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Hauptreferat — Exposé principal — Main Lecture

Quantisierung allgemein-kovarianter Feldtheorien')

by P. G. BERGMANN (Syracuse)

This review paper reports on the present status of attempts to quantize theories
which, like EINSTEIN’S General Theory of Relativity, are invariant under general
curvilinear coordinate transformations. The introduction deals with the motivation
and justification of such a program and argues that general relativity may very likely
contribute significantly to the theory of elemtary processes, even though gravitatio-
nal effects as such are quantitatively many orders of magnitude smaller than elec-
tromagnetic and nuclear interactions. The second section describes the characteristic
properties of covariant theories, that the canonical momentum densities never des-
cribe the velocities uniquely, that the Hamiltonian density contains arbitrary func-
tions, and that aside from the canonical equations there are also algebraic condi-
tions (constraints) between the canonical field variables. The third section is con-
cerned with approaches to quantization and describes particularly the method of
selecting ‘true observables’ from among the dynamical variables, which alone will
appear as HILBERT operators in the quantized theory. Quantization with the help
of coordinate conditions and with the help of Lagrangian methods are briefly dis-
cussed. The fourth section deals with spin and angular momentum in general rela-
tivity, and the last with the role of the strong conservation laws.

L. Einleitende Betrachtungen. Seit der Formulierung der konsequenten
Quantenmechanik und Quantenfeldtheorie einerseits, der speziellen und
der allgemeinen Relativitédtstheorie anderseits, ist die Entwicklung der
grundlegenden Ideen in der theoretischen Physik zu einem vorldufigen
Abschlull gekommen. Auf der einen Seite haben wir eine konsequente For-
mulierung der Begriffe, die wir im Bereich der Elementarprozesse brau-
chen, eine Formulierung, die geniigend weitdrmelig zu sein scheint, um
auch einen groBen Teil der Kernphysik erfassen zu konnen. Auf der ande-
ren Seite liefert uns die Relativitdtstheorie in nahezu vollkommener Fas-
sung eine klassische Feldtheorie, die uns nicht nur ein befriedigendes Ver-
stdndnis fiir die Rolle des Bewegungszustands eines Beobachters liefert,

1) Diese zusammenfassende Darstellung kiirzlicher Arbeiten wurde fiir die in
Bern stattfindende Konferenz ,,Fiinfzig Jahre Relativitatstheorie** vorbereitet. Die
Unterstiitzung des Office of Naval Research, und neuerdings auch der National
Science Foundation, wird vom Verfasser dankend anerkannt.
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sondern dariiber hinaus eine vollstindige Theorie der Gravitation, ins-
besondere eine Begriindung fiir die Gleichheit von triger und schwerer
Masse, und schlieBlich auch noch die Theorie der ponderomotorischen Ge-
setze jeder Feldtheorie.

Praktisch sind die Beziehungen der speziellen und der allgemeinen Rela-
tivitdtstheorie zum Mikrokosmos vollig verschieden. Sobald wir in das
Gebiet hoher Energien kommen, brauchen wir die spezielle Relativitéts-
theorie; ja, beim heutigen Stand der MeBtechnik kénnen wir eine nicht-
relativistische Theorie des Elektrons und der elektromagnetischen Strah-
lung kaum mehr ernst nehmen. Infolgedessen hat die Quantisierung spe-
ziell-relativistischer Feldtheorien seit den friithen Dreiffigerjahren stets im
Mittelpunkt des theoretischen Interesses gestanden. Anderseits hat die
allgemeine Relativitdtstheorie ithren Hauptbeitrag im Gebiet des astro-
nomisch-Grofen gemacht. Hierfiir liefert das Programm unserer Tagung
beredtes Zeugnis. Das Verhéltnis zwischen den gravitationellen und elek-
trostatischen Kriften, die zwei Elektronen aufeinander ausiiben, ist eben
von der GroBenordnung 1074%; solange man daher den Effekt der allge-
meinen Relativitdtstheorie nicht qualitativ, sondern nur quantitativ zu
bewerten sucht, wird er noch auf lange Zeit zu vernachlédssigen sein gegen-
itber den hoheren Niherungen der Quantenelektrodynamik, die noch gar
nicht berechnet sind. Damit ist es wohl zu erkldren, dal die grofe Mehr-
zahl der zeitgenossischen Theoretiker an den Beziehungen zwischen all-
gemeiner Relativitédtstheorie und Quantentheorie nur wenig interessiert
1st.

Mir scheint aber, dafl man neben solchen quantitativen Betrachtungen
qualitativ neue Moglichkeiten nicht vollig auller Acht lassen sollte. Die
allgemeine Relativitdtstheorie ist ja nicht lediglich eine Theorie der Gra-
vitation, die wir getrost ignorieren diirfen, wenn die spezifisch gravitatio-
nellen Effekte klein sind. Genau wie die spezielle Relativitdtstheorie be-
hauptet die allgemeine, dall gewisse, frither als absolut erachtete Eigen-
schaften des Raumes und der Zeit nicht fixiert sind, sondern physikalisch
verdnderlich. Nun, wenn die Geometrie im Grofen nicht streng flach ist
(Minkowski1-Metrik), so wird sie es auch nicht im Kleinen sein. Und was
wesentlicher ist, wenn die Metrik ein System von verdnderlichen Gréfien
darstellt, dann darf man sie nicht physikalisch véllig anders behandeln
als andere Felder. In einer konsequenten Theorie miissen die Gravitati-
onspotentiale, genau so wie alle anderen Kriftefelder, quantisiert werden,
sofern man an die grundsdtzliche Richtigkeit der Feldquantisierung
glaubt.

Fernerhin ist die allgemeine Relativitiatstheorie bisher die einzige Feld-
theorie, in der die ponderomotorischen Gesetze mit den eigentlichen Feld-
gesetzen eine logische Einheit bilden. Die Theorie der Bewegung von Par-
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tikeln ist von EINsTEIN, INFELD, und HoFFMANN seit 1937 in immer voll-
kommenerer Weise entwickelt worden und von INFELD und WaLLACE auf
die Bewegung im elektrischen Feld ausgedehnt worden [1-4]. PaparE-
TROU hat gezeigt, daf diese Theorie mathematisch dquivalent ist einer, in
der die Teilchen zunéchst ausgedehnt eingefithrt werden, wenn man den
,,Formfaktor* nur gentigend klein werden 148t [5]. Einige meiner Studen-
ten haben auch im Detail ausgefiihrt, daBl die Verkniipfung der Feld- mit
den Bewegungsgesetzen eine generelle Eigenschaft aller allgemein-kovari-
anten Theorien ist, dhnlich wie etwa jede eichinvariante Theorie zu einem
Erhaltungsgesetz der elektrischen Ladung fiithrt [6, 7]. Da nun die-Be-
ziehung zwischen Feldgesetzen und Teilchenbewegung offensichtlich im
Kleinen genauso interessant ist wie im GrofBen, ist zu vermuten, daf uns
die allgemeine Relativitéitstheorie, und insbesondere das Prinzip der all-
gemeinen Kovarianz auch im Kleinen angeht.

