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Espaces homogènes et isotropes de la Relativité

par J. Tits (Bruxelles)

1. Soit F4 une variété à A dimensions munie d'une métrique de
Riemann de signature -\ F4 est homogene si elle possède un groupe
transitif d'isométries. Nous dirons qu'elle est isotrope (sous-entendu: pour
les directions lumineuses) en un point p donné si les isométries conservant

p sont transitives sur les directions lumineuses (ds2 0) issues de ce

point; on peut voir que cette condition est équivalente à la suivante
(isotropie d'espace) : il existe en p un élément plan co à 3 dimensions de genre
espace tel que les isométries conservant p et m soient transitives sur les
directions issues de p dans m.

2. Les seules Vx homogènes et isotropes sont

l'espace de de Sittee _D4, c'est-à-dire l'extérieur d'une hyperquadrique
de signature -| dans l'espace projectif P4 à 4 dimensions muni
de la métrique cayleyenne, et son revêtement double D^ ;

1'«intérieur» C4 d'une hyperquadrique de signature + H dans

P4 muni de la métrique cayleyenne, et ses divers revêtements (revêtements

finis Cf1 et revêtement universel Cjœ)) ;

les produits M4 K3 • L, où K3 est un espace euclidien Es, elliptique
F3, sphérique S3 ou hyperbolique H3 à 3 dimensions, et où L est
l'ensemble R des nombres réels ou l'ensemble Ra des nombres réels modulo a
(a donné), Mi étant muni de la métrique —ds% + di2, où dsK est la
métrique sur K3 et t est une variable dans L (en particulier, E3 ¦ R est

l'espace de Minkowski) ;

l'espace _44 des variables x, y, z, t muni de la métrique —a1 ¦ (dx2 + dy2

+ dz2) + dt2 (identique à l'espace de de Sittee dont on a retiré un
hyperplan tangent à l'absolu) ;

l'espace _B4 obtenu à partir de S3 - Ra défini plus haut en identifiant
les couples de points «diamétralement opposés» (p, t) et (p', t + a/2)
(p et p' points diamétralement opposés sur S3).

3. Parmi les espaces précités, seuls Z>4, D42), 04-c°), K3 - R et Ai sont
infinis dans le sens du temps (non-existence de ligne de temps fermée).
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4. Des définitions de l'homogénéité et de l'isotropie analogues à celles
du n° 1 peuvent être données pour les variétés F4 munies seulement d'un
champ de cônes quadratiques ds2 0 de signature -\ en remplaçant

les isométries par les transformations conservant ce champ
(transformations conformes). Les espaces homogènes et isotropes ainsi définis
sont, en plus de ceux obtenus par abstraction à partir des espaces du n° 2,

1'«espace de Minkowski conforme» (surface d'une hyperquadrique de

signature H—| dans l'espace projectif P5) et ses divers revêtements

(finis et universels).
5. En recherchant les V3 riemanniennes de signature H qui sont

homogènes et isotropes dans un sens analogue à celui du n° 1, on trouve,
outre les équivalents tridimensionnels des espaces du n° 2, des espaces
nouveaux N(K2, L, b) qui peuvent être caractérisés comme suit : N(K2, L, b)

est fibre de base K2 E„, S2 ou H2 (cf. n° 2) et de fibre L R ou Ra, et
si U désigne un voisinage de coordonnées dans K2, la métrique de N dans
F • L est donnée par ds2 —<_sf + (dt + b cpK)2, où b est une constante
donnée et cpK est une forme de Pfaef dans F dont l'intégrale le long
de la frontière d'un domaine quelconque mesure l'aire de ce domaine.
Lorsque K2 S2, on doit avoir F Ra, et a/b doit être un sous-multiple
de l'aire totale de K2.
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