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Eine Bemerkung über den Zusammenhang
von Streuphase und Potential

von Res Jost, ETH., Zürich.

(28. V. 1956.)

Zusammenfassung: Es wird ein Verfahren angegehen, das es gestattet unter
gewissen Bedingungen die Gel'fand-Levitansche Integralgleichung (2.3) für grosse r
zu lösen. Dieses Verfahren wird in § 4 zum Beweise eines Satzes über das Verhalten

r
von / V(r') dr' angewendet.

6

Einleitung.

Der Zusammenhang zwischen Streuphase und Potential ist seit
den Arbeiten von Gel'pand und Levitan1) im wesentlichen
abgeklärt. Insbesondere erlaubt die Methode dieser Autoren die
Konstruktion aller Potentiale, die zu einer gegebenen Streuphase
gehören. Unabgeklärt scheint bis jetzt die Frage, welche Bedingungen
man der Streuphase (wir werden uns im folgenden auf die S-Phase
beschränken und die Diskussion auf höhere Bahnmomente auf
später verschieben) auferlegen muss, damit ein bestimmtes
asymptotisches Verhalten des Potentials garantiert ist. Die vorliegende
Arbeit will ein Beitrag in dieser Richtung sein. Wir beziehen uns
ausdrücklich auf den Fall, wo keine gebundenen Zustände
vorhanden sind. Die Verallgemeinerung auf den Fall mit gebundenen
Zuständen ist dann einfach und wir werden uns nicht damit
beschäftigen. Weiter schliessen wir den Fall der Resonanz bei der
Energie Null aus. Auch werden wir unsere Bedingungen als

Bedingungen für die Funktion f(k) aussprechen. Diese Funktion ist in
einfacher Weise bezogen auf die Phase v(k). Von einem praktischen
Standpunkte aus ist unsere Untersuchung mehr akademischer
Natur, da man nach Bargmann2) für eine allen praktischen
Bedürfnissen genügende Klasse von Phasen r/(k) das Potential und die
zugehörigen Lösungen der Schrödingergleichung sogar explizit als
elementare Funktionen angeben kann.
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§ 1. Die Funktionen # (x) und W(x).

rj(k) sei die S-Phase, zu der keine gebundenen Zustände gehören.
Falls rj(k) zu einem exponentiell abfallenden Potential gehört, dann
ist "(0) —"(oo) entweder Null oder n/2 3). Den letzten Fall wollen
wir als Sonderfall von unseren Betrachtungen ausschliessen. Ausserdem

ist r/(k) stetig (sogar analytisch) für 0 < 7c < oo. Definiert man
t](—k) — rj(k), dann ist also "(fc) stetig für — oo < fc < oo Die
Funktion /(fc) ist definiert durch die Bedingungen4)

1. /(fc) regulär analytisch für lm[k]<0.
2. /(fc) 4=0 in Im[k]-A0.
3- f(fy \ f(k) | e"tt> für reelles fc.

4. lim/(fc) l für lm[k]^0.
Weiter ist dann automatisch

5. f(—k*)=f*(k) so dass/(fc) für negativ rein imaginäres fc reell ist.

Formeln, die/(fc) durch r/(k) ausdrücken, sind bekannt5). Die nun
folgende Voraussetzung für /(fc) soll eben ein exponentielles Abfallen
des zu rj(k) gehörigen Potentials zur Folge haben. Zu ihrer Formulierung

ist es vielleicht bequemer (um in der gewohnten Sprache
der Laplacetransformationen zu bleiben), die Variable z ik
einzuführen. Wir schreiben dann

und verlangen6)

wobei ausserdem

/(fc) 1 + cp(z) (1.1)

cp(z) / e~zx 0(x)dx (1.2)
0

10(x) ex | < A für 0<.t<oo. (1.3)

(1.3) ist unsere wesentliche Voraussetzung7). Sie hat zur Folge, dass
(1.2) absolut konvergiert für Be[z] > — 1. cp(z) ist in mindestens
dieser Halbebene regulär analytisch. Nach Bedingung 2 und (1.1)
ist ausserdem

cp(z) + -l in Be[z]^0. (VA)

(1.4) erlaubt eine Verschärfung. Nach (1.3) konvergiert nämlich
(1.2) gleichmässig in Be [z] < — 1 + e für jedes e > 0. Daher gilt8)

lim cp(i- + i rf)= 0 (1.5)

und dies gleichmässig in £ 2ï — 1 + e. Dann können aber die Wurzeln

von cp(z) +1=0 nicht beliebig nahe an die reelle Axe heran-
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kommen, es gibt also ein 0 < a < 1 derart, dass

tp(z)*-l in Be[z]^-oc. (VA')

Für das Weitere werden wir die Funktion

zu diskutieren haben. ip(z) ist regulär in Be [z] 2; — a. Nach einem
Satz von Paley und Wiener9) ist also

