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Hauptreferat - Exposé principal - Main Lecture

Quantisierung allgemein-kovarianter Feldtheorien1)

by P. G. Bergmann (Syracuse)

This review paper reports on the present status of attempts to quantize theories
which, like Einstein's General Theory of Belativity, are invariant under general
curvilinear coordinate transformations. The introduction deals with the motivation
and justification of such a program and argues that general relativity may very likely
contribute significantly to the theory of elemtary processes, even though gravitational

effects as such are quantitatively many orders of magnitude smaller than
electromagnetic and nuclear interactions. The second section describes the characteristic
properties of covariant theories, that the canonical momentum densities never
describe the velocities uniquely, that the Hamiltonian density contains arbitrary
functions, and that aside from the canonical equations there are also algebraic conditions

(constraints) between the canonical field variables. The third section is
concerned with approaches to quantization and describes particularly the method of
selecting 'true observables' from among the dynamical variables, which alone will
appear as Hilbert operators in the quantized theory. Quantization with the help
of coordinate conditions and with the help of Lagrangian methods are briefly
discussed. The fourth section deals with spin and angular momentum in general
relativity, and the last with the rôle of the strong conservation laws.

1. Einleitende Betrachtungen. Seit der Formulierung der konsequenten
Quantenmechanik und Quantenfeldtheorie einerseits, der speziellen und
der allgemeinen Relativitätstheorie anderseits, ist die Entwicklung der

grundlegenden Ideen in der theoretischen Physik zu einem vorläufigen
Abschluß gekommen. Auf der einen Seite haben wir eine konsequente
Formulierung der Begriffe, die wir im Bereich der Elementarprozesse brauchen,

eine Formulierung, die genügend weitärmelig zu sein scheint, um
auch einen großen Teil der Kernphysik erfassen zu können. Auf der anderen

Seite liefert uns die Relativitätstheorie in nahezu vollkommener
Fassung eine klassische Feldtheorie, die uns nicht nur ein befriedigendes
Verständnis für die Rolle des Bewegungszustands eines Beobachters liefert,

A Diese zusammenfassende Darstellung kürzlicher Arbeiten wurde für die in
Bern stattfindende Konferenz „Fünfzig Jahre Belativitätstheorie" vorbereitet. Die
Unterstützung des Office of Naval Besearch, und neuerdings auch der National
Science Foundation, wird vom Verfasser dankend anerkannt.
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sondern darüber hinaus eine vollständige Theorie der Gravitation,
insbesondere eine Begründung für die Gleichheit von träger und schwerer
Masse, und schließlich auch noch die Theorie der ponderomotorischen
Gesetze jeder Feldtheorie.

Praktisch sind die Beziehungen der speziellen und der allgemeinen
Relativitätstheorie zum Mikrokosmos völlig verschieden. Sobald wir in das

Gebiet hoher Energien kommen, brauchen wir die spezielle Relativitätstheorie;

ja, beim heutigen Stand der Meßtechnik können wir eine
nichtrelativistische Theorie des Elektrons und der elektromagnetischen Strahlung

kaum mehr ernst nehmen. Infolgedessen hat die Quantisierung
speziell-relativistischer Feldtheorien seit den frühen Dreißigerjähren stets im
Mittelpunkt des theoretischen Interesses gestanden. Anderseits hat die
allgemeine Relativitätstheorie ihren Hauptbeitrag im Gebiet des
astronomisch-Großen gemacht. Hierfür liefert das Programm unserer Tagung
beredtes Zeugnis. Das Verhältnis zwischen den gravitationellen und
elektrostatischen Kräften, die zwei Elektronen aufeinander ausüben, ist eben

von der Größenordnung 10~40; solange man daher den Effekt der
allgemeinen Relativitätstheorie nicht qualitativ, sondern nur quantitativ zu
bewerten sucht, wird er noch auf lange Zeit zu vernachlässigen sein gegenüber

den höheren Näherungen der Quantenelektrodynamik, die noch gar
nicht berechnet sind. Damit ist es wohl zu erklären, daß die große Mehrzahl

der zeitgenössischen Theoretiker an den Beziehungen zwischen
allgemeiner Relativitätstheorie und Quantentheorie nur wenig interessiert
ist.

Mir scheint aber, daß man neben solchen quantitativen Betrachtungen
qualitativ neue Möglichkeiten nicht völlig außer Acht lassen sollte. Die
allgemeine Relativitätstheorie ist ja nicht lediglich eine Theorie der
Gravitation, die wir getrost ignorieren dürfen, wenn die spezifisch gravitationellen

Effekte klein sind. Genau wie die spezielle Relativitätstheorie
behauptet die allgemeine, daß gewisse, früher als absolut erachtete
Eigenschaften des Raumes und der Zeit nicht fixiert sind, sondern physikalisch
veränderlich. Nun, wenn die Geometrie im Großen nicht streng flach ist
(MiNKOWSKi-Metrik), so wird sie es auch nicht im Kleinen sein. Und was
wesentlicher ist, wenn die Metrik ein System von veränderlichen Größen

darstellt, dann darf man sie nicht physikalisch völlig anders behandeln
als andere Felder. In einer konsequenten Theorie müssen die
Gravitationspotentiale, genau so wie alle anderen Kräftefelder, quantisiert werden,
sofern man an die grundsätzliche Richtigkeit der Feldquantisierung
glaubt.

Fernerhin ist die allgemeine Relativitätstheorie bisher die einzige
Feldtheorie, in der die ponderomotorischen Gesetze mit den eigentlichen
Feldgesetzen eine logische Einheit bilden. Die Theorie der Bewegung von Par-
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tikeln ist von Einstein, Infeld, und Hoepmann seit 1937 in immer
vollkommenerer Weise entwickelt worden und von Infeld und Wallace auf
die Bewegung im elektrischen Feld ausgedehnt worden [1-4]. Papape-
tbou hat gezeigt, daß diese Theorie mathematisch äquivalent ist einer, in
der die Teilchen zunächst ausgedehnt eingeführt werden, wenn man den
„Formfaktor" nur genügend klein werden läßt [5]. Einige meiner Studenten

haben auch im Detail ausgeführt, daß die Verknüpfung der Feld- mit
den Bewegungsgesetzen eine generelle Eigenschaft aller allgemein-kovari-
anten Theorien ist, ähnlich wie etwa jede eichinvariante Theorie zu einem

Erhaltungsgesetz der elektrischen Ladung führt [6, 7]. Da nun die
Beziehung zwischen Feldgesetzen und Teilchenbewegung offensichtlich im
Kleinen genauso interessant ist wie im Großen, ist zu vermuten, daß uns
die allgemeine Relativitätstheorie, und insbesondere das Prinzip der
allgemeinen Kovarianz auch im Kleinen angeht.

