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Hauptreferat — Exposé principal — Main Lecture

Relativistic Invariance of Quantum-Mechanical Equations

by E. WieNER (Princeton)

Introduction

Relativity Theory, of which we are celebrating the 50'" anniversary,
and quantum theory, which is about equally old, originated and deve-
loped in very different ways. The theory of relativity owes its origin to a
set of experimental facts which can be epitomised as the independence
of light velocity from the state of motion of emitter and absorber. How-
ever, its guiding stars in the course of its development were conceptual
problems, problems of the measurement of space and time and of obser-
vation. HExperimental facts played a relatively subordinate role in the
development of relativity theory at least for the last 25 years. Quantum
theory, on the contrary, originated as the result of the discussion of a
conceptual problem, the inconsistencies in the classical description of
black body radiation. However, the guiding stars of quantum theory
were experimental facts: the photoelectric effect, the STERN-GERLACH
phenomenon, the BoTHE-GEIGER-COMPTON-SIMON experiments and, be-
fore all, the immense amount of detailed information which was accumu-
lated before the war on atomic spectra and is being accumulated now on
nuclear forces and ‘elementary particles’. The discovery of much of this
information 1s traceable to the stimulus provided by quantum theory, all
of it exerted a profound influence on quantum theory’s development.

Similarly, the objects on which relativity and quantum theories focus
their prime attention are very different. Relativity theory deals prinei-
pally with macroscopic objects. In particular, the coordinate systems for
which the special theory postulates equivalence are macroscopic, not
subject to quantum uncertainties. Furthermore, at least as far as the
general theory is concerned, its great successes are all in the domain of
macroscopic physics. Its principal subject is a phenomenon which modern
experimental physics would surely have overlooked were it not for the
rather extraneous fact that the experimenter and his apparatus are con-
stantly pulled to the floor of the Laboratory. The phenomena of principal
interest for the quantum theorist are of microscopic nature, particles so
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light that one can be almost sure that their individual gravitational effect
is unobservable even in principle. Because of this difference in the deve-
lopment, and in the subject matter of the theories of relativity and of
quanta, it is hardly surprising that the efforts at their unification met
serious difficulties. In fact, it would be hardly surprising if the knowledge
of a new set of phenomena were required before a complete unification
will become possible. It is most gratifying therefore that the attempts at
a partial unification met with such striking success, often in an un-
foreseeable way. As the principal ones I would quote DIrAC’s demonstra-
tion that the simplest relativistically invariant single particle equation
attributes a spin to the particle described [1], PAuLT’S demonstration that
the simplest way to quantise the single particle equation naturally leads
to his equivalence postulate for all particles and to the exclusion prin-
ciple for particles with half integer spin [2], and the success of the relativi-
stically invariant perturbation methods of ToMoNAGa, SCHWINGER and
'FeynMaAN in describing the finest details in the electronic spectra of
hydrogen and other elements [3]. However, notwithstanding their impor-
tance, I shall not devote the body of my address to an elaboration of
these points but will try to give a bird’s eye view of the situation. In par-
ticular I shall try to trace the effect of the transition from classical to
relativity theory as it manifests itself in the quantum mechanical equa-
tions of elementary particles and the invariants of these equations. I shall
begin with classical theory; the transition to the special theory of rela-
tivity will be described rather completely. As intermediate point for a
future transition to the general theory of relativity, the quantum mecha-
nical properties of the DE SITTER spaces will be discussed next. These also
provide the mathematically neatest embodiments of relativity theory
short of a full reformulation of our space-time concepts. It is well to
emphasize, however, that the consideration of the DE SITTER spaces does
not yet meet with the very difficult conceptual problems which a full
incorporation of the deep physical ideas of the general theory of relativity
demands. These problems will be touched upon at the end of the dis-
cussion.

I shall base most of the discussion on the equivalence between the
quantum mechanical equations for single particles and the simplest (so
called irreducible) representations (up to a factor) of the symmetry group
of the world in which those equations apply. I had an occasion, a few weeks
ago, to present some aspects of this point of view and I shall try to avoid
repeating myself?). The basic idea of the point of view which I am recapi-

1) At the meeting of the International Union for Pure and Applied Physics in
Pisa, June 13 to 17, 1955; cf. Nuovo Cimento X 3, 517 (1956) It should be pointed
out that the considerations referred to in the text apply not only to the possible
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tulating is to consider the transformation of the state vector (or wave
function) for all the elements of the symmetry group of the underlying
‘world’ on the same footing [4]. The progress of time, i.e. the displace-
ment of the time axis is one such transformation. It happens to be the
one in which the more usual formulation of the theory is principally
interested. However, one gains a deeper insight into the significance of
relativistic invariance by considering this transformation not separately
but in its relation to the other relativistic transformations.

