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Quantum Theory of Wave Fields in a Curved Space

by Martin Gutzwiller.*)
(3. IV. 1956.)

Abstract. Wave fields are studied in a space-time continuum whose curvature
is independent of the physical phenomena. It is shown that a space of constant
curvature is the most natural choice for this purpose, not only because of its geo-
metrical simplicity, but because it guarantees the maximum number of certain
constants of motion and leads to a propagation formula whose kernel is only a
function of the geodesic distance. Therefore a de Sitter space is investigated in
detail. A complete set of solutions is discussed for the scalar wave equation and
for the first order wave equation of Dirac. Hadamard’s propagation formula is
written in a particularly symmetric form with the help of a propagation function
which is similar to the well known D-function in flat space. A generalization for
spinors and electromagnetic fields is given. In the latter case Huygens’ principle
1s shown to hold even in this space of constant curvature.

A second general propagation formula is established whose kernel is again related
to Hadamard’s elementary solution. But it leads now to a propagation function
which is similar to the D;-function in flat space. Using this new propagation for-
mula, every solution of the homogeneous wave equation (with a mass term) can
be split into a sum of two such solutions which are shown to belong to two distinct
classes. This separation is uniquely determined and invariant with respect to the
group of motions. Moreover in the case of a spinor field these two classes are trans-
formed into each other by the operation of charge conjugation. Therefore they are
interpreted as states of “‘positive energy’ resp. ‘‘negative energy’’, although there
does not exist in this space an operator like the Hamiltonian in flat space. Finally
the various propagation functions are represented as sums over the complete sets
of solutions which were mentioned previously.

As an example a process of second quantization is applied to a spinor field which
is coupled to a pseudoscalar field. The method imitates the old non-relativistic
procedure for a particular space-like surface, but the result is invariant and com-
patible with the field equations. If the coupling between pseudoscalar and spinor
field vanishes, all the field operators can be explicitly stated in terms of the com-
plete sets of solutions. This leads at once to general commutation rules using
Hadamard’s propagation formula. Moreover the vacuum can be defined in accord-
ance with Dirac’s hole theory. Therefore all the necessary elements are assembled
for studying the various radiation effects in this more general scheme.

*) Present address: Exploration and Production Research Division, Shell Devel-
opment Company, Houston, Texas, U.S.A.
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Introduction.

The theory of quantized fields is usually restricted to the assump-
tions which are made by the theory of special relativity in its classi-
cal form. These assumptions can be slightly generalized, without
however changing in any way the conceptual basis of special relati-
vity. It is indeed possible to replace the flat space-time continuum
of special relativity by a curved continuum, provided the curvature
does not depend on the physical phenomena which take place in it.
Thus 1t will be assumed 1n this investigation that the metric tensor
of the space-time continuum is known a priori in a particular system
of coordinates. Contrary to general relativity there shall be no inter-
action between the geometry and the physical events. Therefore
no argument will be used which would properly belong into general
relativity.

Among the many possible space-time continua the spaces of
constant curvature have received special attention from several
investigators?). Their reason for doing so is not always quite clear
except for the fact that a space of constant curvature has many
simple geometric properties. However 1t is more satisfactory to
use an argument of the following type: Unless a space does not
possess a number of geometric properties (which will be enumer-
ated 1n section 1), it does not constitute a proper basis for the de-
scription of physical phenomena in the sense of special relativity.
It will be shown that only a space of constant curvature has the
required properties. Moreover the theory of quantized fields will
be discussed in detail for the special case of a de Sitter space and
all the essential elements for such a theory will be assembled.

It 1s difficult to predict the advantages and the disadvantages of
this theory compared to the ordinary theory of quantized fields in -
flat space. For instance 1t may be of some help to have a denumer-
able set of independent solutions for the wave equation, as opposed
to the non-denumerable set in flat space. The use of a space of
constant curvature can indeed be interpreted as a ‘“‘quantization’
of the momentum space, and it does not have the drawbacks of the
“big but finite’’ box which is usually invoked in order to make the
process of second quantization in flat space easier to visualize. As
all the important D- and S-functions are explicitly constructed in
this investigation, and as their connection with the solutions of the
first and second order wave equation is shown to be the same as
in flat space, all the formulas for the various radiation effects in flat
space can at least be written down also in this space of constant
curvature. But the numerical evaluation is much more complicated
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than in flat space, although the labor can be reduced by using the
geometrical properties of the space, such as the group of motions.

The flat space does not seem to be simply the limiting case for
a space of constant curvature whose radius of curvature increases
indefinitely. This might be true locally, but it can hardly be so in
globo, because the space which is studied in this paper has the topo-
logy of a cylinder, not that of a plane as the flat space. Moreover
there are ten independent constants of motion in this space of
constant curvature, but none of them or no combination can be
compared to the Hamiltonian which plays such an outstanding role
in flat space. Therefore the limit of vanishing curvature will not be
discussed, although it seems to the author that the Compton
wavelength of the elementary particles should be considered as very
small compared to the radius of curvature of the space.

1. Some characteristie properties of a space of constant eurvature.

The distance between two neighboring points is given by the
known quadratic form
ds? =g, dxtdx’ (1.1)

(latin indices run from 0 to 3, the summation is made over the
indices which occur twice), which has the signature

— (1.2)

All the notations are chosen in accordance with EisenuArT?). (E.g..
- covariant differentiation is denoted by a comma, etc.)
The condition for constant curvature

By =K (Gni 9ir — G 93) (1.3)

can be obtained as a consequence of certain requirements. Thus 1t
results if the Riemannian curvature at each point is required to be
the same for every orientation (Theorem of Schur). Similarly equa-
uon (1.3) follows from the existence of a group of motions such that
each point and a quadruple of directions in it can be transformed
into any other point and an arbitrary quadruple of directions in it
(Theorem of Bianchi). Two other arguments will now be considered
which also lead to a space of constant curvature.

