
Zeitschrift: Helvetica Physica Acta

Band: 29 (1956)

Heft: [4]: Supplementum 4. Fünfzig Jahre Relativitätstheorie =
Cinquantenaire de la Théorie de la Relativité = Jubilee of Relativity
Theory

Artikel: Problèmes généraux d'intégration des équations de la relativité

Autor: Lichnerowicz, André

DOI: https://doi.org/10.5169/seals-112741

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-112741
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Hauptreferat — Exposé principal — Main Lecture

Problèmes généraux d'intégration des équations
de la relativité

par André Lichnerowioz (Collège de France)

Je me propose, dans cette conférence, de montrer quels sont les
problèmes posés par l'étude mathématique des équations relativistes de la

gravitation et de l'électromagnétisme et d'indiquer les principaux résultats

obtenus dans cette voie au cours des dernières années. Cette
conférence sera consacrée principalement à la relativité générale 'classique',
mais, chemin faisant, je serai conduit à montrer que les problèmes
mathématiques posés par les théories unitaires, qu'elles soient du type Joedan -

Thiey ou non symétriques, ne diffèrent guère de ceux concernant la
relativité générale. Comme nous le verrons, les quelques faits mathématiques
mis en évidence par ces théories contribuent à jeter quelques lueurs sur
la difficulté fondamentale des théories unitaires : obtenir une interprétation

physique précise des éléments.des schémas géométriques raffinés
qu'elles mettent en jeu.

J'ajouterai que l'esprit de mon exposé sera celui du physicien
mathématicien.

1. La Structure des équations du champ

1. La variété espace-temps.

Dans toute théorie relativiste du champ gravitationnel, l'élément primitif
est constitué par une variété «espace-temps» F4 à 4 dimensions, douée
d'une structure de variété differentiable qu'il semble désormais essentiel
de préciser.

Pour des raisons étroitement liées à la covariance du formalisme et qui
apparaîtront en détail par l'analyse des équations du champ gravitationnel,
nous sommes amenés à supposer que dans l'intersection des domaines de
deux systèmes de coordonnées admissibles, les coordonnées locales d'un
point dans l'un des systèmes sont des fonctions 4 fois dérivables, à jaco-
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bien non nul, des coordonnées de ce point dans l'autre système, les
dérivées premières et secondes étant continues, les dérivées troisièmes ou
quatrièmes étant seulement continues par morceaux.

Nous traduirons ceci en disant que la variété F4 est (C2, C4 par
morceaux).

Sur F4 est définie une métrique riemannienne ds2, de type hyperbolique
normal, à un carré positif et trois carrés négatifs. L'expression locale de

cette métrique dans un système de coordonnées admissibles est:

ds2 gaß dxa dxß (a, ß et tout indice grec 0, 1, 2, 3). (1)

Le „tenseur de gravitation" gaß est supposé exactement (G1, C3 par
morceaux), ce qui est strictement compatible avec la structure imposée
à F4. Toute précision globale supplémentaire de la structure differentiable

ou de la métrique, au point de vue différentiabilité, doit être
considérée comme dépourvue de sens physique.

L'équation ds2 0 définit en chaque point x de F4 un cône réel Cx, le
cône élémentaire en x. Son intérieur et son extérieur définissent
respectivement pour une direction l'orientation dans le temps et l'orientation
dans l'espace. Pour qu'une hypersurface Z, définie localement par f(x")

0, soit orientée dans l'espace il faut et il suffit que

Axf ganjOßf>0 («„ —). (2)

Si la ligne L, orientée dans le temps, est représentée par x1 const, (i et
tout indice latin 1,2,3), on a §.„„ > 0 et les formes quadratiques, duales
l'une de l'autre, de coefficients

«KW«,—^ 9*ij=9ij (3)
S'oo

sont définies négatives.

La variété F4 n'est pas topologiquement quelconque puisqu'elle admet
un champ métrique de type hyperbolique normal ; par recours a une
métrique elliptique on voit que F4 admet certainement un champ de directions

orientées dans le temps. Les trajectoires de ce champ fournissent
un système global de dignes de temps».

Lorsque des considérations topologiques sont nécessaires, on admet
bien souvent, plus ou moins explicitement, que F4 est le produit
topologique d'une variété F3 à 3 dimensions par une variété à 1 dimension, les
sous-variétés facteurs de dimension 1 étant dans F4 orientées dans le

temps. Dans ce cas, pour beaucoup de problèmes, seule la topologie de F3

12 HPA Sppl. IV
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importe. Les cas usuels sont ceux ou F3 est homéomorphe à l'espace
ordinaire R3 ou bien est une variété compacte.