Ich möchte diesen letzteren Punkt noch etwas konkretisieren. Bekanntlich

sind die dynamischen Gesetze, die die Bewegung von Punktladungen
bestimmen, logisch von den partiellen Differentialgleichungen des

elektromagnetischen Feldes unabhängig. Es ist durchaus möglich, die Maxwell-
schen Gleichungen mit beliebig vorgegebenen Teilchenbahnen zu lösen.
Es ist aber mißlich, daß man, um die LoEENTZgleichungen überhaupt sinnvoll

anschreiben zu können, das Gesamtfeld in derUmgebung einer Punktladung

in unendliches „Selbstfeld" und endliches „einfallendes Feld"
trennen muß. Diese Trennung geht noch an, solange die Feldgleichungen
selbst in den eigentlichen Feldgrößen linear sind. Andernfalls verliert die

Trennung jeden vernünftigen mathematischen Sinn. Insbesondere im
Gebiet der Kernkräfte ist es aber garnicht ausgemacht, daß die „Feldgleichungen"

(d. h. wohl die Wellengleichungen der Mesonenfelder) linear
sind. Es wäre also garnicht uninteressant, die Teilchenbewegung so
bestimmen zu können, wie es in der allgemeinen Relativitätstheorie
gemacht wird : Als eine Folge der Feldgleichungen, deren Ausrechnung die
Abtrennung des „Selbstfeldes" prinzipiell nicht erfordert.

Aus allen diesen Gründen glaube ich, daß der Quantentheoretiker der
allgemeinen Relativitätstheorie gegenüber nicht indifferent sein sollte.
Anderseits haben viele andere Theoretiker, und vor allen Einstein selbst,
den Standpunkt vertreten, daß die gegenwärtige Quantentheorie so

grundsätzlich unbefriedigend ist, daß man von jedem Vereinigungsversuch
absehen sollte [8]. Man müsse vielmehr auf dem Wege über die

klassischen Feldbegriffe zu einer „einheitlichen Feldtheorie" kommen, die
nicht nur irgendwie auch die Resultate der Quantentheorie liefert, etwa
durch ihre extreme Nichtlinearität, sondern darüber hinaus alle
Eigenschaften der Elementarteilchen voraussagt bzw. erklärt. Parallel mit
der Arbeit in „einheitlicher Feldtheorie" haben andere, vornehmlich

6 HPA Sppl. IV
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de Beoglie, Böhm, Wienee und Siegel gezeigt, daß der wesentlich pro-
babilistische Charakter der heutigen Quantentheorie auf verschiedenartige
Weise hinweginterpretiert werden kann, so daß die sicherlich richtigen
Resultate der Theorie auch durch eine streng deterministische Theorie,
plus die Konstruktion bestimmter GiBBSscher Gesamtheiten, reproduziert
werden können [9-12].

Ohne das Interesse aller dieser Bestrebungen in Abrede stellen zu wollen,

so glaube ich doch, daß es nicht unberechtigt ist, gleichzeitig an einem
konservativeren Programm zu arbeiten. Dieses besteht darin, sowohl von
der Quantentheorie als auch von der allgemeinen Relativitätstheorie
gewisse Grundzüge zumindest als „relativ wahr" zu akzeptieren und zu
sehen, ob diese Charakterzüge sich nicht vereinen lassen. Ein solches

Programm involviert keinerlei physikalisches Glaubensbekenntnis zur einen
oder zur anderen gegenwärtigen Theorie in aeternitatem, sondern eher ein

vorsichtiges Tasten, welche Züge sich als relativ stabil erweisen werden.
Hat doch die Geschichte der Physik immer wieder gezeigt, daß gewisse

Züge jeder überholten Theorie in der Nachfolgerin wieder auferstehen.
Wenn ich Sie also bitten möchte, das Programm des Vereinigungsversuchs
als physikalisch vernünftig zu akzeptieren, so tue ich das nicht in einem

polemischen Sinne, daß ich mein Rezept etwa als alleinseligmachend
verkaufen möchte. Im Gegenteil, ich finde, daß wir im gegenwärtigen
Zustand der noch immer schwankenden Grundlagen viele verschiedene
Bestrebungen in allen möglichen Richtungen brauchen, die sich vielleicht
gegenseitig befruchten und dadurch schließlich zu etwas brauchbarem
führen können.

Schließlich möchte ich Sie gleich schonend darauf vorbereiten, daß ich
leider keinerlei endgültige Resultate dieses Programms mitteilen kann,
weil wir noch keineswegs am Ende sind. Ich hoffe, daß das, was ich
berichten kann, zeigen wird, daß das Programm nicht uninteressant ist, daß

man auf jeden Fall bereits gewisse Neukenntnisse erzielt hat. Und ich
werde mich bemühen, Möglichkeiten für die Zukunft anzudeuten.

2. Der singulare Charakter allgemein-kovarianter Theorien. Traditionell
geht man zur Quantisierung von der kanonischen Form einer Theorie aus.
Wenn das Variationsprinzip gegeben ist, so führt man zunächst die kanonisch

konjugierten Impulsgrößen ein, um sodann die HAMiLTONSche Funktion

zu konstruieren. Bei der Quantisierung werden dann sowohl die Kon-
figurations- wie die Impulskoordinaten durch entsprechende Hilbeet-
operatoren ersetzt, deren Vertauschungsrelationen den PoissoNschen
Klammerausdrücken der klassischen Theorie nachgebildet sind.

Formal läuft diese Prozedur darauf hinaus, in der klassischen Theorie
der Gruppe der kanonischen Transformationen besondere Bedeutung
zuzuschreiben. Jede dynamische Veränderliche ist nicht nur eine physika-
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lisch bedeutungsvolle Größe an sich, sie dient auch als Erzeugende einer
infinitesimalen kanonischen Transformation. Beim Übergang zur
quantisierten Theorie werden dann die kanonischen durch unitäre
Transformationen ersetzt. Die Observabeln sind nun die Erzeugenden der
infinitesimalen unitären Transformationen. Die Struktur der neuen
Transformationsgruppe wird möglichst weitgehend der der kanonischen Gruppe
nachgebildet, nur daß die Verwirklichung jetzt durch die Gruppe der
unitären Transformationen im HiLBEETraum geliefert wird. Die eigentliche
Quantisierung besteht dann in der Untersuchung der neuen Gruppe, wobei

insbesondere die Eigenwerte der verschiedenen physikalisch interessanten

Operatoren die möglichen Meßergebnisse der entsprechenden
Observabeln sein sollen.