Suppose that it has been possible to define a symmetric tensor 1';;
in terms of some field quantities in such a way that

g* Tij, =0 ' (1.4)

as a consequence of the field equations. If X and 2" are two arbi-
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trary space-like surfaces which enclose the volume V, it follows from
- Gauss’ theorem that

: 1 [ 090 o g7 -
fg”“l“dfk /gf T;dZ = [ 28k Tiegy. (1.5)

P
The signs of d2) and dEk are determined such that
oxtdX;, >0, dxt'dX/ >0 (1.6)

for time-like displacements da? resp. dz which point toward the
future. 2 is assumed to be in the past of Z. Equation (1.4) implies
that the integral

[g*T:; dZ, (1.7)

%

is a constant of motion for the field quantities under consideration,
provided the coordinate system 1s such that

0/0x%(gs) = 0 (1.8)

for the particular coordinate x¢ and for all indices 7 and k. Equation
(1.8) implies that zf1s the parameter of a group of motions. There-
fore the existence of the maximum number of ten independent con-
stants of motions (1.7) follows from (1.4) provided the space 1s of
constant curvature.

The work of Hapamarp on Cauchy’s problem3), 1.e. on the in-
homogeneous wave equation

97 sy — %2y = f(x), (1.9)
1s of fundamental importance for any field theory of elementary
particles. IIapamMARD’s main result can be written In some spaces
with the help of a Green’s function D(z, &) in the form

/Da,g dV+/(2P_<-“. ) (&) —D(x, & 2L)dxi. (1.10)

05‘)

2 is an arbitrary space-like surface and V is the volume between
the point  and the surface 2. The sign of d2'is determined accord-
ing to the convention (1.6). D(x, &) vanishes outside the light cone
of z. Its behavior inside the light cone of z 1s intimately connected
with HapAMARD's elementary solution of the homogeneous wave
equation [1.e. (1.9) with f(z) = 0], and it is dictated only by the
geometry of the space and the value of the mass constant »21n (1.9). -
It seems to the author that D(z, &) 1s purely a function of the geo-
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desic distance between the point x and the point &, if and only if
the space 1s of constant curvature.

These characteristic properties of a space of constant curvature
are just what we would postulate for a curved space whose geometry
1s independent of its physical content. It would indeed be hard to
understand the lack of symmetry which is inherent to all spaces of
non-constant curvature, without assuming some interaction be-
tween geometry and physical phenomena. On the other hand there
seems to be no a priori reason which would exclude the spaces of
nonvanishing constant curvature from further consideration. There-
fore it was thought worthwhile to examine in more detail such a
space.

2. The de Sitter space.

In assuming (1.3) a new ““constant of nature’”, namely the radius
of curvature of the space, 1s introduced into the theory. It is there-
fore convenient to chose such units as to make this radius equal
to one unity of length. Moreover the time scale and the mass scale
are determined by putting equal to one the velocity of light and
Planck’s constant divided by 2 zz. Then all physical quantities are
expressed in natural units.

A space of constant curvature can be imbedded in a five-dimen-
sional flat space?). There are only two cases in accordance with the
signature (1.2). In this investigation only the case 1s studied which
leads to space-like geodesics of finite length and time-like geodesics
of infinite length. This space can be most easily described by the

Weierstrassian coordinates z* with «*= 0, 1,..., 4. Equation (1.1)
becomes : . :
ds? = ¢, 5 de* de” (2.1)
with |
¢, 522" =1 (2.2)
and
Cop=—1,63 =Cop=Cgg=Cyy=1,¢,,=0fora+f. (2.3

(Greek indices run from 0 to 4.) Moreover the curvature K, in (1.3)
1s uniquely determined as
Ky =1 . (2.4)

The geodesic distance s between a point P = (29 ...,2%) and a point
Q = (&° ...., £% is given by

cos s for space-like connection,

: . ) 2.5
cosh s for time-like connection. (2.5)

Cup? LF =
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The group of motions is the group of linear transformations

B = gl 25 ' (2.6)
such that L
Cup? 2’ =, "2 (2.7)

However the invariance of the physical laws will be postulated only
with respect to the subgroup which does not reverse the time axis.

Applying the method of Courant and HinBerT or of Riesz?),
equation (1.10) can be derived with D(z, &) given by

27-e(2°—C%-D(x, &) = d(sinh?s) +
+1/2(1—#x2/2) F(8/2 +1ia, 3/2—ia, 2; —sinh?s/2), (2.8)

h
where fo = (9/4 — x2)12 2.9)

— 41 for 20> 20,

=20 = _ 1 Iof &2 <, 25 (2.10)

The usual notation for the hypergeometric function is used. As » is
the reciprocal Compton wavelength of a particle, one has in most

oaAnes 2| > 1. (2.11)

Therefore if x is real, o 1s real too and D(z, &) 1s a real function of
the geodesic distance s. But it will be seen in section 5 that « has
a small 1maginary addition in the case of a spinor particle. D(z, §)
1s then a complex valued function of the geodesic distance.

The transition from Weierstrassian coordinates to an ordinary
coordinate system can be made if the 2* are known functions of
z% z!', x2, 23 in accordance with condition (2.2). It follows then
from (1.1) and (2.1) that

9i; = caﬁza’ izﬁ3j5 (212)

whes 2y = 01007 (&%) .

For instance insert into (2.12) the expressions
2% = ginh 9 #* = c¢osh &% *{x*, 2%, z®) for & = 0. (2.13)

It follows that
Joo = — 1, gso = 0, g;; = cosh?z%g,; for 1,7 £ 0 (2.14)
with 4
gis = 3 (0)0x? %) (0)0x? 7). (&.15)

a=1
The coordinates z!, £2 23 describe the four-dimensional unit sphere
and g,; 1s the metric tensor for the unit sphere.
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3. The solutions of the scalar wave equation.