Les différentes hypothèses explicitées sur la métrique (1) caractérisent
les métriques dites régulières.

2. Les équations d'EixsTEix de la relativité générale

Je désignerai dans la suite par Raß le tenseur de Ricci de la métrique (1)
et poserai

Saß Raß — y 9aß (F + 2 X) (X constante cosmologique).

Les équations d'EiNSTEiN qui, dans le cadre de la relativité générale,
limitent la généralité de la métrique peuvent s'écrire:

<X %Faß. (A)

Le tenseur d'impulsion-énergie Taß, qui joue le rôle de source du champ,
décrit au mieux au point considéré de F4 l'état de l'énergie (cas intérieur)
ou bien, dans les régions non balayées par l'énergie, est identiquement nul
(cas extérieur). Il généralise ainsi le second membre de l'équation de

Poisson.
Le tenseur Saß, d'origine géométrique, qui ne dépend que des gaß et de

leurs dérivées des deux premiers ordres, est linéaire par rapport aux dérivées

du second ordre et satisfait aux identités de conservation

Vß S// 0 (Vß opérateur de dérivation covariante). (5)

Le système des équations d'EiNSTEiN présentant, comme nous allons
le voir, le caractère hyperbolique normal, le premier problème que nous
devons nous poser est le problème de Cauchy qui est étroitement lié au
déterminisme relativiste. Nous commencerons par une étude élémentaire
locale et, pour nous réduire à l'essentiel, nous n'introduirons pas de second
membre et n'envisagerons que le problème de Cauchy extérieur. Son
étude préalable est d'ailleurs nécessaire pour le problème de Cauchy avec
second membre. Notre problème est donc le suivant: Problème. Etant
donné, sur une hypersurface F, les potentiels gaß et leurs dérivées premières,
déterminer en dehors de F les potentiels supposés satisfaire aux équations
d'EiNSTEiN du cas extérieur.

Sur S, représentée localement par x° 0, les «données de Cauchy»
sont les valeurs des gaß et des ô0 gaß. Nous désignerons par f (d-C) une
fonction dont la valeur sur S peut se déduire des données de Cauchy par
des opérations algébriques et des dérivations le long de Z.
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Nous supposerons pour le moment E orientée dans l'espace (g00 > 0). Si
l'on cherche à mettre en évidence, dans les équations d'EiNSTEiN, les
dérivées secondes ó00 gaß dont les valeurs sur Z" demeurent inconnues, on
est conduit à remplacer ces équations par le système équivalent composé
des deux groupes d'équations :

Pif - A gVl - - y f/00 <500S.j + Fa (d-C)=0 (6)

-Sao-6Ud-C) 0 (7)

Une condition nécessaire pour que le problème de Cauchy soit possible
est que les équations (7) soient satisfaites sur 27 par les données de Cauchy.
D'autre part g°° étant =t= 0, les équations (6) fournissent les valeurs sur 17

des c-oo^-. Aucune équation ne contient les 4 dérivées ô00g!0 et il nous
faut analyser ce fait.

Notre étude purement locale a été faite dans le domaine d'un certain
système de Coordonnées. Mais la donnée sur E, dans le domaine envisagé,
des données de Cauchy laisse subsister la possibilité de changement de
coordonnées conservant les valeurs numériques des coordonnées de tout
point de S ainsi que les données de Cauchy. Le changement de coordonnées

F' F + XX \j/''\x') + Ê(A)] (/' Xnumériquement) (8)

où e(A) est infiniment petit en même temps que x°, répond à la question.
Dans un tel changement de coordonnées, les dérivées (500 gi, ne sont pas
modifiées, tandis que les òmgm peuvent recevoir des valeurs arbitraires.
En utilisant un changement de coordonnées où les Ç9(a) sont différents de

part et d'autre de E, ce qui est permis par la structure choisie pour F4, on
peut faire apparaître ou disparaître des discontinuités éventuelles de ces
dérivées secondes, discontinuités qui sont donc dépourvues de toute
signification physique. Ainsi les <_>00 gt, sont continues à la traversée de E et on
peut astreindre les ô00 gxo à l'être aussi pour un système de coordonnées
convenables.