Für den ersten Schritt in dieser Prozedur ist es nun wesentlich, daß die
Beziehung zwischen den zeitlichen Ableitungen der Konfigurationskoordinaten

(die ich weiterhin als „Geschwindigkeiten" bezeichnen werde)
und den Impulskoordinaten ein-eindeutig sei. Denn im Ausdruck für die
HAMiLTONsohe Funktion,

S=£?t ?*(?> P)-L [qk, qk(q, p)] (2.1)
h

ist es wesentlich, daß die Geschwindigkeiten auch wirklich durch die
Impulskoordinaten ausgedrückt werden können. Schon an dieser Stelle
bereiten allgemein-kovariante Theorien grundsätzliche Schwierigkeiten, die
wohl zuerst von Rosenfeld erkannt worden sind [13,14]. Damit die
Beziehung nämlich ein-eindeutig sei, muß die Matrix der Ableitungen der
Impulskoordinaten nach den Geschwindigkeiten,

*Pk_ d*L
(22)

àqi àqk bq,

regulär sein, darf also keine Nullvektoren besitzen. Dies ist aber gerade
bei allgemein-kovarianten Theorien der Fall. Angenommen, wir haben es

mit einer Feldtheorie zu tun, in der also die Konfigurationskoordinaten
irgendwelche Feldkomponenten yA sind (der Index A ist ein Sammelindex,
der in beliebiger Weise zur Identifizierung der individuellen Komponenten

dient, und nicht etwa ein Koordinatenindex). Bei einer infinitesimalen
Koordinatentransformation, die etwa durch die Änderungen £e(x) der
Koordinatenwerte an jedem Weltpunkt beschrieben sei, mögen sich die yA
als Funktionen ihrer Argumente x nach dem Schema

ôyA cAe? + cAeP,a (2.3)
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transformieren. Dann wird die LAGEANGEscheDichte, wegender Invarianz
der Theorie einer beliebigen Koordinatentransformation gegenüber, sich

nur um eine vollständige Divergenz ändern dürfen. Wir haben also

ÖL 1 OL

Wa \^A,t ôlF^[^-^U-Qe,B- (2-4)

Hier bezeichnet weiterhin das Symbol ò die infinitesimale Änderung einer
Größe als Funktion der Koordinaten, nicht an einem festgehaltenen
Weltpunkt. Unter Berücksichtigung von (2.3) finden wir nach einer kurzen
Umrechnung :

Ia — L," aAa Ç"l ,e,
(2.5)

[LA cAe- (LA caAt), J f [G*- -~ oyA-LAaL¥\,e,

JA
OL I OL

*yA \àyA,aFa

Da nun |8 beliebig ist, folgt der Satz von vier Identitäten, die wir die
BiANCHischen Identitäten nennen wollen,

LAcAe-(LAcaAe),a 0. (2.6)

Diese Identitäten, die also eine Folge der allgemeinen Kovarianz sind,
führen nun zu einem direkten Widerspruch zur Regularitätsbedingung
(2.2). Wenn wir nämlich in diesen Identitäten die Glieder mit verschiedenen

Differentiationstermen trennen, so müssen diese separat verschwinden

[15]. Die höchsten Terme enthalten die Feldgrößen dreimal differenziert.

Wenn wir nun speziell die Koeffizienten der dritten Ableitungen
nach der Koordinate a;4 (der „Zeit") aufschreiben, so erhalten wir die

Beziehungen
Ò2L cL-0, (2.7)

dVa ty

die also explizit Nullvektoren der Matrix (2.2) liefern. Hiermit ist gezeigt,
daß allgemein eine kovariante Theorie, deren Feldgleichungen sich von
einem Variationsprinzip herleiten lassen, in dem soeben besprochenen
Sinn „singular" ist.

Da sich nun ergeben hat, daß die Geschwindigkeiten nicht eindeutige
Funktionen der Impulse sein können, da aber anderseits die Zahl der
einen Größen der der andern gleich ist, so folgt, daß nicht alle Impuls-
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komponenten frei wählbar sind. Wir haben vielmehr algebraische (d.h.
keine zeitlichen Ableitungen enthaltende) Beziehungen zwischen ihnen;
wir können diese sofort aus (2.7) ablesen, indem wir sie in die Form schreiben

~4(-Xie) 0, ^-|X (2-8)

(Hier ist die Annahme gemacht worden, die im allgemeinen zutrifft,
daß die Größen cAg nur von undifferenzierten yA abhängen.) Infolgedessen

haben wir die „Primärbedingungen"

cAQnA-Ke(y)^0. (2.9)

Die Größen Ü_. hängen nur von yA ab und lassen sich stets leicht
bestimmen. Angenommen, wir hätten eine HAMiLTONsche Funktion
konstruiert. Dann wären wir in der Lage, die Zeitabhängigkeit jedes
Funktionais der kanonischen Feldgrößen explizit hinzuschreiben. Indem wir
nun verlangen, daß sämtliche zeitliche Ableitungen der Primärbedingungen

verschwinden, erhalten wir weitere, „Sekundärbedingungen" usw.
Glücklicherweise läßt sich zeigen, daß es nur eine endliche Zahl derartiger
weiterer Bedingungen gibt. In den meisten Theorien, und insbesondere
in der kanonischen Formulierung der allgemeinen Relativitätstheorie,
gibt es insgesamt nur acht Bedingungen, von denen die Hälfte
Primärbedingungen sind.

Es erweist sich nun als möglich, eine HAMiLTONsche Funktion zu
konstruieren, die frei von Geschwindigkeiten ist [16, 17]. Man kann zu diesem
Zweck zeitweilig neue Variablen einführen, so daß jede der Primärbedingungen

nur eine Impulsdichte enthält. Im endgültigen Ausdruck für H
kehrt man dann wieder zu den ursprünglichen Variablen zurück. Der
Ausdruck für B ist aber nicht eindeutig. Er enthält die vier Primärbedingun-
gen, jede mit einer völlig willkürlichen Funktion multipliziert. Die Wahl
dieser vier Funktionen ist der Einführung von „Koordinatenbedingungen"

in der üblichen Theorie äquivalent. In der kanonischen Fassung
bleibt die volle Kovarianz also nur erhalten, wenn man diese willkürlichen
Funktionen nicht festlegt. Die vollständige Formulierung der Theorie
erfordert also die Ausrechnung der HAMiLTONSchen Funktion und
sämtlicher Primär- und Sekundärbedingungen [18, 19].