The homogeneous wave equation can be separated in the coordi-
nate system (2.14). Writing

P(2) = Yu(2®) Y7 (2, 22, 2%), (8.1)

Y~ 1s found to be an eigenfunction of the Laplacian
3
A =g 2 3 0/0xi(g"? gt 0]0?) (8.2)
1,0=1

on the unit sphere. Therefore Y* is a generalized harmonic and can
be treated as the ordinary spherical harmonics®). It follows in parti-
cular that

AY: = —m(m + 2) Y4, (3.3)
The (m -+ 1)2 eigenfunctions are orthonormalized by

/Yg,; Yu* Uz d3g — 6 (3.4)

W

where the star denotes the complex conjugate function. This leads
to the addition theorem?)

Va(cos 6) = X YE (21, 22, 28) YAH (&1, £2, £3) (8.5)
"
with V(cos 6) = (m+1) sin(m+1)o- (2n2sin o),

where the geodesic distance o on the sphere is given by
4
cos o = 3 f¥xt, x?, x8) f*(&Y, £%, £°). (3.6)
=1

The equation for y,,(z° becomes with (3.1) and (3.3)
1

cosh® 2?0 da®

m(m+2)
cosh? 20

Ym+ 22y, = 0. (8.7)

(cosh3 g ‘f{i’g ) -+
(m 4 1) can be compared with the absolute value of the momentum
in view of (3.3) and also because there are (m + 1)2 solutions in the
range (m — Y5, m + 1%4) of m. Moreover (3.7) shows that y,, oscillates
with circular frequency (x2+ (m + 1)2)V2 for |2°| <1, provided
(2.11) holds. An expansion in terms of increasing m corresponds
therefore to an expansion with respect to increasing momentum.

With z =4 sinh 2z° the function y,,(z°) can be written in terms
of generalized Legendre functions, namely

Ym(2®) = (@ —1)7EPEH p(2) or (22—1)72QLT (z)  (3.8)

*
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in the notation of Hosson®). Another pair of solutions can be written
in terms of hypergeometric functions

Tl ") = coshmm"-F(l/Q (m+8/2+ia), 1/2(m +8/2—1a), 1/2;

— sinh? a:") ,
hm(2°) = cosh™ z°-sinh 20 F' (1/2(m + 5/2 +ie), 1/2(m + 5/2 — i ),
8/2; —sinh? z9). | (3.9)

g, and h,, have simple initial values for z° = 0.
In order to study the asymptotic behavior of y,(x° for large
values of z° define moreover

I'(1+4a) gF)(x% = I'(m + 8/2 + tax) - coshm g0+ g (M + 32+ i) 2°

F(m+38/2, m+8/2+ix, 1 +i0; —e¥2), (3.10)
I'(—m—1/2 + 1) B (29 =T'(1 o) coshm g0 ™ (m T 8/2—im)a®,
F(m+8/2, m+8/2—ia, 1 —ia; —eT25, (3.10)

which are again solutions of (3.7). At the same time they yield
asymptotic expansions for z°>+1 (upper sign) and for 2° <—1
(lower sign). The linear transformation which transforms the pair
(g5, RGP into the pair (¢4, K 1s given by
¥ -1)m sin ¢ a7 E

(qujan)_l'(—cosing-)cotgiocn (=1)ym+1 ) (8'11)
In view of the simple exponential behavior of the solutions (3.10)
for 2°> + 1 resp. for z°> — 1, we could have hoped to find a
simpler connection between the remote future and the remote past.
In particular this might have yielded a convenient way of defining
solutions of positive resp. negative “‘frequency’”. But the matrix
(3.11) shows that this is not feasible. A quite different method waill
therefore be used in section 8 to bring about such a distinction which
1s of prime importance in order to apply Dirac’s hole theory.

4. The electromagnetic field.

Maxwell’s equations for the skew symmetric tensor F,; of the
field strengths are written as usual

Eijp+ Fp,t B =0, (4.1)

9% Fy s = o, (4.2)

where J, 1s the external electric current. (4.1) guarantees the ex-
1stence of a vector field 4;, such that

Fy = Ai,g - Af,z'a (43)
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where A4, 1s determined by F,; up to the gradient of an arbitrary
scalar field. Equation (4.2) demands the continuity equation

g% d; = 0. - (4.4)
Inserting (4.3) into (4.2) it follows with (1.8) and (2.4) that
| G Ay — 8 Ay — g Ay = T 45)
With the help of Ricel’s identities and (4.4) it follows that
g A, =0, (4.6)
Therefore the Lorentz condition |
g9 4; ;=0 (4.7)

can be considered as an initial condition rather than an identity to
be satisfied by the vector field 4,. With (4.7) the field equations
(4.5) for 4, are reduced to

gi.‘i' Ak,” — 3 Alc e Jk' (48) .

But these equations are not suitable for computations because there
does not seem to exist a coordinate system in which each potential
A, appears in exactly one equation.

