Zeitschrift: Helvetica Physica Acta

Band: 29 (1956)

Heft: [4]: Supplementum 4. Flinfzig Jahre Relativitatstheorie =
Cinguantenaire de la Théorie de la Relativité = Jubilee of Relativity
Theory

Artikel: On equations of motion in general Relativity Theory

Autor: Infeld, L.

DOl: https://doi.org/10.5169/seals-112745

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-112745
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

On Equations of Motion in General Relativity Theory

- by L. InreELD (Warschau)

I would like to speak briefly on the history of the problem of motion
since I had the great privilege of working on this problem with EINSTEIN.
For the first year I worked on the problem with EinsTEIN and HOFFMANN,
later with EINsSTEIN only. At the end of my lecture, I shall say a few words
about simplifications of the solution which I have recently developed.

When I went to Princeton in 1936, EINSTEIN told me that he had been
working on this problem for 15 years. Indeed, its history dates back to the
paper by EINSTEIN and GROMMER in which they showed that the equa-
tions of the geodesic line can be deduced from the field equations of
Relativity Theory. Although today this can be shown more simply and
more correctly mathematically, the idea of deducing the equations of
motion from the field equations is a very important one.

Let us take as an example the Newtonian theory of gravitation. Here
we have the LAPLACE or Porssox equations as the field equations. In addi-
tion we have the Newtonian equations of motion connecting the accelera-
tion with the potential gradient. In electrodynamics there is a similar
situation. Here we have MAXWELL’S equations which are the field equa-
tions, and LORENTZ’S equations which are the equations of motion.
Finally there is a similar situation in E1NsTEIN theory of gravitation. Here
we have the field equations for the gravitational field, and the equations
of a geodesic line, that is the equations of motion for the test particle.

But the difference between PoissoN’s equations of classical mechanics
and MAXWELL’S equations on the one hand, and the field equations of
relativity theory on the other hand, is this: whereas the former are linear
equations, the latter are non-linear. From linear equations we cannot
deduce the equations of motion. But there is a possibility of deducing
them from non-linear equations. Indeed, EINSTEIN and GROMMER showed
that the equations for a test particle — that is, the equations of a geodesic
Iine — can be deduced from the field equations.

What about the motion of two bodies —say a double star — if the masses
of both are of the same order? To this problem the solution was suggested
by EINSTEIN 1n 1936,
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Let us assume the field equations for empty space, and that matter is
represented by singularities of such a field. EINsTEIN found the general
form of the equations of motion for the s-th singularity by considering
four vanishing surface integrals around this s-th singularity. These sur-
face integrals were independent of the two-dimensional surface und they
vanish because of the BiancaI identities.

In 1938, by using these surface integrals and the proper approximation
method, EiNsTEIN, HoFFMANN and I obtained the equations of motion
to an approximation one step beyond the Newtonian. (Here I should like
to mention one of EINSTEIN’S mistakes, because EINSTEIN’S mistakes are
more important and interesting than the virtues of many other men.
Since we have four equations for the motion of each singularity to deter-
mine three space coordinates as functions of time, EINSTEIN thought that
the fourth equation would restrict the motion and perhaps give a quan-
tum condition. This proved to be wrong and the fourth equation followed
roughly speaking from the other three equations).

A year later, V. I. Fock’s paper appeared, in which he found, indepen-
dently, the Newtonian equations of motion from the field equations.
Professor Fock characterized the difference between his approach and
ours In two ways: first he took a continuous distribution of matter and
no singularities; second, he used the harmonic coordinate system.

As to the first difference: EinsTEIN very much disliked the illegal
marriage between the artificial energy-momentum tensor of matter and
the curvature tensor. This was why we preferred to consider empty space
with matter as its singularities. Yet the mathematical theory would
remain exactly the same if we assumed continuous distribution of matter.
The surface integral would merely have to enclose the continuously distri-
buted particle at a given moment.

As to the second difference: In our 1938 paper we used a different
coordinate condition than Fock’s, but from PETRovA’s calculations
published eleven years later, it followed that in spite of the different
coordinate conditions, the post-Newtonian approximation is exactly the
same for coordinate conditions!

In 1938, I received a letter from KinsTEIN about the objections of the
mathematician LEVINSON to the rigor of our general theory of motion.
EinsTeIN found the objections valid and suggested that we remove them.
Thus our work by correspondence began. While removing LEVINSON’S
objections, we revised the whole theory. There was one new result which
I should like to mention here. We found that the equations of motion up
to the post-Newtonian approximation are independent of coordinate con-
ditions. In other words: our approximation method sufficiently deter-
mines the coordinate conditions. Therefore, it is absolutely unessential
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whether our coordinate conditions used in 1938, or Fock’s, or none at all
are used, as long as the proper approximation method is used.

Now I should like to say a few words about a simplification, I found
recently (1954). The method has something in common with the work
of PAPAPETROU, although he, like Fock, used continuous distribution and
harmonic coordinate conditions. In our work of 1938 (with ExnsTEIN and
Horrmann) and 1949 (with EinsTrIN) we represented matter by singu-
larities. This was equivalent, mathematically, to considering the energy
momentum tensor 7*” as linearly and homogeneously dependent on
DirAC’s 6 function, vanishing everywhere outside the singularities. Thus
we had for the field equations

1
Raﬁ_“é'gaﬁ R :‘_—8 T Taﬁ .

Now instead of forming surface integrals from the left-hand expressions,
let us take the right-hand side. Because of Biancar’s identities we have

T°f .3 == 0 (; means covariant differentiation).
Thus

is the equation of motion of the s-th singularity if the region of inte-
gration surrounds the s-th singularity.

To indicate the simplification, let us write
gaﬁ:naﬁ _E'- }{’aﬁ + };’a,ﬂ 8% ¥

where 7,, are the Minkowsk1 values for the metric tensor and the num-
bers under the ’s denote their order. To calculate the equations of motion
by the new method requires knowledge of

h,; and Ay,
1 2

whereas to calculate the equations of motion by the old method requires
knowledge of

hyg and g

1 2

which means more than ten times as much work. The result in all cases
is of course exactly the same.
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Diskussion — Discussion

W. HertLER: This is the only case in physics where the equations of
motion follow from the field equations. Can one find a general criterion
characterizing the type of field theory from which the equations of
motions follow or do not follow?

L. INFELD: There is no such general criterion.
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