Eine ganz ähnliche Formulierung stammt vonDiEAC [20]. Anstatt
willkürliche Funktionen in die HAMiLTONsche Funktion einzuführen, läßt er
in ihr eine Reihe von Geschwindigkeiten, derart, daß sich leere Beziehungen

ergeben, wenn immer man versucht, diese Geschwindigkeiten durch
kanonische Größen auszudrücken. Die DiEACsche Formulierung ist der

unserigen völlig äquivalent.
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Nur der Vollständigkeit wegen möchte ich noch erwähnen, daß sowohl
Dieac wie wir unabhängig voneinander besondere Hilfskoordinaten
(„Parameter") eingeführt haben, wodurch die gewöhnlichen Koordinaten
formal dynamische Veränderliche werden und die ganze Theorie an
formaler Eleganz gewinnt [20, 21]. Z.B. wird die LAGEANGESche Funktion
homogen in den Geschwindigkeiten (vom ersten Grad), die Impulskoordinaten

homogen vom nullten Grad; wie man erwarten würde, werden
lineare Impuls- und Energiedichte den Koordinaten kanonisch konjugiert.

Es hat sich aber erwiesen, daß diese formalen Vorteile durch ganz
erhebliche Komplikationen in der expliziten Form der Theorie kompensiert

werden. Es erscheint, daß Parameter nur für ganz spezielle
Untersuchungen formaler Art vorteilhaft sind.

In der HAMiLTONschenVersion einer kovariantenFeldtheorie entspricht
einer Koordinatentransformation natürlich eine ganz bestimmte
kanonische Transformation. Von besonderem Interesse ist die Erzeugende
infinitesimaler kanonischer Transformationen. Diese ist nämlich eine

ganz bestimmte Linearkombination der Primär- und Sekundärbedingungen
der Theorie. Die Koeffizienten dieser Bedingungen sind die „beschreibenden"

Größen Ie und ihre zeitlichen Ableitungen, die wir oben in (2.3)
eingeführt hatten. Die infinitesimalen Transformationen bilden einen

Gruppenkeim mit einer bestimmten LiEschen Algebra. Diese spiegelt sich

ganz genau wider in den PoissoNschen Klammerausdrücken der
Zwangsbedingungen untereinander. Der Beweis, daß es nur eine endliche Anzahl
von Bedingungen gibt, wird zweckmäßigerweise mit Hilfe dieser
Gruppeneigenschaft geführt [18].

3. Die Möglichkeit der Quantisierung. Es fragt sich nun, wie man bei der

Quantisierung einer Theorie vorzugehen hat, die zwar in kanonischer
Fassung vorliegt, in der aber eine Reihe von algebraischen Bedingungen
zwischen den kanonischen Veränderlichen erfüllt sein muß. Ist es denkbar,

alle diese Veränderlichen als HiLBEEToperatoren zu behandeln?

Dieac hat dieser Frage Beachtung geschenkt und hat sie verneint [20].
Da er nicht.in erster Linie vom kovarianztheoretischen Gesichtspunkt
ausging, betrachtete er gleich zwei verschiedene Arten von Bedingungen,
die er solche der „ersten Klasse" und der „zweiten Klasse" nannte. Wenn
der PoiSSONSche Klammerausdruck zwischen einer Bedingung und allen
anderen verschwindet (evtl. modulo der Bedingungen selbst), so haben
wir es mit einer Bedingung erster Klasse zu tun, andernfalls mit einer
zweiter Klasse. Unsere Primär- und Sekundärbedingungen, die die Folge
von Kovarianzeigenschaften sind, gehören alle zur ersten Klasse; aber
bei der Hyperquantisierung von Materiewellen trifft man auch auf
Bedingungen zweiter Klasse. Offensichtlich können nun Bedingungen der
zweiten Klasse nicht HiLBEEToperatoren sein. Denn angenommen, wir
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betrachten einen Zustand, der physikalisch zulässig ist, der also für jede
der Bedingungen C die Gleichung

C¥ 0 (3.1)

erfüllt, dann führt offenbar die Vertauschungsrelation

[C, C] Cab + 0, (3.2)

die dem entsprechenden PoissoNSchen Klammerausdruck nachgebildet
ist, auf einen Widerspruch, insbesondere, wenn Cab eine C-Zahl ist. Aber
auch Bedingungen der ersten Klasse führen zu Schwierigkeiten. Zu einer

Bedingung erster Klasse läßt sich nämlich stets eine dynamische
Veränderliche finden, die zur Bedingung kanonisch konjugiert ist. Nun ist es

wohlbekannt, daß von zwei kanonisch konjugierten HiLBEEToperatoren
keiner auf Hauptachsen gebracht werden kann. Die Forderung (3.1),
angewandt auf eine Bedingung erster Klasse, liefert also das widersprüchliche

Resultat, daß ein physikalisch zulässiger Zustand Eigenvektor eines
bzw. mehrerer Operatoren sein muß (mit dem Eigenwert Null), die keine
Eigenvektoren haben dürfen. Und so hätten wir die Forderung, daß alle

physikalisch zulässigen Zustände nur uneigentliche Vektoren, d.h. außerhalb

des HiLBEBTraums liegende Häufungspunkte sein müßten. Unter
anderem wären sie alle nichtnormalisierbar.

Man kann sich allen diesen Schwierigkeiten entziehen, wenn man darauf

verzichtet, die Vertauschungsrelationen der Quantenoperatoren direkt
aus den PoissoNSchen Klammerausdrücken der klassischen Theorie
herzuleiten. In der Gegenwart von Zwangsbedingungen aller Art ist die

Gruppe der kanonischen Transformationen auch nicht die einzige oder
die natürlichste Transformationsgruppe im klassischen Phasenraum [22].
Die Zwangsbedingungen definieren im Phasenraum einen Unterraum, der

aus den physikalisch zulässigen (klassischen) Zuständen besteht. Es liegt
also nahe, nach einer Transformationsgruppe zu suchen, die diesen Unterraum

auf sich selbst abbildet. Eine solche Transformationsgruppe gibt es

nun tatsächlich. Sie besteht aus allen den Koordinatentransformationen
im klassischen Phasenraum, die die kanonische Form der Bewegungsgleichungen

reproduzieren und die Form der Zwangsbedingungen
unverändert lassen. Auch für diese Transformationsgruppe gibt es Erzeugende,
und ferner Klammerausdrücke, die den Kommutatoren der infinitesimalen

Transformationen entsprechen. Ich möchte diese Klammerausdrücke
im Gegensatz zu den PoissoNSchen nach Dieac benennen. Die Dieac-
klammer zwischen einer Zwangsbedingung und irgendeiner Veränderlichen

ist stets Null. Falls es aber Bedingungen erster Klasse gibt, so ist
die DiBAcklammer nicht für alle dynamischen Veränderlichen definiert.
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Bevor ich auf die Details eingehe, möchte ich noch zur weiteren
Rechtfertigung dieser Transformationsgruppe anführen, daß sie ermöglicht, die

Zwangsbedingungen direkt Null zu setzen. Wir können die Gleichungen
(3.1) durch die schärferen Operatorengleichungen

Ca 0 (3.3)
ersetzen.

