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Uber die statistischen Schwankungen in einem
kondensierenden System

von M. Fierz, Basel.
(16. XII. 1955).

Zusammenfassung: Es wird gezeigt, wie beim Einstein-Bose-Gas und beim
,,Sphérischen Modell eines Ferromagneten die Schwankungen von N im Konden-
sationsgebiet behandelt werden kénnen.

T. H. BEruIN und M. Kac?) haben das ,,sphérische Modell eines
Ferromagneten mit Hilfe der kanonischen Gesamtheit diskutiert
und dabel zur Auswertung der Zustandssumme die Sattelpunkts-
methode angewendet. H. W. Lewis und G. H. Wan~IER?) haben
daraufhin die Ansicht vertreten, dass die Ergebnisse von BERLIN
und Kac einfacher und iibersichtlicher mit Hilfe der grossen kano-
nischen Gesamtheit abgeleitet werden konnen, in der die Neben-
bedingung 2ef = N nur im Mittel erfillt ist.

Sie glaubten aber spater sich getduscht zu haben3), weil aus ihren
Formeln fir den Mittelwert

Tt

folgt, wahrend diese Grosse, wie BErLiN und Kac gezeigt haben,
fiir tiefe Temperaturen gegen N strebt. Diese Kontroverse bildet
den Anlass zu der folgenden Mitteilung.

Wenn man die Schwankungen der Teilchenzahl im Kondensa-
tionsgebiet berechnen will, soll man nur die nicht-kondensierte
Phase im Sinne der grossen kanonischen Gesamtheit behandeln.
Das Kondensat hat als Teilchenreservoir zu gelten: seine Schwan-
kungen sind durch diejenigen des ,,Dampfes** bestimmt.

Geht man so vor, so 1st auch im Kondensationsgebiet die grosse
kanonische Gesamtheit brauchbar, die tbrigens immer der Sattel-
punktsmethode vollig gleichwertig ist. Wir wollen hier die Schwan-
kungen des idealen Einstein-Bose-Gases und des sphérischen Modells
eines Ferromagneten in dieser Weise behandeln.
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1. Das ideale Einstein~Bose~Gas.

Wir betrachten Massenpunkte m, die der Bose-Statistik gentigen,
und die in einem kubischen Volumen der Kantenldnge L einge-
schlossen sind. Im Sinne der grossen kanonischen Gesamtheit ist
die mittlere Teilchenzahl gleich

N=X[exp ((n?+n3+nd)/mi+2)—1]"" (1.1)
Dabei ist o
ng=DL/h-V2mET; (ny,my,ny)=0,1,2....
Das Schwankungsquadrat der Teilchenzahl ist sodann durch
AN2= ) exp(n?/n+ 1) [exp (n?/ng +2) —1]72 (1.2)
gegeben. e
Falls man in (1.2) die Summe durch ein Integral ersetzt, so
divergiert das Schwankungsquadrat an der Kondensationsstelle

A = 0. Das bedeutet, dass die Schwankungen anomal werden, was
man erkennt, wenn man (1.1) und (1.2) wie folgt schreibt:

N=(—1)"1+ 3" [exp m?ni+ 1) —1]'=N,+ N, (1.1
AN2=e*(e!—1)72+ X" exp (n2/ng + ) [exp (n?/ng + ) —1]7%  (1.21)

Die X’ bedeutet, dass der Term mit 7 = 0 auszulassen ist.

Das Kondensationsgebiet ist dadurch charakterisiert, dass N, mit
N, vergleichbar wird. Nun i1st bekanntlich

N, =nd(2m)*2.2,612- .- .

Also muss 4 ~ 1/n} sein. Darum kann in den 2" die Grosse 4 gegen
n?/n? vernachlassigt werden, denn es ist ny > 1.

