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Eine Bemerkung iiber den Zusammenhang
von Streuphase und Potential

von Res Jost, ETH., Ziirich.
(28. V. 1956.)

Zusammenfassung: Es wird ein Verfahren angegeben, das es gestattet unter ge-
wissen Bedingungen die Gel'fand-Levitansche Integralgleichung (2.3) fiir grosse r

zu l6sen. Dieses Verfahren wird in § 4 zum Beweise eines Satzes iiber das Verhalten
r

von [ V(') dr’ angewendet.
0

Einleitung.

Der Zusammenhang zwischen Streuphase und Potential ist seit
den Arbeiten von GEL’'FAND und LEvITAN') im wesentlichen abge-
klért. Insbesondere erlaubt die Methode dieser Autoren die Kon-
struktion aller Potentiale, die zu einer gegebenen Streuphase ge-
héren. Unabgeklart scheint bis jetzt die Frage, welche Bedingungen
man der Streuphase (wir werden uns 1m folgenden auf die S-Phase
beschranken und die Diskussion auf hoéhere Bahnmomente auf
spéter verschieben) auferlegen muss, damit ein bestimmtes asym-
ptotisches Verhalten des Potentials garantiert ist. Die vorliegende
Arbeit will ein Beitrag in dieser Richtung sein. Wir beziehen uns
ausdriicklich auf den Fall, wo keine gebundenen Zustdnde vor-
handen sind. Die Verallgemeinerung auf den Fall mit gebundenen
Zusténden 1st dann einfach und wir werden uns nicht damit be-
schiftigen. Weiter schliessen wir den Fall der Resonanz bei der
Energie Null aus. Auch werden wir unsere Bedingungen als Bedin-
gungen fir die Funktion f(k) aussprechen. Diese Funktion 1st in
einfacher Weise bezogen auf die Phase #(k). Von einem praktischen
Standpunkte aus ist unsere Untersuchung mehr akademischer
Natur, da man nach Baremann?) fiir eine allen praktischen Be-
diirfnissen gentigende Klasse von Phasen #(k) das Potential und die
zugehorigen Losungen der Schrodingergleichung sogar explizit als
elementare Funkfionen angeben kann.
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§ 1. Die Funktionen @ (x) und ¥ (x).

7n(k) seil die S-Phase, zu der keine gebundenen Zustéande gehoren.
Falls (k) zu einem exponentiell abfallenden Potential gehért, dann
18t 5(0) —7(oo) entweder Null oder 7/2 3). Den letzten Fall wollen
wir als Sonderfall von unseren Betrachtungen ausschliessen. Ausser-
dem 1st (k) stetig (sogar analytisch) fir 0 </ <oco. Definiert man
n(—k) = —mn(k), dann ist also (k) stetig fir —oo <k <eoo. Die
Funktion f(k) ist definiert durch die Bedingungen?)

-~ 1. f(k) reguldr analytisch fir Im[k] <O0.
2. f(k) =0 in Im[Ek]=<0.
3. f(k) = | f(k) | e"® fiir reelles k.
4. lim f(k) =1 fir Im[k]=<0.

k—o00

Weiter ist dann automatisch
5. f(—k*)=f*(k) sodass f(k) fiir negativrein imagindres k reell ist.

Formeln, die f(k) durch #(k) ausdriicken, sind bekannt?). Die nun
folgende Voraussetzung fiir f(k) soll eben ein exponentielles Abfallen
des zu #(k) gehorigen Potentials zur Folge haben. Zu ihrer Formu-
lierung ist es viclleicht bequemer (um in der gewohnten Sprache
der Laplacetransformationen zu bleiben), die Variable z = 1k ein-
zufithren. Wir schreiben dann

f(k) =1+ ¢(2) | (1)
und verlangen$) -
®(2) :/e*” D(x)dx (1.2)
wobei ausserdem 4
|D(x)er| < A fir 0<z<oo. (1.8)

(1.3) 1st unsere wesentliche Voraussetzung?). Sie hat zur Folge, dass
(1.2) absolut konvergiert fiir Re[z] > — 1. ¢(z) ist in mindestens
dieser Halbebene reguldr analytisch. 1 Nach Bedingung 2 und (1.1)
1st ausserdem

) +—1 in Re[z]=0. (1.4)

‘ (14) erlaubt eine Verschiérfung. Nach (1.8) konvergiert némlich
(1.2) gleichméssig in Re[z] < — 1 + & fiir jedes & > 0. Daher gilt®)

lim @6 +17) =0 (1.5)

und dies gleichméssig in § = —1 + ¢. Dann kénnen aber die Wur-
zeln von @(z) +1 = 0 nicht beliebig nahe an die reelle Axe heran-
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kommen, es gibt also ein 0 <« <1 derart, dass
p(2)+—1 1n Re[z]=—u. (1.4")