Before starting on the principal discussion, let me illustrate this point
by means of an example based on the special theory of relativity. Let us
begin with the operator of an infinitesimal time displacement — which is
in fact the crucial operator in the more usual formulation of the theory.
It follows from the general principles of quantum mechanics that this
infinitesimal operator has the form /¢ where I is a self-adjoint operator.
This gives the well known equation for the state vector @

. 0D
? o H o, (1)
If one denotes the characteristic functions and the characteristic values
of I by ¢, and v, the general solution of (1) can be written down at once

D= D a ey, (la)

where the a, are arbitrary constants. This is a complete solution of the
equations of motion. It is, however, not a complete solution of the phy-
sical problem because the physical properties of the states y, are not
known. One can say that (1a) tells us how it moves but not what moves.

It is at this point that the relation of the time displacement operator
and the other relativistic operators becomes crucial. It tells us, for in-
stance, that the infinitesimal operators for displacements along the spatial
axes 1P,, 1P, 1P, commute with H-simply because one obtains the

states of a single particle but to all sets of states which are as small as possible con-
sistent with the requirement of the superposition principle and relativistic invariance.
Thus, for example, they apply equally well to all states of motion of an oxygen atom
(or almost any other atom) in its normal state. The requirement ‘as small as possible’
excludes, however, the states of motion of an oxygen atom in two or more states of
excitation because one can select, from these states, a smaller set for which the
superposition principle applies and which can be characterised in a relativistically
invariant fashion: ‘normal state’ is such a relativistically invariant characterisation.
Thus the expression ‘single particle’ is somewhat too exclusive for the description
of the physical systems to which the considerations of the text apply and these sy-
stems have been termed ‘elementary systems’. However, single particles are the
most important physical systems of this nature. For a further elaboration of this
point, see [5].
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same result no matter in which order one carries out displacements in
space and time. This shows that all those », are equal the corresponding
y; of which can be obtained from each other by displacements. This is
still a rather trivial result. However, the consideration of the proper
LoreNTz transformations and of the rotations gives more significant re-
sults and permits one, in fact, to determine the physically important
properties of the y, as long as the set of operators which correspond to all
relativity transformations is irreducible [5]. This is the essence of the
point of view from which I wish to compare the classical and relativistic
quantum theories.

Given two relativity transformations r and s (such as the displacements
considered above) the corresponding unitary operators may be denoted
by U, and U,. The operator U,, which corresponds to the product 7 s
of the two relativity transformations would seem to satisfy the equation

U,,=U,TU,.

It 1s a very essential point that this equation is not a necessary conse-
quence of the basic postulates of quantum theory and of the invariance
of the equations. Instead, because of the indeterminate factor in the state
vectors, only

Uy ==al#y8) & U, (2)

can be inferred where w(r, s) is a function (c-number) depending on 7
and s. The mathematical term for unitary operators which satisfy (2) is
that they form a (unitary) representation up to a factor of the invariance
group. The discussion will therefore be based on the representations, up
to a factor, of the group of classical mechanics (GALILEI group), of the group
of the special theory of relativity (inhomogeneous LORENTZ group or
PoiNcARE group), of the DE SITTER space, ete. We begin with the classical
theory.

Classical Theory

The symmetry group consists in this case of the symmetry of Euclidean
space — that is rotations and displacements — coupled with GALILEI trans-
formations, that is transformations to a moving coordinate system. The
corresponding transformations can be represented by the matrices

