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Der Ergodensatz in der Quantenmechanik

von M. Fierz.
(7. XI.1955.)

Zusammenfassung: Bs wird gezeigt, dass die Annahme v.NEUMANNs iiber
die ,,Gleichverteilung* der makroskopischen Beobachter unbefriedigend ist. Da
aber zum Beweise des Ergodensatzes in der Quantenmechanik eine Wahrschein-
lichkeitsannahme a priori nicht vermieden werden kann, wird vorgeschlagen,
die Annahme v. NEUMANNs durch eine solche iiber die Verteilung mikroskopischer
Storungen des Systems zu ersetzen.

Die Frage des Ergodensatzes in der Quantenmechanik hat zuerst
v. NEumMaNN?) diskutiert. Seine Anséitze haben Paurt und Fierz?)
weiter verfolgt.

Diese Arbeiten sind aber in verschiedener Hinsicht nicht befrie-
digend, weshalb das Problem hier erneut erértert werden soll. Dabei
werden wir an der durch v. NeumMaNN eingefithrten Charakterisie-
rung makroskopischer Beobachter und makroskopischer Zustands-
grossen festhalten.

Um die Gedankenginge klar darzustellen, soll der Ergodensatz
und der Begriff eines makroskopischen Beobachters zuerst im Rah-
men der klassischen Mechanik betrachtet werden.

Wir schliessen uns der Auffassung Einstrins®) an, dass die me-
chanische Warmetheorie Aussagen tber die Zeitgesamtheit eines
einzigen Systems mache. Falls der Ergodensatz gilt, so ist diese der
mikrokanonischen Gesamtheit der statistischen Mechanik &aqui-
valent. |

Wenn man aus dem Ergodensatz auf die physikalische Gleich-
wertigkeit der Zeitgesamtheit und der mikrokanonischen Gesamt-
heit schliesst, so bleibt doch logisch ein wesentlicher Unterschied
zwischen den beiden Gesamtheiten bestehen. Die Zeitmittelwerte
sind Grenzwerte der Gestalt

: T
lim %_[ f(t) dt
0

tiber Funktionen f(f) im Phasenraum. Dagegen kann man stati-
stische Mittelwerte bekanntlich nicht als Grenzwerte irgendwelcher
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Haufigkeiten betrachten. Streng genommen ist also die ,,statisti-
sche' Mechanik keine statistische Theorie im Sinne der Wahrschein-
lichkeitsrechnung. Man darf darum mit einem gewissen Recht die
Meinung vertreten, den statistischen Gesamtheiten der statistischen
Mechanik komme keine direkte physikalische Bedeutung zu; sie
selen mathematisch niitzliche Fiktionen.

Die Quantenmechanik freilich handelt grundsétzlich von stati-
stischen Gesamtheiten. Hier spielt der Wahrscheinlichkeitsbegriff
eine entscheidende Rolle. Fiir die Warmetheorie kommt es aber auch
hier wieder auf eine Zeitgesamtheit an.

I. Klassische Theorie.

Wir betrachten ein einziges, energetisch abgeschlossenes System
mit sehr vielen Freiheitsgraden. Sein Zustand wird mikroskopisch
durch einen Punkt im Phasenraum (p;, q;) beschrieben (k = 1...f).

Falls sich der Phasenpunkt in dem Gebiet G, des Phasenraumes
befindet, so beobachtet der makroskopische Beobachter den makro-
skopischen Zustand «. Den verschiedenen makroskopischen Zustén-
den « entsprechend, wird der Phasenraum in Phasenzellen eingeteilt,
deren Phasenausdehnung £, durch

'Qot =6fg dpk ko (1)

gegeben 1st.

Eine der makroskopischen Zustandsgrossen ist die makroskopi-
sche Energie. Der Energiewert K/ wird dann beobachtet, wenn der
Phasenpunkt in der Energieschale G liegt, die durch die Ungleichung

E<H(p,q)<E +4E @)

charakterisiert ist. AFE ist dabei ein Mass fiir die Messgenauigkeit
des Beobachters. Die Ausdehnung der Energieschale nennen wir Q.
(Falls das System aus N gleichartigen Teilchen besteht, so hat man
die Phasenausdehnungen (1) noch durch N! zu dividieren.)

