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Über die statistischen Schwankungen in einem
kondensierenden System

von M. Fierz, Basel.

(16. XII. 1955).

Zusammenfassung: Es wird gezeigt, wie beim Einstein-Bose-Gas und beim
„sphärischen" Modell eines Ferromagneten die Schwankungen von N im
Kondensationsgebiet behandelt werden können.

T. H. Bbelin und M. Kac1) haben das „sphärische" Modell eines

Ferromagneten mit Hilfe der kanonischen Gesamtheit diskutiert
und dabei zur Auswertung der Zustandssumme die Sattelpunktsmethode

angewendet. H. W. Lewis und G. H. Wannier2) haben
daraufhin die Ansicht vertreten, dass die Ergebnisse von Berlin
und Kac einfacher und übersichtlicher mit Hilfe der grossen
kanonischen Gesamtheit abgeleitet werden können, in der die
Nebenbedingung Ee\ N nur im Mittel erfüllt ist.

Sie glaubten aber später sich getäuscht zu haben3), weil aus ihren
Formeln für den Mittelwert

folgt, während diese Grösse, wie Berlin und Kac gezeigt haben,
für tiefe Temperaturen gegen N strebt. Diese Kontroverse bildet
den Anlass zu der folgenden Mitteilung.

Wenn man die Schwankungen der Teilchenzahl im
Kondensationsgebiet berechnen will, soll man nur die nicht-kondensierte
Phase im Sinne der grossen kanonischen Gesamtheit behandeln.
Das Kondensat hat als Teilchenreservoir zu gelten: seine Schwankungen

sind durch diejenigen des „Dampfes" bestimmt.
Geht man so vor, so ist auch im Kondensationsgebiet die grosse

kanonische Gesamtheit brauchbar, die übrigens immer der
Sattelpunktsmethode völlig gleichwertig ist. Wir wollen hier die Schwankungen

des idealen Einstein-Bose-Gases und des sphärischen Modells
eines Ferromagneten in dieser Weise behandeln.
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1. Das ideale Einstein-Bose-Gas.

Wir betrachten Massenpunkte m, die der Böse-Statistik genügen,
und die in einem kubischen Volumen der Kantenlänge L
eingeschlossen sind. Im Sinne der grossen kanonischen Gesamtheit ist
die mittlere Teilchenzahl gleich

N Z[exV((n2 + nt + ni)ln2 + X)--l]-\ (1.1)
nk

Dabei ist
n0 F/h- ]/2mkT ; (nx,n2,n3) 0,1,2

Das Schwankungsquadrat der Teilchenzahl ist sodann durch

A N2=Zexp(n2/n2 + X) [exp(n2/n2 + X) — l]"2 (1.2)
gegeben. "»

Falls man in (1.2) die Summe durch ein Integral ersetzt, so

divergiert das Schwankungsquadrat an der Kondensationsstelle
.1 0. Das bedeutet, dass die Schwankungen anomal werden, was
man erkennt, wenn man (1.1) und (1.2) wie folgt schreibt:

N (e--!)"1 + 2" [exp (n2/n2 + X) -l]"1 N0 + Nx (VI1)

AN2=ex(ei-~ 1)~2+E' exp(n2/n20 + X) [exp (n2/™2 + X) - l]"2. (1.21)

Die U' bedeutet, dass der Term mit ri 0 auszulassen ist.
Das Kondensationsgebiet ist dadurch charakterisiert, dass N0 mit

Nx vergleichbar wird. Nun ist bekanntlich

Nx n30(27t)s'2-2,612---.

Also muss X ~ 1/w? sein. Darum kann in den S' die Grösse X gegen
n2/n2 vernachlässigt werden, denn es ist n0 ^>1.

Also dominiert in (1.21) der Term ^LV2 ÎV2: Die Schwankungen
von _V sind mit N selber vergleichbar. Gerade im Kondensationsgebiet

ist es aber leicht, zur kanonischen Gesamtheit überzugehen.
Man setze

N N0 + E'(exp^-1)'1 (IA2)

wobei N als fest vorgegeben gilt. Dann sind die Schwankungen von
N0 durch diejenigen von Nx bestimmt:

nZÜV2 2"exp^[exp-^--lJ (1.3)

Wir nehmen hier an, dass Nx der grossen kanonischen Gesamtheit
entsprechend verteilt sei. Das ist dann zulässig, wenn N0 gross
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gegen die Schwankungen von Nx ist. In diesem Falle kann das

Kondensat als Teilchenreservoir für die Gasphase gelten. (Dass JV0

nicht gross gegen Nx zu sein braucht, was sonst bei einem Reservoir
gewöhnlich gelten muss, hängt damit zusammen, dass die Entropie
dieses Kondensates unabhängig von JV0 ist.) Wir haben uns daher
davon zu überzeugen, dass

ÄNf^N2. (VA)

Nun sind für AN2 die kleinen Werte von n ausschlaggebend. Darum
ist, bis auf Grössen höherer Ordnung in n^1 :

AN} n\£' (n\ + n\ + n2)~2 nj • 4,8 • • • ~JVf. (1.5)
n

Die Ungleichung (1.4) ist somit erfüllt, sobald

#0> N2f

wird, und das trifft im Grenzfall grosser _V immer zu.
Die Schwankungen von Nx sind freilich anomal und hängen von

der geometrischen Gestalt des gewählten Volumens ab. Dem
entsprechen starke Korrelationen zwischen den Dichteschwankungen
verschiedener Volumenelemente, die davon herrühren, dass die
Schwankungen von Materiewellen herrühren, deren Wellenlängen
mit der linearen Ausdehnung des Volumens vergleichbar sind.