- 7

By Ry Ry v, Ay k2 &
Ry Ry Ry v, Cy Y y
Ry, Ry Ry v, a, 2|=|7|. (3)
0 0 0 1 a t t

0 0 0 0 I 1] 1]
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Such a matrix when applied to a vector the components of which are
z, Y, %, t, 1 gives a new vector the last component of which is again 1.
This component has no physical significance; it is introduced only for
mathematical convenience. The first four components of the vector
obtained by applying our matrix are the transformed coordinates, ', ¥/,
', t'. The R are components of a rotation; they represent the rotation
contained in the generalised GarLiLE1 transformation; v,, v,, v, are the
components of the velocity of the second coordinate system with respect
to the first and the a its displacement in space and time. The group of
matrices of the form as given in (3) is the GaLILEI group. It is the group
of classical mechanics. An investigation of the representations up to a
factor of the GALILEI group gives a rather surprising result [6]: there are
two and only two types of representations. The first type is the simplest
possible; its operators satisfy the simple equation U, U, = U,, in which
r and s are any two GALILEI transformations. In particular U, and U,
commute if r 1s a spatial displacement and s a transition to a moving
coordinate system. In the second type of representations, spatial dis-
placements and transitions to a moving coordinate system do not com-
mute, taken in different orders they differ by a factor

(,U(’f',S) _  ima.v
G (4)

where m is an arbitrary real constant. The SCHRODINGER equation (for
a single particle) is of the second type, the m in (4) plays the role of the
mass of the particle. An investigation of the representations of the second
type, along the lines sketched in the introduction, leads to the usual
operators for momentum, velocity, energy, and position. In order toobtain,
for instance, the position operators, one has to look for three commuting
operators which transform as a vector under rotations, to which a spatial
displacement @ adds the components of @ and which are invariant under
transitions to a moving coordinate system. There is only one triad of such
operators and these are the usual position operators. The momentum and
velocity operators can be defined in similar ways and their ratio 1s given
by the m in (4).

All this is quite satisfactory but the point which I wish to make is that
the same postulates cannot be satisfied for representations of the first
type. There is, in the HiLBERT space of these representations, no triad of
operators which satisfies, for instance, the conditions enumerated for the
momentum operators [7]. The infinitesimal displacement operators p,,
Pys P, In particular transform under a transition to a moving coordinate
system like

PP e 2.
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That is, the spatial displacement operators remain unchanged under
these transformations. One has to conclude that these representations
have no physical significance, that there are no particles the state vectors
of which would transform, under GavriLEr transformations, by means of a
representation of the first type. For the time being, this seems to be an
isolated result but it will appear in a new light when classical mechanics
1s viewed as a limiting case of the special theory of relativity.

Special Relativity Theory

The symmetry group consists in this case of a combination of spatial -
and time displacements with ordinary (homogeneous) LORENTZ transfor-
mations. The latter are combinations of rotations and transitions to
a moving coordinate system. The transformations of this group can be
represented by matrices of the form

[ Ay Ay Ay Ay ] (z] [
Ay Ay Ayg Ay @, Y y'
Ay Ay Ay Ay @, z2|=|7% (5)
Ay Ay Aoy Ayy @ ¢ v

10 0 0 0 1 | 1] |1 ]

The last coordinate is introduced again for mathematical convenience,
the A are components of a homogeneous LorENTZ transformation, that
1s the transformation leaves the quadratic form 2% + 42 4 2% — 12 invari-
ant (however, we do not consider, at this point reflections or inversions).
It is well known that the GALILET transformations (3) can be considered as
limiting cases of the transformations (5) and it is interesting to see how
the representations of the GALILEI group can be obtained as limiting cases
of the representations (5), i. e. how the quantum theory of classical phy-
sics 18 obtained as a limiting case of the quantum theory of special rela-
tivity .

No representation of the PoiNcarE group (5) has a factor similar to
the factor (4) of the GaALILEI group. Instead, all of them can be normalised
in. such a way that

U, Us =22 e Urs (6)

holds for any two transformations » and s. The representations can be
classified, on the other hand, by the value which the Lorentzian sum of
the squares of the infinitesimal displacement operators

PP P P2 M

assumes. This quantity can be positive. 0. or negative.
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Only the first two cases have been investigated thoroughly and they pro-
ve to be equivalent with equations for particles with positive and zero rest-
mass respectively. If (7) is positive the momentum, velocity and position
operators can be defined in the same fashion as was explained at the dis-
cussion of the GALILEI group; if (7) is zero it is, in some cases, not possible
to define position operators but the postulates for the momentum and
velocity operators have a unique solution in every case. When the tran-
sition from (5) to (3) is made, i. e. when the light velocity is assumed to
be infinite, the representations just described go over into the represen-
tations of the GALILEI group.