Ich méchte diesen letzteren Punkt noch etwas konkretisieren. Bekannt-
lich sind die dynamischen Gesetze, die die Bewegung von Punktladungen
bestimmen, logisch von den partiellen Differentialgleichungen des elektro-
magnetischen Feldes unabhéingig. Esist durchaus moglich, die MAXwWELL-
schen Gleichungen mit beliebig vorgegebenen Teilchenbahnen zu lsen.
Esist aber mifllich, daf man, um die LorENTZgleichungen itberhauptsinn-
voll anschreiben zu kénnen, das Gesamtfeld in der Umgebung einer Punkt-
ladung in unendliches ,,Selbstfeld” und endliches ,einfallendes Feld*
trennen mufl. Diese Trennung geht noch an, solange die Feldgleichungen
selbst in den eigentlichen Feldgrofen linear sind. Andernfalls verliert die
Trennung jeden verniinftigen mathematischen Sinn. Insbesondere im Ge-
biet der Kernkrifte ist es aber garnicht ausgemacht, daf die ,,Feldglei-
chungen® (d. h. wohl die Wellengleichungen der Mesonenfelder) linear
sind. Es wire also garnicht uninteressant, die Teilchenbewegung so be-
stimmen zu kénnen, wie es in der allgemeinen Relativitidtstheorie ge-
macht wird: Als eine Folge der Feldgleichungen, deren Ausrechnung die
Abtrennung des ,,Selbstfeldes‘* prinzipiell nicht erfordert.

Aus allen diesen Griinden glaube ich, daf} der Quantentheoretiker der
allgemeinen Relativititstheorie gegeniiber nicht indifferent sein sollte.
Anderseits haben viele andere Theoretiker, und vor allen EiNsTEIN selbst,
den Standpunkt vertreten, dall die gegenwirtige Quantentheorie so
grundsitzlich unbefriedigend ist, daB man von jedem Vereinigungsver-
such absehen sollte [8]. Man miisse vielmehr auf dem Wege iiber die klas-
sischen Feldbegriffe zu einer ,,einheitlichen Feldtheorie® kommen, die
nicht nur irgendwie auch die Resultate der Quantentheorie liefert, etwa
durch ihre extreme Nichtlinearitét, sondern dariiber hinaus alle Eigen-
schaften der Elementarteilchen voraussagt bzw. erkldrt. Parallel mit
der Arbeit in ,,einheitlicher Feldtheorie’ haben andere, vornehmlich

6 HPA Sppl. IV
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DE Brocrie, BorM, WIENER und SIEGEL gezeigt, dal der wesentlich pro-
babilistische Charakter der heutigen Quantentheorie auf verschiedenartige
Weise hinweginterpretiert werden kann, so dafl die sicherlich richtigen
Resultate der Theorie auch durch eine streng deterministische Theorie,
plus die Konstruktion bestimmter GiBBsscher Gesamtheiten, reproduziert
werden konnen [9-12].

Ohne das Interesse aller dieser Bestrebungen in Abrede stellen zu wol-
len, so glaube ich doch, daf} es nicht unberechtigt ist, gleichzeitig an einem
konservativeren Programm zu arbeiten. Dieses besteht darin, sowohl von
der Quantentheorie als auch von der allgemeinen Relativitidtstheorie ge-
wisse Grundziige zumindest als ,,relativ wahr® zu akzeptieren und zu
sehen, ob diese Charakterziige sich nicht vereinen lassen. Ein solches Pro-
gramm involviert keinerlei physikalisches Glaubensbekenntnis zur einen
oder zur anderen gegenwirtigen Theorie in aeternitatem, sondern eher ein
vorsichtiges Tasten, welche Ziige sich als relativ stabil erweisen werden.
Hat doch die Geschichte der Physik immer wieder gezeigt, dall gewisse
Ziige jeder iiberholten Theorie in der Nachfolgerin wieder auferstehen.
Wenn ich Sie also bitten méchte, das Programm des Vereinigungsversuchs
als physikalisch verniinftig zu akzeptieren, so tue ich das nicht in einem
polemischen Sinne, daf ich mein Rezept etwa als alleinseligmachend ver-
kaufen mochte. Im Gegenteil, ich finde, dal wir im gegenwértigen Zu-
stand der noch immer schwankenden Grundlagen viele verschiedene Be-
strebungen in allen moglichen Richtungen brauchen, die sich vielleicht
gegenseitig befruchten und dadurch schlieflich zu etwas brauchbarem
fithren kénnen.

SchlieBlich mochte ich Sie gleich schonend darauf vorbereiten, daf3 ich
leider keinerlei endgiiltigce Resultate dieses Programms mitteilen kann,
weil wir noch keineswegs am Ende sind. Ich hoffe, dal das, was ich be-
richten kann, zeigen wird, daf} das Programm nicht uninteressant ist, daf3
man auf jeden Fall bereits gewisse Neukenntnisse erzielt hat. Und ich
werde mich bemithen, Moglichkeiten fiir die Zukunft anzudeuten.

2. Der singulire Charakter allgemein-kovarianter Theorien. Traditionell
geht man zur Quantisierung von der kanonischen Form einer Theorie aus.
Wenn das Variationsprinzip gegeben ist, so fithrt man zunéchst die kano-
nisch konjugierten Impulsgr6Ben ein,um sodann die Hamirronsche Funk-
tion zu konstruieren. Bei der Quantisierung werden dann sowohl die Kon-
figurations- wie die Impulskoordinaten durch entsprechende HILBERT-
operatoren ersetzt, deren Vertauschungsrelationen den Porssonschen
Klammerausdriicken der klassischen Theorie nachgebildet sind.

Formal lduft diese Prozedur darauf hinaus, in der klassischen Theorie
der Gruppe der kanonischen Transformationen besondere Bedeutung zu-
zuschreiben. Jede dynamische Verinderliche ist nicht nur eine physika-
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lisch bedeutungsvolle GroBe an sich, sie dient auch als Erzeugende einer
infinitesimalen kanonischen Transformation. Beim Ubergang zur quan-
tisierten Theorie werden dann die kanonischen durch unitére Transfor-
mationen ersetzt. Die Observabeln sind nun die Erzeugenden der infini-
tesimalen unitdren Transformationen. Die Struktur der neuen Transfor-
mationsgruppe wird moglichst weitgehend der der kanonischen Gruppe
nachgebildet, nur dafl die Verwirklichung jetzt durch die Gruppe der uni-
tdren Transformationen im HiuBERTraum geliefert wird. Die eigentliche
Quantisierung besteht dann in der Untersuchung der neuen Gruppe, wo-
bei insbesondere die Eigenwerte der verschiedenen physikalisch interes-
santen Operatoren die moglichen MeBergebnisse der entsprechenden Ob-
servabeln sein sollen.

