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On the Energy Spectrum in Quantum Hydrodynamics
and the Theory of Helium II

by A. Thellung.
Swiss Federal Institute of Technology, Zurich.

(8. I1I. 56.)

Summary: The eigenvalue spectrum of the quantum-mechanical Hamiltonian of
non-viscous fluids is calculated in the approximation of large sound velocity and
for low densities of phonons and rotons. The anharmonic potential energy in the
Hamiltonian has no influence on the roton energies in the approximation considered;
all contributions due to the term ~ (p—pg,)?® cancel and the term ~ (o0—g,)* only
gives rise to a renormalization of the sound velocity. Several procedures to cut
off large wave numbers are discussed. They lead to different results, but they all
yield positive rest energies of the rotons and, when applied to He II, energy spectra
of the right form and order of magnitude to fit the experimental data on specific
heat up to temperatures near the i-point.

§ 1. Introduction.

After the energy spectrum of liquid helium postulated by Lax-
pavl)?) had proven to be so successful in explaining and predicting
many properties of He II, several attempts have been made to give
this energy spectrum a more secure foundation. One of these at-
tempts consists in quantizing the hydrodynamical equations of
a non-viscous fluid and looking for the eigenvalues of the corres-
ponding Hamiltonian. For the case of irrotational motion this has
been done by Kronia and THELLUNG?), and the concept of phonons
has thereby become clarified. The theory has been extended by
TrEELLUNG?) and by ZiMANS9) so as to include vortex motions. The
total Hamiltonian is then found to consist of three parts: The pho-
non part of irrotational hydrodynamics, which can approximately
be diagonalized, a roton part, and an interaction between phonons
and rotons. ZimaN®) succeeded in finding certain eigenvalues of the
roton part, i. e. the eigenvalues for one roton present. It is also pos-
sible to calculate the eigenvalues of the roton part when two rotons
are present, but this problem is rather academic as long as the inter-
action part of the Hamiltonian is neglected, which 1s easily seen to |
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modify the energy spectrum by amounts of the same order of mag-
nitude as the eigenvalues of the roton part. In order to avoid a per-
turbation treatment of the interaction we have first tried a method
analogous to the Brocr-NorDpsiECck transformation in quantum
electrodynamics®). However, it turns out that the remaining non-
diagonal term in the transformed Hamiltonian, which 1s a small
perturbation in electrodynamics, is here as big as the original inter-
action. Therefore nothing is gained and it is, in fact, simpler to use
conventional perturbation theory for the original interaction energy.
In the case of liquid helium we shall see that this is not a bad appro-
ximation. One might also try to calculate the quantum-hydrodyna-
mical partition function directly without knowing the explicit
energy eigenvalues. However, it is easier first to determine the
eigenvalues approximately.

Meanwhile a paper by Anrcock and Kuper?)*) (to be referred
to as AK) appeared which gives the energy spectrum for an incom-
pressible liquid (sound velocity ¢, = o0). For ¢, large but not in-
finite they treat the case of one roton present, passing from second
quantization to the representation of the roton in configuration
space. They follow a method of Leg, Low and Pinus8) and Zienau?)
(which is similar to the BrLocr-Norpsieck transformation®)) to
obtain a development in negative powers of ¢,. Setting the anhar-
monic potential energy in the Hamiltonian equal to zero, they give
an explicit expression for the rest energy of a roton ~ ¢;! (the rest
energy of order ¢ disappears), without however evaluating the in-
tegrals involved. Even 1ts sign 1s uncertain.

In this paper we calculate the kinetic and rest energies of the
rotons to the first non vanishing order in negative powers of ¢, (i.e.
~ ¢} for the kinetic and ~ ¢;! for the rest energy). We do not
abandon second quantization and we use conventional perturbation
theory from the very beginning. The contributions of the anhar-
monic terms in the potential energy are fully taken into account
to order ¢;!.

In § 2 of this paper we present the basic Hamiltonian. Two spe-
cial questions are discussed in § 3 and § 4, namely a renormalization
problem arising from the anharmonic potential energy and the
order of factors in the Hamiltonian. § 5 and § 6 contain the calcu-
lation of the roton energies according to a cut-off method proposed
by Zmman. In § 7 other cut-off procedures are examined, and in
§ 8 the results are discussed and compared with experimental data.

*) The author is indebted to Dr.G.R. ALLcock and Dr. C. G. Kuper for
sending him a preliminary form of their manuscript.
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§ 2. The Hamiltonian.

In the quantum hydrodynamics of a non-viscous fluid the Hamil-
tonian i1s known to be simply the sum of the kinetic and potential

energies?)).
H— [ &2 (ivov+E, (o). (1)
/

It is most convenient to express the velocity v in terms of a scalar
potential ¢, the density p and Ziman’s3) variables ¥, ¥*,
vh
v:—ch—wé—Q{EU* vy —ry*vyl. (2)
The four fields introduced fulfil the following commutation rela-
tions?) 5 ]
[0(%), p(x")] =5 8 (x—x), [¥(x), ¥* (x)] = d(x—x'), (3)

all other commutators vanishing. We substitute (2) into (1) and
expand all functions of g in rising powers of the deviation of p from
1ts equilibrium value gg, in particular

_{ZLH_Q_Q:) (0 —00)* _ 4
e Q a e )
and (see for instance KronNrie and THELLUNG3) equ. (31))
5 1 ¢ g, 1(d ¢ d? ¢ )
E, (o) = 210, (e—e0)®+ ET(EE ?)0(9 —00)* + 4 (dg o o ) (e—eg)*+--- (5)

The Hamiltonian is then split up into a sum of terms similar to
expressions (1:7a)—(1-7g) of AK, viz.