The correspondence is as follows [8]
PP—P P> Pr=m?>0 TR
Pz — P?— P?— P2=0, finite spin B == WP
PP — P?— P?— P2=0, infinite spin w0 =1
PP—P:—P2—P:<0 =13

w 1s the expression which appears in equation (4). The positive restmass
and the ordinary zero restmass representations have a reasonable non
relativistic limit; the other cases lead to representations in which neither
momentum nor position coordinates can be defined. The case in which
(7) is negative, 1. e. for which the infinitesimal displacement operators
form a space like vector are commonly assumed to violate the KRAMERSs-
Kronia causality conditions. They can be seen also to have no reasonable
non-relativistic. This is then the interpretation of the true representa-
tions (1. e. for which U, U, = + U,, for all r and s) of the GALILET group:
they form the non relativistic limit of relativistic particles with space-
like momentum which violate the principle of causality.

As 1s well known, in order to characterise a representation (or the
equivalent equation) completely, one has to give in addition to the mass,
the spin § of the particle. If the restmass is positive, it is permissible to
consider the particle to be at rest; the number of its states at rest is
then 2 8§ 4 1. The same is the number of states with any given momen-
tum. However, if the restmass is zero, there are for all S > 1/2, only two
different states. A particle of restmass zero cannot be, of course, consi-
dered to be at rest. Nevertheless, it seems worthwhile to explain more
in detail this difference in the behavior of the particles with zero and
with finite restmass.

If a particle is at rest, and its spin has a definite value in a given di-
rection, the 2 S + 1 states of the particle can be obtained by considering
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the particle from coordinate systems which arise by a rotation from the
original coordinate system. However, if the particle is in rapid motion,
1. e. if the spatial component and the time component of its momentum
are nearly equal, and if its spin has a definite value in the direction of its
motion, this state of affairs will be invariant under rotations. In order to
change the spin component in the direction of motion substantially, one
has to consider the particle in a coordinate system in which it is nearly
at rest, that is in which its velocity is well below the light velocity. This
cannot be done if the restmass of the particle is zero and hence the spin
of such particles in the direction of their motion is a relativistically in-
variant characteristic. The fact that such particles have two directions
of polarization, instead of only one, is a result of the reflection symmetry.
A reflection transforms a spin component S in the direction of propaga-
tion, into a spin component —S in the same direction. In the case of finite
restmass, the —S state (as well as all spin directions) can be obtained also
by a rotation; the parity is the ratio of the state vectors obtained by ro-
tation and by reflection. Since, for zero restmass, the —S state cannot be
obtained by rotation from the +- S state, these particles have no parity
or rather have both even and odd states with respect to reflection at the
same energy and momentum. Only the KLEIN-GorDON particle (S = 0)
1s an exception: in this case the reflection does not produce a new state
vector but reproduces the original one with positive or negative sign.

The fact that a fast moving particle’s polarization does hardly change
under a not too drastic LorENTz transformation can be seen most easily
on the example of the Dirac electron. If one decomposes a state which
has positive polarization in the direction of motion into characteristic
functions of y =11y, y, y, 7., the absolute values of the coefficients are

Pt+'m+P Pt—l-m——P
@r,@+myE A GE B, m e (8)

The state vector for which 9 =1 remains such a vector under LORENTZ
transformations and the same holds for the y = — 1 vector. If the coeffi-
cient of the former is practically 1, this condition will remain unchanged
under LorRENTZ transformations which do not change the length of the
y = 1 vector too drastically. It follows that the polarization will hardly
change under such LoreNTZ transformations.

It is possible to express this in another way which shows, at the same
time, that the property in question is a property of the LorENTZ group
and not of a particular representation thereof, i. e., that it is true for
all values of the spin. Consider a particle at rest and polarized in the z
direction. Impart to it a velocity in the z direction by subjecting it to a
LoreNnTz transformation with the hyperbolic angle a. Later, this angle
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will be assumed to be very large so as to make the particle highly rela-
tivistic. At any rate, we now have a particle which is polarized in the
direction of its motion —which is in the z direction. In order to obtain a
particle which is polarized in the direction of its motion, but 1s moving
in another direction, one would first subject the particle to a rotation to
bring the polarization into the direction of its projected motion and then
accelerate 1t in the desired direction. In order to test whether the state-
ment, that the polarization has the direction of the motion of the particle,
is relativistically invariant we subject the particle which moves in the
direction z and 1s properly polarized, to a second acceleration, in the x
direction, by the hyperbolic angle . This angle is arbitrary but will be
assumed, at the end, to be much smaller than a. The particle could have
achieved the same state of motion by being accelerated by the hyper-
bolic angle &’ in the direction which includes an angle ¢ with the z axis
where