Da der Beobachter neben der Energie noch andere Zustands-
grossen messen kann, ist die Energieschale in entsprechende Phasen-
zellen eingeteilt, die wir G,z nennen. Wir nehmen an, die Anzahl

der Zustande M in der Energieschale sei zwar sehr gross, aber end-
lich. Es gilt

2 Q.p=8y. )

Im Verlaufe der Zeit bewegt sich der Phasenpunkt in der Energie-
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schale. Die makroskopische Zustandsdnderung kann darum durch

eine unktion y,(f) beschrieben werden, die folgende Eigenschaft
besitzt:

2.t)=1 wenn der Phasenpunkt in G, @)

=0 wenn der Phasenpunkt ausserhalb G,

(%x(f) 1st nur innerhalb der Energieschale E von Null verschieden.

Wir lassen darum im folgenden den Index E neben « weg.) Da der

Phasenpunkt sich irgendwo in der Energieschale befinden muss, so

gilt stets:
2 Kalt) =

Der Verlauf von y,(t) héingt von den Anfangsbedingungen ab und
ist durch die Hamiltonschen Gleichungen des Systems bestimmt.
Diese kionnen freilich fiir ein makroskopisches System nicht gelost
werden. Fir die Anwendung in der statistischen Mechanik gentigt
aber folgende Aussage tiber das mittlere Verhalten von y,(t) im
Verlauf der Zeit: IMir ,fast alle mikroskopischen Anfangswerte
(Pr> qx) 18t die mittlere Héufigkeit, mit der ein Zustand « ange-
troffen wird zu £, proportional:

= ]1111 S /%a

Wenn (6) erfiillt 1st, nennt man das System ergodisch. Der Ausdruck
»fast alle* ist hier in dem Sinne gemeint, dass es in der Menge aller
Anfangszustinde eine Nullmenge von Ausnahmezustinden (P, q;)
geben kann, fiir die (6) nicht gilt. Diese kann man von vorneherein
aus der Betrachtung ausschliessen, indem man eine statistische
Dichte ¢ > 0 1m Phasenraum einfiihrt, von der man z. B. annimmt,
sie sel stetlg. y,(f) 1st dann die Wahrscheinlichkeit, das System zur
Zeit t1m Zustande o anzutreffen:

1) = [ () dp dg

G

(6)

und kann alle Werte zwischen 0 und 1 annehmen. Das System ist
dann ergodisch, wenn unabhingig von der Anfangsverteilung g stets
o ‘Q“
éo: - ‘QE

ist. Wir halten es freilich fir richtiger, an dieser Stelle auf das Ein-
fiihren einer Dichte ¢ zu verzichten und anzunehmen, dass nur ein
einziges System und seine Zeitgesamtheit betrachtet wird. Da nam-
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lich die Ausnahmezustéande eine Nullmenge bilden, so darf man mit
Recht erwarten, dass sich das System nicht in einem solchen Zu-
stand befinde. _

Wenn das System ergodisch ist, so kann man, im Sinne BorLrz-
MANNS, £, als Mass fiir die Wahrscheinlichkeit eines Zustandes
betrachten.

In manchen FFallen kénnen die Wahrscheinlichkeiten 2, durch
kombinatorische Betrachtungen gefunden werden, und dann ergibt
sich bekanntlich, dass derjenige Zustand, der dem thermodyna-
mischen Gleichgewicht entspricht, erdriickend wahrscheinlich ist.

Allgemein fiihrt die folgende Uberlegung zu diesem Resultat, die
sich auf den Zusammenhang von Wahrscheinlichkeit und Entropie
stiitzt. Man definiere die Entropie s, des Zustandes «, mit Bowvrz-
MANN, geméss:

s, =lgQ . (7)

[Die Boltzmannsche Konstante setzen wir gleich (1).]

Der Zustand o 1st in der Zeit verdnderlich; ebenso seine Entropie,
was durch

$(t) = ZM‘ 1a0)5, ®)

ausgedriickt wird. Falls der FErgodensatz (6) gilt, ist der Zeitmittel-
wert der Entropie s(f) durch

lg 2, (9)

M

0=

gegeben. s(f) 1st immer kleiner als die mikrokanonische Entropie
s(E) = lg 25, welche dem thermodynamischen Gleichgewicht ent-
spricht. Man erkennt nun, dass die folgende Ungleichung erfiillt ist:

s(B)—s(t)<lgM. (10)

Das Gleichheitszeichen tritt dann ein, wenn alle £, gleich gross sind.