Im Einzelnen kommt man zu den DiEACschen Klammern folgendermaßen.

Wenn wir zunächst die kanonischen Koordinaten im klassischen
Phasenraum mit yQ bezeichnen und den antisymmetrischen konstanten
Tensor, mit dem man PoissoNklammern bildet, mit eea, dann sind die

Bewegungsgleichungen und die Zwangsbedingungen folgende:

1\A

tf F°B,a, A=~ + F°A,QB,a, Ca 0. (3.4)

Wir führen nun zunächst Koordinaten auf der durch die Zwangsbedingungen

definierten Hyperfläche ein, xm, wodurch man dann die Hyper-
fläche selbst durch die Funktionen ye(xm) charakterisieren kann. Damit
die Theorie innerlich widerspruchsfrei sein kann, dürfen die Bewegungsgleichungen

natürlich nicht aus der Hyperfläche herausführen. Wir haben

infolgedessen:

y ~ dxm x ' e»»»x ~ òxm ~ ' « dxm >.

(3.5)
öye dy"

_. at tte«.n ôxm òxn £ea ' £qo e s '

Hierbei ist nichts darüber gesagt, ob der neue Tensor emn auf der Hyperfläche

regulär ist oder ob seine Determinante verschwindet. Das letztere
ist nämlich immer der Fall, wenn es Zwangsbedingungen erster Klasse

gibt. Wir verlangen jetzt, daß unsere infinitesimalen Transformationen
der Parameter xm untereinander die Form der Gleichungen (3.5) unge-
ändert lassen, außer daß sich natürlich dieForm derHAMiLTONSchenFunk-
tion ändern darf. Insbesondere sind die Komponenten des Tensors emn als

invariante Funktionen der Parameter xm zu behandeln. Es stellt sich nun
heraus, daß, fast genau wie bei infinitesimalen kanonischen
Transformationen, eine Funktion F(xm) eine infinitesimale Transformation erzeugt,
die allen Erfordernissen genügt:

zmn àxn -zmr, ÒH -~-. (3.6)
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Die Erzeugende ist hier eine Funktion der xm. Abseits der „erlaubten"
Hyperfläche braucht sie gar nicht definiert zu sein. Wenn alle
Zwangsbedingungen solche zweiter Klasse sind, so ist der Tensor emn regulär,
besitzt also einen reziproken Tensor. Man kann dann die Transformationsbedingungen

(3.6) nach den Transformationsgrößen ôxn auflösen, und
diese sind eindeutig durch die Erzeugende bestimmt. Besitzt die
antisymmetrische Form emn aber Nullvektoren, dann ist die Transformation
nicht durch die Erzeugende völlig bestimmt, ja es gibt Transformationen,
die zur Erzeugenden Null gehören. Dies sind die Transformationen

òxn=U/s), (3.7)

wo die neuen Größen U/s) die Nullvektoren von emn sind. In diesem Falle
legen aber die Gleichungen (3.6) auch der Erzeugenden Beschränkungen
auf. Wenn wir sie mit einem Nullvektor multiplizieren, so finden wir

j^UC^O. (3.8)

Es zeigt sich also, daß die Anzahl der algebraisch voneinander
unabhängigen Erzeugenden nicht gleich der der Parameter xm ist, sondern daß

diese Zahl noch weiter um die der Nullvektoren V(s-, vermindert werden
muß. Man kann auch weiterhin zeigen, daß diese Einschränkungen innerlich

widerspruchsfrei dann und nur dann sind, wenn die Bedingungen
erster Klasse untereinander eine Funktionengruppe bilden, ihre Poisson-
klammern miteinander also modulo der Bedingungen erster Klasse
verschwinden [23].

Im Falle von Nullvektoren bilden die Transformationen, die zur
Erzeugenden Null gehören, eine invariante (normale) Untergruppe. Bilden
wir die Faktorgruppe, so erhalten wir einen Gruppenkeim, der durch die
erlaubten Erzeugenden (d.h. durch die Funktionen der xm, die den
Bedingungen (3.8) gehorchen), ein-eindeutig verwirklicht ist. Wir haben
also eine neue Gruppe gefunden, die sich im Prinzip zur Darstellung durch
HiLBEEToperatoren eignet.

Die DiEACschen Klammern erhält man selbstverständlich, indem man
die Kommutatoren der Mitglieder der (Faktor-)Gruppe bildet und ihre
Erzeugende bestimmt. Diese Klammern sind dadurch eindeutig
bestimmt. Falls alle Zwangsbedingungen zur ersten Klasse gehören,
unterscheiden sich dieDiEAcklammernvonPoissoNklammern nur dadurch, daß
sie für gewisse Größen nicht definiert sind. Andernfalls bestehen zwischen
den zwei Klammertypen Unterschiede auch für solche Veränderliche, für
die beide wohldefiniert sind.
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Die durch die DiEACmethode ausgeschlossenen Veränderlichen sind
solche, deren PoissoNklammern mit den Bedingungen erster Klasse nicht
verschwinden. Da aber die Bedingungen erster Klasse die (Hamilton-
schen) Erzeugenden der invarianten Transformationen sind, so folgt, daß
die noch zulässigen Erzeugenden Invarianten sein müssen. Um Ihnen ein
Gefühl dafür zu geben, was dies involviert, möchte ich schnell die
Veränderlichen bezeichnen, die in der Theorie des elektromagnetischen Felds
durch die Eichkovarianz ausgeschlossen sind [24]. Da die Zwangsbedingungen

auf das Verschwinden der zum skalaren Potential konjugierten

Impulsdichte tund auf die Bestimmung des longitudinalen elektrischen

Feldes durch die Ladungsdichte hinauslaufen, so folgt, daß die

einzigen Erzeugenden die transversalen Anteile des Vektorpotentials
(also das magnetische Feld) und des elektrischen Feldes (und nur von
diesen abhängige Funktionale) sind. Ferner dürfen nur ganz bestimmte
Kombinationen der Elektronenwellenfunktionen mit dem Vektorpotential

als Erzeugende eingeführt werden, nämlich solche, die eichinvariant
sind.