Cosh a’= Cosh a Cosh ¢, sin ¥ = Cosh a Sinh ¢/Sinh o'. (8a)

However, the direction of polarization would not be the same in the se-
cond case as in the first case. In order to make it the same, one has to
rotate the system, before accelerating it in the ¢ direction, by an angle
¥} — 6 where d is given by

sin 0 = Sinh &/Sinh o = Sinh & (Cosh2a Cosh2e —1)7V/2 (8b)

This follows, simply, from the identity for LorENTzZ transformations
4 (% 7 8) A(0,a) — A(8, &) R (§—6). 8)

where a, & are arbitrary while o’,9) and ¢ are defined by the last two equa-
tions. A(@, a) is the acceleration by a hyperbolic angle a in that direction
in the x z plane which includes an angle ¢ with the z axis; R(¢) is a rota-
tion by ¢ 1n the z z plane. If § were zero, the particle which was polarized
in the direction of its motion after the acceleration a, would have remai-
ned polarized in the direction of its new motion (1. e., the & direction)
after the second acceleration, by ¢. This is not the case, as d is finite.
However, d is very small if ¢ < a, 1. e., if the second acceleration is by a
much smaller hyperbolic angle than the first, and if a > 1.

De Sitter Spaces

The symmetry group of the ordinary pE SITTER space consists of the
transformations which leave the pE SrrTER world

2 4 y? - 2% w?— 2= R2
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invariant. The group of special relativity can be considered as a limiting
case of this group in exactly the same sense in which the GALILET group is
a limiting case of the inhomogeneous LoreNTZ group. The quadratic forms
which these groups leave invariant are

m2+y2+z2; x2+y2+z2—t2; w2+y2+22+w2_t2_

The equations which are invariant in DE SITTER space, or the representa-
tions of the group of DE SrTTER space [9], have many interesting features.
The distinction between particles with finite and zero restmass becomes
unsharp — the finite restmass particles have to be characterized by the
statement that their ComproN wave length is very small as compared
with the size of the universe. Even more remarkable are, however, the
properties of the particles with respect to the discrete operations of the
group such as space and time inversion. In particular, it is difficult to
maintain the positive definite nature of the energy, or of its substitute, in
DESITTER space. This is hardly surprising because the same transformation
which advances time in one part of space, retards it in another. Again, the
physical significance of this circumstance will become clearer when the
next stage of the theory, the gerneral relativity is considered.

General Relativity

I am approaching this subject with a great deal of hesitation because
even the general outlines of a quantum mechanics which conforms with
the ideas of the general relativity theory are quite unclear. Much of what
has been said and written on this subject is more nearly a special rela-
tivistic theory of a particle with spin 2 rather than an adaptation of quan-
tum theory to the thinking and principles which EinsTteIN has put for-
ward.

Most of us would consider two observations to form the basis of the
general theory of relativity. EINsTEIN’s first observation is that coordi-
nates have no independent meaning; that only coincidences in space-time
can be observed directly and only these should be the subject of physical
theory. This observation is so stringent that, properly considered, every
physical theory conforms with it and I shall show that this is true also
of present day quantum mechanics. However, the realisation that this is
the case will show us, at the same time, that it presupposes rather special
circumstances. Although these special circumstances prevail for ordinary
laboratory experiments, they are special circumstances nevertheless. The
necessity of observing these circumstances renders ordinary quantum
theory quite artificial from the point of view of EINSTEIN’s first axiom.
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EINsSTEIN’S second axiom is the equivalence principle. This gives a pre-
ferred role to gravitation over all other types of interactions. The justi-
fication for this preference comes from the particular simplicity of gravi-
tational interaction, from the equality of gravitational and inertial mass.
The validity of this principle in the microscopic domain is not as evident
as the validity of the coincidence axiom. We know of many rules which
apply with great rigor to electromagnetic and other types of interaction
and 1t 1s conceivable that the special role of the gravitational interaction
may dissolve in a higher harmony. For this reason, I shall pay prime
attention to EINSTEIN’S first observation, that only coincidences have a
direct physical meaning, values of coordinates do not.