Hy, —_—fdsm{%go(v‘?’)z ﬁQ—O(Q“—Qo) } (@) )
14
:fd3 —-g—) (P* Py Py pp (b)
_] Bzl v (P VY —VP* ¥ (c)
ph_fd q;{ Ve (o )I7q9+3,(j9 f) (9*90)3} (d)
2 2 (6)

Hy, = f B 31 (75 ) le—eo)*: (e
Hiy= | @2y (o—oo) {¥* V¥ —VP* W] ®
Hyo= [ 0% (— o) 0 — o) (P* VP —VE* ¥} (g)
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The symbol : (0 — gy)%: in (6e) means that later, when (o — gg)*
will be expressed in terms of creation and annihilation operators,
we shall have to write this expression in the form of an S-product
as defined by Wick19), i.e. with all creation operators to the left and
all annihilation operators to the right. This results from a renor-
malization that has to be carried out on the sound velocity, and
will be explained in § 3.

In (6a)—(6g) the terms with a suffix ph contain only the phonon
fields ¢ and ¢. H,; depends exclusively on the roton fields ¥, ¥#*,
whereas the terms denoted by a suffix int contain both fields. The
primed and double primed expressions are subsequent terms of the
expansion in powers of p — g,. In classical hydrodynamics o — g, is
very small compared with g, for vortex motions and sound waves
of moderate amplitude, so we would expect that also in quantum
hydrodynamics the first three terms (6a)—(6¢) should give the main
contributions to the low energy eigenvalues.

Assuming all field quantities to be periodic in a cube of volume V
we decompose them into Fourier series .

_ 1k x
- 1/2§'|/290 (ap +aXy)e
Rk . : .
0— Q0= % 2, ]/on e ak—“@—k)e vkx

1 ) 1 —ikx
V= X bk, = g Dtk k. (8)

Here we have introduced at once the operators a*, a, b*, b, which
- are seen from (3) to obey the commutation relations characterizing
creation and absorption operators, 1.e.

(7)

[a’k’ (L}i/] e I:bk’ bi'] - 6.’ck’ ’ } (9)
all other commutators being zero.
Then H,;, becomes diagonal3),
1
H, Ezhcgk(nﬁ?), (10)
k

where ng = aiag are the numbers of phonons of wave vector R.
Z1mAN®) has shown that H  takes the form

. . 2 kz' o 7.3k
+2(k+ﬂ) (l+m) bibibkblak-%l,miﬁn}' (11)

k,l,mn
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Here one has to use a cut-off method which allows for the atomistic
structure of the liquid and the finite number of degrees of freedom.
ZIMAN has made 1t plausible that the Fourier series for ¢, o and ¥
should all be cut off at the same maximum wave number K,
so that all sums in (7) and (8) are to be taken only over R’s with
k=|R| <K,. K,is determined by the condition that the number of
possible R’s should equal the number of degrees of freedom, 1.e.

3'1=8N,,. (12)
e K,

N, 1s the number of atoms in the volume V. We are going to use
this cut-off method troughout in our calculations, except in § 7.
Replacing the sum in (12) by an integral, we obtain for liquid helium

Do e
K,= /1872 -2 —1.57 x 10% cm~! (18)
MHe
(my, = mass of the helium atom; p, = density in the absence of
excitations, 1.e. at the absolute zero, ~ 0-145 g cm~3 11)). H, can
be written as

Hrot :2 (AO + Bﬂmz) I\Tm +

m

m< K,
Z n)(L+m)bn by bebyOg vt m+ns (1)
z" s
where
hi2 h2
AU — SQOV %vkz, BO ZW%'I- (15)
k< K, k< K,

Nm = b b is the number of rotons of wave vector m. For liquid
helium, the numerical values of the roton rest energy 4, and the
maximum kinetic energy ByK,2, divided by Boltzmann’s constant
%, become (using (13))

L _ 6.0,

Bos _ 1190 (16)
In comparison, the maximum phonon energy is

oo 98.69 (17)

(co = 239 m sec~112)),
H. . is diagonal for the states where the total number of rotons

Nt = 2, e (18)

m
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(which is a constant of the motion) is 0 or 1. The eigenvalues of H,,,
can also be exactly determined for N,, = 2*). The result 1s that
the eigenvalues show very minor deviations from the spectrum

2 Ay + B, (m* + m'? (19)

(where m and m’ are any wave vectors) which one would have if
only the first term on the right hand side of (14) were present.
This is not surprising, as, roughly speaking, for N, <€ 3 N, the
second term on the right hand side of (14) gives contributions only
of the relative order of magnitude N,,/3 N,. For the application
to sufficiently low temperatures, when the density of rotons is small,
this term 1s negligible. In what follows we shall ignore it. It can
be shown that this 1s completely legitimate for the calculation of the
thermodynamic functions of helium below the A-temperature.

Thus we have reached the result that the transformations (7) and
(8) diagonalize H,;, and, to a very good approximation (if N, <€
3 Ny), also H,y. Simultaneously the total momentum

G =fd3a:é—{gv +vg} (20)
14

becomes diagonal and takes the form

G=%‘ﬁknk+%’hka: 1)

which shows that the phonons and rotons of wave vector k carry
a (linear) momentum p = #R.

However, H;,; (6¢) changes the energy spectrum considerably
(see also AK). These corrections will be calculated in §§ 5 and 6.
Arrcock and Kuper have stated that for the calculation of the
roton rest energy even the terms (6d)—(6g) cannot be neglected;
they will be taken into account in § 6. We finish this section by
expressing (6¢)—(6g) in terms of the creation and annihilation oper-
ators by means of (7) and (8):

k¢,
Hy= =i oy X G ) (-4 %) b s b, (22

km]k+m|<ko

*) The autor is indebted to Professor W. PAULI for very helpful advice in that
question.
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r . R3¢ — 1 |
Hyn = —%V’SQO; {kgzilﬂﬁf(k’ I, m) (ay, a;e Gm — O O Qpe) ~+
k,1,m < K, 7
o 1 * % % (28)
+ D Vkim 51 (R, I, m) (a;, ag a;— agaz @y,
Lim<K,
_kl Im  mk o} (d ¢
f(k,l;m)z-—l‘f‘m—l—m-{‘?%—(%?)o.
The term