Such a separation of the components of the vector field 4, can
be achieved as follows. Define :

B* = 2%,9" 4, (4.9)
with the help of (2.12). This gives the identity
B = 2%, (g% A%, ;; — 8 A%) — 2 2*gi 4, , (4.10)
where the d’Alembertian [] is defined by
0 — (—g)~"20/0a*(—g)"2 gt /001 —2. (4.11)
Moreover it follows from (4.9) and (2.2) that
6,58 BF = U, (4.12)

There exists a one to one correspondence between the four potentials
A; which satisfy (4.7) and (4.8), and the five potentials B* which
satisfy (4.12) and

[1B5%== %, 4% d;, (4.18)

It is possible to find a complete set, of solutions of (4.12) and (4.13)
if J;, = 0. This set 1s sumilar to the solutions of the homogeneous
wave equation in section 3.
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Each one among the equations (4.13) has the form of equation
(1.9) with =2 = 2. Equation (2.8) shows that D(z, &) has only the
d-like singularity on the light cone in this case, and vanishes every-
where inside the light cone. This 1s exactly the behavior of the D-
function for a wave field of vanishing mass in flat space, and 1t can
be interpreted as the validity of Huygens’ principle for the electro-
magnetic field in the space of constant curvature. The similarity of
the operator (4.11) with the d’Alembertian in flat space can be re-
cognized?), if the following coordinate system is used

-1 0 0 O
01 0 0 .
g = V2 0 0 1 0> with v =14+ 1/4 (— 22+ 22 + 25 + 22),
0 0 0 1

so that 1t follows according to (4.11) that
[ = »3(— 0%/0x2 + 02/022 + 0%/x5 + 0%/0x) »—1.

5. The spinor field.

According to Dirac’s method for treating the spinor field in a de
Sitter space!?), the Weilerstrassian coordinates are interpreted as
cartesian coordinates in a five-dimensional flat space and the space
of constant curvature 1s given by (2.2). In order to make the five
coordinates 2* more symmetric, introduce

W =18% Yy, =" for a + 0. (5.1)

Moreover the field quantities are written as homogeneous func-
tions of y,. The differentiations with respect to y, occur only in the
combination

Mys = Yo 0/0Y 5 — Y5 0/0Y,, (5.2)
which is compatible with the condition (2.2) or
Yo Yo = 1. (5.3)
The wave operator (4.11) can be written as
1+ 2 »vm{? (m, 5)2. (5.4)

With a set of five Hermitian 4 by 4 matrices y, such that

Va yﬁ “F yﬁ Va = 2 50(5 I (5'5)
and
YoV1V2VsVs = I (unit-matrix), (5.6)
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a first order differential operator M is defined by
M = 2 y(zlyﬁ mocﬁ’ (5‘7)

a<fi
which has the property
(M —8/2)2 = — ] + 1/4. (5.8)

The 4 by 4 matrices act on a spinor y (1-column matrix) and it is
useful to define an adjoint spinor 9" (1-row matrix) by

pt = 19*y,, (5.9)

where y* 1s the 1-row matrix whose elements are complex conjugate
to the elements of y. A current vector J, can be derived from the
five components

Ja=PTVe¥W — Yu Yp P V¥ (5.10)

where ¢ and v are two arbitrary spinors. The relation between J;
and 7, is the same as between 4, and ¢+B°, B?Y, ..., B* using (4.9).
This leads to the identity -

g Sy =@y (M—2)p—g* (M+2) yy, (5.11)

where the arrow indicates the spinor upon which the differential
operator M acts, and where vy is given by

Y=V Yq- o (512)

With a linear transformation (2.6) of the coordinates, the spinors
undergo a linear transformation /1, namely

p— Ay, g =yt A, (5.19)

The five components j, transform like the coordinates and the
- operator M undergoes the transformation

M= AMA, (5.14)

For the reflection of the spatial coordinate y, (« + 0) we have
A= (5.15)
The first order equation of Dirac for the free spinor is given by

(M—2+1ia)p=0,

-
yH(M+2+ia) =0, (5-16)

where a is real and can be chosen positive because

y(M—2) =— (M—2)y. (5.17)
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It follows from (5.8) and (5.16) that
Oy — (a2 +1a)y = 0. - (5.18)

On the other hand if y is a spinor whose components satisfy the
second order wave equation (5.18), then the spinor

p=DM-—1-—10a)y (5.19)

satisfies the first order wave equation (5.16) because of (5.8). More-
over the divergence (5.11) vanishes for two arbitrary solutions ¢ and
p of (5.16). Therefore the integral

/"<P+ Va¥ Y, 42" (5.20)
2".’

1s independent of the particular space-like surface 2. Thus (5.20)
1s an invariant scalar product for two solutions ¢ and y of (5.16)
with a positive definite value if ¢ = .

6. The solutions of Dirae’s equation.

A complete set of solutions for Dirac’s equation can be constructed
with the help of an operator N which is given by (6.1) and is related
to the absolute value of the momentum (cf. the discussion after (3.7)
concerning the index m in the solutions of the scalar wave equation).
It will be convenient to use such a set of solutions in order to re-
present various propagation functions. The operator

1o..4 '
N = 7o Zrarems—32) (6.1
a<<fB

is Hermitian for spinors with the norm (5.20), where the space-like
surface X' 1s given by gy, = const. or also p = const. with

o= (¥} + 3+ w5+ y)'" (6.2)
The same 1s true for the operators
M, ,=1i(m,z+1/2y,v,) for « g0, (6.3)
The variables y, and ¢ can be written as
Yo = 1 sinh 2% o = cosh z° (6.4)

according to (2.13). Finally define an operator 5 by

4
0N = t¥9 2 Vo Y- (6.5)
=1
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The following relations are easily proved

IN,y] =[N,q]=0,

[N, o] =[N, 0/d0] =0; (6.6)
[Mnl’ y(,]:[M“, 77]:0, _
[M,,;,e] =[M,;, 0/0¢] = 0; ' (6.7)

i[Mxl’ M,uv] = O%MM}IW + Olny,u —— awaly, —0,,M,,; (68)

Ap xy?
(M, ,, N]=0; (6.9)

where always », 4, u, v + 0 and [,] stands for the commutator. More-
over

[v0, €] = [0, 0/00] = 0,

L 6.10
o] =[m 0/0e] = 0; 1510}
nye+von =0, % =yi =L (6.11)

With (5.7) it follows that

M = 5(0/0x° + 3/2 tanh z° + y,(1 — 5 tanh 2% N +8/2, (6.12)
and equation (5.16) becomes therefore
{0/02°+3/2 tanh &0+ (y + tanh 2°) y, N + i (a +3) n} p=0. (6.18)