Fiir den ersten Schritt in dieser Prozedur ist es nun wesentlich, dafl die
Beziehung zwischen den zeitlichen Ableitungen der Konfigurationskoor-
dinaten (die ich weiterhin als ,,Geschwindigkeiten® bezeichnen werde)
und den Impulskoordinaten ein-eindeutig sei. Denn im Ausdruck fiir die
Hamirronsche Funktion,

H= ; 2 0:(9, P) — L (g2 4:(q, P)]1, (2.1)

1st es wesentlich, daf} die Geschwindigkeiten auch wirklich durch die Im-
pulskoordinaten ausgedriickt werden kdnnen. Schon an dieser Stelle be-
reiten allgemein-kovariante Theorien grundsitzliche Schwierigkeiten, die
wohl zuerst von RosENFELD erkannt worden sind [13, 14]. Damit die Be-
ziehung ndmlich ein-eindeutig sei, mufl die Matrix der Ableitungen der
Impulskoordinaten nach den Geschwindigkeiten,

apk 0L
T T — T < . 2.2
9z 99 Oq; \#i2)

regulédr sein, darf also keine Nullvektoren besitzen. Dies ist aber gerade
bei allgemein-kovarianten Theorien der Fall. Angenommen, wir haben es
mit einer Feldtheorie zu tun, in der also die Konfigurationskoordinaten
irgendwelche Feldkomponenten ¢, sind (der Index 4 ist ein Sammelindex,
der in beliebiger Weise zur Identifizierung der individuellen Komponen-
ten dient, und nicht etwa ein Koordinatenindex). Bei einer infinitesimalen
Koordinatentransformation, die etwa durch die Anderungen &%(x) der
Koordinatenwerte an jedem Weltpunkt beschrieben sei, mogen sich die 4
als Funktionen vhrer Argumente x nach dem Schema

s = Cap £+ €5 & 0 (2.3)
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transformieren. Dann wird die LacraNGEsche Dichte, wegen der Invarianz
der Theorie einer beliebigen Koordinatentransformation gegeniiber, sich
nur um eine vollstdndige Divergenz dndern diirfen. Wir haben also

Y oL + oL <
6L:Fy?6y‘4 + ayA’Q— 6yA,g
- oL o oL 1= oL ] o
o ayA (ayA,Q) ’ QJ 6?/11 + (ByA’g 6y‘4)’ e Q 10" (2.4:)

Hier bezeichnet weiterhin das Symbol 8 die infinitesimale Anderung einer
GroBe als Funktion der Koordinaten, nicht an einem festgehaltenen Welt-
punkt. Unter Beriicksichtigung von (2.3) finden wir nach einer kurzen
Umrechnung:

A (T AR o_lpe_ L <. 14 _o g
[L CAQ (L C’Ag):a]‘s _[Q ayA,g (53/,4 L O'AGEJ’Q»
(2.5)
4 O [
B &= Y 4 (ayA,g)’o-

Da nun £° beliebig ist, folgt der Satz von vier Identitidten, die wir die
Biancaischen Identitdten nennen wollen,

L e ,— (L ed,), s = 0. (2.6)

Diese Identitéiten, die also eine Folge der allgemeinen Kovarianz sind,
fithren nun zu einem direkten Widerspruch zur Regularititsbedingung
(2.2). Wenn wir ndmlich in diesen Identititen die Glieder mit verschie-
denen Differentiationstermen trennen, so miissen diese separat verschwin-
den [15]. Die hochsten Terme enthalten die Feldgrofen dreimal differen-
ziert. Wenn wir nun speziell die Koeffizienten der dritten Ableitungen
nach der Koordinate z* (der ,,Zeit’‘) aufschreiben, so erhalten wir die
Beziehungen

2L,
0,35 e

Il

0, (2.7)

die also explizit Nullvektoren der Matrix (2.2) liefern. Hiermit ist gezeigt,
daf} allgemein eine kovariante Theorie, deren Feldgleichungen sich von
einem Variationsprinzip herleiten lassen, in dem soeben besprochenen
Sinn ,,singulér ist.

Da sich nun ergeben hat, dal die Geschwindigkeiten nicht eindeutige
Funktionen der Impulse sein konnen, da aber anderseits die Zahl der
einen GroBen der der andern gleich ist, so folgt, daB nicht alle Impuls-
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komponenten frei wihlbar sind. Wir haben vielmehr algebraische (d.h.
keine zeitlichen Ableitungen enthaltende) Beziehungen zwischen ihnen;
wir kénnen diese sofort aus (2.7) ablesen, indem wir sie in die Form schrei-

ben

0 oL
*B_y? (TEA ng)——‘“ 0, A E'Sé/: . (28)
(Hier ist die Annahme gemacht worden, die im allgemeinen zutrifft,
daf die Grofen cj, nur von undifferenzierten y, abhiéingen.) Infolge-
dessen haben wir die ,,Primédrbedingungen

o, mt— K,(y) = 0. (2.9)

Die Groflen K, hingen nur von y, ab und lassen sich stets leicht be-
stimmen. Angenommen, wir héitten eine Hamirtonsche Funktion kon-
struiert. Dann wiren wir in der Lage, die Zeitabhéngigkeit jedes Funk-
tionals der kanonischen FeldgroBen explizit hinzuschreiben. Indem wir
nun verlangen, daf simtliche zeitliche Ableitungen der Primérbedingun-
gen verschwinden, erhalten wir weitere, ,,Sekundirbedingungen® usw.
Gliicklicherweise 148t sich zeigen, daf es nur eine endliche Zahl derartiger
weiterer Bedingungen gibt. In den meisten Theorien, und insbesondere
in der kanonischen Formulierung der allgemeinen Relativitdtstheorie,
gibt es insgesamt nur acht Bedingungen, von denen die Hélfte Primér-
bedingungen sind.

Es erweist sich nun als moglich, eine Hamirtonsche Funktion zu kon-
struieren, die frei von Geschwindigkeiten ist [16, 17]. Man kann zu diesem
Zweck zeitweilig neue Variablen einfithren, so daf jede der Primérbedin-
gungen nur eine Impulsdichte enthilt. Im endgiiltigen Ausdruck fiir H
kehrt man dann wieder zu den urspriinglichen Variablen zuriick. Der Aus-
druck fiir H ist aber nicht eindeutig. Er enthilt die vier Primérbedingun-
gen, jede mit einer vollig willkiirlichen Funktion multipliziert. Die Wahl
dieser vier Funktionen ist der Einfiihrung von ,, Koordinatenbedingun-
gen® in der iiblichen Theorie dquivalent. In der kanonischen Fassung
bleibt die volle Kovarianz also nur erhalten, wenn man diese willkiirlichen
Funktionen nicht festlegt. Die vollstindige Formulierung der Theorie
erfordert also die Ausrechnung der Hamizronschen Funktion und sdmt-
licher Primér- und Sekundérbedingungen [18, 19].