08 (d cz)
¢t \do o/o
15 due to the first anharmonic term in the potential energy. From
experiments by Arkins and Stasiowr!®) its value is found to be
about 5; therefore it cannot be neglected a priori.
1 o§ (d* ¢ h? T T o (% % % %
H :———93( ——) klimn (ag af ay, ay —
LAl \dg" ¢ jode¥ k§K+nfO( et Tm
klym,n < K,

24
—datatata , +6atala_a_,— (24)

— 4O 0Oy O g+ O O[Oy Q) -

Here we have arranged the operators in the form of an S-product!?)
as mentioned before. Further we have

y : 3
Hy == 530e, XV @ 00) B b (o B (e ) m) —
kym, |k +m| < K,

. R2 / h =
"7’ sgovl 2901/60’,.',‘%;1'/3 (a% —a-j) x

?‘:k: l,m,ﬂ < Kﬂ

X by by b by (R+1) U+M) Op g jimtn- (25)

Of Hj; we shall only need the expectation value for no phonons

present, so we can immediately take the vacuum expectation value
of (o — 0,)2. This yields

(Hi’;lt) ph vac. — (ggﬁ_:fz 1) {h—io— 2 (A0+B0m2) b::t bm +
J

m
j<Kﬂ m<.KD

h . 8
+mk’2(k+n) (l+m) b;b: bkblak-i-l,m-!—n . (26)

Lm,n
klLm,n <K,

Again, as in (14), the terms ~b* b*bb 1n (25) and (26) can be
1gnored for small roton densities.
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§ 3. Renormalization of the sound veloeity.

The term ~ (0 — go)* in the development (5) of the potential en-
ergy leads to a renormalization problem. This question is indepen-
dent of the roton fields and, to the approximation considered here,
it 1s also independent of the third order term for the phonons, Hj,.
We therefore omit them in this section and investigate only the
Hamiltonian :

fd%{ 00 (7 )? + 52 o (0—00)* +ile—e)t),  (27)

fe= (‘lz "2) (28)

de® ¢
where (0 —p,)* is now to be written as it comes from the develop-
ment of E, (5) (not as an S-product). A new symbol ¢; has been
introduced in (27), because the quantity denoted by this will turn
out to be different from ¢, of § 2. We develop ¢ and ¢ — g, in Fou-
rier series analogous to (7)

1 D
P = W%‘ﬁk (ap + a*_g) €**

1 29)

0 —00 =7y 2 vkt (tk —a-g) e,
2

where ag and ag are supposed to be annihilation and creation oper-
ators respectively, thus obeying the commutation relations for the
a’s and a*’s in (9). The functions g, and y, are left undetermined
for the moment ; we merely assume them to be real c-numbers which
depend only on the length of the vector k. The commutation rule
(3) for ¢ and @ requires that

2 By =h. (30)

Now we substitute (29) into (27). By rearranging the a’s and a*’s
so as to get all terms into the form of S-products (all a*’s to the
left, all a’s to the right) we obtain supplementary terms due to the
commutators, and the final result 1s

ﬁ=%‘902f‘~3/€7£2(aka_k+afka;§+2aiak+])+
2
+ 52 Ny (—aga_p—a¥pag + 2afag + 1) +
k
_{(nyn)zy%ﬂ(_ﬁa‘ka’—k“_ﬁﬂ'ika;:—l—120‘,55@,{_}_3)+
k

+_ Zyk'ylymyn( *Giaﬁ—4aiafafza—n+

k+ +-m+n=0
+6aEaf O Oy — A A O OOy + O O_ O O_yp). (31)
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Now we can bring all terms quadratic in @ and ¢* into diagonal form
by choosing B, and y; so that

—;_ 00 Bik? = (l e Z ym) Vi (32)

Of the quadratic terms in (31) then only those ~ aj az = ng are left.
From (80) and (82) ; and y, can be determined. Elimination of
B yields y; as a function of % and the constants occuring in (27) and
of %‘ vi =I'. By taking the square and summing over R one obtains

an equation of the third degree for I". It is, however, much simpler
to define a new quantity ¢, by

00:]/ 2+12’1@° 2 - (83)

and to express B, and y; in terms of ¢5. This is also much more
reasonable, for we shall see that ¢, 1s the physical sound velocity
(i.e. the quantity that has to be identified with the speed of sound
measured experimentally), whereas ¢; is only an auxiliary quantity

which can be expressed in terms of the physical quantities by means
of (83). With the definition (88), equ. (30) and (82) yield

hic Bogk
ﬂk:]/200k’ yk= ?Qgg‘; (34)

and the Hamiltonian takes the following form (where:...: denotes
the S-product)

H :Ak\_:ﬁco (a,k a + ) (Z' Zi‘; 7)

P (2_30)22 Viklmn: (ag—a_g) (af —a_p) (am—0_p) (Gn—0_n) : (35)
0" k+l+m-+n=0

or in X-space:

H= f T |50 79)* 455 (000 +: (e—e0s|—5 3 Z5 k)" (36)
The equations of motion are

ézé[ﬁ,9]=eoﬁ¢ | ]

E%[ff 7| tg (0 —0p) +44:(0—00)%:, |

the commutator of an S-product with an operator linear in @ and
a* being again an S-product. ‘

(37)
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From (37), we gather that sound waves of phase velocity ¢, are
possible if the influence of the anharmonic term 4 4 : (0 — g¢)3: 1s
sufficiently small. We shall see that there are cases where this term
may be neglected, although ¢, 1s not even approximately equal
to ¢

To show this, let us consider a Schrédinger function of the system,
which, at a given time, say t = 0, 1s

& = = 02 '”7' (a/lt)n ~. 5
@_50:%;;3 d(n.n)+ 6ﬁr!0/’ (38)

|0> and (n!)~*(af)*|0> are normalized eigenvectors of the oper-
ators ay, Gm = Nm, the first for all n, =0, and the second for ng=mn
and all other ny, =0 (m + k). D is determined by the condition

D2 Yg2dmnt — (39)
n =0

m order that @ be normalized, too. Further we assume
Vd-ny>1,  Yd <1; | (40)

this means that D2e24(—%) i3 practically a d-function*). From
(29), (34) and (38) the expectation values of p — g, and ¢ at ¢ =0
are seen to be :

(@ —00>1-9=4 sin (Rx + ), {g>;_o=

where

=4 cos (kRx +6), (41)

Qo0

A ]/2 hgukn(,’ (42)

terms of relative order 1/n, being neglected. The equations of motion
(37), which are knwon to hold for the expectation values as welll4),
give for { = 0

[%(Q_QO)L,O: (@)t:oz—cokélcos (Rx + 0)

. (43)
[gg(fp)]t:f (#)1-o= > Asin (R x + 6) + 42 4%sin® (R x + ).