Makroskopisch messbare Entropiedifferenzen, in einem System
mit f Freiheitsgraden, haben die Grossenordnung f, d. h. 102°, Wenn
wir nun in (9) zwei Summanden « und &’ vergleichen, fiir die sich
die zugehorigen Entropiewerte merklich unterscheiden, so wird der
Term mit der kleineren Entropie einen, gegen den anderen, ver-
schwindenden Beitrag ergeben. Denn aus

lg 2 —lg Q. =c¢f (11)
folgt
Q102 =¢.
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¢ kann sehr klein sein, wenn es nur noch messbar ist, also z. B.
e = 1078, so ist immer ¢/ riesig gross. Die Terme, die in (9) mass-
gebend sind, besitzen darum alle eine annéhernd gleich grosse En-
tropie. Auf sie darf man sich in (10) beschrénken, und ihre Zahl sei

M. Daher gilt: — -
s(E) —s(t)<lg M. (107

lg M ist aber immer unmessbar klein. Denn wenn wir auch M = e1¢°
setzen, so folgt aus (10’), dass die Entropie fast nie messbar vom
mikrokanonischen Werte abweicht.

Grundsétzlich ist freilich eine kleine Abweichung vorhanden, die
den statistischen Schwankungen entspricht.

Unsere Uberlegungen bleiben auch dann richtig, wenn (6) nicht
streng erfiillt ist. Es konnten sich 7, und 2,/Q; um mehrere Zehner-
potenzen unterscheiden, ohne dass das makroskopisch ernste Folgen
hétte. Dies entspricht der ,,Insensabilité de la formule de Boltz-
mann‘‘, die besonders H. A. LoreNTz betont hat?).

I1. Quantentheorie.

In der Quantentheorie wird das System durch eine y-Funktion
beschrieben, die nach Eigenfunktionen des Hamilton-Operators: ¢,
entwickelt werden kann:

=21, P, (12)

Die makroskopischen Zustande definieren wir nun gleich wie
v. NEUMANN:

Alle stationiren Zustinde ¢,, deren Energie E, zwischen F und
E + AE liegt, gehoren zur gleichen makroskopischen Energie. Ein
nichtstationédrer Zustand, fiir den die 7, in (12) nur dann nicht ver-

schwinden, wenn
E<E,<E+A4E, (13) -

liegt in der ,,Energieschale’ E. Diese soll £y Zusténde enthalten.
Qp entspricht der Phasenausdehnung der Energieschale in der klas-
sischen Theorie und darum verwenden wir die gleiche Bezeichnung.

Die mikrokanonische Entropie ist wiederum gleich lg 5. Ferner
wird der Beobachter, bei gegebener Energie, M Zusténde « unter-
scheiden koénnen. Zu jedem makroskopischen Zustand gehéren £,
verschiedene Eigenfunktionen w,,, wober v =1... 2,. Jede Eigen-

funktion von der Gestalt 0

o
Y= Eton Wy
=1

beschreibt denselben makroskopischen Zustand ; dieser liegt in der
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,,Phasenzelle* «. Da die Zustinde o« alle in der Energieschale E
liegen und diese erfiillen, so gilt wiederum

20, =05%).

Ein Zustand p in der Energieschale — und nur von solchen wollen
wir der Einfachheit halber sprechen — kann nach den w,, entwickelt
werden :

M Q4
'I’ = 2 2 tcxr wcxt * (14)

a=1l7=1

Die Wahrscheinlichkeit, den Zustand « anzutreffen 1st durch
Qg
1) = 3 |81 (15)

gegeben. Anders als in der klassischen Theorie konnen die y,(t) alle
Werte zwischen 0 und 1 annehmen. Hierin dussert sich der wesent-
lich statistische Zug der Quantentheorie.

Das System ist wieder dann ergodisch, wenn

10 = 5= (6)

Das besagt hier, dass die Wahrscheinlichkeit, den Zustand « anzu-
treffen, im Zeitmittel proportional zu £, ist, wihrend klassisch die
gleiche Formel (6) diese Aussage tiber die mittlere Haufigkeit der
Zustinde macht. Aus (6") folgert man nun, genau wie in der klassi-
schen Theorie, dass die Wahrscheinlichkeit, das System im Gleich-
gewicht zu finden, fast immer erdriickend gross ist.

Der ,,Ergodensatz“ (6’) ist nicht nur eine Aussage tber das
System, sondern auch eine tiber den Beobachter. Diese ldsst sich,
im Unterschied zur klassischen Theorie, noch genauer formulieren.