2. Das sphärische Modell der Ferromagneten.

Das von Berlin und Kac studierte Modell kann man wie folgt
charakterisieren :

In einem kubischen Gitter der Kantenlänge n0, das n3 N
Gitterpunkte (nx, n2, n3) enthält, ist jedem Gitterpunkt eine Variable
£m, n3 na zugeordnet, die der ^-Komponente eines Dipols entsprechen
soll. Die Energie des Gitters sei

E —YMe -e )2+(e +e )2
o ___ XV^ni^n, ^n, + X,ns,nal ' r»,n,ti, ' ''n, ,ma + 1, n,l

"T (e%rc.2«3 "~ en,,n2, ns+x) }• V",JJ

Die Eff sollen der Nebenbedingung

E4=N (2.2)
n

genügen.
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Wenn man dieses Modell, bezüglich der Nebenbedingung (2.2),
im Sinne der grossen kanonischen Gesamtheit behandelt, kann
die Zustandssumme ausgeführt werden. Man hat hiezu die in den
bit quadratische Form

E/kT + XN

diagonal zu machen. Dies geschieht, indem man die zur Form (2.1)
gehörigen linearen Gleichungen löst. (Vgl. z. B. M. Born und
M. Göppert-Mayer, Dynam. Theorie der Kristallgitter, Hdb. d.

Phys. 24/2, S. 638ff.) Sei

so gilt
6 (nx, n2, n3) — (nx + 1, n2, n3) — (nx — 1, n2, n3) — (nx, n2 + x, n,)

(nx, n2, n3 - 1) - &/a ¦ (nx, n2, n3). (2.3)

Durch den Ansatz

(nx, n2, n3) _i(""n< ia--n'- ' "hn*> (2.4)

wird (2.3) gelöst, und man erhält die Eigenwerte

&ja A (sin2 -F + sin2 zz£. + Hin2 _|l).
Dabei ist

2 71 TO,. n -, -,

cok ——- ; mk 0,1, ¦ ¦ ¦, n0 - 1.

Die Zustandssumme kann berechnet werden, und es folgt

N=i\z\x + AK («in2 ™r + sin2 -f- + sin2 -^) j "' (2.5)
m x \ £ - I

AN2 -- yE [A + 4 K (sm2 -°F + sjn2 FA + sin2 FFj j ~2. (2.6)

Hier wurde K a/k T gesetzt.
Falls man die Summen durch Integrale ersetzt, tritt wieder bei

1 0 Kondensation auf und AN2 divergiert.
Im Kondensationsgebiet setze man darum

N N0 + NX

und berechne die Schwankungen von N0 aus denjenigen von Nx:

XV? ~Z' [4 K(sin2 °A- + sin2 °F + Am2^-)]~*= AN*.
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Zu dieser Summe tragen nur diejenigen Terme etwas bei, in denen
alle con entweder in der Nähe von 0 oder von 2 tc liegen. Daher ist

ÄFF —— J_L y _ ~(TIT )2/3 N,ts. (2.7)™*ivi (4K)2 ti* ^- (m\ + m\ + mD2 V^/^c/ l \ ¦•)

Dabei ist Tc die kritische Temperatur (siehe Berlin und Kac 1. c.
S. 834). Man sieht, dass diese Ergebnisse ganz ähnlich denjenigen
sind, die sich bei der Einstein-Bose-Kondensation ergeben haben.

Da gemäss (2.7) die Schwankungen von N0, im Falle grosser N,
relativ sehr klein sind, so hat N0 den beinahe scharfen Wert

N0 N(1-T/TC) N-V2. (2.8)

N0 entspricht gemäss (2.4) demjenigen Zustand, in welchem alle e„-

denselben Wert besitzen, weshalb die Kondensation eine spontane
Polarisation p bedeutet. Die Korrelationen der e^ ergeben sich, falls
T > Tc, zu

eTFeA ^—Y eoe («3, g-»') ,29)
»% A + 4 /C Isin2 —- + sm2 —- + sm2 -~J

in Übereinstimmung mit Berlin und Kac 1. c. (36).
Falls

1<^|« — n' | <^«0

liefern nur diejenigen Terme in (2.9) einen Beitrag, bei denen alle
con entweder in der Nähe von 0 oder von 2 tc sind. Überdies darf
man die Summe durch ein Integral ersetzen. Dann ergibt sich

TZeF - e-p(-;./*ig-3'|) (210)
» »' 4jiX \n-n'\ ' v '

An der Stelle T Tc verschwindet X und die Schwankungen werden
„kritisch"4).