Eine ganz dhnliche Formulierung stammt von Dirac [20]. Anstatt will-
kiirliche Funktionen in die HaMiLTonsche Funktion einzufithren, 1li8t er
in ihr eine Reihe von Geschwindigkeiten, derart, daB sich leere Beziehun-
gen ergeben, wenn immer man versucht, diese Geschwindigkeiten durch
kanonische GréBen auszudriicken. Die Diracsche Formulierung ist der
unserigen vollig dquivalent.
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Nur der Vollsténdigkeit wegen mochte ich noch erwihnen, dafl sowohl
Dirac wie wir unabhingig voneinander besondere Hilfskoordinaten
(,,Parameter®’) eingefiihrt haben, wodurch die gewdhnlichen Koordinaten
formal dynamische Verdnderliche werden und die ganze Theorie an for-
maler Eleganz gewinnt [20, 21]. Z.B. wird die LacrancEsche Funktion
homogen in den Geschwindigkeiten (vom ersten Grad), die Impulskoordi-
naten homogen vom nullten Grad; wie man erwarten wiirde, werden
lineare Impuls- und Energiedichte den Koordinaten kanonisch konju-
giert. Es hat sich aber erwiesen, daf diese formalen Vorteile durch ganz
erhebliche Komplikationen in der expliziten Form der Theorie kompen-
siert werden. Es erscheint, dafl Parameter nur fiir ganz spezielle Unter-
suchungen formaler Art vorteilhaft sind.

In der Hamirronschen Version einer kovarianten Feldtheorie entspricht
einer Koordinatentransformation natiirlich eine ganz bestimmte kano-
nische Transformation. Von besonderem Interesse ist die Hrzeugende
infinitesimaler kanonischer Transformationen. Diese ist nidmlich eine
ganz bestimmte Linearkombination der Primér- und Sekundéirbedingun-
gen der Theorie. Die Koeffizienten dieser Bedingungen sind die ,,beschrei-
benden® GroBen &2 und ihre zeitlichen Ableitungen, die wir oben in (2.3)
eingefithrt hatten. Die infinitesimalen Transformationen bilden einen
Gruppenkeim mit einer bestimmten Lieschen Algebra. Diese spiegelt sich
ganz genau wider in den Porssonschen Klammerausdriicken der Zwangs-
bedingungen untereinander. Der Beweis, daBl es nur eine endliche Anzahl
von Bedingungen gibt, wird zweckmiBigerweise mit Hilfe dieser Gruppen-
elgenschaft gefiithrt [18].

3. De Moglichkeit der Quantisierung. Es fragt sich nun, wie man bei der
Quantisierung einer Theorie vorzugehen hat, die zwar in kanonischer
Fassung vorliegt, in der aber eine Reihe von algebraischen Bedingungen
zwischen den kanonischen Verinderlichen erfiillt sein mufl. Ist es denk-
bar, alle diese Verdnderlichen als HiLBERTOperatoren zu behandeln?

Dirac hat dieser Frage Beachtung geschenkt und hat sie verneint [20].
Da er nicht.in erster Linie vom kovarianztheoretischen Gesichtspunkt
ausging, betrachtete er gleich zwei verschiedene Arten von Bedingungen,
die er solche der ,,ersten Klasse* und der ,,zweiten Klasse® nannte. Wenn
der Porssonsche Klammerausdruck zwischen einer Bedingung und allen
anderen verschwindet (evtl. modulo der Bedingungen selbst), so haben
wir es mit einer Bedingung erster Klasse zu tun, andernfalls mit einer
zweiter Klasse. Unsere Primér- und Sekundédrbedingungen, die die Folge
von Kovarianzeigenschaften sind, gehoren alle zur ersten Klasse; aber
bei der Hyperquantisierung von Materiewellen trifft man auch auf Be-
dingungen zweiter Klasse. Offensichtlich kénnen nun Bedingungen der
zweiten Klasse nicht HiLBERTOperatoren sein. Denn angenommen, wir
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betrachten einen Zustand, der physikalisch zuléssig ist, der also fiir jede
der Bedingungen C* die Gleichung

Y — ) (3.1)
erfiillt, dann fiihrt offenbar die Vertauschungsrelation
[C*, C*]1=0*" &0, (3.2)

die dem entsprechenden Porssonschen Klammerausdruck nachgebildet
ist, auf einen Widerspruch, inshesondere, wenn C*® eine C-Zahl ist. Aber
auch Bedingungen der ersten Klasse fiithren zu Schwierigkeiten. Zu einer
Bedingung erster Klasse 1aft sich ndmlich stets eine dynamische Ver-
dnderliche finden, die zur Bedingung kanonisch konjugiert ist. Nun ist es
wohlbekannt, daB von zwei kanonisch konjugierten HiLBERTOperatoren
keiner auf Hauptachsen gebracht werden kann. Die Forderung (3.1), an-
gewandt auf eine Bedingung erster Klasse, liefert also das widerspriich-
liche Resultat, da ein physikalisch zulissiger Zustand Eigenvektor eines
bzw. mehrerer Operatoren sein mufl (mit dem Eigenwert Null), die keine
Eigenvektoren haben diirfen. Und so hiitten wir die Forderung, daf alle
physikalisch zuldssigen Zusténde nur uneigentliche Vektoren, d.h. auler-
halb des HiLBERTraums liegende Hiufungspunkte sein miillten. Unter
anderem wiren sie alle nichtnormalisierbar.

Man kann sich allen diesen Schwierigkeiten entziehen, wenn man dar-
auf verzichtet, die Vertauschungsrelationen der Quantenoperatoren direkt
aus den Poissonschen Klammerausdriicken der klassischen Theorie her-
zuleiten. In der Gegenwart von Zwangsbedingungen aller Art ist die
Gruppe der kanonischen Transformationen auch nicht die einzige oder
die natiirlichste Transformationsgruppe im klassischen Phasenraum [22].
Die Zwangsbedingungen definieren im Phasenraum einen Unterraum, der
aus den physikalisch zuléssigen (klassischen) Zustéinden besteht. Es liegt
also nahe, nach einer Transformationsgruppe zu suchen, die diesen Unter-
raum auf sich selbst abbildet. Eine solche Transformationsgruppe gibt es
nun tatséchlich. Sie besteht aus allen den Koordinatentransformationen
im klassischen Phasenraum, die die kanonische Form der Bewegungs-
gleichungen reproduzieren und die Form der Zwangsbedingungen unver-
dndert lassen. Auch fiir diese Transformationsgruppe gibt es Erzeugende,
und ferner Klammerausdriicke, die den Kommutatoren der infinitesima-
len Transformationen entsprechen. Ich mochte diese Klammerausdriicke
im Gegensatz zu den Porssonschen nach Dirac benennen. Die Dirac-
klammer zwischen einer Zwangsbedingung und irgendeiner Verénder-
lichen ist stets Null. Falls es aber Bedingungen erster Klasse gibt, so ist
die Diracklammer nicht fiir alle dynamischen Verénderlichen definiert.
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Bevor ich auf die Details eingehe, méchte ich noch zur weiteren Recht-
fertigung dieser Transformationsgruppe anfiithren, daB sie ermoglicht, die
Zwangsbedingungen direkt Null zu setzen. Wir kénnen die Gleichungen
(3.1) durch die schirferen Operatorengleichungen

0 =0 (3.3)

ersetzen.

