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Hauptreferat — Exposé principal — Main Lecture

Probléemes généraux d’intégration des équations
de la relativité

par AxprE Licanerowicz (Collége de France)

Je me propose, dans cette conférence, de montrer quels sont les pro-
blémes posés par I’étude mathématique des équations relativistes de la
gravitation et de 1’électromagnétisme et d’indiquer les principaux résul-
tats obtenus dans cette vole au cours des derniéres années. Cette con-
férence sera consacrée principalement a la relativité générale ‘classique’,
mais, chemin faisant, je serai conduit & montrer que les probléemes mathé-
matiques posés par les théories unitaires, qu’elles soient du type JORDAN-
THIRY ou non symétriques, ne différent guére de ceux concernant la rela-
tivité générale. Comme nous le verrons, les quelques faits mathématiques
mis en évidence par ces théories contribuent a jeter quelques lueurs sur
la difficulté fondamentale des théories unitaires: obtenir une interpréta-
tion physique précise des éléments, des schémas géométriques raffinés
qu’elles mettent en jeu.

J’ajouteral que l'esprit de mon exposé sera celui du physicien mathé-
maticien.

1.La Structure des équations du champ

1. La variété espace-temps.

Danstoute théorierelativiste duchamp gravitationnel,1’élément primitif
est constitué par une variété «espace-temps» V, a 4 dimensions, douée
d’une structure de variété différentiable qu’il semble désormais essentiel
de préciser.

Pour des raisons étroitement liées & la covariance du formalisme et qui
apparaitronten détail par ’analyse des équations du champ gravitationnel,
nous sommes amenés a supposer que dans I'intersection des domaines de
deux systémes de coordonnées admissibles, les coordonnées locales d’un
point dans I'un des systémes sont des fonctions 4 fois dérivables, a jaco-
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bien non nul, des coordonnées de ce point dans l'autre systeme, les
dérivées premiéres et secondes étant continues, les dérivées troisiémes ou
quatriémes étant seulement continues par morceaux.

Nous traduirons ceci en disant que la variété V, est (C2, C* par mor-
ceaux).

Sur V, est définie une métrique riemannienne ds?, de type hyperbolique
normal, a un carré positif et trois carrés négatifs. L’expression locale de
cette métrique dans un systéme de coordonnées admissibles est:

ds® =g,z da* da’ (o, B et tout indice grec =0, 1, 2, 3). (1)

Le ,tenseur de gravitation” g,; est supposé exactement (C1, C® par
morceaux), ce qui est strictement compatible avec la structure imposée
a V,. Toute précision globale supplémentaire de la structure différen-
tiable ou de la métrique, au point de vue différentiabilité, doit &tre con-
sidérée comme dépourvue de sens physique.

L’équation ds® = 0 définit en chaque point # de ¥, un cone réel C,, le
cone élémentaire en x. Son intérieur et son extérieur définissent respec-
tivement pour une direction I’orientation dans le temps et I'orientation
dans ’espace. Pour qu'une hypersurface 2, définie localement par f(2%)
= 0, soit orientée dans I'espace il faut et il suffit que '

Aaf = g% 0 851 >0 (8, =) - @)

X

Si la ligne L, orientée dans le temps, est représentée par z' = const. (4 et
tout indice latin = 1, 2, 3), on a gy, > 0 et les formes quadratiques, duales
I'une de I'autre, de coefficients '

__ 9o0i 905 g*'iy'
Jo00

=g" (3)

9i5 = 9i5

sont définies négatives.

La variété V, n’est pas topologiquement quelconque puisqu’elle admet
un champ métrique de type hyperbolique normal; par recours a une mé-
trique elliptique on voit que ¥, admet certainement un champ de direc-
tions orientées dans le temps. Les trajectoires de ce champ fournissent
un systeme global de dignes de tempsy.

Lorsque des considérations topologiques sont nécessaires, on admet
bien souvent, plus ou moins explicitement, que ¥, est le produit topo-
logique d’une variété V, & 3 dimensions par une variété a | dimension, les
sous-variétés facteurs de dimension 1 étant dans V, orientées dans le
temps. Dans ce cas, pour beaucoup de problémes, seule la topologie de V4

12 HPA Sppl. IV
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importe. Les cas usuels sont ceux ou Vj est homéomorphe & I'espace
ordinaire R? ou bien est une variété compacte.

Les différentes hypothéses explicitées sur la métrique (1) caractérisent
les métriques dites réguliéres.