Nous saisissons là le mécanisme qui relie la covariance du formalisme
à la structure choisie pour F4. Ceci posé, il est facile de voir que le

système des équations d'EiNSTEiN est en involution: si un ds2 satisfait
aux équations (6) et, sur E, aux équations (7), il satisfait aussi en dehors
de E aux équations (7). Ceci est une conséquence immédiate des identités
de conservation (5). Notre problème initial doit être ainsi partagé en deux
problèmes distincts: Problème I ou des conditions initiales. Il consiste
dans la recherche de données de Cauchy satisfaisant sur E au système
8° 0 ou système des conditions initiales. Problème II ou problème de
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l'évolution. Il consiste dans l'intégration du système (6) pour des données
de Cauchy satisfaisant aux conditions du premier problème.

Les résultats de cette première analyse ne sont pas totalement modifiés

si E est orientée dans le temps. Au contraire si E est tangente au cône
élémentaire, c'est-à-dire si g°° 0, les dérivées secondes des potentiels
d'une solution des équations d'EiNSTEiN peuvent être discontinues à la
traversée de E; il peut exister une infinité de solutions des équations
d'EiNSTEiN correspondant aux mêmes données de Cauchy sur E. On
reconnaît là des résultats classiques de la théorie des équations aux dérivées

partielles concernant les variétés caractéristiques (ou fronts d'onde).
Ainsi Cx est cône caractéristique pour les équations d'EiNSTEiN et les
variétés caractéristiques sont les variétés tangentes à ces cônes; ce sont
les solutions de

Axf^g<*OJOßf 0.

On en déduit immédiatement que les bicaractéristiques - ou rayons - sont
les géodésiques de longueur nulle du ds2. Celles de ces courbes qui sont
issues d'un point x de F4 engendrent les deux nappes du conoide
caractéristique de sommet x.

Dans le cas du problème de Cauchy intérieur, avec un schéma fluide

par exemple, une analyse analogue peut être faite, mais à (7) se trouvent
substituées les équations

"a A, *¦ n

qui relient sur E les données de Cauchy et les éléments matériels. Le
problème d'intégration concerne alors un système du type (2-3) mais avec
un second membre et les équations de conservation

On met en évidence trois sortes de variétés exceptionelles : les ondes de

gravitation, les variétés engendrées par des lignes de courant, les ondes

hydrodynamiques.
Toujours dans le cadre de la relativité générale, nous pouvons introduire

le champ électromagnétique astreint à satisfaire aux équations de

Maxwell et apportant, au second membre des équations d'EiNSTEiN une
contribution. L'analyse du problème de Cauchy pour les équations de

Maxwell montre que, dans le cas du vide, Cx est encore cône caractéristique

pour ces équations ce qui établit l'identité des propagations des

deux champs ; mais ici toutes les dérivées premières du champ électromagnétique

sur une hypersurface non tangente à une caractéristique,
peuvent être déterminées.
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3. Les équations de la théorie unitaire de Jordax-Thiry1)
Dans la théorie de Joedan-Thiey, l'élément initial est constitué par une

variété differentiable F5 de classe (C2, O4 par morceaux) munie d'une
métrique da2 que je supposerai hyperbolique normale et admettant un
groupe à 1 paramètre d'isométries de F5, ne laissant invariant aucun
point, à trajectoires homéomorphes à un cercle et orientées da2 < 0.

La variété F4 quotient de F5 par la relation d'équivalence définie par
le groupe d'isométries est identifiée à la variété differentiable espace-temps
de la relativité générale. Par passage au quotient, on déduit de la métrique
de F5 une métrique ds2 gaß dx" daP de type hyperbolique normal, une
forme antisymétrique ß Faß (ß const.) à différentielle extérieure nulle
et un scalaire | intrinsèquement définis sur F4. Volontairement, je ne
discuterai pas pour le moment les interprétations physiques que l'on peut
donner de ce schéma.

Comme équations de champ, on adoptera dans F5 des équations
identiques à celles de la relativité générale (4). Traduites dans F4, ces équations

s'écrivent dans le cas dit unitaire extérieur :

gaß F2 - F'fJ—j [FJLdtf -gaß Jf] 0£>aß— 2

Vß(!i3Fi) 0

i ß2e2
jAÇ+AaL-F2

Pour |=1 les 14 premières équations se réduisent aux équations du
schéma champ électromagnétique pur de la relativité générale (théorie de

Kaluza-Klein). L'analyse du problème de CAUCHYpour une hypersurface
de F5 engendrée par des trajectoires du groupe d'isométries ainsi que sa

décomposition sont semblables aux précédentes, les variétés exceptionnelles
dans F4 étant toujours les variétés tangentes aux cônes élémentaires

ds2 0.