Zu diesem Zweck filhre man die unitére Transformation U,, .
ein, welche die Eigenfunktionen ¢, mit denjenigen der makrosko-
pischen Variablen w,, verkniipft:

wfx'r = 02 Uocr,(i (pd *

Man driicke nun mit Hilfe der U,, , die t,, in (15) durch die Ent-
wicklungskoeffizienten r, aus. Falls das System nicht entartet ist,
findet man

. Qp Q¢

1) = 3 3 U211 16

*) Bei PavuLl und Fierz?) wird statt 25 und 24, Sg und s, geschrieben. Unsere
Bezeichnung soll die Parallele zur klassischen Theorie betonen.
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(6") soll nun unabhingig von den Werten der r, zutreffen, was dann
der Fall ist, wenn fiir alle ¢

Dy 0
2 Ul =5 7)

giiltig 1st. Die Gleichung (17) bringt eine Beziehung zwischen einem
System und dessen Beobachter zum Ausdruck. Ist sie erfiillt, so
1st fiir diesen das System ergodisch.

v. NEUMANN suchte nun zu beweisen, dass ein jedes System fiir
fast jeden makroskopischen Beobachter ergodisch sein werde. Dabei
wurde vorausgesetzt, dass alle Beobachter, die durch die Zahlen 24
und £, charakterisiert sind, gleich wahrscheinlich seien. Das ist in
folgendem Sinne gemeint: Die Wahrscheinlichkeitsverteilung der
Transformationen U,, , soll invariant sein gegen alle unitéren
Transformationen des £p-dimensionalen Funktionenraumes, der
durch die Energieschale definiert ist.

Falls man diese Hypothese gelten lisst, so ist die Wahrscheinlich-
keit dafir, dass }'|U,, | zwischen y und y + dy liegt, durch

W (y) dy = const. y% 11— y)?E~ %! dy (18)

gegeben?). Da lg 25 von der Grossenordnung 102° sein wird, folgt
daraus, dass y mit einer an Sicherheit grenzenden Wahrscheinlich-
keit in der Néhe von £,/2;liegen wird. Nichtergodische Beobachter
sind zwar méglich, aber dusserst unwahrscheinlich.

Die physikalische Berechtigung der Hypothese 1st freilich anfecht-
bar, denn die Annahme gleicher Wahrscheinlichkeit fiir alle Beob-
achter 1st ganz unbegriindet. | |

Nicht jede makroskopische Observable im Sinne v. NEUMANNS
wird wirklich messbar sein. Zudem wird sich der Beobachter be-
miihen, gerade diejenigen Grossen zu messen, die thm fiir ein vor-
gelegtes System charakteristisch scheinen. Daher kommt es, dass
die Eigenschaft, ergodisch oder nicht-ergodisch zu sein, eher dem
System als dem Beobachter zuzuschreiben ist. Ein System ist dann
nicht ergodisch, wenn sich eine von der Energie verschiedene ma-
kroskopische Grosse als Integral erweist. Dann werden seine Gleich-
gewichtszustdnde vom thermodynamischen Gleichgewicht ab-
weilchen. _

Es gibt Systeme, die sehr lange Zeit in Zustdnden verharren die
ganz wesentlich vom thermodynamischen Gleichgewicht abweichen.
Diese Zusténde werden jedoch nicht als wirkliche Gleichgewichte
betrachtet; denn eine kleine Storung gentigt, um den Ubergang ins
thermodynamische Gleichgewicht zu erzwingen.
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Wir wollen an einem einfachen Beispiel untersuchen, wie diese
Vorstellung im Rahmen unserer Theorie formuliert werden kann*).
Wir betrachten ein System, das-aus zwel ungekoppelten Teil-
systemen besteht.

Der makroskopische Beobachter kann die Energiewerte der bei-
den Systeme einzeln messen. Diese seien F; und E,. Im makro-
skopischen Zustand K, + E, = E gilt fir die Eigenwerte &, + &3,
- = H,, des Hamiltonoperators:

E,<e,<E,+4E; E,<s,<E,+4E.