2. Les équations d’Ervsrein de la relativité générale

Je désigneral dans la suite par R g le tenseur de Riccr de la métrique (1)
et poseral

=R — 7;— Jap (B2 4 2 2) (A constante cosmologique).

Les équations d’EINSTEIN qui, dans le cadre de la relativité générale,
limitent la généralité de la métrique peuvent s’écrire:

Saﬁ =X Taﬁ . (4:)

Le tenseur d’impulsion-énergie T' 5, qui joue le réle de source du champ,
décrit au mieux au point considéré de V, I’état de I’énergie (cas intérieur)
ou bien, dans les régions non balayées par I’énergie, est identiquement nul
(cas extérieur). Il généralise ainsi le second membre de I'équation de
Porsson.

Le tenseur S,;, d’origine géométrique, qui ne dépend que des g, et de
leurs dérivées des deux premiers ordres, est linéaire par rapport aux déri-
vées du second ordre et satisfait aux identités de conservation

7, S8

» =0 (Vg opérateur de dérivation covariante). (5)

Le systéme des équations d’ KINSTEIN présentant, comme nous allons
le voir, le caractére hyperbolique normal, le premier probléeme que nous
devons nous poser est le probléme de CaucnY qui est étroitement lié au
déterminisme relativiste. Nous commencerons par une étude élémentaire
locale et, pour nous réduire a I’essentiel, nous n’mtroduirons pas de second
membre et n’envisagerons que le probléme de CavcHY extérieur. Son
étude préalable est d’ailleurs nécessaire pour le probleme de Caucny avec
second membre. Notre probleme est donc le suivant: Probléme. Etant
donné, sur une hypersurface X, les potentiels g, et leurs dérivées premieres,
détermaner en dehors de X les potentiels supposés satisfaire aux équations
d’E1xsTEIN du cas extérieur.

Sur X, représentée localement par z° =0, les «données de CAuCHY»
sont les valeurs des ¢,, et des d, g,5. Nous désignerons par f (d - () une
fonction dont la valeur sur X peut se déduire des données de CAUCHY par
des opérations algébriques et des dérivations le long de 2.
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Nous supposerons pour le moment X orientée dans Uespace (§°° > 0). Si
Pon cherche & mettre en évidence, dans les équations d’EINSTEIN, les
dérivées secondes dyg g,5 dont les valeurs sur X'demeurent inconnues, on
est conduit a remplacer ces équations par le systéme équivalent composé
des deux groupes d’équations:

Ry —Aig; = — o g% 009s; — Fij (d - C) =0 (6)

89 =G, (d-C)=0 (7)

Une condition nécessaire pour que le probléeme de CaucHY soit possible
est que les équations (7) solent satisfaites sur 2 par les données de CaucuY.
D’autre part ¢° étant == 0, les équations (6) fournissent les valeurs sur X
des dgg g;;. Aucune équation ne contient les 4 dérivées dyyg,0 et il nous
faut analyser ce fait.

Notre étude purement locale a été faite dans le domaine d’un certain
systeme de ¢oordonnées. Mais la donnée sur X, dans le domaine envisagé,
des données de CaucHY laisse subsister la possibilité de changement de
coordonnées conservant les valeurs numériques des coordonnées de tout
point de S ainsi que les données de CavcuY. Le changement de coordonnées

) 0\3 o )
G e f —(wﬁ) [ P(’) + eP] (A = Anumériquement) (8)

ol £* est infiniment petit en méme temps que z°, répond & la question.
Dans un tel changement de coordonnées, les dérivées &y, g;; ne sont pas
modifiées, tandis que les dy,¢,, peuvent recevoir des valeurs arbitraires.
En utilisant un changement de coordonnées olt les ¢” sont différents de
part et d’autre de X', ce qui est permis par la structure choisie pour V,, on
peut faire apparaitre ou disparaitre des discontinuités éventuelles de ces
dérivées secondes, discontinuités qui sont donc dépourvues de toute signi-
fication physique. Ainsi les dy, g;; sont continues & la traversée de 2 et on
peut astreindre les dy,¢,, & 'étre aussi pour un systéme de coordonnées
convenables.