Um nun wieder auf die Theorien zurückzukommen, die krummlinigen
Koordinatentransformationen gegenüber invariant sind, so müssen wir
hier die Erzeugenden auf solche Größen beschränken, die derartigen
Transformationen gegenüber invariant sind. Dies ist indes leichter gesagt
als getan. Bisher ist nämlich in der allgemeinen Relativitätstheorie nicht
eine einzige nicht-triviale Invariante bekannt. Es genügt ja nicht, skalare
Felder zu finden; als Funktionen ihrer Argumente (der Koordinaten)
transformieren sich Skalare auch. Wahre Invarianten, glaube ich, werden
sich als äußerst komplizierte Funktionale der gegenwärtig bekannten
Feldgrößen entpuppen.

Man könnte nun eine Theorie ablehnen, die in Bezug auf zulässige
Veränderliche derartig „exklusiv" ist. Eine solche Ablehnung erscheint mir
aber voreilig. Am Beispiel der elektromagnetischen Theorie sehen wir, daß
die verbotenen Größen, also das skalare Potential, der longitudinale Teil
des Vektorpotentials und derjenige der elektrischen Feldstärke, entweder
durch Eichtransformationen beliebiger Werte fähig sind oder aber durch
andere Zustandsgrößen (die Ladungsdichte) bereits festgelegt sind. Diese
Größen können also entweder überhaupt nicht auf Grund von
Anfangsbedingungen zu einer Zeit für eine andere Zeit vorausgesagt werden, oder
sie sind nicht unabhängig. Zwei formal vorgegebene physikalische
Situationen lassen sich entweder als wesentlich verschieden oder aber als zwei
verschiedene Beschreibungen desselben objektiven Zustands nur auf
Grund ihrer Invarianten identifizieren. Ich glaube also, daß nur die im
DiEACschen Formalismus zugelassenen Erzeugenden physikalisch als
„wahre Observabeln" anzusprechen sind. Deshalb muß man dieses Pro-
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gramm der Quantisierung sowohl formal als auch physikalisch als
vernünftig ansehen.

Wie soll man nun Invarianten finden? Bisher sind mir nur zwei
Möglichkeiten bekannt. Beide sind noch nicht gründlich untersucht. Komab,
ein Schüler Wheelebs, hat vorgeschlagen, auf systematische Weise
zunächst skalare Felder zu bilden, im allgemeinen höhere Potenzen des

Krümmungstensors, in vielfacher Weise kontrahiert [25]. Indem man nun
vier algebraisch unabhängige Skalare als neue „invariante Koordinaten"
einführt, läßt sich eine gegebene RiEMANNsche Mannigfaltigkeit
koordinatenunabhängig beschreiben, wenn wir mindestens zehn weitere Skalar-
felder als Funktionen der vier ersten angeben. Die große Schwierigkeit
dieses Programms liegt darin, daß die so gefundenen Invarianten einen

enorm hohen Differentationsgrad haben. Dies ist aber vielleicht nicht zu
vermeiden, auch nicht auf andere Weise.

Nach einem etwas anrüchigen Abzählverfahren kann man vermuten,
daß die Zahl der wahren Observabeln des Gravitationsfeldes vier pro
dreidimensionalem Raumpunkt beträgt, also dieselbe, wie im elektromagnetischen

Feld. Man kann das so begründen, daß „Gravitonen" Spin 2 und
verschwindende Ruhmasse haben, daß also in einer linearisierten Theorie
im Impulsraum zu jedem Werte des Fortpflanzungsvektors k genau zwei

unabhängige Normalschwingungen gehören, von denen jede sich durch
Angabe der Amplitude und der Phase vollständig festlegen läßt [26].

Newman hat nun vorgeschlagen, diesen Invarianten durch ein
Näherungsverfahren auf die Spur zu kommen, welches von der linearisierten
Theorie ausgeht [27]. Wenn man die Gravitationspotentiale nach einem
ad hoc Parameter entwickelt, wobei die nullte Näherung der flache Min-
KOWSKische Raum ist, so kann man auch die Koordinatentransformationen

in ähnlicher Weise in Potenzreihen entwickeln, derart, daß die auf
beliebiger Stufe abgebrochene Theorie gegenüber einer Transformationsgruppe

invariant ist, die aus der Gruppe krummliniger Koordinatentransformationen

dadurch hervorgeht, daß man auch deren Entwicklungen an
derselben Stelle abbricht. Von der ersten Näherung an darf man in der

Transformationsgruppe willkürliche Funktionen einführen. Die nullte
Näherung besteht aber nicht aus der Identität, sondern ist die Loeentz-
gruppe. Die erste Näherung für sich allein ist kommutativ und der
Eichgruppe sehr ähnlich, aber nicht kommutativ zusammen mit der nullten
Näherung. Die erste Näherung liefert dann genau die PAULi-FiEEZschen

Gleichungen für Gravitonen. Darüber hinaus ist noch nichts bekannt. Bis
zur ersten Näherung läßt sich das Programm, Invarianten zu finden und
die Theorie nur mit ihrer Hilfe zu formulieren, mühelos durchführen. Aber
erst danach wird es wirklich interessant. Immerhin ist es vielleicht
bemerkenswert, daß, wenn man auf FouEiEEzerlegung verzichtet, die wahren
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Observabeln der ersten Näherung die doppelt transversalen Potentiale
und ihre kanonisch konjugierten, also nichtlokale Größen sind, die man
durch Integrale ausdrücken muß.

Es liegt nahe zu fragen, ob man nicht die Theorie durch Einführung von
Koordinatenbedingungen künstlich „regulär" machen könnte, ähnlich
wie Feemi dies mit dem elektromagnetischen Feld getan hat, wonach die
Quantisierung dann ziemlich ohne Schwierigkeiten durchführbar sein
dürfte. In der klassischen Theorie läßt sich tatsächlich leicht zeigen, daß

man auf diese Weise sofort zu einerHAMiLTONSchenFormulierung kommt,
in der dann die Koordinatenbedingungen und ihre ersten zeitlichen
Ableitungen in gewohnter Weise als (acht) sich selbst erhaltende
Nebenbedingungen eingeführt werden müssen. Versucht man aber dann die
Quantisierung, so bereitet der wesentlich nichtlineare Charakter aller all-
gemein-kovarianten Theorien fast unüberbrückbare Schwierigkeiten. Man
muß dann nämlich sowohl in derHAMiLTONSchenFunktion als auch in den

Nebenbedingungen die Faktoren so ordnen, daß man in keine
Widersprüche gerät. Dies ist bisher niemandem gelungen [28]. Überdies, wenn
man wirklich mit diesem Problem fertig würde, so wüßte man dann immer
noch nicht, ob das Endprodukt Resultate liefert, die von der zufällig
gewählten Form der Koordinatenbedingungen unabhängig sind, ob, mit
anderen Worten, die resultierende Quantentheorie allgemein kovariant ist.