Im Einzelnen kommt man zu den Diracschen Klammern folgender-
maBen. Wenn wir zunichst die kanonischen Koordinaten im klassischen
Phasenraum mit 4° bezeichnen und den antisymmetrischen konstanten
Tensor, mit dem man Poissonklammern bildet, mit £2°, dann sind die Be-
wegungsgleichungen und die Zwangsbedingungen folgende:

. G H aA a [1]
P=e"H,,, Ad=S+74,,H, =0. (34

Wir fithren nun zunéichst Koordinaten auf der durch die Zwangsbedin-
gungen definierten Hyperfliche ein, 2™, wodurch man dann die Hyper-
fliche selbst durch die Funktionen 4%(z™) charakterisieren kann. Damit
die Theorie innerlich widerspruchsfrei sein kann, diirfen die Bewegungs-
gleichungen natiirlich nicht aus der Hyperfliche herausfiihren. Wir haben
infolgedessen:

e . ; oH ay*
P s Ema @ =g =H, g
(3.5)
oy oy ot T
Emn = 3 3 Ceor  Eea€ =0,

Hierbei ist nichts dariiber gesagt, ob der neue Tensor ¢,,, auf der Hyper-
fliche reguldr ist oder ob seine Determinante verschwindet. Das letztere
ist namlich immer der Fall, wenn es Zwangsbedingungen erster Klasse
gibt. Wir verlangen jetzt, daf unsere infinitesimalen Transformationen
der Parameter ™ untereinander die Form der Gleichungen (3.5) unge-
andert lassen, auBer daB sich natiirlich die Form der HaAMiLTonschen Funk-
tion dndern darf. Insbesondere sind die Komponenten des Tensors ¢, , als
invariante Funktionen der Parameter 2™ zu behandeln. Es stellt sich nun
heraus, daf}, fast genau wie bei infinitesimalen kanonischen Transfor-
mationen, eine Funktion I"(z™) eine infinitesimale Transformation erzeugt,
die allen Erfordernissen geniigt:

" or or
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Die Erzeugende ist hier eine Funktion der ™. Abseits der ,,erlaubten‘
Hyperfliche braucht sie gar nicht definiert zu sein. Wenn alle Zwangs-
bedingungen solche zweiter Klasse sind, so ist der Tensor ¢, , regulér, be-
sitzt also einen reziproken Tensor. Man kann dann die Transformations-
bedingungen (3.6) nach den Transformationsgroflen dz" auflosen, und
diese sind eindeutig durch die Erzeugende bestimmt. Besitzt die anti-
symmetrische Form ¢,,,, aber Nullvektoren, dann ist die Transformation

nicht durch die Erzeugende véllig bestimmt, ja es gibt Transformationen,
- die zur Erzeugenden Null gehéren. Dies sind die Transformationen

wo die neuen GroBen U}, die Nullvektoren von ¢,,, sind. In diesem Falle
legen aber die Gleichungen (3.6) auch der Erzeugenden Beschriinkungen
auf. Wenn wir sie mit einem Nullvektor multiplizieren, so finden wir

or
s U =0. | (3.8)

Es zeigt sich also, dall die Anzahl der algebraisch voneinander unab-
héngigen Erzeugenden nicht gleich der der Parameter z™ ist, sondern daf}

diese Zahl noch weiter um die der Nullvektoren U, vermindert werden
muB}. Man kann auch weiterhin zeigen, daf} diese Einschrinkungen inner-
lich widerspruchsfrei dann und nur dann sind, wenn die Bedingungen
erster Klasse untereinander eine Funktionengruppe bilden, ihre Porsson-
klammern miteinander also modulo der Bedingungen erster Klasse ver-
schwinden [23].

Im Falle von Nullvektoren bilden die Transformationen, die zur Er-
zeugenden Null gehéren, eine invariante (normale) Untergruppe. Bilden
wir die Faktorgruppe, so erhalten wir einen Gruppenkeim, der durch die
erlaubten Erzeugenden (d.h. durch die Funktionen der 2™, die den Be-
dingungen (3.8) gehorchen), ein-eindeutig verwirklicht ist. Wir haben
also eine neue Gruppe gefunden, die sich im Prinzip zur Darstellung durch
HruBERTOperatoren eignet.

Die Diracschen Klammern erhilt man selbstverstindlich, indem man
die Kommutatoren der Mitglieder der (Faktor-)Gruppe bildet und ihre
Erzeugende bestimmt. Diese Klammern sind dadurch eindeutig be-
stimmt. Falls alle Zwangsbedingungen zur ersten Klasse gehéren, unter-
scheiden sich die Diracklammern von Porssonklammern nur dadurch, dafl
sie fiir gewisse GréBen nicht definiert sind. Andernfalls bestehen zwischen
den zwei Klammertypen Unterschiede auch fiir solche Verénderliche, fiir
die beide wohldefiniert sind.
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Die durch die Diracmethode ausgeschlossenen Verdnderlichen sind sol-
che, deren Poissonklammern mit den Bedingungen erster Klasse nicht
verschwinden. Da aber die Bedingungen erster Klasse die (HaMILTON-
schen) Erzeugenden der invarianten Transformationen sind, so folgt, daf
die noch zuldssigen Erzeugenden Invarianten sein miissen. Um Thnen ein
Gefiihl dafiir zu geben, was dies involviert, mochte ich schnell die Verin-
derlichen bezeichnen, die in der Theorie des elektromagnetischen Felds
durch die Hichkovarianz ausgeschlossen sind [24]. Da die Zwangsbedin-
gungen auf das Verschwinden der zum skalaren Potential konjugier-
ten Impulsdichte jund auf die Bestimmung des longitudinalen elektri-
schen Feldes durch die Ladungsdichte hinauslaufen, so folgt, daB die
einzigen Erzeugenden die transversalen Anteile des Vektorpotentials
(also das magnetische Feld) und des elektrischen Feldes (und nur von
diesen abhingige Funktionale) sind. Ferner diirfen nur ganz bestimmte
Kombinationen der Elektronenwellenfunktionen mit dem Vektorpoten-
tial als Erzeugende eingefiihrt werden, namlich solche, die eichinvariant
sind.