4. Les équations de la théorie unitaire non symétrique2)

Dans la théorie unitaire non symétrique, nous nous donnons, sur une
variété differentiable F4 toujours de classe (G2, C4 par morceaux),

1° un champ de tenseurs non symétriques gaß de classe (C1, C3 par
morceaux) à déterminant g + 0 et dont la forme quadratique associée est

hyperbolique normale,

A Gonseth et Juvet ont aussi étudié, dans un travail classique, une théorie pen-
tadimensionnelle.

A et [ ] sont les symboles de symétrisation et antisymétrisation.
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2° une connexion affine de classe (C°, C2 par morceaux) dont nous
désignerons par Sa le vecteur de torsion.

Raß étant le tenseur de Ricci de la connexion, les équations du champ
peuvent être fondées sur un principe variationnel portant sur l'intégrale

l=jg"ß Rllß\/g\dx° A \ dx3

et qui généralise le principe variationnel de la relativité générale. En
substituant à la connexion initiale la connexion à vecteur de torsion nulle
admettant le même parallélisme, on obtient les équations du champ sous

une forme commode qui fait intervenir les gaß, la nouvelle connexion Lfjy
et le vecteur Sa. Selon une étude due à Madame Tonnelat et à Hlavaty,
l'un des systèmes partiels fournit algébriquement, sauf dans un cas
exceptionnel que nous écartons, la connexion en fonction des gaß et de leurs
dérivées premières. On est ainsi amené à définir le champ par l'ensemble
(9aß, 8A astreint aux équations.

•_.

Raß -f (aaSß - dßSJ 0 de (g[eßi Ì\g\) 0 (9)

où Raß est maintenant relatif à la nouvelle connexion et considéré comme
fonction des gl/t et de leurs dérivées des deux premiers ordres.

L'existence d'un principe variationnel entraîne, selon un procédé
classique, celle d'identités de conservation. D'autre part à l'aide du changement

de coordonnées déjà utilisé en relativité générale, on peut voir sans
calculs explicites qui seraient inextricables, quelles dérivées secondes
relatives à une hypersurface E interviennent dans Raß. Par une étude trop
longue pour être donnée ici, ces résultats permettent d'établir que le
système (9) est en involution et que moyennant l'introduction d'une
condition auxiliaire de normalisation de Sa, par exemple

il présente la même cohérence mathématique locale que le système des équations

de la relativité générale; en particulier les valeurs des (500 (g,(o;') y \g\)

sur E (x° 0) ne peuvent intervenir.
Le principal résultat de cette étude est que (9) admet les variétés

caractéristiques définies par la forme quadratique de type hyperbolique normal

de coefficients
l°ß g'°ß)

et qui diffère de la forme quadratique interprétée par Einstein comme
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définissant la partie gravitationnelle. Les bicaractéristiques sont ici les

géodésiques de longueur nulle de

ds2 laß dx" dxß

où laß est dual de l"ß. Un second cône défini par une combinaison linéaire

yaß de laß et haß </(aj3) apparaît aussi1). Cette étude conduit ainsi à penser

que c'est laß ou un tenseur proportionnel qui doit être interprété comme
tenseur gravitationnel.

2. Existence et unicité pour les équations du champ

5. Le théorème de Mme FourÈs

L'étude précédente conduit naturellement à rechercher, sans hypothèses

d'analyticité, des théorèmes d'existence et d'unicité au moins locaux

pour les problèmes d'évolution des différentes théories. C'est là un difficile

problème de la théorie des systèmes d'équations aux dérivées partielles

et c'est en vue de ce problème que Madame Foubès a étudié les
systèmes du type suivant :

Es - A"» ooßWs + /s 0 (8=1,2, N)

Les W sont des fonctions inconnues de 4 variables indépendantes af, les
Aaß et fs des fonctions données des WR, òaWR et des xa, la forme
quadratique Aaß Xa Xß est de type hyperbolique normal. Sur l'hypersurface
E (x° 0) les données de Cauchy sont :

Ws (x\ 0) <ps(a*) c\Ws(x\ 0) ips(À)

Sur le système (Es) et les données de Cauchy les hypothèses suivantes sont
faites :

1° Dans un voisinage D0 de E entourant un point y de coordonnées (y1)

et défini par j ce* — y% j < d, cps et ips admettent des dérivées jusqu'aux
ordres 6 et 5, continues, bornées et satisfaisant à des conditions de Lip-
SCHITZ.