Also dominiert in (1.21) der Term AN2 = N_g: Die Schwankungen
von N sind mit N selber vergleichbar. Gerade 1m Kondensations-
gebiet ist es aber leicht, zur kanonischen Gesamtheit tiberzugehen.
Man setze

_—

n
n

N=Ny+ X' (exp - —1) 7 (1.12)

2
o

wobel N als fest vorgegeben gilt. Dann sind die Schwankungen von
N, durch diejenigen von N; bestimmt:

ANZ= 3" exp —z—:— [exp %:——1}—2. (1.3)

Wir nehmen hier an, dass N; der grossen kanonischen Gesamtheit
entsprechend verteilt sei. Das ist dann zuldssig, wenn N, gross
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gegen die Schwankungen von N; ist. In diesem Falle kann das
Kondensat als Teilchenreservoir fiir die Gasphase gelten. (Dass N,
nicht gross gegen N; zu sein braucht, was sonst bei einem Reservoir
gewohnlich gelten muss, hingt damit zusammen, dass die Entropie
~dieses Kondensates unabhiingig von N, 1st) Wir haben uns daher
davon zu liberzeugen, dass

AN2 L N2. (1.4)

Nun sind fiir AN2 die kleinen Werte von 7 ausschlaggebend. Darum
ist, bis auf Grossen hoherer Ordnung in ngt:

ANZ=ng 3" (N2 4 n2+nd)~2=nt. 48.. -~ NP, (1.5)
n
Die Ungleichung (1.4) ist somit erfiillt, sobald
No> NY?

wird, und das trifft im Grenzfall grosser N immer zu.

Die Schwankungen von N, sind freilich anomal und héngen von
der geometrischen Gestalt des gewdhlten Volumens ab. Dem ent-
sprechen starke Korrelationen zwischen den Dichteschwankungen
verschiedener Volumenelemente, die davon herrithren, dass die
Schwankungen von Materiewellen herriihren, deren Wellenldngen
mit der linearen Ausdehnung des Volumens vergleichbar sind.

2. Das sphirische Modell der Ferromagneten.

Das von Berruin und Kac studierte Modell kann man wie folgt
charakterisieren:

In einem kubischen Gitter der Kantenldnge ng, das n = N Gitter-
punkte (ng, ng, mg) enthilt, ist jedem Gltterpunkt eine Variable
&n, n, n, Z0geordnet, die der z-Komponente eines Dipols entsprechen
soll. Die Energie des Gitters sei

B = 2 {(Enl NgNy n1+1, Ny, ns)z + (‘gwl Ny Ny + En, my -1, na)z

s (8n1 nyns  Eny, Ty, n3+1)2} . (21)
Die ez sollen der Nebenbedingung
Yez=N (2.2)

gentigen.
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Wenn man dieses Modell, beziiglich der Nebenbedingung (2.2),
1m Sinne der grossen kanonischen Gesamtheit behandelt, kann
die Zustandssumme ausgefiihrt werden. Man hat hiezu die in den
&7 quadratische Form

EkT+ AN

diagonal zu machen. Dies geschieht, indem man die zur Form (2.1)
gehorigen linearen Gleichungen lost. (Vgl. z. B. M. Borx und
M. GopPerT-MAYER, Dynam. Theorie der Kristallgitter, Hdb. d.
Phys. 24/2, S. 638{f.) Se1

Snl,nz,fna: (n‘l’ n’2’ ?1-3),

so gilt
6(n,, ny, ny) — (0, + 1, ny, ny) — (ny — 1, 0y, 05) — (N, My +1,m5) — - -
cer— (Mg Mg, Mg — 1) =8/ (ny, Ny, Ny) . (2.3)
Durch den Ansatz
(1155 Mgy M) = M M wa Tt cams) (2.4)

wird (2.3) gelost, und man erhidlt die Eigenwerte

L P Ty s AL T TR e
&ja = _4(5111 5+ 8in? 5>+ sin 2).