Fiir das Weitere werden wir die Funktion

9@ = — oo (1.6)

zu diskutieren haben. w(z) ist reguldar in Re[2]= —«. Nach einem
Satz von ParLey und WieNER?) 1st also

() = f =2 P(z) dz (1.7)
wobe1 - 0
fe‘“’i P(z)| dw < oo. (1.8)

0

Weiter folgt aus der Definition (1.6) unmittelbar, dass
P(z) +D(z) + f Bz — &) P(E) déE = 0. (1.9)
0

Aus dieser Gleichung schliesst man auf die Beschrénktheit von
e** ¥(x) in jedem endlichen Intervall 0 <z <c¢. Wegen der Be-
schrianktheit von e*@(x) und wegen (1.8) folgt aber weiter, dass
man in (1.9) nach Multiplikation mit e*® unter dem Integral mit
x> oo gehen kann, derart, dass sogar

Y(z)e** >0 fir xz->o0. (1.10)

Es 1st also sicher ¥(z) e*# beschriankt und, bei passender Wahl von
A gilt mit (1.3) auch

|P(x)e*s| < A fir 0<z<oo. (1.11)

§ 2. Die Levitan~Gel’fandsche Integralgleichung.
Eigenschaften des Kerns.

Die Funktion f(k) steht mit dem Kern der erwahnten Integral-
gleichung im folgenden Zusammenhang!9)

G(r,s) = Glr—s) —G(r + s) (2.1)
G(r) = - f{ m;) T 1]e—m d . (2.2)

— o0
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Wegen Bedingung 5 ist |f(k) |2 = f(k) f(—k) und daher ist G(r) eine
gerade Funktion von r. Besagte Integralgleichung lautet nun

G(r,s) + K(r, s) +fK(r, t)G(t,s) dt =0 (2.8)

wobei K(r, s) nur fiir 0 <s <r definiert ist. Falls (2.3) gelost ist,
findet man fiir das Potential, das zur Phase #(k) gehort

V(r) =2. 2200 2.4)

so dass Abschitzungen von K(r,r) zwar nicht tiber V(r) direkt,
wohl aber iiber /" V(') dr' Auskuntt geben. Mit solcher Auskunft
wollen wir uns zufriedergeben und allenfalls lieber Verallgemeine-
rungen der Schridingergleichung ins Auge fassen alsBedingungen, die
K(r,r) etwa totalstetig machen!?). Weiter 1st (2.3) offenbar dqui-
valent zu

G(r,s) + K(r, s) +fK(T, ) G{t—s)dt=0 (2.5)
und -
K(r,s) + K(r,—s) =0. (2.5

Setzt man weiter

K(r,s) = L(r, s) — L(r, —s) (2.6)

dann erhélt man eine Losung von (2.5), falls
L(r,s) + Gr —s) + f L(r,{) G{t—s)dt = 0 2.7)

erfillt ist. So kommen wir schliesslich zur passenden Form der
Integralgleichung, wenn wir setzen

2y, ©) + G(z) + f Gz — &)y, &) d& =0 2.8)
U fir 0<e<y

indem sich dann fiir die fritheren Grossen ergibt
L(r,s) = x@r,r—s)

K(r,s) = (27,7 —8)— 527, +5) (2.9)
K(r,r) = 4(2r,0) — %27, 27).
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Es 1st etwas bequemer (2.8) in der Form
G(z) + f Iz — &) y(y, §dE =0 2.8

zu schreiben, wobel natiirlich I'(z) = G(x) + d(x) gesetzt 1st. Es
folgt unmittelbar aus (2.2), dass die homogene Gleichung

Y

[ (e —8 8 d =0

0

fiir y = oo und daher fiir kein % > 0 eine nicht triviale quadratinte-
grierbare Losung besitzt. Denn setzt man. yy(z) =0 fiir £ <0 und

oo

Jem i pole) g = A
dann Ware o
/dmfdfxo (@ —&) 70(8) —fdh ﬁ(,f

also A(k) = 0. (2.8") hat also genau eine Losung.

Fir (2.8) werden wir ein Approximationsverfahren angeben, das
uns die Losung fir grosse y zu diskutieren gestattet. Um die Eigen-
schaften von G(z) zu finden, erinnern wir uns an die Definition von

¥(z) (1.6) und (1.7), aus der sich ergibt

e — 1 = ¥ w(—2) + () + p(—2) (2.10)

oder
G(z) = f Plx + &) P(E) dE + P(x) + P(— 1) (2.11)

wobel ¥(x) = 0 zu setzen ist, falls z < 0 ist. Aus (2.11) folgt aber
die Beschrénktheit von e*!?! G(z), und wieder konnen wir durch
passende Wahl von A4 erreichen, dass mit (1.3) und (1.11) auch

| G(z)e*!®! | < A fir —oco<z< 00 (2.12)

gilt. Schreiben wir zum Schluss noch

o0

g(z) = f =22 (i(z) dz (2.13)

dann lautet (2.10)
9(2) = p(2) p(—2) + p(2) +p(—2). (2.14)



Vol. 29, 1956. Zusammenhang von Streuphase und Potential. 415

Setzt man : ~

(2) — f e—*¢ I'(z) dx (2.18")

— 00

(@) =[1 +p(@)][1 +p(—2)]. (2.147)

so findet man

§ 3. Das Niherungsveriahren.