If the spinor p is a solution of (5.16) and belongs to the eigen-
value n of N for a particular space-like surface z° = const., 1. e.
if for a particular value of 2° we have

Ny =ny, (6.14)

then (6.14) holds for all values of 2° because of (6.13) and (6.6). The
same 1s true for M, ; because of (6.7) and (6.9). In view of (6.8) it
is therefore possible to find solutions of (5.16) which are simul-
taneous eigenfunctions of the operators N, M;,, and M;,,. The

eigenvalues of these operators can be derived by v.p. WAERDEN'S
method!!) and with the help of the formula

1+(* 12 j: M34)2 + (M23 :I: M14)2 + (M31 iM24)2 - (N:!:I/Q‘)z (615)

The eigenvalues of N are then found to be the positive and negative
halfintegers except + 14 and — 5.
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Equation (6.14) can easily be discussed in the special representa-
tion of the y-matrices given by

o= (8 %) (0 d) e

where I, oy, 0,5, 05 are the usual 2 by 2 spin matrices. With

00 =0, Y, + Oy + OzYs + "5_'?!41’
EO0T=0, Y, + OaYy + O3y — VYs 1,
1t follows that

(6.17)

07 o1

Equation (6.14) splits into two independent couples of first order
equations in the coordinates of the four-dimensional sphere o =
const. Therefore (6.14) has two types of solutions: " has vanishing
third and fourth components, " has vanishing first and second
components. A correspondence

p" =y, v =y’ (6.19)

can be established between " and v ", which preserves the normali-
zation and the eigenvalues of N and M, ; because of (6.6) and (6.7).
Only »’ has to be discussed therefore. The 2 non-vanishing com-
ponents of ¢’ satisfy the equation

Ay = —((n—1/2)2— 1)y, (6.20)

which 1s 1dentical with (3.8) if (m + 1)2 = (n — 1%)2 with m = 0.
Moreover it can be shown that there is exactly one eigenfunction »’
for every possible set of simultaneous eigenvalues N, M;,, and Ms,,,
and these eigenfunctions form a complete set for the spinors of the
type v’ for a particular value z° = const.

An arbitrary spinor w which belongs to the eigenvalue n of N,
can now be written as

v = ¢(at) y/(h, a% 2%) + p"(a%) (0t 2% 29, (6.21)
where the functions ¢'(z° and ¢"(z° are determined by
(0/02° — (n — 3/2) tanh 2°) " + (n + i(a + 1/2)) " =0, | (6.22)
(0/02° + (n + 8/2) tanh 2°) " + (—n+1i(a +1/2))¢" = 0. |

After eliminating ¢ ", it 1s found that ¢’ satisfies (3.7) with (m +1)2=
(n— 15)% ¢" satisfies (3.7) with (m + 1)2 = (n + %)% In both
cases »2 1s replaced by (o + ¢/2)2 + 9/4. The initial values of ¢’ and
@" can be chosen arbitrarily.
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7. The spinor field in arbitrary coordinates.

For some applications it is more convenient to use the spinor
formalism in arbitrary coordinates which has been developped by
several authors!?). It is sufficient to list the results for the space
of constant curvature. Define in terms of the matrices ¢, and y in
(5.5) and (5.12)

&‘“,u = (/L yu _ ?’y yy T yy)V’
A,=120y,~v,7) (7.1)
A =yyp;
O(J = y,u,y 4# ’
&« :y,u —,u:uy7 (72)
A=y, Aﬂ,
from which follows that
Aa; and A« are Hermitian, (73)
;oo =2¢g,;1, a;etoan;, =0, a?=1. (7.4)

The covariant derivatives of a spinor ¥ (1-column matrix) and for
a spinor @ (1-row matrix) are given by

Y, =000, W+ A4,¥; ®,,=0/0xi®—DA,. (7.5)
A spinor ¥+ of the type @ can be defined from ¥ by
=%, (7.6)

where ¥*1s the 1-row matrix whose elements are complex conjugate
to ¥. The covariant derivatives of «;, o, and 4 are defined by

o5 = 0/0x7 o0; — I"i]; o + Ao, —x; A; = 0,
a,; =0/0xia + Ao —ad; =0, (7.7)
A,; =0/00'd —AA;—AF A =0,

where A, is the Hermitian conjugate matrix of A;. The interchange

of covariant differentiation on a spinor gives the following simple
result with (1.3) and (2.4)

HU:M—SP,M:PMIP; @,“_(D,”:_@P“ (7°8)
P;;= 1/4(0%'0%—0%“3‘)-

with
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The o, in (7.1) has been chosen such as to change equation (5.16)
into

WV, +a¥?=0; Pl —a¥?*+=0 (7.9)
with o/ = g7¢a,;. This gives at once (4.4) with
Jp =¥+ o, V. (7.10)
Equation (7.9) follows from the Lagrangian
L=¥te*¥,, +a¥*+¥, (7.11)
The energy-momentum tensor |
T, =14+, ¥, ;+¥ta,¥,, — ¥t ;¥ — VPt 0, ¥) (7.12)

satisfies (1.4) by virtue of (7.8) and (7.9).

The propagation formula (1.10) can be applied to each component
of a spinor with the help of (5.18). The term with ¥,;d27 can be
transformed because of (7.9). It follows that

W(a) = — [ K(x,8) a,(§) P(E) A2, (7.18)
with '
K(z, &) = — «*(£) 0/0&* D(x, &) — (@ — 4) D(x,&),  (7.14)
or

K(z, &) = —i(M,—1—ia) D(x, £, (7.15)

if the coordinates x? and &¢ are replaced by vy, and 7, according to
(5.1). D(z, &) here 1s given by (2.8) with a complex mass term

o= a -+ 1/2 (7.16)
according to (2.9), (5.18), (4.11), and (1.9).