Dabel ist

2:‘1qu
Wy = ———" 3 Mp=0,1,---,m,—1.
0

Die Zustandssumme kann berechnet werden, und es folgt

~E. oo Wy bt Ty g )| =
N = 2—%’ [)Hr 4K(sm 5 T sin® % +sin? )] (2.5)
AN? = 1§ %' [A +4 K (Sin"' L“;i 4+ sin? % 4 sin? ~E§-)]_2 . (2.6)

Hier wurde K = afkT gesetzt.

Falls man die Summen durch Integrale ersetzt, tritt wieder bei
A = 0 Kondensation auf und AN? divergiert.
Im Kondensationsgebiet setze man darum

N=-N,+N,

und berechne die Schwankungen von N, aus denjenigen von Nj:

—— : g @y | 8 e
AN =5 X ' [4 K (sz %1— + sin? %2— + sin? %)] =/AN3.

o



Vol. 29, 1956. Schwankungen in einem kondensierenden System. 51

Zu dieser Summe tragen nur diejenigen Terme etwas bei, in denen
alle o, entweder in der Néhe von 0 oder von 2 7 liegen. Daher ist

ANE=— " 5 ! ~(TJT AN (2.7)

(4K)% nt (m2 +mé +m2)?

Dabei ist T, die kritische Temperatur (sieche Berrin und Kac L. ¢.
S. 834). Man sieht, dass diese Ergebnisse ganz dhnlich denjenigen
sind, die sich bei der Einstein-Bose-Kondensation ergeben haben.

Da gemaéss (2.7) die Schwankungen von N,, im Falle grosser N,
relativ sehr klein sind, so hat N, den beinahe scharfen Wert

N,=N(—T/T)=N-p 2.8)

N, entspricht gemiss (2.4) demjenigen Zustand, in welchem alle &;
denselben Wert besitzen, weshalb die Kondensation eine spontane
Polarisation p bedeutet. Die Korrelationen der &5 ergeben sich, falls
T>1T, zu

1 cos (o, 1
8—> 8—3— _ ( ?

') 19 «
n o n’ 2 N w, |2.J)

w 4 w
102 1 cg s g 3
my A+4 K (sm 3 + sin 5 + sin ~2—)

in Ubereinstimmung mit Berrin und Kac 1. c. (36).
Falls

1<iﬁ“ﬁ’1<nu

liefern nur diejenigen Terme in (2.9) einen Beitrag, bei denen alle
w, entweder in der Nihe von 0 oder von 2w sind. Uberdies darf
man die Summe durch ein Integral ersetzen. Dann ergibt sich

— exp (—A/K|#~#"])
b %% = Ik |7 — 7’| ' A0

An der Stelle T = T, verschwindet 4 und die Schwankungen werden
,, kritisch*'4).
Fir T' < T, gilt namlich:

1 1 B
inK [i-wl "

B . -1
B g e B e
% ne n

(2.11)

Das Modell zeigt also nicht nur am kritischen Punkt T = T, son-
dern auch fir alle tieferen Temperaturen kritische Schwankungs-
erscheinungen. _

Schliesslich findet man, in Ubereinstimmung mit BErnin und Kac
2E._N1+2TT)). (2.12)

n



52 M. Fierz. H.P.A.
Der Vollstéandigkeit halber mége noch die magnetische Zustands-
gleichung, welche dieses Modell liefert, diskutiert werden.

Wenn man zur Energie (2.1) die magnetische Energie in einem
dusseren Felde H hinzufiigt:

—uH Xey
so erhélt man an Stelle der Gleichung (2.5)
pH \2
(WT)
2n
+ 2_(217) f Po2+4E(sin? G +sin? 52 +sin2 )| 1. (2.19)
0

(Wir haben hier die Summe iiber m durch ein Integral ersetzt und
durch N dividiert.)