Nous saisissons la le mécanisme qui relie la covariance du formalisme
a la structure choisie pour V,. Ceci posé, il est facile de voir que le
systeme des équations d’EINSTEIN est en involution: si un ds? satisfait
aux équations (6) et, sur 2, aux équations (7), il satisfait aussi en dehors
de 2 aux équations (7). Ceci est une conséquence immédiate des identités
de conservation (5). Notre probléme initial doit étre ainsi partagé en deux
problémes distincts: Probléme I ou des conditions initiales. 11 consiste
dans la recherche de données de CAUCHY satisfaisant sur X au systéme
Sy =0 ou systéme des conditions initiales. Probléme IT ou probléme de
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Uévolution. 11 consiste dans I'intégration du systéme (6) pour des données
de CAvucHY satisfaisant aux conditions du premier probléme.

Les résultats de cette premiére analyse ne sont pas totalement modi-
fiés si X est orientée dans le temps. Au contraire si 2 est tangente au cone
élémentaire, c’est-a-dire si ¢ = 0, les dérivées secondes des potentiels
d’une solution des équations d’EINSTEIN peuvent étre discontinues & la
traversée de X il peut exister une infinité de solutions des équations
d’EINSTEIN correspondant aux mémes données de CaucHY sur 2. On re-
connait la des résultats classiques de la théorie des équations aux déri-
vées partielles concernant les variétés caractéristiques (ou fronts d’onde).
Ainsi C, est cOne caractéristique pour les équations d’EINSTEIN et les
variétés caractéristiques sont les variétés tangentes a ces cones; ce sont
les solutions de

Ayf = g% 8,4 0,/ = 0.

On en déduit immédiatement que les bicaractéristiques — ou rayons — sont
les géodésiques de longueur nulle du ds?. Celles de ces courbes qui sont
issues d’un point z de ¥, engendrent les deux nappes du conoide caracté-
ristique de sommet .

Dans le cas du probléeme de CAucHY intérieur, avec un schéma fluide
par exemple, une analyse analogue peut étre faite, mais & (7) se trouvent
substituées les équations

Bl T3

qui relient sur X' les données de CAUCHY et les éléments matériels. Le pro-
bléme d’intégration concerne alors un systéme du type (2-3) mais avec
un second membre et les équations de conservation

v, T#=0.

On met en évidence trois sortes de variétés exceptionelles: les ondes de
gravitation, les variétés engendrées par des lignes de courant, les ondes
hydrodynamiques.

Toujours dans le cadre de la relativité générale, nous pouvons intro-
duire le champ électromagnétique astreint a satisfaire aux équations de
MaxwELL et apportant, au second membre des équations d’EINSTEIN une
contribution. L’analyse du probléme de CaucHY pour les équations de
MAXWELL montre que, dans le cas du vide, C,, est encore cone caractéri-
stique pour ces équations ce qui établit 'identité des propagations des
deux champs; maisici toutes les dérivées premiéres du champ électroma-
gnétique sur une hypersurface non tangente a une caractéristique, peu-
vent étre déterminées.



Problémes généraux d’intégration des équations de la relativité 181

3. Les équations de la théorie unitaire de Jorpan-TrIRY!)

Dans la théorie de JorDAN-THIR Y, ’élément initial est constitué par une
variété différentiable V; de classe (C%, C* par morceaux) munie d’'une
métrique do® que je supposerai hyperbolique normale et admettant un
groupe & 1 parameétre d’isométries de V;, ne laissant invariant aucun
point, a trajectoires homéomorphes & un cercle et orientées do® << 0.

La variété V, quotient de V, par la relation d’équivalence définie par
le groupe d’isométries est identifiée a la variété différentiable espace-temps
de la relativité générale. Par passage au quotient, on déduit de la métrique
de V; une métrique ds® = g,, dz° dz” de type hyperbolique normal, une
forme antisymétrique f F,; (= const.) & différentielle extérieure nulle
et un scalaire £ intrinséquement définis sur V,. Volontairement, je ne
discuterai pas pour le moment les interprétations physiques que ’on peut
donner de ce schéma.

Comme équations de champ, on adoptera dans V, des équations iden-
tiques & celles de la relativité générale (4). Traduites dans ¥V, ces équa-
tions s’écrivent dans le cas dit unitaire extérieur:

252 1 1 1 ]
Saﬁ“ﬁ?_ % Jap 2 — F§ FfseJ_? [Va(068) — gap AE] = 0

V(& Ff)=0 !