2° Dans un domaine D défini par j F — y' \ < d, \ x° j < s et pour des

valeurs des inconnues telles que :

\ws-cps\<i |<w5-<^s|<i \ô0w-ips\<i,
a) les Aaß et fs admettent des dérivées jusqu'à l'ordre 5 continues,

bornées et satisfaisant à des conditions de Lipschitz ;

A Ajouté sur épreuves.
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b) la forme quadratique Aaß Xa Xß est de type hyperbolique normal,
la variable x° présentant le caractère temporel et les variables x° le caractère

spatial (^00 > 0, Aij Xt Xj définie négative).
Sous ces conditions, Mme Fouees a établi que le problème de Cauchy

relatif à (Es) admet une solution et une seule dans un certain voisinage deD0.
Dans le cas où les Aaß ne contiennent que les IF et non leurs dérivées, ce

qui est le cas dans les applications relativistes, une unité peut être gagnée
dans tous les ordres de dérivabilité.

Il m'est impossible d'esquisser ici la longue étude qui conduit à ces
résultats. Je me bornerai à dire qu'une généralisation des classiques
formules de Kiechhoff y joue un rôle essentiel: dans le cas linéaire, ces
formules expriment les valeurs des fonctions inconnues en un point xx voisin
de DQ à partir de leurs valeurs sur la surface du conoide caractéristique
de sommet xx et des données de Cauchy dans la région de E intérieure
à ce conoide.

6. Existence pour les équations d'EixsTEis

Les résultats précédents s'appliquent d'une manière élégante aux équations

d'EiNSTEiN de la relativité générale grâce à l'introduction de
coordonnées isothermes. L'idée consiste à associer au système d'EiNSTEiN une
équation à une seule fonction inconnue / qui admette les mêmes
caractéristiques que ce système1). La manière la plus simple d'y parvenir est de

considérer l'équation de Laplace dans F4

^/-^"(^/-^Xe/) o-

Un système (xe) de coordonnées locales dans F4 est isotherme si les

Fe Ax* -gx»r?ß (10)

sont nuls pour tout g. On montre aisément, en particulier à l'aide du théorème

de Mme Fouees, qu'étant donné une hypersurface locale E orientée
dans l'espace, elle peut toujours être envisagée comme variété coordonnée
xf 0 d'un système de coordonnées isothermes.

Les quantités Fe interviennent d'une manière simple dans l'expression
des composantes du tenseur de Ricci. On a en effet identiquement

Paß — — Gaß — Laß (ll)

A La théorie et l'interprétation des coordonées isothermes sont dues à Georges

Darmois.
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avec

Gaß^Y9X"0M>9aß + Haß (12)

et

Laß^\(gaßaßFK + qßßoaF*) (13)

les Baß désignant des polynômes par rapport aux glß, gir° et à leurs dérivées

premières. C'est la structure des Raß ainsi mise en évidence que nous
allons exploiter. Pour simplifier les écritures, nous nous limiterons aux
équations sans constante cosmologique.

Considérons donc dans F4 une hypersurface E portant les données de
Cauchy. Sur E (x° 0) ces données satisfont à

(S»),. o 0. (14)

De plus, comme nous nous proposons d'utiliser des coordonnées isothermes

relativement à la métrique cherchée, nous supposerons, sans nuire à

la généralité, qu'elles satisfont à

(**%•-<> <>¦ (15)

Nous nous proposons d'étudier l'existence et l'unicité du problème de

Cauchy pour le système d'EiNSTEiN

Paß —-~Gaß — Laß 0

dont les premiers membres sont liés par les identités de conservation. Les
stades du raisonnement sont les suivants.

