependent fields, a rigorous special solution is
known, which is everywhere regular (the ‘plane electromagnetic wave’) [4].
This solution however is not Euclidean at infinity. |

Singular solutions are inadmissible in a complete field theory which does
not make an artificial separation between matter and the field produced
by 1t. Acceptable solutions, according to this viewpoint, must be every-
where regular?). In addition, the solutions are assumed to be asymptoti-
cally Euclidean, in a suitable coordinate-system.

8. The requirement that the field variables shall be everywhere regular
has several important consequences, both locally and globally.

a) The space-time signature. In the gravitational theory one requires
that

det (g 1) = 0 (2

everywhere, so that the contravariant quantities g’”‘ are nowhere singu-
lar. Taking into account the boundary conditions, which require the field
to be imbedded in a Euclidean space, we see that this determinant is
everywhere negative. The matrix g;, can be transformed locally into a
diagonal form with the signature (—, —, —, 4), and this gives us the
basis for distinguishing time-like and space-like directions at each point
of the continuum.

In the non-symmetric theory, the g;, matrix cannot be transformed
into a diagonal form by any real coordinate transformation. The simplest
form to which g¢;, can be transformed locally 1s

. |
Qo ~| 92— (13)
1 gf,}

where g5, g5, are real quantities which can be expressed as functions of
~ N

invariants of the field. One can take the diagonal terms in (13) to be the

1) The manifold on which the field-variables are defined is assumed to be topo-
logically equivalent to the Euclidean 4-space. The property of regularity then means:
there exists a system of coordinates (z%), covering the whole manifold, such that
when expressed in this coordinate-system, gi* (2%) are regular functions.
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‘signature’ of the non-symmetric field. Now, a necessary condition for
carryingoutthe transformation to the ‘canonical’ form (13)is: det (¢;;) == 0.

However, in the theory of the non-symmetric field, one wants to avoid
conditions which apply to parts of the total tensor. Instead, one reads the
condition (12) as applying to the total g;, tensor. In addition, we require
that the field variables I3}, are finite and uniquely determined at each
point in terms of the g;, and their first derivatives; from this we can
deduce that det (¢;;) = 0. Hence one has a well-defined space-time signa-
ture at each point [5].

b) Restriction on the antisymmetric field. From the (local) ‘canonical’
form of the g;, matrix, we must clearly have | gy, | <1, in order to pre-

vent the determinant of ¢;, from vanishing. This means that the invari-
ants of the antisymmetric field cannot be arbitrarily given [5].

c¢) Vanishing of mass for static fields. In the gravitational theory we
have the EINSTEIN-PAULI theorem for static fields, which states that if the
field is everywhere regular, satisfies the field-equations, and behaves at
large distances like a ScHWARZSCHILD solution, then its mass must vanish.
In the proof, Gauss’ theorem is applied to a divergence which is known
to vanish in the static field. Since the field is assumed regular, the volume-
integral over the divergence can be converted into a surface-integral;
the boundary conditions are inserted, and it is found that the integral is
proportional to the ‘mass’ of the ScHwWARzZSCHILD solution. On the other
hand, this integral vanishes, since its integrand is everywhere zero.

The proof can be carried out almost as readily in the non-symmetric
field theory. Equation (8) in which ¥ is defined shows that T, =0 in a
static field. On the other hand, equation (9) gives us T, as the divergence
of some function of the field-variables. From here on the proof is formally
the same as in the gravitational theory [6].

d) Are static fields locally Euclidean? LiceNErOWICZ [7] has shown
that this is the case for the gravitational field theory. He makes use of
theorems about elliptic operators: F.V =¢" V,;; +a' V,; (¢ is a defi-
nite-negative form); if F.V is known to be non-negative in a given do-
main, then V cannot attain a minimal value within the domain, without
reducing to a constant. Now, the gravitational field-equations, in the time-
independent case, can be put into a form where the theorems apply. To do
this, one has to express the I'%, explicitly in terms of the ¢;,. In addition,
one assumes that the solution behaves asymptotically like a ScEWARZ-
SCHILD particle — in particular!): ¢g,, ~ 1— m/r < 1 so that a reqular g,,
must attain its lowest value at some point in space. In the non-symmetric

1) Here a tacit assumption is brought in: the SCHWARZSCHILD constant m (teh
‘mass’) must be positive.
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field-theory, however, the expression of I}, through the g;, is so compli-
cated that it may not be possible to establish whether or not F.g,, is
everywhere non-negative. It would be very desirable to provide a proof
of this theorem which does not depend on the explicit substitution of I
by ¢; such a proof could then be extended to the non-symmetric theory

18],

D. Alternative Theories

Several variations of EINSTEIN’S theory have been suggested. I would
like to describe two of these very briefly.

a) SCHRODINGER’S ‘purely affine’ theory [9] is based on the same prin-
ciples as KinsTEIN’S. However, for his variational function, SCHRODINGER

chooses §, = V—det (R;;) (a scalar density!). Thus he does not bring
in the additional tensor ¢'* into the variational procedure. The only
quantities to be varied are the I7},. However, SCHRODINGER defines
2 Q;r = O0D[OR, ;. (A being a constant which is inherently = 0). By so doing,
he arrives at a system of differential equations for g and I which is
found to be not transposition-invariant. For that reason, a change of
variables has to be made (from I"to *I"), which brings the equations into
a transposition-invariant form. The final equations are identical with
EinsTEIN’s equations (11) (the g, /' representation), except for the appea-
rance of the constant 4, which replaces (11¢) by

Ry =29 Biro+ R@,i + Ry = A (G + i+ Guie) -

In SCHRODINGER’s theory, 4 plays the role of a cosmological constant,
and 1s therefore considered as being very small.

It 18 of interest to note that the change of variables (from I" to *I)
can be avolded in SCHRODINGER’S theory just as in EINSTEIN’s theory, by
using from the beginning the variables U, in terms of which R;; is trans-
position-invariant.

b) In KurgunoGLU’s theory [10], equation (11a)is accepted as a defint-
tvon of the 7 ; equation (11b) is also adopted. These equations are shown
to lead to 4 relations among the g and I, which are identical in form with
the generalized BiaxcaI identities, except that ¢;, appears instead of R, .
This suggests a proportionality between the similar relations, which, when

carried out, yields the equation system in KursuNoGLU’s theory. (11¢) is
now replaced by

Rip=—7" (9ix—biz), Rgc,l + Ry,@' + R\z}',k:_“??z (9@,1 T ki T 953',1;)-
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b;; 1s a symmetric tensor formed from the g;,, but different in general
from g;,. When the antisymmetric field is absent, b, and gix coincide;

hence, the constant p?® is not a cosmological constant. The equation-
system is also derivable from a variational principle, with

Or = ' Ry — 2 p? { [— det b M2 — [— det g, JV2 } .

Diskussion — Discussion

Mme A. ToNNELAT: Il est possible aussi d’élargir la théorie en supprl-

mant la econdition
0,92 =0

Pour cela, il suffit de partir d’une densité formée avec un tenseur de
Ricer R, (L) écrit avec une connexion L2, dont le vecteur de torsion est
nul. Aprés changement de connexion afﬁne L2, — A2, on aboutit finale-
ment a I’équation

mais d, g%f et 4, = A7, ne sont dans ce cas pas nuls séparément.
>~
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