%_—Arf—%- ﬁzfz F2—0

Pour £=1 les 14 premiéres équations se réduisent aux équations du
schéma champ électromagnétique pur de la relativité générale (théorie de
Karvuza-KLEIN). L’analyse du probléme de CAucrY pour une hypersurface -
de V; engendrée par des trajectoires du groupe d’isométries ainsi que sa
décomposition sont semblables aux précédentes, les variétés exceptionnel-

les dans ¥V, étant toujours les variétés tangentes aux cones élémentaires
ds? = 0. '

4. Les équations de la théorie unitaire non symétrique?)

Dans la théorie unitaire non symétrique, nous nous donnons, sur une
variété différentiable V, toujours de classe (C?, C* par morceaux),

1° un champ de tenseurs non symétriques ¢,, de classe (C1, C? par mor-

ceaux) & déterminant g = 0 et dont la forme quadratique associée est
hyperbolique normale,

1) GoNSETH et JUVET ontaussi étudié, dans un travail classique, une théorie pen-
tadimensionnelle.

%) () et [ ]sont les symboles de symétrisation et antisymétrisation.
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2° une connexion affine de classe (C°, C2 par morceaux) dont nous dé-
signerons par S, le vecteur de torsion.

R,z étant le tenseur de Riccr de la connexion, les équations du champ
peuvent étre fondées sur un principe variationnel portant sur I'intégrale

L= [ g R,V iglda® A ... A\ da?
C

et qui généralise le principe variationnel de la relativité générale. En sub-
stituant a la connexion initiale la connexion & vecteur de torsion nulle
admettant le méme parallélisme, on obtient les équations du champ sous
une forme commode qui fait intervenir les g,;, la nouvelle connexion L,
et le vecteur S,. Selon une étude due & Madame ToNNELAT et & HLAVATY,
l'un des systemes partiels fournit algébriquement, sauf dans un cas excep-
tionnel que nous écartons, la connexion en fonction des g,; et de leurs
dérivées premiéres. On est ainsi amené a définir le champ par I'ensemble
(9ap> Sy) astreint aux équations.

2 | R
Rog—5 (05— 938,)=0 4, (g°P Vig)) =0 (9)

ol R, est maintenant relatif a la nouvelle connexion et considéré comme
fonction des g, , et de leurs dérivées des deux premiers ordres.

L’existence d’un principe variationnel entraine, selon un procédé clas-
sique, celle d’identités de conservation. I’autre part a 'aide du change-
ment de coordonnées déja utilisé en relativité générale, on peut voir sans
calculs explicites qui seraient inextricables, quelles dérivées secondes rela-
tives a une hypersurface 2 interviennent dans R,;. Par une étude trop
longue pour étre donnée ici, ces résultats permettent d’établir que le sy-
steme (9) est en involution et que moyennant I'mtroduction d’une con-
dition auxiliaire de normalisation de S,, par exemple

3, (¢? S, Vig)) = 0,

1l présente la méme cohérence mathématiquelocale quelesystémedeséqua-
tions de la relativité générale; en particulier les valeurs des 85 (¢°? Vig!)
sur 2 (z° = 0) ne peuvent intervenir.

Le principal résultat de cette étude est que (9) admet les variétés carac-

téristiques définies par la forme quadratique de type hyperbolique nor-

mal de coefficients
[e8 — g(aﬁ)

et qui différe de la forme quadratique interprétée par KINSTEIN comme
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définissant la partie gravitationnelle. Les bicaractéristiques sont ici les
géodésiques de longueur nulle de

ds® =1, da* da’

ott [,; est dual de I*P. Un second céne défini par une combinaison linéaire
Vapdelz b b5 = g5 apparait aussit). Cette étude conduit ainsi a pen-
ser que c’est 1°F ow un tenseur proportionnel qui doit étre interprété comme
tenseur gravitationnel.

2. Existence et unicité pour les équations du champ
3. Le théoréme de Mme Fouris

L’étude précédente conduit naturellement & rechercher, sans hypothe-
ses d’analyticité, des théorémes d’existence et d’unicité au moins locaux
pour les probléemes d’évolution des différentes théories. (Cest 1a un diffi-
cile probléme de la théorie des systémes d’équations aux dérivées partiel-
les et ¢’est en vue de ce probléme que Madame Fouris a étudié les sy-
stémes du type suivant:

Eg =48, ,Ws+ fs=0 (8=12,...,N)

Les W sont des fonctions inconnues de 4 variables indépendantes z° les
A%’ et fg des fonctions données des Wy, 6, W 5, et des 2%, la forme qua-
dratique A*° X, X, est de type hyperbolique normal. Sur I'hypersurface
2 (2° = 0) les données de CAUCHY sont:

Ws(@', 0) = ggla) W, 0) =ys(a)

Sur le systéme (Eg) et les données de CAucHY les hypothéses suivantes sont
fastes:

1° Dans un voisinage D, de X entourant un point y de coordonnées (i)
et défini par |z’ —y' | < d, g et yg admettent des dérivées jusqu’aux
ordres 6 et 5, continues, bornées et satisfaisant & des conditions de Lip-
SCHITZ. '

2° Dans un domaine D défini par |2’ —y'| <d,|2°

valeurs des inconnues telles que:

| < & et pour des

a) les A%° et fq admettent des dérivées jusqu’a 'ordre 5 continues, bor-
nées et satisfaisant & des conditions de LrescHITZ;

1) Ajouté sur épreuves.
P
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b) la forme quadratique 47 X, X; est de type hyperbohque normal,
la variable 2° présentant le caractere temporel et les variables " le carac-
tére spatial (4% > 0, 4" X; X, définie négative).

Sous ces conditions, Mme FouRrEs a établi que le probléme de CAuCHY
relatrf a (Eg) admet une solution et une seule dans un certain voisinage de D,
Dans le cas ot les A*” ne contiennent que les W et non leurs dérivées, ce
qui est le cas dans les applications relativistes, une unité peut étre gagnée
dans tous les ordres de dérivabilité.

Il m’est impossible d’esquisser ici la longue étude qui conduit & ces
résultats. Je me bornerai a dire qu'une généralisation des classiques for-
mules de KIRCHHOFF y joue un role essentiel: dans le cas linéaire, ces for-
mules expriment les valeurs des fonctions inconnues en un point x; voisin
de D, & partir de leurs valeurs sur la surface du conoide caractéristique
de sommet x; et des données de CaucHY dans la région de 2’ intérieure
a ce conoide.

6. Existence pour les équations d’EivsTrIN

Les résultats précédents s’appliquent d’une maniére élégante aux équa-
tions d’EINSTEIN de la relativité générale grice a 'introduction de coor-
données sothermes. L’idée consiste & associer au systéme d’EINSTEIN une
équation & une seule fonction inconnue f qui admette les mémes caracté-
ristiques que ce systéme!). La maniére la plus simple d’y parvenir est de
considérer I’équation de LAPLACE dans V,

Af = g** (8, — 12, 8,1 =0.
Un systeme (?) de coordonnées locales dans V, est isotherme si les
Fe=Axzt=—g" I}, (10)

sont nuls pour tout . On montre aisément, en particulier & ’aide du théo-
reme de Mme Fouris, qu’étant donné une hypersurface locale 2’ orientée
dans Pespace, elle peut toujours étre envisagée comme variété coordonnée
2% = 0 d’un systéme de coordonnées isothermes.

Les quantités F° interviennent d’une maniére simple dans I’expression
des composantes du tenseur de Ricci. On a en effet identiquement

Raﬂ = _Gaﬂ - Laﬁ (11)

1) La théorie et l'interprétation des coordonées isothermes sont dues & GEOR-
GES DARMOIS.
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avec

Gaﬁ = 2 g (si.,u: gaﬁ + H (12)
et
1
Ly =5 G 057" + g 0" (13)

les H,; désignant des polynomes par rapport aux ¢,,, ¢** et  leurs déri-
vées premieres. C’est la structure des R, ; ainsi mise en évidence que nous
allons exploiter. Pour simplifier les ecrltures nous nous hmlterons aux
équations sans constante cosmologique.

Considérons donc dans V, une hypersurface X' portant les données de
CavuchY. Sur X (2° = 0) ces données satisfont a

(88)y0-0=0. | (14)

De plus, comme nous nous proposons d’utiliser des coordonnées isother-
mes relativement 4 la métrique cherchée, nous supposerons, sans nuire a
la généralité, qu’elles satisfont &

(F")_o=0. (15)

Nous nous proposons d’étudier ’existence et 'unicité du probléme de
CaucrY pour le systéme d’EINSTEIN

Raﬁ = —Gﬂ.ﬁ _Laﬁ = 0

dont les premiers membres sont liés par les identités de conservation. Les
stades du raisonnement sont les suivants.

1° Résolution du probléme de Cavcuy pour le systéme Gpg = 0. Ce sy-
stéme est du type de Mme Fouris; nous ferons done les hypothéses sui-
vantes dans un voisinage D, de X.

a) Les données de CAUCHY g4 et 09,5 admettent des dérivées partielles
jusqu’aux ordres 5 et 4 continues, bornées et satisfaisant & des conditions
de LipscHITZ.

b) Sur X la forme ¢* X, X; est de type hyperbolique normal avec
g% > 0 et ¢' X; X; définie négative. Sous ces conditions, le probleme de
Caucny pour les G s = 0 admet une solution unique au voisinage de D,
solution qui admet des dérivées partielles jusqu’a Pordre 4 continues et
bornées.