Indem man die Integraldarstellung der Besselfunktion J, beniitzt,
kann (2.13) auf folgende Form gebracht werden:

H \2 5 s
s 4dew %) [TEmE=1. (2.14)

Die mittlere Polarisation pro Atom ist

p= ’E\T_%YEF T 2kTAC | (2.15)

Man eliminiert 4 und erhélt mit K = a/kT,

]CT (3 Iwii%")z . 4 kT
1-pt= /dwe TR =40 y)  (2.16)
wobe1  uH
y= 4ap ’

Fir nicht zu kleine y kann f(y) dadurch berechnet werden, dass
man J3 (12) unter dem Integral in eine Potenzreihe entwickelt und
gliedweise integriert. Das liefert:

1 = 2a
f(y)ﬁ3+y2 6—}-21/2 Z’n l)’zl m)12 m2 (217)

n-0 ILm

In der Nahe von y = 0 ist diese Reihe aber unzweckmaissig. Hier
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kann man, fiir grosse x, unter dem Integral die asymptotische Dar-
stellung von J,(i ) bentitzen und erkennt so, dass

=l 1
};Tré l/y dy  2%.p° (218)

Daraus folgt, dass sich f(y) wie

1 .
fo) ~10) ~ —=Vy

verhilt.

f(y) kann nach Potenzen von |y entwickelt werden. Wenn wir
F(x) = e[ Jy(i2)]?

setzen, so gelte die asymptotische Entwicklung
Flx) ~ X a, x7"73/2,
% -0

fy) = [V F(e)da
0

kann nun wie folgt geschrieben werden:

N 1 o0 P n—1
f(y) = f(0) + 2? f- y)nfﬂf" (F(x) - ﬂf"H"z) dx
n 17 0 -0
l 2 2 2
_fyn+1 A R R A NN, (3 . { -
+£)( 1y +tay Yo g Sntl Y
+ By
(= 0] N N -
RNﬂf [e‘”- 2(——yzv)”/n!] [F(x) -y x'l*3/2J dx.
0 n=0 1 0

(Ich verdanke diese Formel einer brieflichen Mitteilung von Herrn R. JosT,
Ziirich.) -

Man beweist nun leicht, dass die unendliche Reihe (N —> oo) fiir geniigend kleine
y konvergiert.

Also 1st, fiir kleine Felder H und T < T, + 4:

T kT ud T = 1/2H
T sz'n_al/ap ,vq—,c(l—O,Qoal/ap). (2.19)

Daraus erkennt man, dass fiir alle Isothermen T << T,, (0H[0p)
an der Stelle p = |/1 — T/T,, H = 0 verschwindet. Dem gleichzei-
tigen Verschwinden von H und (0H/0p), entsprechen kritische
Schwankungen geméss (2.11). In dieser Hinsicht unterscheidet sich
das Verhalten unseres Modells wesentlich von demjenigen eines
Gases in der Nahe des Kondensationspunktes.
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Die auch unterhalb der kritischen Temperatur 7', auftretenden
kritischen Schwankungserscheinungen sind wohl ein unphysika-
lischer Zug des Modells. Man kénnte nun geltend machen, dass jede
Polarisation p selber ein inneres Magnetfeld H, = hp erzeuge, wobel
man annehmen kann, es sei hy < a. Wenn man in der magnetischen
Zustandsgleichung H durch H + H, ersetzt, so erhélt man erstens
eine kleine Erhohung der kritischen Temperatur; zweitens ver-
schwindet unterhalb des Curie-Punktes (0H/0p), nicht mehr. Ge-
rade weil aber eine solche, halb phédnomenologische Ergénzung des
Modells seine analytischen Eigenschaften wesentlich @ndert, scheint
mir dieses Vorgehen unbefriedigend zu sein.

Literatur.

1

=

< o H

. H. BErLIN und M. Kac, Phys. Rev. 86, 821 (1952).

. W. Lewis und G. H. Wanxigr, Phys. Rev. 88, 682 (1952).

. W. Lewis und G. H. WANNIER, Phys. Rev. 90, 1131 (1953).
gl. z. B. M. J. KuEIN und L. T1sza, Phys. Rev. 76, 1861 (1949).

()

-



	Über die statistischen Schwankungen in einem kondensierenden System