8. The second propagation formula.

A solution ¢(s) of the homogeneous wave equation which depends
only on the geodesic distance s to a fixed point, has to satisfy

@ +8cothsg + x2¢p =0 (8.1a)
for time-like connection,

@ +3cotgsp —x2p =0 (8.1b)
for space-like connection,
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where the dot indicates the differentiation with respect to s. In
terms of Legendre functions the solutions are

(sinh s)=* P}, (cosh s), (sinh s)=1Q},_,, (coshs), (8.2a)
resp.

J

(sin s)~* P}, _, (cos s), (sin 8)~1Q}, ., (cos ). (8.2D)

A propagation function D,(z, &) can be constructed from (8.2) which
is regular for fixed x and varying & except on the light cone of «,
and the leading term at the light cone is (2 #2%s2)~! for space-like
connection and — (2 72s2)~! for time-like conmection. D,(z, &) is
given by

(272sinh §)~1{Q;,_1,(cosh s) +7/2 tang 1«7 P}

resp.
(2 n? sin 8) 1 {Q}, 1, (cos s) +7/2 tang taz-P},_, (cos s)}. (8.8h)

,(cosh 5)}, (8.8a)

to—1%

For points & which cannot be connected with the point = by a
geodesic, D,(x, &) can be continued without singularities and still
be a solution of the homogeneous wave equation.

Consider now a volume V which 1s contained between two space-
like surfaces 2" and 2" in the past of the point P = (29, 21, 22, 23).
Outside the light cone H of P a cone H'is chosen which is generated
by geodesics through' P. A similar cone H" 1s chosen inside H. V is
defined by the space between 2" and X" except for the space be-
tween H' and H". Let S be the surface of V'; S consists of parts
which belong to 27, 2, H’, and H". With an arbitrary function v
and with f defined by (1.9) i1t follows from Green’s formula that

[Dy(,8)16) aV= [ |Di(a,8) 55 — 25Dyl s (8.4
4 S

The sign of dS7 1s determined such that
éx? dS; > 0 : (8.5)

for an arbitrary displacement dz/ pointing out of V.

The left hand side of (8.4) has a well defined limit as H' and H"
approach H, provided that for the intersections ), ¢’, and Q" of
a space-like curve with H, H’, and H" we have

distance Q"
distance QQ" 1. (8.6)

The contributions to the right-hand side of (8.4) which come from
2, 2" H', and H"” do not tend to a finite limit separately. However

lim
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the contributions from H” and H" can be integrated exactly between
27 and 2, and the result of this integration just cancels the terms
in the contributions from X’ and 2 which do not tend to a finite
limit. Therefore equation (8.4) can now be written with the con-
vention (1.6) a

3 / [Du(e8) 58— 255 wie))azy =

=5 /{ (2,8 20— 22& 8 o)) axir 19 [Dy(w,0) ) aV. BT)

The symbols & and P indicate the limiting process which has to be
used in order to make each term well defined. P 1s a Cauchy prin-
cipal value connected to the condition (8.6). In each of the two
surface integrals & means that the integrand has to be expanded
about the intersection of 2 with H in powers of the distance perpen-
dicular to this intersection and only those terms have to be retained
which give a finite contribution to the surface integral in the sense
of a Cauchy principal value with condition (8.6). With these defi-
nitions for B and § equation (8.7) holds even if P has an arbitrary
position with respect to 2 and 2", provided P does not lie in 2"
or 2.

As a consequence of (8.7) an arbitrary solution y of the homogene-
ous wave equation has a unique adjoint function v which 1s given

by

=8 / {059 ~p(§) —D(2, ) 3?’*’} dx’. (8.8)

The transition from u to % is invariant with respect to the group
of motions which was defined in section 2. Moreover v (x) satisfies
the homogeneous wave equation. If the correspondence (8.8) is
symbolically represented by T, it will be shown that

T e — J, (8.9)

where I 1s the 1dentity. Therefore each solution y(z) of the homo-
geneous wave equation can be uniquely written as the sum of two
solutions »P(z) and »)(x), 1. e.

w(x) = p(z) + ), (8.10)
Py = 1/2(E+1iT) p, 7 =1/2(E —iT) p.

where

In the case of a spinor v which satisfies equation (5.16), the integral
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(8.8) can be transformed in a way similar to (7.13) with the help of

(7.9). This gives

P(x) = — | Ky(2,) 0, (6) p(§) A2 (8.11)

with £
K(z,& = —4M, —1—1a) Di(z,§).

Because of (5.19), v (x) 1s again a solution of Dirac’s equation (5.16).

To prove (8.9) it 1s sufficient to show 1ts validity for the complete
set of solutions of the homogeneous wave equation which was dis-
cussed in section 3. The transforms y for this set follow from writing
(8.3b) as

= 3¢, Vin(cos 8) (8.12)
with =0

and Cop Gy = — 1

d,=—m"2cos ianf(l/Q(m—{— 5/2 +ioc)) F(1/2(fm—{- 5/2~——ioa))><
< T(1/2(—m+1/2+ia)) T(1/2(—m +1/2—ia)).

Formula (8.12) is a consequence of the addition theorem for gene-
ralized Legendre functions'®). The transforms % are

dmhm(mo)yﬁw fOI‘ gm( )Yﬁﬂ
Cm Gm (%) Y2 for  h,(z% Y4, )

and the relation (8.9) follows immediately.
D(zx, &) and Dy(x, &) can be written as

D(@,8) = X (hn(2®) gn(E%) — gin(2®) B (£°)) Vin(cos o), (8.14)

m

Dl(m’ f) = (Cm gm(wo) gm(é:o) - dmhm(a’l ) m(é:())) (CO% G) (8]5)

m

These formulas can be proved by inserting them into (1.10) and
(8.8) with (3.5) for a space-like surface x° = const. Another D-func-
tion 1s defined by

2 Dy(z, &) = e(x® — &% D(x, &) + 1Dy(x, &). (8.16)
It has the representation
2 Dy{x; &) =
X i (gn(2) T Tin(20) (g6 F i B (E9) Vinlcos s), (8.17)

with the upper sign for 2° > £° and the lower sign for 2¢ < £°.
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9. The positive and negative energy states of a spinor.