1° Résolution du problème de Cauchy pour le système Gaß 0. Ce

système est du type de Mme Fouees ; nous ferons donc les hypothèses
suivantes dans un voisinage DQ de E.

a) Les données de Cauchy gaß et o0gaß admettent des dérivées partielles
jusqu'aux ordres 5 et 4 continues, bornées et satisfaisant à des conditions
de Lipschitz.

b) Sur E la forme gaß Xa Xß est de type hyperbolique normal avec
g°° > 0 et gli Xi X* définie négative. Sous ces conditions, le problème de
Cauchy pour les Gaß 0 admet une solution unique au voisinage de D0,
solution qui admet des dérivées partielles jusqu'à l'ordre 4 continues et
bornées.

2° La solution trouvée vérifie les conditions d'isothermie. En effet de (14)
et (15) il résulte

(W-o 0.
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D'autre part pour toute solution de Gaß 0, les identités de conservation
se réduisent aux équations

f oaßF" + P»(ôaFA 0

où P" est linéaire par rapport aux ôaFe, les coefficients étant des
polynômes en gaß, gaß et leurs dérivées premières. Ce système est du type de
Madame Foubès et l'unicité du problème de Cauchy correspondant
entraîne F1* 0.

Ainsi la solution trouvée des Gaß 0 est une solution du système
d'EiNSTEiN Raß 0 compatible avec les données de Cauchy et rapportée
à des coordonnées isothermes. Nous avons ainsi obtenu un théorème local
d'existence pour le système d'EiNSTEiN, sans hypothèse d'analyticité.

7. Vnicité pour les équations d'ErxsTEix

Il est clair que l'unicité du problème de Cauchy pour le système d'EiNSTEiN

doit être entendue dans un sens tout à fait différent de l'unicité
usuelle, celle qui intervient ici, par exemple pour le système Gaß 0.
Nous entendons, pour le système d'EiNSTEiN, l'unicité modulo un changement

de coordonnées conservant les valeurs numériques des coordonnées de

tout point de E ainsi que les données de Cauchy sur E. En ce sens, il est
permis de parler d'«unicité physique».

Pour établir cette unicité physique, il faut montrer que toute solution
du problème de Cauchy relatif aux Raß 0 peut se déduire, par un
changement de coordonnées satisfaisant aux hypothèses précédentes, de la
solution unique du même problème pour les GaS 0. L'existence d'un tel
changement de coordonnées fait encore intervenir un système du type de

Madame Foubès, ce qui établit l'unicité cherchée. Cette unicité avait été
antérieurement établie par Stellmacheb à la suite des travaux de Fbied-
bichs et Hans Lewy.

J'ai développé ici méthodes et résultats pour les équations de la
relativité générale. Cette méthode peut être adaptée, sans difficultés majeures,

à la théorie de Joedan-Thiey. Au contraire les théorèmes analogues

pour la théorie unitaire non symétrique présentent des difficultés liées

aux propriétés des «coordonnées isothermes» dans cette théorie.

3. Modèles d'univers et Problèmes globaux

8. Modèles d'univers en relativité générale

Les études précédentes étaient purement locales, mais en fait les
problèmes mathématiques fondamentaux de toute théorie relativiste du
champ doivent être de nature essentiellement globale.
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Je me limiterai d'abord à la gravitation et à la théorie de la relativité
générale x). La question qui se pose est la suivante: quand avons-nous
effectivement résolu un problème de gravitation?

Je propose d'appeler modèle d'univers une variété F4 munie d'une
métrique partout régulière, satisfaisant aux équations d'EiNSTEiN des
différents cas et éventuellement à des conditions asymptotiques. Au voisinage

des hypersurfaces, orientées dans le temps, séparant les régions
balayées par l'énergie des régions vides, il doit exister, conformément à nos
axiomes généraux, des coordonnées locales admissibles telles qu'à la
traversée des hypersurfaces, les potentiels correspondants et leurs dérivées

premières soient continus, les dérivées secondes étant discontinues.

C'est lorsqu'il est possible de construire un tel modèle d'univers que le

champ extérieur peut être considéré comme effectivement produit par les

différentes masses ou distributions énergétiques en mouvement et c'est le
raccordement des champs intérieurs des différentes distributions avec un
même champ qui assure l'interdépendance des mouvements. Ce qu'onnomme
le principe des géodésiques est un corollaire aisé de ce fait et l'outil
fondamental est au fond la continuité, à la traversée de E (x° 0) des quantités

S?.