Für T < Tc gilt nämlich :

2 l l~-e--X -r-™---X^1-. (2.11)
Ï7. ' " A -ir f< \ v, — ¦_ v 1n «•' " 4_lf In —m'

Das Modell zeigt also nicht nur am kritischen Punkt T Tc,
sondern auch für alle tieferen Temperaturen kritische
Schwankungserscheinungen.

Schliesslich findet man, in Übereinstimmung mit Berlin und Kac

E~ê\r N(l+2T/Te). (2.12)
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Der Vollständigkeit halber möge noch die magnetische
Zustandsgieichung, welche dieses Modell liefert, diskutiert werden.

Wenn man zur Energie (2.1) die magnetische Energie in einem
äusseren Felde H hinzufügt :

— flH E£jt
so erhält man an Stelle der Gleichung (2.5)

I tzä \2
\2kTr\ }

2u

+ 2(2^/d3-[^+44in2-x + sin2^ + sm2jr)]"1-1- <2-13)

o

(Wir haben hier die Summe über m durch ein Integral ersetzt und
durch N dividiert.)

Indem man die Integraldarstellung der Besselfunktion J0 benützt,
kann (2.13) auf folgende Form gebracht werden:

(-J§Tf+ ^fdxe^ + ^-' [J0(ix)f 1. (2.14)
o

Die mittlere Polarisation pro Atom ist

Man eliminiert X und erhält mit K a/kT,

°° -('i ¦

_____

l-V-g-fdxe ¦ ia*'\j0(ix)f ^-f(y) (2.16)

wobei °
H

y*- 4ap

Für nicht zu kleine y kann f(y) dadurch berechnet werden, dass

man J^ (ix) unter dem Integral in eine Potenzreihe entwickelt und
gliedweise integriert. Das liefert :

l(y) 3 + y 2j (6 + 2 ^)2"" f-> (n-l)\2 (l-my2 m\2 ' ' " '

In der Nähe von y 0 ist diese Reihe aber unzweckmässig. Hier
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kann man, für grosse x, unter dem Integral die asymptotische
Darstellung von J0(ix) benützen und erkennt so, dass

w^=-i^- (2-18)

Daraus folgt, dass sich f(y) wie

tc\/2
verhält.

f(y) kann nach Potenzen von ify entwickelt werden. Wenn wir

F(x) e-sx[J0(ix)]s

setzen, so gelte die asymptotische Entwicklung

F(x)~Zan
n 0

X—n— 3/2

CO

f(y) y e-a>- F(x) dx
ü

kann nun wie folgt geschrieben werden:

N oo n—X \
1(y) =/(0) + Eaat Fy)nJ*n (*(*) - £a. x-^'Adx

n X 0 > 10 1

N
+ Z,(-i)n+1anyF

n-0

2 2 2
yn+XI2

1 3 2n+l
+ Bjxf

OO r JV -, p N
BN f e-xy_ 2J(-yx)n/n< F(x)-Zalx'l^i2 dx.

0 n-0 l 0

(Ich verdanke diese Formel einer brieflichen Mitteilung von Herrn E. Jost,
Zürich.)

Man beweist nun leicht, dass die unendliche Keihe (_V-> oo) für genügend kleine
y konvergiert.

Also ist, für kleine Felder H und T < Tc + Ô:

1 - p2 X XX. }/fK TL_ 0 255 UM) (2.19)

Daraus erkennt man, dass für alle Isothermen T < T-, (dH/dp)T
an der Stelle p j/l — T/Te, H 0 verschwindet. Dem gleichzeitigen

Verschwinden von H und (dH/d\A)T entsprechen kritische
Schwankungen gemäss (2.11). In dieser Hinsicht unterscheidet sich
das Verhalten unseres Modells wesentlich von demjenigen eines
Gases in der Nähe des Kondensationspunktes.
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Die auch unterhalb der kritischen Temperatur Tc auftretenden
kritischen Schwankungserscheinungen sind wohl ein unphysikalischer

Zug des Modells. Man könnte nun geltend machen, dass jede
Polarisation p selber ein inneres Magnetfeld Hx /ip erzeuge, wobei
man annehmen kann, es sei hpi <§; a. Wenn man in der magnetischen
Zustandsgieichung H durch H + Hx ersetzt, so erhält man erstens
eine kleine Erhöhung der kritischen Temperatur; zweitens
verschwindet unterhalb des Curie-Punktes (oH/dp)? nicht mehr.
Gerade weil aber eine solche, halb phänomenologische Ergänzung des
Modells seine analytischen Eigenschaften wesentlich ändert, scheint
mir dieses Vorgehen unbefriedigend zu sein.
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