Um nun wieder auf die Theorien zuriickzukommen, die krummlinigen
Koordinatentransformationen gegeniiber invariant sind, so miissen wir
hier die Erzeugenden auf solche GroBen beschrinken, die derartigen
Transformationen gegeniiber invariant sind. Dies ist indes leichter gesagt
als getan. Bisher ist ndmlich in der allgemeinen Relativitatstheorie nicht
eine einzige nicht-triviale Invariante bekannt. Es geniigt ja nicht, skalare
Felder zu finden; als Funktionen ihrer Argumente (der Koordinaten)
transformieren sich Skalare auch. Wahre Invarianten, glaube ich, werden
sich als duBerst komplizierte Funktionale der gegenwirtig bekannten
FeldgroBen entpuppen.

Man kénnte nun eine Theorie ablehnen, die in Bezug auf zuléssige Ver-
anderliche derartig ,,exklusiv‘’ ist. Eine solche Ablehnung erscheint mir
aber voreilig. Am Beispiel der elektromagnetischen Theorie sehen wir, dal
die verbotenen Grofen, also das skalare Potential, der longitudinale Teil
des Vektorpotentials und derjenige der elektrischen Feldstéirke, entweder
durch Eichtransformationen beliebiger Werte fihig sind oder aber durch
andere ZustandsgréBen (die Ladungsdichte) bereits festgelegt sind. Diese
Groflen kénnen also entweder iiberhaupt nicht auf Grund von Anfangs-
bedingungen zu einer Zeit fiir eine andere Zeit vorausgesagt werden, oder
sie sind nicht unabhéngig. Zwei formal vorgegebene physikalische Situa-
tionen lassen sich entweder als wesentlich verschieden oder aber als zwei
verschiedene Beschreibungen desselben objektiven Zustands nur auf
Grund ihrer Invarianten identifizieren. Ich glaube also, daf nur die im
Diracschen Formalismus zugelassenen Krzeugenden physikalisch als
.,wahre Observabeln® anzusprechen sind. Deshalb mufl man dieses Pro-
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gramm der Quantisierung sowohl formal als auch physikalisch als ver-
niinftig ansehen.

Wie soll man nun Invarianten finden? Bisher sind mir nur zwei Mog-
lichkeiten bekannt. Beide sind noch nicht griindlich untersucht. KomaRr,
ein Schiiller WHEELERS, hat vorgeschlagen, auf systematische Weise zu-
nichst skalare Felder zu bilden, im allgemeinen hohere Potenzen des
Kriimmungstensors, in vielfacher Weise kontrahiert [25]. Indem man nun
vier algebraisch unabhéngige Skalare als neue ,,invariante Koordinaten‘
einfiihrt, 148t sich eine gegebene Riemannsche Mannigfaltigkeit koordi-
natenunabhingig beschreiben, wenn wir mindestens zehn weitere Skalar-
felder als Funktionen der vier ersten angeben. Die groBe Schwierigkeit
dieses Programms liegt darin, dafl die so gefundenen Invarianten einen
enorm hohen Differentationsgrad haben. Dies ist aber vielleicht nicht zu
vermeiden, auch nicht auf andere Weise.

Nach einem etwas anriichigen Abzihlverfahren kann man vermuten,
daB die Zahl der wahren Observabeln des Gravitationsfeldes vier pro drei-
dimensionalem Raumpunkt betrdgt, also dieselbe, wie im elektromagne-
tischen Feld. Man kann das so begriinden, daf ,,Gravitonen‘ Spin 2 und
verschwindende Ruhmasse haben, daB also in einer linearisierten Theorie
im Impulsraum zu jedem Werte des Fortpflanzungsvektors & genau zwei
unabhingige Normalschwingungen gehoren, von denen jede sich durch
Angabe der Amplitude und der Phase vollstindig festlegen 148t [26].

NEwMAN hat nun vorgeschlagen, diesen Invarianten durch ein Néhe-
rungsverfahren auf die Spur zu kommen, welches von der linearisierten
Theorie ausgeht [27]. Wenn man die Gravitationspotentiale nach einem
ad hoc Parameter entwickelt, wobei die nullte Niherung der flache Min-
KowsKische Raum ist, so kann man auch die Koordinatentransforma-
tionen in dhnlicher Weise in Potenzreihen entwickeln, derart, daf} die auf
beliebiger Stufe abgebrochene Theorie gegeniiber einer Transformations-
gruppe invariant ist, die aus der Gruppe krummliniger Koordinatentrans-
formationen dadurch hervorgeht, daf man auch deren Entwicklungen an
derselben Stelle abbricht. Von der ersten Néherung an darf man in der
Transformationsgruppe willkiirliche Funktionen einfithren. Die nullte
Néherung besteht aber nicht aus der Identitét, sondern ist die LORENTZ-
gruppe. Die erste Niherung fiir sich allein ist kommutativ und der Eich-
gruppe sehr dhnlich, aber nicht kommutativ zusammen mit der nullten
Néherung. Die erste Ndherung liefert dann genau die PavLi-Figrzschen
Gleichungen fiir Gravitonen. Dartiber hinaus ist noch nichts bekannt. Bis
zur ersten Niherung la8t sich das Programm, Invarianten zu finden und
die Theorie nur mit ihrer Hilfe zu formulieren, miihelos durchfiihren. Aber
erst danach wird es wirklich interessant. Immerhin ist es vielleicht bemer-
kenswert, dafl, wenn man auf Fourigrzerlegung verzichtet, die wahren
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Observabeln der ersten Naherung die doppelt transversalen Potentiale
und ihre kanonisch konjugierten, also nichtlokale Grofen sind, die man
durch Integrale ausdriicken muf.

Es liegt nahe zu fragen, ob man nicht die Theorie durch Einfiihrung von
Koordinatenbedingungen kiinstlich ,,reguldr’ machen koénnte, dhnlich
wie FERMI dies mit dem elektromagnetischen Feld getan hat, wonach die
Quantisierung dann ziemlich ohne Schwierigkeiten durchfiihrbar sein
diirfte. In der klassischen Theorie 148t sich tatsdchlich leicht zeigen, daf3
man auf diese Weise sofort zu einer HaminTonschen Formulierung kommt,
in der dann die Koordinatenbedingungen und ihre ersten zeitlichen Ab-
leitungen in gewohnter Weise als (acht) sich selbst erhaltende Neben-
bedingungen eingefiithrt werden miissen. Versucht man aber dann die
Quantisierung, so bereitet der wesentlich nichtlineare Charakter aller all-
gemein-kovarianten Theorien fast uniiberbriickbare Schwierigkeiten. Man
mul dann ndmlich sowohl in der HamtLToNschen Funktion als auch in den
Nebenbedingungen die Faktoren so ordnen, daBl man in keine Wider-
spriiche gerdt. Dies ist bisher niemandem gelungen [28]. Uberdies, wenn
man wirklich mit diesem Problem fertig wiirde, so wiite man dann immer
noch nicht, ob das Endprodukt Resultate liefert, die von der zuféllig ge-
wiahlten Form der Koordinatenbedingungen unabhingig sind, ob, mit an-
deren Worten, die resultierende Quantentheorie allgemein kovariant ist.