00

ip(z) fe-™W(x)dx (1.7)

wobei
oo

fe«x\y(x)\dx<oo. (1.8)
o

Weiter folgt aus der Definition (1.6) unmittelbar, dass

X

W(x)+0(x)+[0(x-S)¥(Ç)d£ O. (1.9)
o

Aus dieser Gleichung schliesst man auf die Beschränktheit von
eax W(x) in jedem endlichen Intervall 0<£<c. Wegen der
Beschränktheit von ex0(x) und wegen (1.8) folgt aber weiter, dass

man in (1.9) nach Multiplikation mit ea- unter dem Integral mit
~->-oo gehen kann, derart, dass sogar

xP(x)exxA>0 für ~->oo. (1.10)

Es ist also sicher xP(x)eax beschränkt und, bei passender Wahl von
A gilt mit (1.3) auch

\W(x)ea'x\ <A für 0<x<oo. (1.11)

§ 2. Die Levitan-Gel'fandsche Integralgleichung.

Eigenschaften des Kerns.

Die Funktion /(fc) steht mit dem Kern der erwähnten
Integralgleichung im folgenden Zusammenhang10)

G(r,s) G(r-s)-G(r + s) (2.1)

00

Gw=ü{w-1)e""Mfe- (2-2)
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Wegen Bedingung 5 ist |/(fc) |2=/(fc)/(—fc) und daher ist G(r) eine
gerade Funktion von r. Besagte Integralgleichung lautet nun

G(r, s) + K(r, s) + 1 K(r, t)G(t, s)dt 0 (2.3)
o

wobei K(r, s) nur für 0 < s < r definiert ist. Falls (2.3) gelöst ist,
findet man für das Potential, das zur Phase rj(k) gehört

V(r) 2-^- (2.4)

so dass Abschätzungen von K(r, r) zwar nicht über V(r) direkt,
wohl aber über 0JrV(r')dr' Auskunft geben. Mit solcher Auskunft
wollen wir uns zufriedengeben und allenfalls lieber Verallgemeinerungen

der Schrödingergleichung ins Auge fassen als Bedingungen, die

K(r,r) etwa totalstetig machen11). Weiter ist (2.3) offenbar
äquivalent zu

r

G(r, s) + K(r, s) +JK(r, t) G(t -s)dt 0 (2.5)
—r

und
K(r,s) + K(r,-s) 0. (2.5')

Setzt man weiter
K(r, s) L(r, s) - L(r, - s) (2.6)

dann erhält man eine Lösung von (2.5), falls

r

L(r, s) + G(r - s) +JL(r, t) G(t- s) dt 0 (2.7)
— r

erfüllt ist. So kommen wir schliesslich zur passenden Form der
Integralgleichung, wenn wir setzen

v

X(y, x) + G(x) +Jg(x - S)x{y, f) df 0 (2.8)
0 für 0<_<i/

indem sich dann für die früheren Grössen ergibt

L(r, s) x(2 r,r — s)

K(r,s) =x(2r,r — s)—%(2r,r + s) (2.9)

K(r, r) x(2 r, 0) — #(2 r, 2 r).
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Es ist etwas bequemer (2.8) in der Form

v

G(x) +fr(x - S) x(y, S)dt 0 (2.8')
0

zu schreiben, wobei natürlich r(x) G(x) + ò(x) gesetzt ist. Es

folgt unmittelbar aus (2.2), dass die homogene Gleichung
LI

fr(x-i,)xo(?)dè o

0

für y oo und daher für kein y > 0 eine nicht triviale quadratinte-
grierbare Lösung besitzt. Denn setzt man Xo(x) 0 für x < 0 und

oo

fe-^Xo(S)di A(k)

t.. — CO

dann ware
CO CO oo

JdxfdSX*o(x) F(x-i) Xo(() X_ydk M|X o

—oo —oo —oo

also A(k) 0. (2.8') hat also genau eine Lösung.
Für (2.8) werden wir ein Approximationsverfahren angeben, das

uns die Lösung für grosse y zu diskutieren gestattet. Um die
Eigenschaften von G(x) zu finden, erinnern wir uns an die Definition von
W(x) (1.6) und (1.7), aus der sich ergibt

ip(z) ip(— z) + ip(z) + %p(— z) (2.10)I/Wl1
oder

oo

G(x) fw(x + S) W'£) di + W(x) + W(- x) (2.11)
0

wobei W(x) 0 zu setzen ist, falls x < 0 ist. Aus (2.11) folgt aber
die Beschränktheit von e1*1-' G(x), und wieder können wir durch
passende Wahl von A erreichen, dass mit (1.3) und (LH) auch

\G(x)e«ix/[ <_4 für -oo<a;<oo (2.12)

gilt. Schreiben wir zum Sehluss noch

oo

g(z) fe-*x G(x) dx (2.13)

dann lautet (2.10)

-(-) ip(z) ip(- z) + ip(z) + ip(— z). (2.14)
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Setzt man «,

y(z) I e-°x r(x) dx (2.13')

so findet man
y(z)=[x+ip(z)][l+ip(-z)]. (2.14')

§ 3. Das Näherungsverfahren.