Zur Losung von (2.8) setzen wir fiir y(y, x) eine Reihe an:

o

2y, 2) = X0y @), 20(y, %) = 2(2) (8.1)

k=0

wobei die einzelnen Terme durch folgende Gleichungen bestimmt sind

G(z) + f F(z—8& g8 dE=0 fiir 0<a<oo (3.2
0
-

JT@ 8 tanr (9 = [ To— 8 pan (y) s (3

— o0

fir —oo<a<ly

oo

: 0
JT@—=8) tanea (4, 8) 8 = [ T(@—8) gonir (1, §) d5 (3.4
0 — 00
fir 0<or<oo,

Wir behaupten nun, dass die Reihe (3.1) zu einer Losung von (2.8)
konvergiert, falls fiir n > oco

[ T@—8) sy, 8) @€ >0 (3.5

z. B. gleichmassig fiir 0 < 2 < y. Um das einzusehen, betrachte man
die Differenz

A, () = x(y, x) — Z’ 2y ). (3.6)

Dabei ist y(y, ) die Losung von (2.8), die ja existiert. Nun folgt
leicht

[ Ta—8 4,6 d = [Ta—8 papa .8 dE (8.7)

*
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woraus fiir n—-> oo folgt, dass 4, 0. Die Gleichungen (3.2), (3.3)
und (3.4) lassen sich aber nach dem Verfahren von N. WiENER und
E. Horr!2) l6sen, und wir brauchen nur das Resultat anzugeben. Es
ergibt sich:

o(a) = B(a) 3.8
Xan+1 (Y Z) =fK1(?JE , &) Kan (Y, §) d& (8.9)
Hamsa (0 @) = [ Kal®,8) aer (9 €) € (3.10

wobel - -
Ey(y; 2.8) = V(E—a) + [PE—a—n) @) dy  (3.11)
Ky@, &) = V(@—8 + [Ple—s—n ) dy.  (312)

Es bleibt uns also nur noch zu zeigen, dass (3.5) fiir gentigend grosse
y gilt.

Dazu 1st es bequemer unter Verwendung der Gleichung (1.9) die
Kerne K; und K, in der folgenden Weise zu schreiben

Ky(y; 2,8) =— B —2)— [PE—o—n) Ba)dn  (B.11)

z—&
Ky(x, &) = —D(x— &) — f Pz —E&—n) D) dy. (3.12)

x

Verwendet man jetzt (1.3) und (1.11), dann gilt offenbar

| Ky\(y; 2, 8)| < A(1+ A) e~ @2 = Be~v—2 (8.13)
fir &=y

| Ky(z, &) | < A(1 + A)e=* = Be~*= (8.14)
fir £=<0.

Woraus man leicht mit (1.8) die Abschétzung gewinnt
| %2n(y; @) | < A Bine-tnv g0 (8.15)

| X2n+1(ys )| < A B2nH1 @0ty g2 (8.16)
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und mit (2.12)

l 0
i [ 108 ronialy, £ d < Bt eeniv. (317)

Hinreichend fiir (3.5) ist also
Be-v<1 (3.18)

‘was flir geniigend grosse y immer der Fall 1st.

§ 4. Eine Anwendung.
Es sei €% @(x) beschrankt und
ef* P(x) > C fir x> oo (4.1)
dann gilt

ezfs’[K(r,r)—@(U)]%-——ﬁ_:%ﬁT fiir 7> 00, (4.2)

Beweis: Es ist offenbar keine Finschrankung f =1 zu setzen.
Nach (2.9) bedeutet (4.2)
o[1(y. 0) =2y, 9) = PO)] > — ;T fir y>oo. (42

Mit den Abschitzungen (8.15), (3.16) und mit (3.8) findet man (4.2)
dquivalent zu :

G "
ey[@(y) + X1(?/: y)]_> f(—1) ° (4:2 )
Aber nach (3.9) und (3.11)

(Y y) = [BPE—y) B(y) = [dnPn) By +n)  (43)

daher |
oy, y) = [dn P e [P Dyt )] (44
In (4.4) kann man unterodem Integral mit y - oo also nach (4.1)
e? 71y, y) > C f dy e W) = C (1) (4.5)
Nach (1.6) und (1.1) '
e 1y, ) > C (2 — 1) (4.6)

(4.2") folgt aus (4.6) und (4.1).
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