One should observe, in this connection, first, that if one deals only
with a finite number of particles, EINsTEIN’S first observation cannot be
incorporated even into classical theory. The fundamental question to
which such a theory would provide an answer would have a form such as
‘We have ten particles, so far collisions have occurred between particles
1—2, 5—6 and 3—6. Will particles 1—b collide?’ No theory has yet been
attempted to answer questions of this sort and this statement remains
true even if some further structure is permitted, such as a time order for
the collisions of every particle. The transition from the enumeration of
coincidences to a continuous Riemannian space implies the existence of
an infinite number of small particles which constantly fly around between
the principal particles, collide with them and through an infinity of colli-
sions provide a metric. Actually, the assumption of such an infinite sub-
strate of very small particles is not very far from reality: the light emitted
by the stars forms such a substrate. We know of the other stars because
the light which was in coincidence with other stars comes to coincide
with us. Neither is there a fundamental inconsistency in the assumption
of the infinite substrate in classical theory because there is no limitation
in classical theory on the size of a particle with given energy.

All this is quite different in quantum theory. First of all, the event of
a collision is not an absolute one but is subject to observation. The most
natural criterion for a collision to have taken place is that the momen-
tum of the colliding particles has changed. However, the measurement
of the momentum requires a finite volume and it is hard to claim, there-
fore, that the collision is the basic entity of physics in terms of which
everything should be described.

Second, there are difficulties with the assumption of an infinite sub-
strate of very small particles. In order to fix the position of a principal
particle, such as a star, very accurately, one has to assume that the sub-
strate consists of particles of very short wave length. The short wave
length gives, however, a lower limit to the energy and hence also to the
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gravitational mass of the substrate. This difficulty would be a very real
and very practical one were it not for the very small value of the gra-
vitational constant. The smallness of this constant is quite essential for
the formulation of present day quantum theory if one keeps in mind that
only coincidences have physical significance. From the point of view of -
these 1deas, a quantum mechanical experiment, undertaken on an isola-
ted system, and the use of LorRENTZ metric, would have to be described
as follows. The isolated system is surrounded, in space, by a framework,
containing clocks at the junctions, which can be used to ascertain, first,
that space-time is approximately flat on the surface surrounding the iso-
lated system and which enables one, then, to define a coordinate system
with LORENTZ-metric to impart impulses to the system and to register its
response. Such a framework-clock system could be used, for instance, to
measure collision cross sections or even the whole S-matrix.

Before trying to simplify this scheme, it seems worth while to remark
that the necessity of the framework-clock system raises doubts whether
1t 1s meaningful to consider a simple system, such as a particle, to be alone
in the universe and to obey certain equations. In order to ascertain the
behavior of the particle, it would have to be surrounded by our frame-
work-clock system and clearly, the whole universe cannot be so surroun-
ded. For this reason it now seems doubtful to me whether particle equa-
tlons in DE SITTER space have much significance and in particular whether
those properties of the equations are meaningful which follow from the
symmetry of this space at large. I refer by this term to symmetry planes
and to the symmetry center of such a space.

If one analyses the way in which measurements on so called isolated
systems are interpreted, one does in fact find the framework-clock system
described above surrounding the i1solated system. The motion of the stars
etc. guarantees the approximate flatness of the space and provides a
coordinate system with LORENTZ metric; the apparatus used for the mea-
surement provides and registers the patricles the properties of which are
to be measured. A simple consideration shows also that the gravitational
forces emanating from the ‘isolated system’ do not interfere with the
possibility of measuring cross sections with arbitrary accuracy if one is
allowed to make the volume surrounded by the framework arbitrarily
large.

The state of affairs just described is, nevertheless, unsatisfactory from
the point of view of the principle of general relativity because the physi-
cal entity which provides the metric is distinet from the entity the pro-
perties of which one investigates. The idealisation of a framework which
provides a metric but does not influence the ‘isolated system’ by its gravi-
tational field is possible only because the gravitational constant is so
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small. In a theory which fully accepts EINSTEIN’S basic observation it
would not be necessary to divide the physical system into two parts: one
which gives the metric and the other which is to be described.

The simplest way to accomplish this is to renounce the use of coordi-
nates entirely. The questions to which physical theory would give an
answer would be of the sort: I have a system in which there is a three di-
mensional manifold on which the probability of finding particle 5 is the
product of finding particles 1, 2, 3 and 4. Is there another threedimensio-
nal manifold on which the probability of finding particle 5 is some other
given function of the probabilities of finding particles 1, 2, 3 and 4. Such
a theory would not deal with the coordinate derivatives of field quanti-
ties but with the derivatives of probability amplitudes with respect to
each other.