20 La solution trouvée vérifie les conditions d’vsothermie. En effet de (14)
et (15) il résulte
(60F#)z°=0 = 0.
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ID’autre part pour toute solution de G, ;= 0, les identités de conservation
se réduisent aux équations

g** 8,5 F* + P¥(6,F°) =0

ol P* est linéaire par rapport aux §,F°, les coefficients étant des poly-
nomes en ¢, ¢*° et leurs dérivées premisres. Ce systéme est du type de
Madame Fourits et 'unicité du probleme de CAucHY correspondant en-
traine F* = 0. :

Ainsi la solution trouvée des (,;=10 est une solution du systéme
&’ KinsTEIN R, ; = 0 compatible avec les données de CAucHY et rapportée
a des coordonnées isothermes. Nous avons ainsi obtenu un théoréme local
d’existence pour le systéme d’EINSTEIN, sans hypothése d’analyticité.

7. Unacité pour les équations d’Eixsreix

Il est clair que I'unicité du probléme de CAvcHY pour le systéme d Hin-
STEIN doit étre entendue dans un sens tout a fait différent de 'unicité
usuelle, celle qui intervient ici, par exemple pour le systéme G,;=0.
Nous entendons, pour le systéme d’EinstriN, I'unicité modulo wn change-
ment de coordonnées conservant les valeurs numériques des coordonnées de
tout povnt de X awnsi que les données de Caveny sur 2. En ce sens, il est
permis de parler d’«unicité physique».

Pour établir cette unicité physique, il faut montrer que toute solution
du probléme de CavcHY relatif aux R,; = 0 peut se déduire, par un chan-
gement de coordonnées satisfaisant aux hypotheses précédentes, de la
solution unique du méme probléme pour les ¢, = 0. L’existence d’un tel
changement de coordonnées fait encore intervenir un systéme du type de
Madame Fourts, ce qui établit I'unicité cherchée. Cette unicité avait été
antérieurement établie par STELLMACHER a la suite des travaux de FRIED-
RICHS et HaNs LEwy.

J’al développé ici méthodes et résultats pour les équations de la rela-
tivité générale. Cette méthode peut étre adaptée, sans difficultés majeu-
res, a la théorie de JorRDAN-THIRY. Au contraire les théoremes analogues
pour la théorie unitaire non symétrique présentent des difficultés liées
aux propriétés des «coordonnées isothermes» dans cette théorie.

3. Modéles d’univers et Problémes globaux

8. Modeéles d’univers en relativité générale

Les études précédentes étaient purement locales, mais en fait les pro-
blémes mathématiques fondamentaux de toute théorie relativiste du
champ doivent étre de nature essentiellement globale.
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Je me limiterai d’abord a la gravitation et a la théorie de la relativité
générale 1), La question qui se pose est la suivante: quand avons-nous
effectivement résolu un probléme de gravtation?

Je propose d’appeler modéle d’univers une variété V, munie d’'une mé-
trique partout réguliére, satisfaisant aux équations d’EINSTEIN des dif-
férents cas et éventuellement a des conditions asymptotiques. Au voisi-
nage des hypersurfaces, orientées dans le temps, séparant les régions ba-
layées par I’énergie des régions vides, il doit exister, conformément & nos
axiomes généraux, des coordonnées locales admissibles telles qu’a la tra-
versée des hypersurfaces, les potentiels correspondants et leurs dérivées
premiéres soient continus, les dérivées secondes étant discontinues.

C’est lorsqu’il est possible de construire un tel modeéle d’univers que le
champ extérieur peut étre considéré comme effectivement produst par les
différentes masses ou distributions énergétiques en mouvement et c’est le
raccordement des champs intérieurs des différentes distributions avec un
méme champ qui assure l’interdépendancedes mouvements. Ce qu’onnomme
le principe des géodésiques est un corollaire aisé de ce fait et I'outil fon-
damental est au fond la continuité, & la traversée de X (z° = 0) des quan-
tités S,

Seul un tel modeéle d’univers est susceptible d’interprétation physique.
Dans un domaine A, de ¥V, ol elle n’est pas réguliére, une métrique n’est
susceptible d’aucune interprétation. On devra, pour chercher & aboutir &
un modeéle d’univers, voir s’il est possible de meubler un tel domaine,
¢’est-a-dire de choisir une hypersurface X' limitant un domaine A con-
tenant A, et de construire dans A une distribution énergétique et une
métrique reliées par les équations d’EINsTEIN, la métrique étant partout
réguliere dans /1 et se raccordant le long de 2 avec la métrique précédem-
ment donnée. 11 est & noter qu’un tel probléme est de nature essentielle-
ment globale et présente quelque analogie avec des problémes classiques
en hydrodynamique. Sur la solution de tels problémes, on ne sait a peu
prés rien.