Evidently, if there were no anharmonic term in (37) the expecta-
tion values for any time ¢ would be

(0—00), = Asin (Rx—cykt + 0), (gv)t=~é%Acos (Rx—cokt+0). (44)
0

*) For our purpose, however, we cannot take a state where the number ng is

exactly given at { — 0, because the expectation values of p —p, and ¢ would then
be zero.
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But even with the anharmonic term present, (44) is an approximate
solution during a time ¢ not too long but still containing many pe-
riods 2 z/cy k, provided that

2| A2 €% - (45)

0

If we suppose |4] (28) to be of the order of ¢2/g} (its experimental

value is uncertain, but probably negative?)), condition (45) requires
(see (42))

ny < 27 % 1030 cm-4. 2 for liquid He. (46)

Hence for a macroscopic volume (V a 1 cm3), one can easily find
an n, that satisfies (45) and (40) simultaneously, even if |4 is several
orders of magnitude larger than c¢2/p3 and k an ultrasonic wave
number (%> 1 ecm~1). Thus we have demonstrated that states exist
which correspond to macroscopic sound waves of phase velocity c,.

The proof that in certain cases the terms arising from the expres-
sion 4 A:(p — go)%: in (87) are negligible has only been possible be-
cause this term is an S-product. If we had simply 4 4 (0 — g,)? in-
stead, the terms with an a* to the right of an @ would give rise to
the creation and annihilation of virtual quanta. They would produce
supplementary terms linear in 4 in the lower equation (43), which,
in general, would not at all be negligible. This statement is equi-
valent to the statement that ¢, may be quite different from ¢;.

To see this let us look at equation (33). We have to compare ¢2
and 12 (1 gy/V) 2 yz. According to (34), 2 ys, diverges without a

cut-off, hence the mathematical quantity ¢; would have to be
infinite (4 being negative). But also with the cut off of § 2 and 4
of the order of ¢Z/p the quantity 12 (|4]|e/V) Z’ »2 is seen to be
larger than ¢2 for the helium data.

By comparing (41) and (43) with the classical equations of motion
derived from the Hamiltonian (27), we see that 4, in contrast to c,
means the same physical quantity in quantum hydrodynamics as
in the classical theory. Further terms with higher powers of ¢ — g,
in the Hamiltonian (27), e.g. a term ~ (¢ — g,) 8, would of course
renormalize 4 as well as ¢,.

As the Hamiltonian (36) is identical with H,, + Hy, (6), apart
from the irrelevant constant — 3 (1/V) (3 %o, /2 cp)2, we see that
k

¢o In §2 already means the physical (renormalized) sound velocity.



114 A. Thellung. H.P.A.

§ 4. Remarks on the order of factors in H.

An alternative treatment of the problem of § 3 consists in imme-
diately writing the fourth order term in the Hamiltonian (27) as an
S-product and omitting the commutators by the argument that
classically the order of factors is irrelevant. Then the results of
§ 3 are obtained without any renormalization. It is perhaps not
very natural to write an S-product a priori because in x-space this
is a complicated non-local expression. But in R-space it is very
simple.

This opens the question of what happens if we alter the order
of factors in other terms of the basic Hamiltonian (6), e.g. by
writing them as S-products (which is probably the only reasonable
ordering different from the one used in (6)).

In H; (6a) the reordering of factors can only produce irrelevant
additive constants. In Hy, (6¢) and H;, (6d) the a’s and a*’s can be
permuted arbitrarily, since all commutators vanish (see (22) and (23)).
The order of factors in H,, (6b) has been studied by Anncock
and Kupger. They conclude that any non-trivial alteration in (6b)
violates all of the three requirements that H,, shall be positive-
definite*), gauge-invariant (1. e. invariant under simultaneous trans-
formations of @, ¥ and ¥* which do not alter the velocity (2)), and
shall lead to the correct equations of motion for v and g**). As to
(6f) and (6g), they arise from multiplication of { ¥* ¥ — |7 ¥* ¥}2
in (6b) by the successive terms of the expansion (4) of 1/p. Conse-
quently the arrangement of the ¥’s and ¥P*’s in (6f) and (6g) must,
be the same as in (6b). The last possibility is to arrange the a’s and
a*’s in (0 — py) %, equation (6g), differently. But if we multiply the
expansion on the right hand side of (4) by ¢ = g, + (¢ — 0,), the
result must, by definition, be equal to unity. This is only true if
no term in (4) is altered.

Thus the investigations of §§ 3 and 4 have given a full justifi-
cation of the Hamiltonian (6), and we are now ready to calculate
its lowest eigenvalues.

*) It is easy to see that Hyot (6b), when written as an S-product, has negative -
eigenvalues for N = 2. Also, if Hyp+ Hyot+ Hint (which classically is positive defi-
nite) is taken as an S-product, it has negative eigenvalues in the perturbation
approximation for large c,,. _

**) This can only be understood if one has a definite opinion about the order
of factors in the equations of motion.
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§ 5. The roton energy to order ¢).

We take
as unperturbed energy with the eigenvalues
o ) \
E, %’hcok(nkJr?)er (4, + Bym? N,, . (48)
k<K, m< K,

« 1s characterized by the quantum numbers ng and Np,. All other
terms of (6),

H’:Hint—i_HI’)h—l_thJr"'+Hi’nt+H{;1t+"" (49)

1

are considered as a perturbation. As p — g, is proportional to ¢;*
(see (7)), (6) can be considered as a development in negative powers
of ¢,. The different constituents of H are proportional to the powers
of ¢, written below as follows

H, Hy, H;;h th <w:  Hy

int

"
Hint.