Seul un tel modèle d'univers est susceptible d'interprétation physique.
Dans un domaine A0 de F4 où elle n'est pas régulière, une métrique n'est
susceptible d'aucune interprétation. On devra, pour chercher à aboutir à

un modèle d'univers, voir s'il est possible de meubler un tel domaine,
c'est-à-dire de choisir une hypersurface E limitant un domaine A
contenant A0 et de construire dans A une distribution énergétique et une
métrique reliées par les équations d'EiNSTEiN, la métrique étant partout
régulière dans A et se raccordant le long de E avec la métrique précédemment

donnée. 11 est à noter qu'un tel problème est de nature essentiellement

globale et présente quelque analogie avec des problèmes classiques
en hydrodynamique. Sur la solution de tels problèmes, on ne sait à peu
près rien.

Dans un modèle d'univers, au sens où nous l'avons défini, il devrait
être impossible d'introduire de nouvelles distributions énergétiques dont
les métriques associées se raccordent avec le champ extérieur. On doit donc
étudier la validité, en relativité, de la proposition suivante : L'introduction
de distributions énergétiques dans un champ extérieur donné ne peut s'effectuer

que dans des domaines où ce champ n'est pas régulier (proposition A).

Etroitement liée à cette proposition est la suivante : Un modèle d'univers

constitué par un champ extérieur partout régulier doit être trivial c'est-

à-dire localement euclidien (proposition B).

A en l'absence de constante cosmologique pour simplifier.
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L'introduction d'un champ électromagnétique en relativité générale
ou la théorie de Joedan-Thiby conduisent à des concepts et à des
énoncés analogues en ce qui concerne l'ensemble des deux champs.

De telles propositions ne semblent pas valables sous les axiomes généraux

que j'ai indiqués, comme le montrent des contre-exemples un peu
tératologiques. Mais, comme nous allons le voir, elles sont valables pour
des champs stationnaires et par suite pour des champs suffisamment voisins

de champs stationnaires, ce qui apparaît comme rassurant.
Une définition de ce qu'on nommerait un modèle d'univers en théorie

unitaire non symétrique n'a jamais été donnée. Si l'on veut éviter
l'introduction artificielle de sources - et c'était manifestement la volonté
d'EiNSTEiN - il conviendrait de faire passer, si j'ose dire, au second
membre et d'interpréter physiquement certains termes des équations de

champ, les nouveaux premiers membres satisfaisant encore à des
conditions de conservation. Dans cette voie, rien de valable n'a encore été
fait.

9. Problèmes globaux pour des champs stationnaires

En relativité générale, un champ est stationnaire si la variété rieman-
nienne F4 admet un groupe à 1 paramètre d'isométries à trajectoires
orientées dans le temps (lignes de temps). La métrique peut s'écrire:

ds2 f2 [(dx0)2 + 2cpr dx° da/] + gtj(x) dxi dx'

où les potentiels sont indépendants de la variable temporelle x° (|2
9oo > 0)- Ces hypothèses correspondent physiquement à un état de régime
permanent.

Je suppose de plus, bien que ce ne soit pas strictement nécessaire, que
F4 est homéomorphe au produit topologique d'une variété à 3 dimensions

par une ligne, les variétés-facteurs IF3 de F4 pouvant être représentées

par a;0 const., les lignes facteurs étant les lignes de temps. Les IF3 sont
munies de la métrique définie négative de coefficients :

* „ ffoi 9oi

Par des calculs locaux on établit sur W3

I3

!Ä0°=div*/. (16)

A*$ -V- H2 (pour un champ extérieur) (17)

£ cp* R* -f-H2 -div* p (18)
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où h et p sont des vecteurs de IF3 ne dépendant que des potentiels et de
leurs dérivées premières et où B2 0 exprime que la congruence des

lignes de temps est une congruence de normales pour des sections d'espace.

A l'aide de (16) on établit aisément la proposition A pour des champs
stationnaires. En ce qui concerne la proposition B, on suppose IF3
compacte ou admettant un domaine à l'infini avec comportement asympto-
tique euclidien; sa démonstration utilise alors les relations (17) et (18) et
procède par réduction du cas du champ stationnaire au cas du champ
statique, au sens de Levi-Civita, c'est-à-dire à //2 0. Les résultats
ainsi obtenus s'étendent sans difficultés au cas où il y a un champ
électromagnétique ou à la théorie de Joedan-Thiey.