Eine andere verlockende Moglichkeit ist die Lagrangesche Quantisie-
rung, die wohl im gegenwiirtigen Stadium mehr ein Programm als eine ab-
geklirte Prozedur ist [29-31]. Zunichst funktioniert das von PEIERLS
vorgeschlagene Programm nur fiir ,,regulire’ Theorien, und ist aulerdem
nicht darstellungsinvariant. FEyNMANs Integrale divergieren wahrschein-
lich fiir ,,singuldre* Theorien, und SCHWINGERs verschiedene Vorschlige
unterliegen denselben Beschrinkungen wie PEIErLs’. Wir haben nun zu-
néchst einmal den Begriff der kanonischen Transformation im LAGRANGE-
schen Formalismus eingefiithrt und versucht, Transformationsgruppen
auch fiir ,,singulére’® Theorien zu konstruieren [32]. Soweit uns dies ge-
lungen ist, scheinen sie der Diracschen Faktorgruppe im Phasenraum
dquivalent zu sein [33]. Es ist also nicht ausgeschlossen, dal man in einer
folgerichtigen LAagrANGESchen Quantisierung nichts gegeniiber der kano-
nischen Methode gewinnt. Augenblicklich halte ich diese Frage aber noch
fiir offen.

Diesen Moglichkeiten gegeniiber scheint die Methode nach DIrAc jetzt
zumindest logisch einwandfrei zu sein. Falls es gelingen wird, alle alge-
braisch unabhingigen Invarianten der Theorie zu finden, so wird die
Faktorenordnung in der Hamiuronschen Funktion insofern willkiirlich
sein, als sie weder die Kovarianz der Theorie noch ihre formale Wider-
spruchsfreiheit affiziert. Selbstverstindlich bedeutet dies nicht, dall zwel
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Hamirronsche Funktionen mit verschiedenen Faktorfolgen dquivalent
seien. Im Gegenteil, hier haben wir in der Quantentheorie eine extra Frei-
heit, der in der klassischen Theorie nichts entspricht. Was ich behaupte,
1st nur, daf die Faktorfolgen nicht durch formale Forderungen eingeengt
sind, die praktisch uniibersehbar sind.

4. Spin in der allgemeinen Relativititstheorie. Offensichtlich st es un-
wahrscheinlich, da man je zu einer zufriedenstellenden Vereinigung der
allgemeinen Relativitdtstheorie und der Mikrophysik kommen wird,
wenn es nicht gelingt, den Spin ins Schema der allgemeinen Relativitéts-
theorie einzubauen. Dies ist auf zwei verschiedene Weisen méglich, die
beide zum selben Resultat liefern [34—38]. Ich méchte diese mathemati-
schen Dinge nur ganz kurz skizzieren, weil sie wohl kaum zum Haupt-
thema meines Berichts gehoren.

Erstens ist es moglich, anstelle der Metrik im vierdimensionalen Zeit-
raum-kontinuum zwei Systeme von hyperkomplexen Feldern einzu-
fithren, y, und 3¢, die folgenden Gleichungen geniigen:

1 P v v
5 @Y + Y v)=06 vV =V =4 (4.1)

Dann 146t sich sofort zeigen, daf alle kovarianten y, mit den Anti-
kommutatoren 1/2 (y" 9" + 9" ") kommutieren, und ebenso die kontra-
varianten y¢ mit den kovarianten Antikommutatoren 1/2 (y,v, + v,7,)-
Ferner sind die zwei Antikommutatoren zueinander reziprok, und sie
dienen dazu, die kontravarianten und die kovarianten y’s durch Hinauf-
und Hinabziehen der Indices ineinander iiberzufithren [39]. Mit anderen
Worten, die Gleichungen (4.1) fithren unmittelbar zur Konstruktion eines
metrischen Tensors zuriick, sofern wir nur annehmen, dafl das eine oder
das andere System der y’s eine vollstindige Basis fiir die Algebra des
hyperkomplexen Zahlsystems (der Sedenionen) ist.

Zusétzlich zu den Koordinatentransformationen miissen wir nun auch
die Ahnlichkeitstransformationen betrachten, die in jedem Weltpunkt
ganz beliebig angesetzt werden kénnen und denen gegeniiber die Theorie
invariant sein mul. Konstruiert man nun, um zu einer Analysis zu kom-
men, einen spin-affinen Zusammenhang und bildet den entsprechenden
Spin-Kriimmungstensor (wobei selbstverstindlich verlangt wird, dal die
kovariante Ableitung von 9° verschwindet), so stellt sich heraus, da die
Geometrie keinerlei invariante Variationsprinzipien zuldfit, die es nicht
schon in der RiEMANNschen Geometrie gibt. Dagegen besteht die Moglich-
keit, zusatzlich zu den y°, die also eine Art geometrische Grundstruktur
darstellen, Wellenfunktionen einzufiihren, die dann die Bildung zusétz-
licher Glieder in der LacranGEschen Funktion gestatten. So ist es dann
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moglich, eine Theorie zu konstruieren, die neben dem eigentlichen Gravi-
tationsfeld sowohl Photonen als auch Elektronen enthilt.

Die zweite Moglichkeit ist folgende: In jedem Weltpunkt fithre man
vier aufeinander senkrechte Einheitsvektoren ein. Mit deren Hilfe kann
man dann jeden Vektor oder Tensor der RieManNschen Geometrie in
Komponenten nach den ,,Vierbeinen* (anstelle der Koordinaten) zer-
legen. Man fiihrt nun konstante Diracsche y’s ein, und auBerdem wieder-
um Wellenfunktionen mit Spin usw. Man konstruiert darauf geometrische
(Gebilde, die sowohl Koordinatentransformationen wie Beintransforma-
tionen gegeniiber invariant sind. Die Spintransformationen sind mit den
Beintransformationen zusammengekoppelt, wenn man den »" feste, un-
verdnderliche Werte zuschreibt.