) (50)
G ¢ g & - gt ¢

A perturbative treatment of H' will therefore yield an expansion
of the energy eigenvalues in negative powers of ¢,, as Arncock and
Kuper’s method does. The dimensionless perturbation parameter
in question turns out to be the ratio of the maximum kinetic energy
of the unperturbed rotons to the maximum phonon energy

B,K?

B == e K, (51)

For ¢y > BK |/l we may expect good results. In the case of liquid
helium the data (16) and (17) give

e =04, (52)

so we might obtain at least something of the right order of magni-
tude.

For all perturbed energies (phonon energy, rest and kinetic ener-
gies of the roton) we only calculate the highest term in ¢, that is
different from zero. Nothing of the order ¢, is added to the un-
perturbed energies, so we do not compute any correction to the
phonon energy.

*) We have assumed that (d/dg c%/p), and (d?/dp? c?/p), are of the order of
magnitude of ¢2/p2 and c2/o§ respectively. For liquid helium this is justified for
the first term??); for the second term it is a reasonable supposition.
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The only correction to the roton energy ~ ¢§ comes from the
second order perturbation expression

Wﬂ = Z E Eﬁ (58)

through the term
= ] Hint)Boc 54
f = 3G (54)

The terms of the form Z (H')p)ap (Hing)paof (Ey — Eg) would seem to

give a contribution ~co too, but in view of (22) and (23) they
vanish. (54) and (22) give

nicy 2k m+ k?)?

JG—SQQV 2 (Nk+m+1)NmX
km]k+ml<K (55)
» [ ng n_p+1 ]
Ficok — By (k% + 2k m) —ficoikt—B{,(.lc2 +2km)

In the case of liquid helium the denominators can never vanish
because of (51), (52) and the condition k, m, |k +m| < K,. For
the same reason as earlier we neglect in (55) the terms of higher
than the first degree in the N’s and n’s, 1.e. we take only*)

2km+k2 1
B, ~— 890,,):' No—smrsy: (59

1
k,m, |k+m|<K0 * ficyk

For a fixed m we replace the sum over R by an integral and intro-
duce polar coordinates with m as axis (¢ = cos & = km/km). This-
leads to an integral of the form

K, +1
k2dk [ dz...
foaf
(k2+2kmz +m? < K2
As long as k +m < K,, # may vary between —1 and + 1. If

*) For small k, ng may be large even at low temperatures, but in the calculation

of the thermodynamic functions the influence of small &’s is strongly reduced by
K,

the factor k2% in f k2dk - - - - An exact analysis shows that it is completely negligible

for helium below the A-temperature.
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k 4+ m > K, z is restricted to values between — 1 and (K% — k% —
m2)/2 km. Therefore we get finally :

' K2 vV .
Ea%“%‘Nmmw'Zﬂx
m< K,
Ki—k—m
B LR e ZEm g e e
N\ [k [do+ [k [z L
o -1 B 24 1

hegk

This integral can of course be evaluated analytically, but gives a
rather involved expression. However, we can develop the denomi-
nator in powers of By(k? + 2 kmz)/ficok (which is always smaller
than 1); this gives just the expansion in powers of ¢. Besides we
are interested only in small wave numbers m, so we expand (57)
also in powers of m. This yields

E;CU;ZNm [—“40(1——%8-{-%32__...) A
m< Ko +BoKom(_§“%£+%82W' . ) +
+Bom2(%—+%sm%ez-..)+...]. (58)

We have thus reached the result of AK that to order ¢ the rest
energy (m = 0) of the roton in (48) is exactly compensated by (58).
Therefore we have to carry the calculation of the rest energy further
to order ¢;!, and all terms written down in (49) and (50) have to
be taken into account. Fortunately this is not necessary for the
kinetic energy (terms ~ m, m2). |

If one evaluates (57) exactly in ¢, but develops in powers of m,
one obtains for ¢ = 0-4

E, >~ }'N,,[—0-76 4y + 0-54 By K,m + 0-29 Bym2 + - - ], (59)
m}<nKn

which shows that already the first terms of the expansions in (58)
give good results.

The restriction of the calculations to small m is sufficient for low
temperature investigations. The factors exp [— (4 + Bym?)/kT] in
the partition function give only minor contributions for large m,
because ByKZ/»xT = 11-2°/T; therefore the exact shape of the
energy for large m is not important, unless the unperturbed energy
for large m is strongly modified by H,,,. But an exact evaluation
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of (56) for m = K, shows that the correction to 4, + By K2 is only
— 0-51 4, for ¢ = 0-4. _
We have only calculated the energy corrections due to the diagonal
elements of the second order perturbation matrix (53). There exist
non-diagonal elements of W®
H . H
’ B "o
Was%c) - EZ_ B (60)
]
“on the energy shell” (i.e. for K, = E,), corresponding to scattering
between rotons and phonons. These non-diagonal elements influence

the energy eigenvalues, but again, for the case of small phonon and
roton densities, they can be neglected.

§ 6. The rest energy of the rotons to order cjl.

In order to avoid unnecessary complications, we consider now a
state « where Ny rotons of wave number 0 are present, all other
Nms being zero. This is sufficient because we do not calculate the
kinetic roton energy to orderec; . We also suppose all n,'s to be zero.
The argument is the same as in § 5: For small phonon densities the
terms ~ ng N, can be neglected.

We expect contributions from the perturbation matrices of first,
second, third and fourth order, viz.