Dans un modéle d’univers, au sens ol nous I’avons défini, il devrait
étre impossible d’introduire de nouvelles distributions énergétiques dont
les métriques associées se raccordent avec le champ extérieur. On doit donc
étudier la validité, en relativité, de la proposition suivante: L’introduction
de distributions énergétiques dans un champ extérieur donné ne peut s effec-
tuer que dans des domaines ow ce champ n’est pas régulier (proposition A).

Etroitement liée & cette proposition est la suivante: Un modéle d’uni-
vers constitué par un champ extériewr partout réqulier doit étre trivial c’est-
a-dire localement euclidien (proposition B).

1) en l'absence de constante cosmologique pour simplifier.
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L’'introduction d’'un champ électromagnétique en relativité générale
ou la théorie de JorDAN-THIRY conduisent & des concepts et a des
énoncés analogues en ce qui concerne ’ensemble des deux champs.

De telles propositions ne semblent pas valables sous les axiomes géné-
raux que j’al indiqués, comme le montrent des contre-exemples un peu
tératologiques. Mais, comme nous allons le voir, elles sont valables pour
des champs stationnaires et par suite pour des champs suffisamment voi-
sins de champs stationnaires, ce qui apparait comme rassurant.

Une définition de ce qu’on nommerait un modele d’univers en théorie
unitaire non symétrique n’a jamais été donnée. Si I’'on veut éviter I'intro-
duction artificielle de sources — et c’était manifestement la volonté
d’EINSTEIN — il conviendrait de faire passer, si j’ose dire, au second
membre et d’interpréter physiquement certains termes des équations de
champ, les nouveaux premiers membres satisfaisant encore & des con-
ditions de conservation. Dans cette voie, rien de valable n’a encore été
fait.

9. Problémes globaux pour des champs stationnaires

En relativité générale, un champ est stationnaire si la variété rieman-
nienne V, admet un groupe & 1 parameétre d’isométries & trajectoires
orientées dans le temps (lignes de temps). La métrique peut s’écrire:

ds? = & [(da’)? + 2 @; da® da'] + g,;(x) da* do’

ol les potentiels sont indépendants de la variable temporelle z° (£2 ==
Joo = 0). Ces hypothéses correspondent physiquement & un état de régime
permanent.

Je suppose de plus, bien que ce ne soit pas strictement nécessaire, que
V , est homéomorphe au produit topologique d’une variété & 3 dimensions
par une ligne, les variétés-facteurs W; de ¥V, pouvant étre représentées
par z° = const., les lignes facteurs étant les lignes de temps. Les W sont
munies de la métrique définie négative de coefficients:

Jo0i Jo0j )

* — o st
9@7 9ij 900

Par des calculs locaux on établit sur W,

& R = div*h (16)
3
A%E = % H? (pour un champ extérieur) (17)
tg; Ry *—*-EE—He div* 18
Ly =g L (18)
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olt b et p sont des vecteurs de W, ne dépendant que des potentiels et de
leurs dérivées premiéres et ou H2 =0 exprime que la congruence des
lignes de temps est une congruence de normales pour des sections d’espace.

A Paide de (16) on établit aisément la proposition 4 pour des champs
stationnaires. En ce qui concerne la proposition B, on suppose W3 com-
pacte ou admettant un domaine & l'infini avec comportement asympto-
tique euclidien; sa démonstration utilise alors les relations (17) et (18) et
procede par réduction du cas du champ stationnaire au cas du champ
statique, au sens de LevI-CiviTa, c¢’est-a-dire & H2 = 0. Les résultats
ainsi obtenus s’étendent sans difficultés au cas ol il y a un champ
électromagnétique ou & la théorie de JorDAN-THIRY.

I1 ne peut exister, en ’absence de constante cosmologique, de modéle
d’univers stationnaire & W4 compact. Pour un modéle d’univers station-
naire & domaine & l'infini pour lequel les lignes de courant & l'intérieur
des masses coincident avec les lignes de temps, on peut déduire par
intégration de (18) que H% =0 partout. Il en résulte en particulier que
les postulats usuellement introduits pour la formation du modeéle d’uni-
vers de SCHWARZSCHILD sont surabondants.