Eine andere verlockende Möglichkeit ist die Lagrangesche Quantisierung,

die wohl im gegenwärtigen Stadium mehr ein Programm als eine
abgeklärte Prozedur ist [29-31]. Zunächst funktioniert das von Peieels
vorgeschlagene Programm nur für „reguläre" Theorien, und ist außerdem
nicht darstellungsinvariant. Feynmans Integrale divergieren wahrscheinlich

für „singulare" Theorien, und Schwingees verschiedene Vorschläge
unterliegen denselben Beschränkungen wie Peieels'. Wir haben nun
zunächst einmal den Begriff der kanonischen Transformation im Lageange -

sehen Formalismus eingeführt und versucht, Transformationsgruppen
auch für „singulare" Theorien zu konstruieren [32]. Soweit uns dies
gelungen ist, scheinen sie der DiEACSchen Faktorgruppe im Phasenraum
äquivalent zu sein [33]. Es ist also nicht ausgeschlossen, daß man in einer

folgerichtigen LAGBANGEschen Quantisierung nichts gegenüber der
kanonischen Methode gewinnt. Augenblicklich halte ich diese Frage aber noch
für offen.

Diesen Möglichkeiten gegenüber scheint die Methode nach Dieac jetzt
zumindest logisch einwandfrei zu sein. Falls es gelingen wird, alle
algebraisch unabhängigen Invarianten der Theorie zu finden, so wird die

Faktorenordnung in der HAMiLTONSchen Funktion insofern willkürlich
sein, als sie weder die Kovarianz der Theorie noch ihre formale
Widerspruchsfreiheit affiziert. Selbstverständlich bedeutet dies nicht, daß zwei
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HAMiLTONsche Funktionen mit verschiedenen Faktorfolgen äquivalent
seien. Im Gegenteil, hier haben wir in der Quantentheorie eine extra Freiheit,

der in der klassischen Theorie nichts entspricht. Was ich behaupte,
ist nur, daß die Faktorfolgen nicht durch formale Forderungen eingeengt
sind, die praktisch unübersehbar sind.

4. Spin in der allgemeinen Relativitätstheorie. Offensichtlich ist es

unwahrscheinlich, daß man je zu einer zufriedenstellenden Vereinigung der
allgemeinen Relativitätstheorie und der Mikrophysik kommen wird,
wenn es nicht gelingt, den Spin ins Schema der allgemeinen Relativitätstheorie

einzubauen. Dies ist auf zwei verschiedene Weisen möglich, die
beide zum selben Resultat liefern [34—38]. Ich möchte diese mathematischen

Dinge nur ganz kurz skizzieren, weil sie wohl kaum zum Hauptthema

meines Berichts gehören.
Erstens ist es möglich, anstelle der Metrik im vierdimensionalen Zeit-

raum-kontinuum zwei Systeme von hyperkomplexen Feldern
einzuführen, ye und ye, die folgenden Gleichungen genügen :

Y (r, f + YV Y,) K> Y, Y" Y" Y, * • (4-1)

Dann läßt sich sofort zeigen, daß alle kovarianten yQ mit den Anti-
kommutatoren 1/2 (yß y" + y" yß) kommutieren, und ebenso die kontra-
varianten yQ mit den kovarianten Antikommutatoren 1/2 (yßyv + yvyA-
Ferner sind die zwei Antikommutatoren zueinander reziprok, und sie
dienen dazu, die kontravarianten und die kovarianten y's durch Hinauf-
und Hinabziehen der Indices ineinander überzuführen [39]. Mit anderen
Worten, die Gleichungen (4.1) führen unmittelbar zur Konstruktion eines
metrischen Tensors zurück, sofern wir nur annehmen, daß das eine oder
das andere System der y's eine vollständige Basis für die Algebra des

hyperkomplexen Zahlsystems (der Sedenionen) ist.
Zusätzlich zu den Koordinatentransformationen müssen wir nun auch

die Ähnlichkeitstransformationen betrachten, die in jedem Weltpunkt
ganz beliebig angesetzt werden können und denen gegenüber die Theorie
invariant sein muß. Konstruiert man nmi, um zu einer Analysis zu kommen,

einen spin-affinen Zusammenhang und bildet den entsprechenden
Spin-Krümmungstensor (wobei selbstverständlich verlangt wird, daß die
kovariante Ableitung von ye verschwindet), so stellt sich heraus, daß die
Geometrie keinerlei invariante Variationsprinzipien zuläßt, die es nicht
schon in der RiEMANNschen Geometrie gibt. Dagegen besteht die Möglichkeit,

zusätzlich zu den yQ, die also eine Art geometrische Grundstruktur
darstellen, Wellenfunktionen einzuführen, die dann die Bildung zusätzlicher

Glieder in der LAGEANGEschen Funktion gestatten. So ist es dann
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möglich, eine Theorie zu konstruieren, die neben dem eigentlichen
Gravitationsfeld sowohl Photonen als auch Elektronen enthält.

Die zweite Möglichkeit ist folgende: In jedem Weltpunkt führe man
vier aufeinander senkrechte Einheitsvektoren ein. Mit deren Hilfe kann
man dann jeden Vektor oder Tensor der RiEMANNschen Geometrie in
Komponenten nach den „Vierbeinen" (anstelle der Koordinaten)
zerlegen. Man führt nun konstante DiBACsche y's ein, und außerdem wiederum

Wellenfunktionen mit Spin usw. Man konstruiert darauf geometrische
Gebilde, die sowohl Koordinatentransformationen wie Beintransformationen

gegenüber invariant sind. Die Spintransformationen sind mit den
Beintransformationen zusammengekoppelt, wenn man den yn feste,
unveränderliche Werte zuschreibt.