If one assumes no interaction, the equations of such a theory should
be obtainable from the usual quantum mechanical equations through
elimination of the coordinates. It must be possible to accomplish this
although I have so far succeeded to do so only in a most provisional and
incomplete fashion. The equations obtained by such an elimination differ
in fact less from usual equations than one might first think. In particular,
quantities similar to the g;, appear again. The content of the equations
obtained is identical with the content of the equations from which one
started and I mention a set of such equations only to illustrate what
I have in mind, not because I believe that they solve some problem.

Let me take, for simplicity, a world of only one spatial dimension and
consider fields which obey the KLEIN-GORDON equation. Let us use two
such fields ¢; and ¢, to eliminate the coordinates. The other fields shall
be denoted by y,. We then have

e 0p; OYa
O, i X, O
i=1
2 2
dr: or, 0w, Op; dp; | . dx? dp;

3= 1 =1

The left side summed over % is equal to m 2y, and a similar substitution
can be made on the right side

Py 2 Iyg
Mg Po = 2 i Soragy T 2 M Vi3 (10)
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where
dp; Op; :
=2 . (10a)
k

The first set of equations can be considered to determine the g;;; the

requirement of their consistency is the vanishing of a determinant of order
4(a=1,2,3,4)

Mg Ny %y, iy, |
—— e 1 11
dpi Op Op dps O | (1)
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This equation does not contain coordinates any more. As I said, it is
mentioned only as an illustration and not because it has any status.

Diskussion — Discussion

D. van Dantzie: I first want to make a remark concerning the first
part of your talk about special relativity in connection with relativistic
invariance. It seems to me that the term ‘relativistic invariance’ is not
completely unambiguous. Usually one requires invariance under all trans-
formations which leave ds? unchanged. Half of these leave each half light
cone, past as well as future, unaltered ; the other ones interchange these.

Now, I am not quite sure that there is any observational evidence which
makes 1t necessary to include in relativity theory the latter transforma-
tions also.

It seems to me rather that the only thing which is really guaranteed by
experimental evidence is the group of transformations which leave the
time direction unaltered.

There are several points where, without noticing it, one usually intro-
duces a choice of time-direction. For instance in the expression of the
energy-momentum of a charged particle, p;=mi;—e @; (c=1), 7; is a
unit vector along the world line, which can be oriented in two directions.
It must be oriented, however, so that the time component is positive;
otherwise p; is not the energy-momentum. In ¢* = dz’/ds one can there-
fore not always take ds as the positive root |ds| of ds®, but one must
have ds = |ds| sgn dt, where sgn  is the sign of z (= + 1, 0 or — 1 accor-
ding to # > 0,=0 or > 0). This disturbes the invariance under the
complete group. The equations of motion are only invariant under ¢t — — ¢
if also the sign of e is changed.

Just this fact seems to be a cause of many difficulties. For instance the
necessity of introducing so many phantom particles in relativistic quan-
tum theory (anti-proton, etc.) might disappear by considering only those
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quantities as relativistically invariant, which leave ds? as well as sgn dt
invariant.

My second question concerns the second half of your talk. It 1s con-
cerned with the possibility of identifying space-time points.

It seems to me that your remark 1s in complete agreement with what
I said last monday, namely that it is impossible to define in empirical
terms what a space-time-point is, and that the only thing we have are
events.

I agree with you that it is not sufficient to take only observed events;
we have to add to these also possibly observable, hence fictitious events.
But I do not think that this leads to the necessity of introducing the con-
cept of space and time, i. e. of a (four dimensional) continuum of such
fictitious events. It seems to me rather that thereby something essentially
unobservable is introduced, and that some kind of ‘flash model’, 1. e. a
discrete set of possibly observable events, comparable with a four dimen-
sional crystal, the structure of which is determined (at least partially) by
‘transition probabilities’ instead of forces, might be more realistic.

F.Hovre: Ishould like to express my agreement with Prof. WIGNER’S
remarks on codrdinates. It has seemed to me for some time that our pre-
sent use of cooérdinates may be a psychological survival from the Newto-
nian era. Now that we realize that codrdinates are nonmore than para-
meters that must be eliminated in determining relations between obser-
vables, it becomes natural to ask whether we are using the most advan-
tageous parameters, or even whether any such parameters are necessary.