Wogc):Ho’uot’ . ' (618’)
H . H
2 __ ' af T Ba
Woco: ‘_Z E‘x—Eﬁ ’ (61 b)
B
H H .H
(3) _ ’ ay T yBT Ba
W = 2 G B (Bum By) (61¢)
! ! r ! 1
W@ - YVH H, H H { —
1 1 1 1

}. (61d)

2 (BaEp)Ba—FBo) g g, 2 (Ba=Ep) (Ba— By

E,~E,

For the particular state o, characterized above, there are no non-
diagonal matrix elements W, similar to (60), on the energy shell.
The reason is that all constituents of H' conserve the total number
of rotons. The energy E, of the state « 1s Ny 4, (apart from the
zero point energy of the phonons). Hence the energy E, of the state
e1s Ng 4, + kinetic roton energies + energies of phonons produced,
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which are all positive contributions. E, is equal to Ey only if there
are no rotons with a momentum fim + 0 and no phonons in the
state ¢, 1.e. 1f € = «.

Now let us look at the different parts of H' (49). Their orders
of magnitude are given by (50) and their structures in the creation
and annihilation operators by (22)—(26). It is easy to see that there
are no energy corrections of order ¢; % The contributions of order
co ! to the W@, (61a)—(61d), arise from the following terms (apart
from the contribution calculated in § 5):

W (Hi) (62a)
w2, ot Lo Hio (62D)
we. no contributions (62c¢)
W, ~HE, ~HY H, , ~H2 H]?. (62d)

It 1s obvious what is meant by the symbols used here: For instance

bt Hpy means that three of the factors H,, in (61d) are re-

placed by (Hy,),, and one by (H).., of course in all possible per-
mutations. Other contributions ~ ¢;?! than (62 a)—(62 d) do not
occur. In particular, there is no term ~ Hi, Hp; in (62¢), just be-
cause Hpy (24) is an S-product. So we have the result that H}} does
not give any contribution to the roton energy in order c;*

The calculation of (62a) and (62b) is simple. By using (26) and
taking into account that

hz 3 (v
k<K,

(look at (15) and replace the sums by integrals) we get
(Hinglax = 3 Ao Ny | (64)
In view of (22) and (25) the contribution to W& (62h) becomes

Z (Hlnt) mt ﬁa +2 mt aﬁ 1nt)

z Ey—Eg

=—8A08[1*—5—-8+—6—82*“'} N,. (65)

In order to evaluate (62d), we first take the term ~ Hiy 1. e.
equation (61d) with each H' replaced by Hy,. Now if we look at
(22) and remember our special state «, we see that the state g (see

*
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(61d)) can only be of the following type: There are Ny-1 rotons of
momentum @, one roton of momentum %k and one phonon of mo-
mentum — %k. k may be any wave vector for which k < K,. For
the state p, however, there are several possibilities. For instance,
there may still be Ny-1 rotons of momentum 0, one roton of momen-
tum 7%(kR + m) and two phonons of momenta — 2R and — #im re-
spectively. m is subject to the restrictions m < K, and |k + m| <
K,y. As 6 must be an intermediate state between y and « there are
two possibilities in the case of the y chosen above, namely (4) 6 is
1dentical with 8 or (B) é contains one roton of momentum zm and
one phonon of momentum — Zm, apart from the N,o-1 rotons of
momenta 0. In the first case the contribution to (61d) is

k(2 km+m?)?
(4) C;:Z';n' [_ m(l::—m) }N"

k,m, | k+m| <K,

with the abbreviation

1/ K%, \* 1 B2 o\2 1
G= (— 'LI/SQO%) (Fice)® - (SQOV) key ’ (66)
and 1n the second case
, 2 ke m+k2) (2 ke m+m?
(B) 02[_( m+k)+(mm m)]Nu-
k,m

Em, |lk+m| <K,

In the energy denominators the roton energies are neglected; they
only yield corrections ~ ¢; 2 to W,

Another possible state y is the following one. There are Ng-2
rotons of momenta 0, one roton of momentum %R and one of mo-
mentum #m, and two phonons of momenta — %k and — Zm respec-
tively. Here we have only the conditions k < K, and m < K, but
not |k + m| < K,. For d there are the same two possibilities as be-
fore. So we obtain two further contributions to (61d), namely

(0) cy _—mlm_ N, (N, —1)
A-,:oc{é"K.,
and
r k2l
(D) CX) |~ | No(No—1).
I.',f*;;nK.,

The last possibility is that y 1s identical with «, and  contains
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Ny-1 rotons of momenta 0, one roton of momentum %m and one
phonon of momentum — #m. This gives

(E) CX [5hm?+ 5 k2m| N2
k,;’éﬂ]{o :
Again, there 1s no correlation between kB and m.
(4), (B), (C), (D) and (E) are all contributions to (61d) due to

H, . alone. We have not considered the terms where B = m or where
¥ contains no phonons but two rotons of opposite momenta 2k and

—kk. These terms are of thetype1/V23 ..., not 1/V23'3 ..., and
k k m

therefore they give an energy contribution of relative order 1/3 N,
(Ny¢ = number of atoms in V) which tends to zero for a macro-
scopic sample of the liquid. |

Adding up (C) and (D), we see that the denominator is cancelled
by a factor k + m in the numerator. Taking into account that R
and m in each term may be interchanged, we see that the terms
~ NZin (C), (D) and (E) cancel. The final result of (4) + (B) +
(C) + (D) + (E) 1s:

2
0{ X [— 22— s (em) —km?] +£km2}N0 (67)
k,m, |k+m| <K, k,m< K,

The contributions ~ Hj,, H;, and ~ Hi,, H[} in (62d) are evalu-
ated in a similar way. First we take those with one factor H; in
(61d). The terms ~ (Hﬁh)aa (Hint)dy (Hint)yﬁ (Hlnt)ﬁrx. and ~ (H )y X
X (Hint) 5y (Hiny) s (Hyn)pe together yield (see (22) and (23))

’ , fik,l, m)
080 T N,
k1, m< K,

and the terms ""(H int)s (Hﬂh)ay (Hint)ys (Hint) ge 80d ~ (Hint)as (Hng) sy ¥
X (Hpn)ys (Hine) g g1VE |

n o f(ka l: ‘_m)
(B) 2 (’,;é;:zg(zklﬂz) m2 L Ny,
k, l,m< K,

Then we take the contributions due to two factors Hj;, in (61d). The

terms ""‘(Hfm)aa( f;h)ay (Hint)yﬁ (Hint)ﬂa and "‘“(Hm)aa (Hint.)ﬁ'y( {)h)yﬁ
(Hjp)pe ield .