Die Eigenfunktionen w,, der makroskopischen Observablen sind in
diesem Falle identisch mit denjenigen des Hamiltonoperators:

Yoo = 10" (p2@'

Es 1st klar, dass ein solches Systeni nichtergodisch ist. Man fithre
nun eine kleine Koppelung 4 zwischen den Systemen ein, so dass
der Hamiltonoperator die Gestalt

H,+H,+4

annimmt. Seine Eigenfunktionen seien ¢,. Es gibt sodann eine uni-
tare Transformation U,, ,, welche die Funktionen y,, und ¢, ver-

kniipft:
’l’@: ;Uag,v (pv'

Die U,,, , entsprechen den frither betrachteten Transformationen
U,. .- Wenn sie daher die Gleichung (17) erfiillen, wird das
System ergodisch werden. Dafiir ist notwendig, dass die Stérung A
einen merklichen Bruchteil aller Zustéinde des ungekoppelten Sy-
stems, fiir welche '

B, +E,<e,+6,<E,+E,+4E

erfillt ist, koppelt. Dies sollte der Fall sein, wenn die Matrixelemente
der Stoérung, 4,, ., ihrem Betrage nach mit der Energieunschérfe
AL vergleichbar sind. Denn die Eigenwerte der ungestorten Hamil-
tonfunktion, die in der Energieschale AE des Gesamtsystems liegen
- sind dann praktisch entartet, so dass U,, , wesentlich von der Ein-
heitstransformation abweicht. Da (17), genau wie (6), auch dann
noch als erfiillt zu gelten hat, wenn Abweichungen von mehreren
Zehnerpotenzen auftreten, so kann auch 4 um viele Zehnerpotenzen

*) Damit ndhern wir uns der Auffassung von DELBRUCK und MOLIERES).
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kleiner sein, als AE. Die Art der Stérung 4 ist weitgehend willkiir-
lich; sie soll nur im angegebenen Sinne klein sein. Der Gesamtheit
aller moglichen Stérungen entspricht eine Gesamtheit der Trans-
formationen U, ,. Deren Verteilung wird zwar wesentlich von der
Gleichverteillung im Sinne voN NrumaNNs abweichen. Da jedoch
(18), der enormen Grosse von £25 wegen, beinahe einer d-Funktion
gleichkommt, so darf man immer hoffen, dass fast jede Stérung das
Gleichgewicht erzwingen wird.

Die letzte Uberlegung kann nur den Wert einer Plausibilitiits-
betrachtung beanspruchen. Denn eigentlich hétte man, auf Grund
konkreter physikalischer Annahmen iiber die Art der Stoérung und
tiber ihre statistische Verteilung, die Verteilung der U,, , herzuleiten.
Die Losung dieser Aufgabe tibersteigt unsere Moglichkeiten. Zudem
wiirde man so nur fiir spezielle Systeme etwas beweisen, wéhrend
ja niemand daran zweifelt, dass die Thermodynamik allgemein giil-
tig 1st. Eine allgemeine Beweisfithrung aber wird ohne irgendwelche
Annahmen tiber a priori-Wahrscheinlichkeiten unmaoglich sein, und
bleibt daher stets anfechtbar*).

III. Uber den quantenmechanischen Ausdruck fiir die Entropie.

In den Arbeiten von v. NEuMANN, Pavir und Fierz wird vom
quantenmechanischen Ausdruck fiir die Entropie:

() = 2 (1) 1g Lo~ 2 2(0) 12 (1) (19)

ausgegangen. Dieser unterscheidet sich von (8) durch den positiven
Zusatz — ) y, 1o x,. Es wird gezeigt, dass fiir fast alle Beobachter

s(B) —s*(t) < ¢ | (20)

sein wird, wobei ¢ klein gegen 1 sein kann. Dieses Resultat folgt aber
nur, wenn das System nicht nur nicht entartet ist, sondern wenn
auch alle Energiedifferenzen verschieden sind:

E,—E,—E,+H,+0; (0,0 (d'0). (21)

Das Ergebnis (20), wie auch die Bedingung (21), hingen aufs
engste mit dem genannten Zusatz im Entropieausdruck zusammen.
Die Gleichung (20) ist viel schirfer als (10"). Man kann aus ihr
schliessen, dass nicht nur der Zeitmittelwert der x.(f) nahezu den

*) Man kann sich allerdings fragen, ob nicht eine jede Wahrscheinlichkeits-
betrachtung, bei der die Wahrscheinlichkeiten nicht, wie z. B. in der Quanten-
mechanik, durch Naturgesetze bestimmt sind, als Plausibilitdtsargument zu gelten
hat.