E. WieNER: I have learned since the Conference that some of the ideas
which were expressed by me are similar to those presented earlier by
D. vax DanTzig, J. L. SYNGE and J. GEHENIAU.

A. D. Fokker: If theory is concerned with coincidences only, taking
such coincidences as consisting in collisions e. g. of particles 1 and 2, of
particles 3 and 5, of particles 2 and 6, and so on, how can one know that
the particle called 2 in the first event and the particle called 2 in the
third event is the same? Does not theory require something more than
coincidences only?

E. WigNER: The problem of identification of the particles is greatly
affected by the equivalence principle. Naturally, one can distinguish bet-
ween different types of coincidences, such as an electron-electron coinci-
dence and a proton-electron coincidence. However it is not only difficult,
but in principle impossible to identify the electrons (by name or number)
between which a coincidence has taken place. However any theory which
takes the equivalence theorem into account automatically conforms with
this principle and this applies also to the type of equations which was
described by me.
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M. Born: Professor WieNER has put his finger exactly on the spot
where the difficulty of reconciling general relativity and quantum me-
chanics lies, namely that relativity is based on the concepts of coinci-
dences as the only observable things. Atomic physics has to do with
collisions of particles; but quantum mechanics treats a collision as a
spatially extended process of which only the asymptotic limits are ob-
served.

Though I agree with this analysis, I am rather doubtful about the
remedy suggested by WicNER. He tries to eliminate the coérdinates and
the time altogether and to reformulate the laws of quantum mechanics
in terms of field components or wave functions alone. I prefer to adhere
to Bonr’s standpoint according to which all actual observations are made
with the help of macroscopic systems to which the notions and laws of
classical physics can be applied; the interpretation of the results then
compels us to assume different laws for the underlying atomic processes.
Greneral relativity, in my opinion, has to do only with the macroscopic
superstructure. In fact, of the three observable consequences of the theory
only the purely macroscopic one, the anomaly of the perihelion of the
orbit of Mercury, is explained by EINsTEIN’S theory without doubt; the
other two effects, the deflection of light rays by the sun and the red-shift
of spectral lines (which are micro-phenomena), are still controversial, at
least in regard to magnitude. I think that general relativity as we know
it may be invalid in this domain. Therefore I do not agree with the
general negative attitude towards FREUNDLICH'S attempt to base the red-
shift on new foundations. He has suggested a formula of the form
Avlv= A1l T* where T is the absolute temperature on the surface of a
star and [ a certain ‘length of penetration’ of the surface layer. He has
observed that this means probably an effect proportional to the radiation
density « on the surface. If one writes his expression in the form Av/y =
C 1 uflyu,y, and take for [, the atomic length #/m ¢ = 4y/2 = (m = atomic
mass, 4, = Compron wave length) and for u, the energy of one electron at
rest per volume [, one finds for C' the order of magnitude 1. As FREUND-
LICH’S formula represents almost all known facts (including Worr-RavYET
stars where the relativity effect is about 100 times too small) I think this
cannot be an accidental agreement and should not be dismissed without
careful study.

P. G. BEramaNN: (3 propos Bor~’s remark) Though I agree that the
world point may lose its significance and invariant identity in the very
small, I believe formly that there must remain an invariance group (per-
haps larger than the invariance group of general relativity) which, corre-
spondence-wise, goes over into that of general relativity. After all, the
invariance group of general relativity is based on a sound physical prin-
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ciple, to which no exceptions have as yet been observed: the principle
of equivalence. Personally I know of two different logical possibilties for
constructing groups that ‘emasculate’ the meaning of the world point.
One retains world points in any frame of reference but does not preserve
their identities under the invariance group, and that is the group of cano-
nical transformations under which a given covariant theory (such as ge-
neral relativity) is invariant. There are (admittedly rather trivial) exam-
ples of transformations of this type that do not carry world point into
world point. The other approach would consist of constructing ‘spaces’
that have certain topological properties similar to those of point spaces
in the large but do not possess ‘points’ as elementary constituents; I am
thinking of such structures as skew lattices, in which the skewness gua-
rantees the non-existence of points. Whether either of these two ap-
proaches leads to anything physically promising I do not pretend to know.
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