, k3lmn-—f2(l, m, n) x
) 20| &, & Fimngflmn
k<K|} l,m,ﬂ<K0

1 1 1 1
|3 ey + T T

f(_‘ks l’ m) f(ks Is m)
2 k3k+1+m) }N“’

3 2 ktlm
kF+it+m=0
kI, m<K,
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a‘nd t’he terms ~ (H’ h)ad( lnt)ﬁy (H;m vB (Hint) fa and ~ (Hint_)oca (th) oy X
X( int)mﬁ'( ph)ﬁa gl‘ €

(1/6) f*(l, m, n)
(D" 20[2 2 k3lmn[ k(l+m+n)(k+l+m+n)]+

l levrn O
k<Ku ILm,n<K,

(1/2) Ak, I, m) (1/2) f (k. L, m) f(— k. I, m)
;il%; Z;”'m[ k(k+l+m)(2k+z+m)‘+ k(I+m) (k+1+m) ”N"“
k, I, m<K,

From the term ~ (Hip)us (Hpn)s, (Hpn)ys (Hing) gx Wwe obtain the con-

tribution
, 1/6) (1, m, n)
() oL 2 Bima- G+

IIc<K I, m n< K,

+ 3 Wm0k Lm) (1/2)f2<—k”’""]}Na
ke

k0 B2k+I+m) k(1 +m)
and from the term ~ (H )y (Hing) sy (Hine)ys (Hpn) pa
o 4 { EK ’a“;;',i;';?;s L [‘ (H,,ﬂi’)iiﬁf;’;‘;ﬁrﬂ] T
i+§m=0k4lm[_ (lc+1l/—f:r{)((2’ 12%)—7;73_ - (501-{-?-527?5;‘2({3—331) ” B
b, Lm< Ky

(A")—(F") are all contributions to (62d) ~ Hj, H,;, and ~ Hy,, Hj.
Again terms of the relative order 1/3 N, have been omitted. On the
other hand, there are even terms of the relative order 3 N,, with
respect to the ordinary ones (which are independent of N,,), viz.
the first terms in (C”), (D), (E'), and (F’), but they are easily seen
to cancel. When (4")—(F") are added up many terms compensate
and we obtain the very simple result for (4") + (B’) + (C") + (D’) +
(B + (I'):

¢ ¥ [+ m)* +4m(km)| N, (68)

k, m
k,om,) k+m|<K,

According to the expression (23) for f (k, I, m), (4") — (F') contain
linear and quadratic terms in (p2/c3) (d/dp ¢¥/p),. Itisremarkable that
all these terms have cancelled in (68). This means that also the an-
harmonic potential energy of the third degree in ¢ — g, 1s without
influence on the roton energies in the approximation considered
here.
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The contributions (62a)—(62d) to the roton rest energy ~ ¢;! are
now given by (64), (65), (67), and (68). (64) and (65) compensate
each other to order ¢;'*), (67) and (68) give in view of (66)

o (B 21 e L
" ;(SQOV_) “7?{,%: km? ’é'kmz} N,. (69)

hom<Ky kym,lk+ml|<K,

This can be calculated similarly to (56) in § 5 and yields

nl 29
=53 Adge N,. _ (70)

(58) and (70) now show that the unperturbed energy spectrum
(48) 1s transformed by H' (49) into

B+ B, + By = X heoh (ng +5) +
k:KG
+ 3 (A+Am+Bm2+--)Np+---,  (T1)
_ mr-gKo
where to order ¢, 1
5 29
and to order ¢) o
3 7 !
A-2B,E,, B=—_B,. (78)

The rest energy of the rotons is now proved to be positive for small
¢. In contrast to the second energy spectrum proposed by Lanpau?)
A 1s positive here. For He II (¢ = 0-4) the numerical value of (72)
1s according to (16)
p ) .

'“; - 3'00 . (74)
If the contributions of (58) and (65) to A are calculated exactly
(instead of taking only the first terms of the expansion in &) one
obtains

"

A _ 40, (75)

But this is not very consistent since for the rest of our calculation 4
1s only computed to order e.

*) This is probably not accidental, for in classical hydrodynamics (6a)—(6c)
give an absolutely sufficient description of an only slightly excited liquid, so that
one might be tempted to omit (6d)—(6g) in quantum theory too. It is therefore
surprising that (6d)—(6g) give a noticeable contribution at all. Maybe a cut-off
method that corresponds better to physical reality makes this difference vanish.
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§ 7. Different eut-off procedures.

ArTtMANN*) has suggested an alternative cut-off method. Ie
observed that the roton fields ¥ and ¥* occur exclusively in the
combination Y*I'¥Y — P¥* ¥, and it is only this expression (not ¥
and ¥* themselves) which has a direct physical meaning (being a
momentum density apart from a constant factor). Therefore it
seems more natural to cut off this whole expression, not ¥ and ¥*
separately, by putting

pr Py sy L Zbk bt (R —~m)elm=—kx
|m— kt<!n, | (76)
=;,Zbk b (R 2m) e 1K X
lc<K.,

For ¢ and ¢ — g, the same cut-off as previously is used. As m’ in
(76) 1s not restricted, an infinite number of degrees of freedom is
left 1n the theory, but all the same this does not lead to any diver-
gencies.