Mit und ohne Vierbeine erhält man genau dieselben Kovarianten. Die
Einführung der Beine ist aber deshalb interessant, weil die
Beintransformationen in jedem Weltpunkt beliebig wählbare LoBENTztransforma-
tionen darstellen. Es ist uns dadurch z.B. gelungen, in die allgemeine
Relativitätstheorie (mit Spinorenfeld) ein System von sechs Größen
einzuführen, die im Falle einer flachen Metrik genau ins Drehmoment
übergehen und die auch im gekrümmten Raum strengen Erhaltungssätzen
genügen [40]. Sofern man eine solche Theorie quantisieren bzw. hyper -

quantisieren kann, sollte sie alle normalen Ergebnisse der
Quantenelektrodynamik mit Elektronen enthalten und außerdem allgemeininvariant

sein.

5. Erhaltungssätze. Bevor ich schließe, möchte ich noch kurz auf die
Rolle der durch die allgemeine Kovarianz bedingten Erhaltungssätze
eingehen. In kovarianten Theorien gibt es nämlich Ausdrücke, deren

Divergenz verschwindet, auch wenn die Feldgleichungen nicht erfüllt
sind, und die den üblichen kanonischen Energie-Impulsdichten modulo
der Feldgleichungen gleich sind. Diese Erhaltungssätze haben wir „stark"
genannt, im Gegensatz zu den üblichen, „schwachen".

Die starken Erhaltungssätze hängen aufs engste mit der Einstein-
iNFELD-HoFFMANNschen Theorie der ponderomotorischen Gesetze zusammen.

Mit ihrer Hilfe kann man zeigen, daß Oberflächen, die Singularitäten

des Feldes umgeben, Integrale zulassen, deren zeitliche Ableitung
durch ein anderes Oberflächenintegral streng bestimmt ist. Zur Formulierung

dieser Oberflächenintegralsätze ist übrigens kein Näherungsverfahren

notwendig [7]. Die Oberflächenintegrale, deren zeitliche Ableitung
bestimmt ist, stellen die im Innern enthaltene Energie und Impuls dar,
die bestimmenden Integrale infolgedessen die äußere Kraft und Leistung
am Innern.

In der klassischen Feldtheorie sind Teilchen Singularitäten des Feldes.
In einer hyperquantisierten Theorie wird aber der Unterschied zwischen
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Feldern und Teilchen stark verwischt, und es ist deshalb durchaus nicht
trivial zu erfragen, ob die Existenz starker Erhaltungssätze noch von
Interesse ist. Dies scheint insofern der Fall zu sein, als starke Erhaltungssätze

einige Zuversicht geben, daß auch unvollständige Theorien zu
teilweise richtigen Ergebnissen führen können. Da niemand ernsthaft glaubt,
daß irgendeine gegenwärtig bekannte Theorie alle Naturkräfte vollständig
enthält, ist dies ein wichtiger Gesichtspunkt.

Genauer möchte ich die Sache so ausdrücken. Normalerweise wird der
in einem Raumgebiet enthaltene Impuls durch ein Volumenintegral der
Inipulsdichte beschrieben. Angenommen, ich kenne die äußeren Kräfte,
aber nicht die innere Struktur des Gebiets, so hilft es mir wenig, daß ich
die Gesamtänderung des im Gebiet enthaltenen Impulses zu bestimmen
weiß. Ich muß doch immer damit rechnen, daß das Innere mir unbekannte
Beiträge zum Impuls liefert, so daß ich nichts über die Änderung an der
mir zugänglichen Oberfläche sagen kann. Habe ich dagegen einen starken
Erhaltungssatz, so kann ich den Gesamtimpuls durch ein Oberflächenintegral

darstellen. Schließt die Oberfläche also in ihrem Innern mir
unbekannte und unzugängliche Kraftfelder ein, hat mit anderen Worten ein
physikalisches System eine mir unbekannte Innenstruktur (virtuelle
Mesonen aller Art), so kann ich dennoch mit einer unvollständigen
Erfassung dieser inneren Zusammenhänge Aussagen über das Verhalten des

Gesamtgebildes machen, wenn ich nur die an der Oberfläche erscheinenden

Kraftfelder richtig beherrsche. Meines Erachtens besteht durchaus
die Möglichkeit, daß die starken Erhaltungssätze etwas mit Renormali-
sierbarkeit zu tun haben.

In diesem Zusammenhang möchte ich auch noch erwähnen, daß etwaige
andere Transformationsgruppen, die von willkürlichen Funktionen
abhängen, im allgemeinen ihre eigenen starken Erhaltungssätze liefern
werden. Vielleicht wird es später möglich sein, diese mathematischen
Methoden auf die isotope Spingruppe und ähnliche Invarianzeigenschaften
anzuwenden.

Hiermit habe ich, glaube ich, alles Wesentliche berichtet. Auf die Frage,
ob ich das Gravitationsfeld quantisieren kann, muß ich leider noch immer
mit einem „Noch nicht" antworten. Aber auf die Frage, ob es überhaupt
möglich ist, denke ich, kann man ehrlich sagen: „Höchstwahrscheinlich
ja".

Diskussion — Discussion

F. A. E. PiEANi : I should like to point out a way of defining invariants,
essentially due to Keetschmann (1917), which is simpler than that
attributed to Komae: Define
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where eßvea is the alternating tensor. Then the solutions X of the equations

(Rlivea~XgßVtApe°=0

(Rf,rea-ï-%vea)qe° 0

(where pea and geaare skew eigentensors) are a system of invariants. The
theory of these equations has been studied extensively by Ruse.

A. Lichnebowicz: Il conviendrait de compléter cette théorie par
une étude du problème de Cauchy destinée à montrer que, si les conditions
de contraintes sont satisfaites sur l'hypersurface initiale, elles le sont au
voisinage de cette hypersurface. L'analyticité ne peut être admise ici.
Même si elle l'était, la solution pourrait être instable par rapport aux
conditions initiales, comme le montre le cas de problèmes de Cauchy
correspondant à des hypersurfaces orientées dans le temps.

M. Fiebz : Die Fragen, die Herr Beegmann diskutiert hat, nämlich die
Quantisierung der Gravitationstheorie, haben einen engen Zusammenhang
mit der Frage nach der Existenz von Gravitationswellen, über die
Donnerstag Herr Rosen sprechen wird.

Wenn man in der „üblichen" Art quantisiert, so nimmt man an, daß

beliebige Anfangsbedingungen - natürlich mit den Nebenbedingungen
verträgliche — zugelassen werden dürfen. Solche Anfangsbedingungen
führen aber unter Umständen zu einem singulären Verhalten des
Gravitationsfeldes (Beispiel: Ebene Wellen). Wenn man auch das ausschließen
will, werden vermutlich neue, zusätzliche Schwierigkeiten entstehen.
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