%k
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ergodischen Wert (6) besitzt, sondern dass auch die #,(t) selber nur
sehr selten von diesem abweichen. Das bedeutet, dass ein Wellen-
paket nach hinreichend langer Zeit iiber die ganze Energieschale
zerfliesst. Das Zerfliessen geht freilich sehr langsam vor sich, und
ein System wird viel rascher das thermodynamische Gleichgewicht
erreichen. Die Zeit, die hierfiir massgebend ist, héngt von den Ener-
giedifferenzen ab, die in den y,(f) vorkommen, wiahrend fiir das Zer-
fliessen der Wellenpakete die Differenzen (21) entscheidend sind.
Darum ist die Gleichung (20) keine sinnreiche makroskopische Aus-
sage, und es geniigt, wenn die Gleichung (10") erfillt ist. Aus ihr
folgt, dass der Zusatz — 3 x,lg 7, mikroskopisch klein ist. Man er-

kennt das auch daran, dass dieser keinen Faktor von der Grossen-
ordnung der Loschmidt-Zahl enthélt, was fiir lg 2, immer erwartet
werden darf.

v. NEumaNnN hat die Ansicht vertreten, dass die Bedingungen (21)
tir ergodische Systeme charakteristisch seien. Es 1st nun zwar rich-
tig, dass fiir zwel ungekoppelte Systeme (21) nicht erfillt ist. Es
sind jedoch Systeme denkbar, die (21) erfiillen und die gleichwohl
nicht ergodisch sind. (Ein Beispiel wére eine Flussigkeit, die in einem
vollkommen zylindrischen Geféss rotiert. Hier gibt es, neben der
Energie, das Drehimpulsintegral um die Gefissachse.)

Da sich (21) nur auf das Verhalten des mikroskopischen Zusatzes
in (19) bezieht, ist diese Bedingung ungeeignet, ergodische Systeme
zu charakterisieren. Falls man dies beachtet, und tiberdies alle Be-
obachter im Sinne v. NEuman~s als gleichwahrscheinlich ansieht,
s0 hétte man zu folgern, dass praktisch jedes denkbare System auch
ergodisch sei. Dieser Schluss scheint uns aber zu weit zu gehen.
Daraus miissen wir schliessen, dass bei1 weitem nicht alle ,,Beob-
achter physikalisch zugelassen werden konnen.

_ Ich méchte zum Schluss noch auf folgendes hinweisen : In unseren
Uberlegungen haben wir fiur die Entropie eines bestimmten makro-
skopischen Zustandes den Ansatz

s,=lg 2,

gemacht. £, war dabei ein Mass fiir die Haufigkeit dieses Zustandes,
die man, mit BorTzmMANN, seine Wahrscheinlichkeit nennen kann.’
Von diesem Standpunkte aus ist es kiinstlich und unnotig, dem
Zustand eine ,,grobe Dichte’* ¢ im Phasenraum zuzuordnen, die
innerhalb G, den Wert 1/Q, besitzt, ausserhalb aber verschwindet.
Dies geschieht um fiir s den allgemeinen Ausdruck

s=—/51g5-d'pdq
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anzuwenden. Man konnte freilich sagen, dass der Beobachter ja
nicht wisse, wo sich Phasenpunkt in G, befinde, und dass darum
tiber ihn nur eine Wahrscheinlichkeitsaussage moglich sei, die eben
durch p beschrieben werde. Man mag das zugestehen, aber daraus
folgt noch lange nicht, dass p in G, konstant sein muss.

Mir scheint, dass mit Hilfe dieser Annahme tber g, in einer kiinst-
lichen, logisch aber wenig befriedigenden Weise, Wahrscheinlich-
keitsbegriffe im eigentlichen Sinne in die statistische Mechanik ein-
gefiihrt werden. Falls man hierauf verzichtet, so bleibt freilich
dunkel, wie man (19) begriinden soll, so dass darum der Ausdruck
(8) tiir die Entropie, auch in der Quantenmechanik, vorzuziehen ist.

Im Verlauf dieser Arbeit ist mir ein Briefwechsel mit Herrn
W. PauLt von grossem Nutzen gewesen, und ich méchte nicht ver-
fehlen, thm hierfiir zu danken. Ebenso danke ich Herrn R. JosT fiir
eine klirende Diskussion.

Seminar fiir theoretische Physik der Universitat Basel.
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