This cut-off method and the previous one do not give equal re-
sults. If we use the same K, in (76) as for ¢ and ¢ — g, (this means
that the ‘“resolving power” of the liquid due to its “‘graininess”
(Z1MANS), p. 264) is supposed to be the same for the Fourier com-
ponents of ¢, o —p, and the expression (76)) we obtain for the
roton Hamiltonian (6b)

Hyoo =Y (Ao +4 Bym?) Ny — ~b*b*bb (77)

instead of (14). Thus the rest energy of the unperturbed rotons is the
same, but their mass is already different. Moreover, with the cut-
off (76) the sums (55) and (56) are only subject to the condition
k< Ky (not m < K, nor |k + m| < K;) and B, i1s to be replaced
by 4 B,. Consequently one obtains instead of (58)

E,~ 3N, [—A-o(l—%4s+---) +B0m2(—~§—+---) +] (78)

Furthermore, the condition |k + m| < K, in (4) and (B) of § 6 is
dropped. The other expressions (C)—(F) and (4")—(F") remain un-
altered. So, instead of (70), the contribution to (62d) becomes

By = 44 (— “m) N,. (79)

*) Private communication from Mr. F. Artmany, T. H. Delft.
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Also H{ now takes a form different from (25), and the contri-
butions ~ ¢ to (62a) and (62b) do not cancel. In this way ARTMANNS

method yields an energy spectrum of the type (71), too, where now
to the same order in ¢ as (72) and (73)

A=32 fye, A=0, B=-3B,. (80)
In the case of an incompressible medium (¢ = 0) this result is iden-
tical with the result of AK (3-6) obtained by using their “‘incom-
pressible” Hamiltonian (8-4) from the very beginning. This is not
the case when Zrman’s cut-off method is employed (see (78)). Thus
ARTMANN’s cut-off seems to be preferable for an incompressible
liquid. However, if one deals with a compressible fluid (¢ not con-
stant) 1t 1s doubtful which method is the better, because ARTMANNs
method 1s also unable to cut off all physical quantities in the same
way. If for example a momentum density is cut off according to
(76), the corresponding velocity, which differs by a factor 1/, is cut
off in a different way. From the point of view of pure hydrodyna-
mics it 1s probably impossible to see which cut-off procedure cor-
responds better to physical reality. An investigation of that problem
would go far beyond the framework of the present article.

If one carries out the transition from second quantization to the
representation of the roton in configuration space (AK equation
(4-2)), ArRTMANN’s cut-off is simpler to take into account than
ZimaN’s. In the case of He II, however, there are practical reasons
for using Zmman’s cut-off procedure. It is of course possible to cal-
culate (56) as modified by ArrmMANN’s method without a develop-
ment in powers of 4 ¢ (which would be wrong because 4 ¢ = 1-6).
But in none of the energy denominators in (4)—(E) and (4")—(F")
of § 6 may the roton energies be neglected. The calculations would
therefore become very cumbersome. Besides, the whole expansion
(6) of the Hamiltonian in rising powers of ¢ — g, looks rather ques-
tionable in quantum mechanics, if the maximum kinetic energy of
the rotons is larger than the maximum energy of the phonons. The
only thing one could do is simply to omit (6d)—(6g) by the argu-
ment used before that classically (6a)—(6¢) give a sufficient de-
scription of a but slightly excited liquid.

A third cut-off procedure consists in combining ZimMAN’s and
ARTMANN’S methods by putting

RV VP W =L Sbkbi(k+ m)eilmRix(81)
k.m

E,m, |m—k|<K,



126 ' A. Thellung. H.P.A.
This yields still another H,,, namely
3 5

Hyy =3 (do—-¢ BoKom + 5 Bym?)| Ny + ~b*b*bb  (82)

m<K,

and leads again to a spectrum of the type (71), where now (4 to
order e, 4 and B to order &%)

499

A= 168

Aye, A=0, B=23 B, (83)
Like (80), 1t gives the correct limit for an incompressible liquid.

For practical reasons, we have always cut off sharply. Instead,
one might introduce smooth cut-off factors, but this cannot change
the energy spectrum drastically.

§ 8. Discussion of the results.

With the energy spectrum (71), (72), (73) we can calculate the
partition function and the thermodynamic properties of the fluid.
For He II, (72) and (73) can only be expected to give the right order
of magnitude because ¢ = 0-4 (instead of ¢ <€ 1), and because of
the arbitrariness introduced by the cut-off procedure. If A/x is
chosen ~ 7% and 4 and B considerably smaller than in (73) (but
still of the same order of magnitude) the theory gives the correct
specific heat?) from absolute zero up to temperatures even near
the A-point. Also the spectra of § 7, which are of the same form as
Lanpau’s first spectrum (4 = 0)1), have the right order of magni-
tude to fit the specific heat data.

The theory of the two-fluid model!)'®) can also be applied to
the spectrum (71), and one can calculate e.g. the velocity of second
sound. The result agrees qualitatively with experiment when values
for 4, A and B fitting the specific heat are used*).

Unlike in DeEBYE’s theory of solids, the numerical results here
depend considerably on how one cuts off the momenta of the exci-
tations. The reason is that the constants 4, 4 and B in (71) are
determined by sums over virtual quanta which also have high
energies.

We have simply tried to find the energy spectrum of hydro-
dynamics. We have not discussed the question whether the hydro-
dynamical variables are suitable coordinates to describe an ensemble
of atoms in a liquid. This problem 1s much more difficult here than

*) The author wishes to thank Dr.W.R.THEIs for some numerical calculations.
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in the theory of solids. The investigations by FEYNMAN1?) seem to
indicate that hydrodynamics provides a fair description of a Bose
liquid at low temperatures. On the other hand, the hydrodynamical
description of an ensemble of Fermi particles seems at least to be
very incomplete. It is probably at this place that the difference bet-
ween *He and *He comes intoplay. (In hydrodynamics one does not
speak about the statistics of the particles composing the liquid. The
phonons and rotons as defined here must obey Bose statistics, since
a quantization with anticommutators would never yield the limit
of classical hydrodynamics.)

One should therefore try to give the hydrodynamical approach
to He II a secure foundation. If this is found, it will perhaps also
yield a better cut-off method.

The author wishes to thank Professor W. Pauwr for his contin-

uous interest and for helpful advice. He is also indebted to Profes-
sors R. Jost, O. Kuein, R. Kronig, to Dr. W. A. BArRkER, Dr.
W. R. Tueis and Mr. F. Artmann for valuable discussions.
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