Mit und ohne Vierbeine erhdlt man genau dieselben Kovarianten. Die
Hinfithrung der Beine ist aber deshalb interessant, weil die Beintrans-
formationen in jedem Weltpunkt beliebig wihlbare LorENTZtransforma-
tionen darstellen. Es ist uns dadurch z.B. gelungen, in die allgemeine
Relativitdtstheorie (mit Spinorenfeld) ein System von sechs Gréfen ein-
zufiihren, die im Falle einer flachen Metrik genau ins Drehmoment iiber-
gehen und die auch im gekriimmten Raum strengen Erhaltungsséitzen
geniigen [40]. Sofern man eine solche Theorie quantisieren bzw. hyper-
quantisieren kann, sollte sie alle normalen Ergebnisse der Quanten-
elektrodynamik mit Elektronen enthalten und auBerdem allgemein-
invariant sein.

5. Brhaltungssditze. Bevor ich schlieBle, méchte ich noch kurz auf die
Rolle der durch die allgemeine Kovarianz bedingten KErhaltungssitze
eingehen. In kovarianten Theorien gibt es ndmlich Ausdriicke, deren
Divergenz verschwindet, auch wenn die Feldgleichungen nicht erfiillt
sind, und die den iiblichen kanonischen Energie-Impulsdichten modulo
der Feldgleichungen gleich sind. Diese Erhaltungssétze haben wir ,,stark
genannt, im Gegensatz zu den iiblichen, ,,schwachen®.

Die starken Erhaltungssditze hingen aufs engste mit der EINSTEIN-
InrELD-HOFFMANNschen Theorie der ponderomotorischen Gesetze zusam-
men. Mit ihrer Hilfe kann man zeigen, dall Oberflichen, die Singulari-
téten des Feldes umgeben, Integrale zulassen, deren zeitliche Ableitung
durch ein anderes Oberflichenintegral streng bestimmt ist. Zur Formulie-
rung dieser Oberflichenintegralsitze ist iibrigens kein Niherungsver-
fahren notwendig [7]. Die Oberflichenintegrale, deren zeitliche Ableitung
bestimmt ist, stellen die im Innern enthaltene Energie und Impuls dar,
die bestimmenden Integrale infolgedessen die dullere Kraft und Leistung
am Innern.

In der klassischen Feldtheorie sind Teilchen Singularitdten des Feldes.
In einer hyperquantisierten Theorie wird aber der Unterschied zwischen
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Feldern und Teilchen stark verwischt, und es ist deshalb durchaus nicht
trivial zu erfragen, ob die Existenz starker Erhaltungssitze noch von
Interesse ist. Dies scheint insofern der Fall zu sein, als starke Erhaltungs-
sdtze einige Zuversicht geben, dafl auch unvollstéindige Theorien zu teil-
weise richtigen Ergebnissen fithren konnen. Da niemand ernsthaft glaubt,
daB irgendeine gegenwiirtig bekannte Theorie alle Naturkrafte vollstindig
enthélt, ist dies ein wichtiger Gesichtspunkt.

Genauer moéchte ich die Sache so ausdriicken. Normalerweise wird der
in einem Raumgebiet enthaltene Impuls durch ein Volumenintegral der
Impulsdichte beschrieben. Angenommen, ich kenne die dufleren Kréfte,
aber nicht die innere Struktur des Gebiets, so hilft es mir wenig, da} ich
die Gesamténderung des im Gebiet enthaltenen Impulses zu bestimmen
welll. Ich mufl doch immer damit rechnen, daff das Innere mir unbekannte
Beitrige zum Impuls liefert, so daB ich nichts iiber die Anderung an der
mir zugénglichen Oberfliche sagen kann. Habe ich dagegen einen starken
Erhaltungssatz, so kann ich den Gesamtimpuls durch ein Oberflichen-
integral darstellen. Schlief§t die Oberfléiche also in ihrem Innern mir unbe-
kannte und unzugéingliche Kraftfelder ein, hat mit anderen Worten ein
physikalisches System eine mir unbekannte Innenstruktur (virtuelle
Mesonen aller Art), so kann ich dennoch mit einer unvollstdndigen Er-
fassung dieser inneren Zusammenhinge Aussagen iiber das Verhalten des
Gesamtgebildes machen, wenn ich nur die an der Oberfliche erscheinen-
den Kraftfelder richtig beherrsche. Meines Erachtens besteht durchaus
die Moglichkeit, dal die starken Erhaltungssitze etwas mit Renormali-
sierbarkeit zu tun haben.

In diesem Zusammenhang mochte ich auch noch erwiahnen, dafl etwaige
andere Transformationsgruppen, die von willkiirlichen Funktionen ab-
hingen, im allgemeinen ihre eigenen starken Erhaltungssidtze liefern
werden. Vielleicht wird es spidter moglich sein, diese mathematischen
Methoden auf die isotope Spingruppe und #hnliche Invarianzeigenschaften
anzuwenden.

Hiermit habe ich, glaube ich, alles Wesentliche berichtet. Auf die Frage,
ob ich das Gravitationsfeld quantisieren kann, muf ich leider noch immer
mit einem ,,Noch nicht* antworten. Aber auf die Frage, ob es iiberhaupt
moglich ist, denke ich, kann man ehrlich sagen: ,,Héchstwahrscheinlich

M 14

jac.

Diskussion — Discussion

F. A. E. P1raxt: I should like to point out a way of defining invariants,
essentially due to KrRETscEMANN (1917), which is simpler than that attri-
buted to Komar: Define
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g,uvga: g,ug Jve — g,u.a gv@

—1/2
nﬂvgo': (_—H g) I E,uvgo'

where ¢,, ., is the alternating tensor. Then the solutions A of the equa-
tions

(R,uv@a_ A g,uvga) pw: 0
(R,uvga'— A nyvgcr) qea =0

(where p®”and ¢° are skew eigentensors) are a system of invariants. The
theory of these equations has been studied extensively by RUsE.

A. Licanerowicz: Il conviendrait de compléter cette théorie par
une étude du probleme de CAucHY destinée amontrer que, si les conditions
de contraintes sont satisfaites sur I'’hypersurface initiale, elles le sont au
voisinage de cette hypersurface. L’analyticité ne peut étre admise ici.
Méme si elle I’était, la solution pourrait étre instable par rapport aux
conditions initiales, comme le montre le cas de problémes de CaucHY
correspondant a des hypersurfaces orientées dans le temps.

M. Fierz: Die Fragen, die Herr BeramaNN diskutiert hat, ndmlich die
Quantisierung der Gravitationstheorie, haben einen engen Zusammenhang
mit der Frage nach der Existenz von Gravitationswellen, iiber die Don-
nerstag Herr ROSEN sprechen wird.

Wenn man in der ,,iiblichen* Art quantisiert, so nimmt man an, da@
beliebige Anfangsbedingungen — natiirlich mit den Nebenbedingungen
vertrigliche — zugelassen werden diirfen. Solche Anfangsbedingungen
fiihren aber unter Umstédnden zu einem singuldren Verhalten des Gravi-
tationsfeldes (Beispiel: Ebene Wellen). Wenn man auch das ausschlielen
will, werden vermutlich neue, zusétzliche Schwierigkeiten entstehen.
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