Let ~ indicate the operation of taking the complex conjugate
(not the Hermitian conjugate). A matrix C can be defined!4) (with

CC — unit matrix) such that the spinor ¥ (x) which 1s given by

p(z) = Op(a), 9.1)

1s a solution of (5.16), provided y(z) is a solution of (5.16). In the
set (6.16) of y-matrices C is given by

C=yayay. (9.2)

The correspondence {9.1) between  and % 1s invariant under the
group of motions which was defined in section 2, and it does not
change the current vector (5.10) or (7.10). Let this correspondence
be represented symbolically by S.

The correspondence 7', i.e. (8.8), and the correspondence S, 1.e.
(9.1), are connected for an arbitrary solution y of Dirac’s equation
(5.16) by the relations

(BE+iT)S(E +iT)p =0,

(E—1T)S(E—1T)yp =0, 8a)
or Syt resp. Sy are of the type v resp. p(+.
The relations (9.3) are easily reduced to
TSy =8STy. (9.4)

This last equation can be proved separately for each solution of the
complete set in section 6. Moreover it is sufficient to show (9.4) for
a particular space-like surface, e.g. the surface 2° = 0, because both
spinors T'Sy and STy are solutions of the first order wave equation
(5.16). These two spinors are easily computed for each eigenvalue
n in the set (6.16) of »-matrices with the help of (6.13) and (8.13).
They are found to he equal, provided the following recursion for-
mula 1s true

Cy1 (1@ —m — 2) = cp(ia—m —1) (9.5)

for the coetficient ¢, in (8.18). Equation (9.5) follows indeed from
(8.12), if ¢, 1s defined with the complex mass term o = a + /2.
Equation (8.10) shows explicitly how to split an arbitrary spinor
into ¥ and ¢, and it is now legitimate to interpret 3 as a “‘posi-
tive energy’’ state and (=) as a “‘negative energy’’ state. v‘* is ortho-
gonal to (=) in the normalization (5.20). The spinors in the complete
set of section 6 can therefore be uniquely determined by four labels,
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namely the eigenvalues of the four operators t =T, N, M,,, and
Mg,. The functions ¢’(z% and ¢"(z° in (6.21) can indeed be worked
out fort =+ 1and t = —1.

The matrices K(z, &) and K;(z, &) in (7.18) and (8.11) can be re-
presented as sums over the complete set of spinors v,, where w
stands for a set of simultaneous eigenvalues of t, N, M;,, and Mj,.
It 1s found that

K (z,8) = X, (@) v, (&),
Ky(z,8) = —1 Z ty,(z) v, (&),

2Ty, (&) for 2°0>89,

o= @yt tor <o (08

<0

The proof follows from inserting these formulas mto (7.13) and
(8.11) with 2 given by z° = const. The similarity with the S-funec-
tions in flat space 1s obvious.

10. Example of second quantization.

Consider a spinor field ¥ which is coupled to a real pseudoscalar
field ¢ by a pseudoscalar coupling. The Lagrangian of the system
15 given by

L=i(P+ar W, + « P+ W) +1/2(g% @,; 0 0+ 2202 + ko Pra . (10.1)

The field equations are

V. +a¥ —1kea? =0,
Yt of —a¥W+1keVPtra =0,

gE @, — 22— Ek¥Pta¥ =0, (10.3)

(10.2)

From these field equations follow the equation of continuity (4.4)
with (7.10) and the conservation law (1.4) with the energy-momen-
tum tensor :

T;"k = ?:/4:(T+0€] T!]C + IIIJ’“O(;C W,jb‘“w_l_,kaj ngj+,ja;c gl) +

+@,i 95— 1/2 §:(9™" @y m @, » + %2 @), (10.4)
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Equations (10.2) and (10.3) can be written as integral equations
with the help of Hadamard’s formula (1.10), namely

W(a) ~—ik | K(z,8) a(&) V(&) p(&) AV —
v

—fK@ﬁw«awwda, (10.5)
p(x) = / D(x, &) WH(E) a(&) Y(&) AV +
+[ (2229 o) — D(w,8) 3 Lz (106)

K(x, &) is the same as for the free spinors, whereas D(z, &) is given
by (2.8) with the real mass term 2

The transition from a e-number theory to a g-number theory will
first be made on a particular space-like surface 2’ which is described
by three parameters v, v2, v3. On 2 a vector field 7,(v?, v%, ©?) can
be defined by

d; = r;(vt, v2, v®) do! dv? dv® (10.7)

with the convention (1.6). It simplifies the writing in the forthcom-
ing derivation if this X is assumed to be imbedded in a continuous
sequence of space-like surfaces. Each surface in this sequence is
labeled by a parameter «°, and the points in each surface are labeled
by parameters u!, 42, 42 in such a way, that the curves ' = const.,
u? = const., u® = const. are orthogonal to the surfaces 4% = const.
The parameters «° «!, w2, u® are used as new coordinates and the
new metric tensor has the property

gj() - ng — O fOI‘ j — ], 2, 8. (10.8)

Two auxiliary fields are defined by

B) — (g Ch (g P e, (10.9)
(_52;_0 )
alu) — (—g)e LB (guzgeo 0T (10.90)
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The field equations can now be written as
0/oudd — — 20 0wk (D ey oc¥) + @oco(Zoc ._ziﬁacp+a) (10.11)