Il ne peut exister, en l'absence de constante cosmologique, de modèle
d'univers stationnaire à IF3 compact. Pour un modèle d'univers stationnaire

à domaine à l'infini pour lequel les lignes de courant à l'intérieur
des masses coïncident avec les lignes de temps, on peut déduire par
intégration de (18) que B2 0 partout. Il en résulte en particulier que
les postulats usuellement introduits pour la formation du modèle d'univers

de Schwabzschild sont surabondants.

10. Approximations et équations du mouvement

Si beaucoup des problèmes rigoureux de la théorie de la relativité
semblent dépasser nos forces, il est possible de traiter par approximations
le problème du mouvement de n masses gravitantes.

On suppose les coordonnées choisies isothermes, la métrique quasi-
euclidienne et à comportement asymptotique euclidien et on développe
les potentiels selon les puissances de c"2. Ala technique initialed'EiNSTEiN,
Infeld, Hoffmann qui use d'une représentation des masses par de pures
singularités du champ extérieur, représentation qui pourrait être
fallacieuse, il est préférable de substituer une technique où le tenseur
d'impulsion-énergie joue son rôle. Une telle technique qui donne des résultats
satisfaisants a été amorcée par Fock et par Papapeteou, et a été développée

plus rigoureusement par Madame Henne quin. Les équations du
mouvement des masses proviennent essentiellement de l'intégration, dans
les tubes balayés par celles-ci, de divergences suggérées par les premiers
membres des conditions de conservation, de manière à exprimer que les

quantités S° sont nulles au bord de ces tubes.
Je n'entrerai pas dans le détail de cette technique, mais je signalerai

que le même procédé vient d'être appliqué aux équations de la théorie de

Joedan-Thiey et que les approximations obtenues suggèrent
l'interprétation suivante qui diffère de celle initialement donnée par les auteurs
de la théorie : avec les notations du § 3, c'est ds2 | ds2 qui représente
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la métrique gravitationnelle ; le champ électromagnétique est représenté
par l'ensemble des deux tenseurs proportionnels

Faß Faß Haß S3Faß

où F est à différentielle extérieure nulle et où f3 joue le rôle d'un pouvoir
diélectrique du vide. Dans le cas unitaire extérieur les équations du champ
s'écrivent avec la métrique ds2 :

- f -
Saß r ß-aß =- ~= raß

Vß(Hßa) 0

A log I + -Ç (F, H) 0

où les Kaß ne dépendent que des dérivées premières de log f et où raß
est le tenseur d'impulsion-énergie du champ électromagnétique

*aß Ai ^"ß ^r H*" ~ F*Q Eß ¦

Le facteur de gravitation ß2/2 est alors constant.
Nous avons cherché à passer en revue les thèmes mathématiques

proposés par les équations relativistes du champ. Beaucoup de travail reste
à faire.

Diskussion - Discussion

D. van Dantzig: 1. Les équations de gravitation n'étant pas linéaires,
le cône des bicaractéristiques dépendra en général de la solution
considérée. Est-ce qu'il est connu sous quelles conditions on peut être sûr

que, en prolongeant une solution locale, la signature de gi} sera conservée,
plus spécialement que le cône des bicaractéristiques ne sera pas dégénéré?

2. Est-ce que la solution à données de Cauchy peut être représentée
au moyen d'intégrales ordinaires, soit sur le cône, soit au dedans du cône

(ou une combinaison des deux), ou est-ce que des difficultés du type de

Hadamaed, où l'on doit prendre la „partie finie" d'une intégrale infinie,
sont inévitables?

Mme Y. Foueès-Bbuhat : 1. On ne sait pas, dans le cas général, sous
quelles conditions on peut prolonger une solution donnée. Ceci résoudrait
d'ailleurs le problème de l'existence de solutions globales régulières,
problème dont il serait très important de connaître la réponse, mais
certainement très difficile.
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2. La solution est obtenue par résolution d'équations intégrales (portant

sur des intégrales ordinaires prises sur le cône des bicaractéristiques)
par approximations successives. La solution dépend des données initiales
intérieures au cône (propagation par ondes, en général diffusées).

Mme A. Tonnelat : Je voudrais faire observer qu'il est possible aussi
de définir des systèmes de coordonnées isothermes dans la théorie non
symétrique (gßV r/v=0). Leur emploi devrait conduire à un grand
nombre de simplifications. Néanmoins, à ma connaissance, aucune
application sérieuse de ce choix de coordonnées n'a été proposé.
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