Zur Lösung von (2.8) setzen wir für x(y> x) eine Reihe an:
oo

x(y>x) Z!xk(y> x), xo(y> x) x0(x) (3.1)

wobei die einzelnen Terme durch folgende Gleichungen bestimmt sind

CO

G(x) + fF(x - i) Xo(i) di 0 für 0 < x < oo (3.2)
o

V oo

Jr(x ™-1) X.n+x (y, Ì) di =fPlx - i) %2n (y,i) di (3.3)
-oo y

für — oo < x <J y

oo 0

fr(x-i) X2n+2 (y, i) di =fr(x-i) x2n+1 (y, i) di (3.4)
0 -oo

für 0 < x < oo

Wir behaupten nun, dass die Reihe (3.1) zu einer Lösung von (2.8)
konvergiert, falls für n -> oo

o

fr(x-i)X2n+1(y,i)di^0 (3.5)
—oo

z. B. gleichmässig für 0 < x < ?/. Um das einzusehen, betrachte man
die Differenz

2n
An(x) %(y, x) — £xk(y> x). (3.6)

k-0

Dabei ist y/y, x) die Lösung von (2.8), die ja existiert. Nun folgt
leicht

y o

J r(x- i) An(i) di =Jr(x - i) X2n+1 (y, i) di (3.7)
ü —oo
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woraus für n->oo folgt, dass An-A-0. Die Gleichungen (3.2), (3.3)
und (3.4) lassen sich aber nach dem Verfahren von N. Wiener und
E. Hopp12) lösen, und wir brauchen nur das Resultat anzugeben. Es
ergibt sich :

Xo(x) 0(x) (3.8)
OO

Xzn+x (y, x) =JKx(y ; x, i) x2„ (y, i) di (3.9)
V

0

XZn + 2. (V' X) =JK.(x, i) X2n+X (y, S) & (3.10)
—oo

wobei
y—x

Kx(y; x, i) W(Ì-x) +JW(Ì-x-rf) 0(rf) dr] (3.11)
0

x

K2(x, i) W(x-i) +Jw(x-i-n) <P(-) dr,. (3.12)
o

Es bleibt uns also nur noch zu zeigen, dass (3.5) für genügend grosse
y gilt.

Dazu ist es bequemer unter Verwendung der Gleichung (1.9) die
Kerne Kx und K2 in der folgenden Weise zu schreiben

è-x

Kx(y; x, i) -0(i- x) -fw(i-x-rj) 0(rj) dr, (3.11')
y—x

x-i
K2(x, i) -0(x-i) -fW(x-S—n) 0(rf) dr,. (3.12')

X

Verwendet man jetzt (1.3) und (1.11), dann gilt offenbar

| Kx(y; x,S)\< A(l + A) .-<--*> B e^™*» (3.13)

für läy
| K2(x, i) | < _4(1 + A)e-X Be~x (3.14)

für | g 0

Woraus man leicht mit (1.3) die Abschätzung gewinnt

\X2n(y>x)\ <AB2ne-2ny e™~ (3.15)

I X*»+i(y, *)\<A B2B+1 e-<2"+->" ex (3.16)
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und mit (2.12)

j r(x-i)X2n+1(y,i)di

Hinreichend für (3.5) ist also

<- g2(n+l)g-(2»+l)|

Be-»<1
was für genügend grosse y immer der Fall ist.

§ 4. Eine Anwendung.

Es sei eßx 0(x) beschränkt und

eßx 0(x) -> C für x Ar oo

C

417

(3.17)

(3.18)

dann gilt
e*i"[K{r,r) — 0{O)]-+ für r->

(4.1)

(4.2)f(-iß)
Beweis: Es ist offenbar keine Einschränkung ß 1 zu setzen.

Nach (2.9) bedeutet (4.2)

C
°y[x(v,o)-x(v,y)-*(0)i+ f(-i) für y -> oo (4.2')

Mit den Abschätzungen (3.15), (3.16) und mit (3.8) findet man (4.2')
äquivalent zu

ey^(y)+xx(y,y)]^1r9AW- (4-2")

Aber nach (3.9) und (3.11)

oo oo

Xx(y, y) =fdi W(i- y) 0(y) =Jdr, W(rf) 0(y + rf) (4.3)
o

daher
oo

e* Xx(y, y) =fdr, W(r,)r, e~' [e<"+"> 0(y + rf)] (4.4)
o

In (4.4) kann man unter dem Integral mit y-A-oo also nach (4.1)

oo

**Xi(y, y) "> Cfdr, e~" W(rf) CW(1). (4.5)

Nach (1.6) und (1.1)

eyxx(y,y)^c(1(^r--i). (4.6)

(4.2") folgt aus (4.6) und (4.1).
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