0/oulsm = — 2 0/0u ((—g)'% g*- 0 Jour @) +
1

+ (—g) 2 (2@ + kP aWP). (10.12)
Moreover a sort of Hamiltonian Hy can be defined on X by
Hy= [ $(w)dut du? du? (10.13)
with E

) = (—g)"PL—B-0/0u® ¥ — 7-0/0u’gp

This definition applies to each surface in an arbitrary sequence of
space-like surfaces. This i1s important because Hy will be used lat-r
to show the compatibility of the commutation rules with the field
equations. On the other hand H; is not in general a constant of
motion, except e.g. in the following special case. Let the sequence
of space-like surfaces be generated by a 1-parameter group of mo-
tions in such a way that the curves perpendicular to the surfaces are
the trajectories of the motion. The metric tensor does not depend
on the coordinate u° Moreover after a proper choice of the coordi-
nates in the spin space, covariant differentiation and ordinary diffe-
rentiation with respect to u° become identical. Then Hy turns out
to be the same as the constant of motion (1.7) with ¢+ = 0 and (10.4).
However compared to the cartesian coordinates in flat space this
special coordinate system has the disadvantage that it is not regular
everywhere and the surface 2 does not sweep over all points in the
space. A similar situation arises in flat space if one choses a coordi-
nate system whose time-like coordinate is the parameter of a hyper-
bolic rotation (restricted Lorentz transformation). Therefore a gene-
ral coordinate system will be used henceforth.

The components of the spinors @(u) and ¥(u), and the pseudo-
scalar fields @(u) and =(u) are now considered as operators which
satisty on a fixed space-like surface u° = const. the (anti)commuta-

tion rules {@( )} 6., 6 — 1)
o\%), = 104y ?

(o, ) — (1 Wy 05 1018

[2(u), p(@)] = 1id(u—u), (10.15)

[7(u), m(u)] = @), )] = 0;

®,(u) and ¥,(u) commute with ¢(u) and =(w) on u° = const. As

*
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usual {, } stands for the anticommutator and [,] for the commutator.
0(u — u’) 1st the triple d-function for the coordinates u?!, u?, 3 on
the space-like surface 4° = const.

The question arises whether the commutation rules (10.14) and
(10.15) are compatible with the field equations. The propagation
formulas (10.5) and (10.6) show indeed how to compute the field
operators for the whole space, if they are given on a particular
space-like surface. On the other hand the commutation rules (10.14)
and (10.15) can be postulated equally well on any of the surfaces
u°® = const. The two procedures are consistent with each other, if
it follows from the field equations and the commutation rules on a
particular surface «° = const., that the derivatives with respect to
u° of the (anti)commutators (10.14) and (10.15) vanish. It is then
indeed legitimate to put these (anti)commutators equal to a ¢-num-
ber independent of %°. Therefore consider for instance the derivative

0/0u0 {®, (u), ¥, (u)}. (10.16)

It follows from (10.9), (10.10), (10.11), and (10.12) in the usual
manner with the help of (10.14) and (10.15) that

0/0u0 D = i[H,, D). 0/0u’ ¥ = i[Hy, ¥(w)];

10.17
0/0u®n = i[Hy, n(u)], 0/ou® ¢ = i[Hy, p(u)]. ( )

Thus the expression (10.16) becomes
i{[Hys, @,(w)], Wy (w)} + i {D, (w), [Hs, ¥, ()]},
and this 1s written using Jacobi’s identity as

i[Hyg, {D (u), ¥, (u')}].

But this last commutator vamshes, because the anticommutator
{Da(u), ¥,(w')}is a c-number.

The (anti)commutators in (10.14) and (10.15) can be written with-
out the help of the special coordinate system (10.8). It follows from
(10.7) that for instance

{¥,(0), P, ()} = — 161 —0") 4y, (10.18)
(o), @(v)] = 1d(v — v, (10.19)

O =1¥P*eaiz;) and 7=, ¢%T,

with

which 1s obviously independent of the particular coordinate system.
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It is easy to construct operators which satisfy the postulated com-
mutation rules on a particular space-like surface, e.g. £° = 0 in the
coordinate system (2.13). For this purpose the complete sets of so-
lutions which were discussed in section 3 and section 6 can be used
exactly as complete sets of plane waves are used in flat space. But
1t is not necessary here to make an assumption such as the ‘““big but
finite” box in order to make these sets denumerable. If the coupling
between pseudoscalar and spinor field vanishes, 1. e. if & = 0, such
a representation is valid throughout the whole space. Moreover the
commutation rules can now easily be deduced for two arbitrary
points z and & in the space. The propagation formulas (10.5) and
(10.6) with k& = 0 reduce indeed every operator to its values on a
particular space-like surface 2" through the point &, so that (10.14)
and (10.15) can be applied. This gives

{Wol@), Vy(8) } = Kp(x, ).,
ilp(x), (€)] = D(z, &),

and all the other (anti)commutators vanish. Finally the distinction
between ““positive energy’ and “‘negative energy’’ states of section 9
can be used to define the vacuum according to Dirac’s hole theory.
The interpretation of the various field operators in terms of creation
and annihilation will thus be the same as in flat space. Therefore all
the necessary elements have been assembled from which to com-
pute the effects of coupling between the spinor field and the pseudo-
scalar field using the same methods as in flat space.

These methods use expansions of the D-functions which are si-
milar to (8.14) etc. The integrations over the coordinates can then
be performed and one is left with a summation over the parameter
of the expansion. This summation has a very intuitive interpreta-
tion in terms of intermediate states and virtual processes among
them. The difficulty in applying this method to the present case
consists in performing the integration over the coordinates. Indeed
the solutions of section 3 and 6 do not depend on the space and time
coordinates in such a simple manner as the plane waves of flat
space. In spite of these mathematical difficulties it may be of some
interest to investigate the interaction between quantized wave
fields in this more general theory.

(10.20)
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