10. Approzvmations et équations du mouvement

Si beaucoup des problémes rigoureux de la théorie de la relativité
semblent dépasser nos forces, il est possible de traiter par approximations
le probléme du mouvement de n masses gravitantes.

On suppose les coordonnées choisies isothermes, la métrique quasi-
-euclidienne et & comportement asymptotique euclidien et on développe
les potentiels selon les puissances de ¢2. Alatechnique initialed’EINSTEIN,
INFELD, HOFFMANN qui use d’une représentation des masses par de pures
singularités du champ extérieur, représentation qui pourrait étre falla-
cieuse, il est préférable de substituer une technique ot le tenseur d’impul-
sion-énergie joue son role. Une telle technique qui donne des résultats
satisfaisants a été amorcée par Fock et par PAPAPETROU, et a été dévelop-
pée plus rigoureusement par Madame HENNEQUIN. Les équations du
mouvement des masses proviennent essentiellement de I'intégration, dans
les tubes balayés par celles-ci, de divergences suggérées par les premiers
membres des conditions de conservation, de maniére & exprimer que les
quantités S sont nulles au bord de ces tubes.

Je n’entrerai pas dans le détail de cette technique, mais je signalerai
que le méme procédé vient d’étre appliqué aux équations de la théorie de
JORDAN-THIRY et que les approximations obtenues suggérent l'inter-
prétation suivante qui différe de celle initialement donnée par les auteurs

de la théorie: avec les notations du § 3, c’est ds® = & ds® qui représente
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la métrique gravitationnelle; le champ électromagnétique est représenté
par I'ensemble des deux tenseurs proportionnels

Fop=Fop Hyp=8F,

ol F' est a différentielle extérieure nulle et ot & joue le réle d’un pouvoir
diélectrique du vide. Dans le cas unitaire extérieur les équations du champ

s’écrivent avec la métrique ds?:
- ﬁ2 N
Sap + Kap =5 Tap
Vﬁ(H f )=20

— 52 s g2
Alog & + 5 (F, H)=0
ot les K,z ne dépendent que des dérivées premiéres de log & et ol 7,4
est le tenseur d’impulsion-énergie du champ électromagnétique

_ 1 = = = =
T(Iﬁ :Zgaﬁ ‘}.ﬂ, HA!‘—_”FQQ Hﬂg .

Le facteur de gravitation (/2 est alors constant.

Nous avons cherché & passer en revue les thémes mathématiques pro-
posés par les équations relativistes du champ. Beaucoup de travail reste
oo
a faire.

Diskussion — Discussion

D. vax Dantzig: 1. Les équations de gravitation n’étant pas linéaires,
le cone des bicaractéristiques dépendra en général de la solution con-
sidérée. Est-ce qu’il est connu sous quelles conditions on peut étre siir
que, en prolongeant une solution locale, la signature de g;; sera conservée,
plus spécialement que le cone des bicaractéristiques ne sera pas dégénéré?

2. Est-ce que la solution & données de CAucHY peut étre représentée
au moyen d’intégrales ordinaires, soit sur le cone, soit au dedans du cone
(ou une combinaison des deux), ou est-ce que des difficultés du type de
HapamARD, ot 'on doit prendre la ,,partie finie* d’une intégrale infinie,
sont inévitables?

Mme Y. Fouris-BrRunAT: 1. On ne sait pas, dans le cas général, sous
quelles conditions on peut prolonger une solution donnée. Ceci résoudrait
d’ailleurs le probléme de 'existence de solutions globales réguliéres, pro-
bléme dont il serait trés important de connaitre la réponse, mais cer-
talnement, trés difficile.
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2. La solution est obtenue par résolution d’équations intégrales (por-
tant sur des intégrales ordinaires prises sur le cone des bicaractéristiques)
par approximations successives. La solution dépend des données initiales
interieures au cone (propagation par ondes, en général diffusées).

Mme A. TonNeLAT: Je voudrais faire observer qu’il est possible aussi
de définir des systémes de coordonnées isothermes dans la théorie non
symétrique (¢"" I, =0). Leur emploi devrait conduire & un grand
nombre de simplifications. Néanmoins, &4 ma connaissance, aucune appli-
cation sérieuse de ce choix de coordonnées n’a été proposé.
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