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Der Ergodensatz in der Quantenmechanik
von M. Fierz.

(7. XL 1955.)

Zusammenfassung: Es wird gezeigt, dass die Annahme v. Neumanns über
die „Gleichverteilung" der makroskopischen Beobachter unbefriedigend ist. Da
aber zum Beweise des Ergodensatzes in der Quantenmechanik eine
Wahrscheinlichkeitsannahme a priori nicht vermieden werden kann, wird vorgeschlagen,
die Annahme v. Neumanns durch eine solche über die Verteilung mikroskopischer
Störungen des Systems zu ersetzen.

Die Frage des Ergodensatzes in der Quantenmechanik hat zuerst
v. Neumann1) diskutiert. Seine Ansätze haben Pauli und Fierz2)
weiter verfolgt.

Diese Arbeiten sind aber in verschiedener Hinsicht nicht
befriedigend, weshalb das Problem hier erneut erörtert werden soll. Dabei
werden wir an der durch v. Neumann eingeführten Charakterisierung

makroskopischer Beobachter und makroskopischer Zustands-
grössen festhalten.

Um die Gedankengänge klar darzustellen, soll der Ergodensatz
und der Begriff eines makroskopischen Beobachters zuerst im Rahmen

der klassischen Mechanik betrachtet werden.
Wir schliessen uns der Auffassung Einsteins3) an, dass die

mechanische Wärmetheorie Aussagen über die Zeitgesamtheit eines
einzigen Systems mache. Falls der Ergodensatz gilt, so ist diese der
mikrokanonischen Gesamtheit der statistischen Mechanik
äquivalent.

Wenn man aus dem Ergodensatz auf die physikalische
Gleichwertigkeit der Zeitgesamtheit und der mikrokanonischen Gesamtheit

schliesst, so bleibt doch logisch ein wesentlicher Unterschied
zwischen den beiden Gesamtheiten bestehen. Die Zeitmittelwerte
sind Grenzwerte der Gestalt

~

lim X/7(f) d.
0

über Funktionen /(.) im Phasenraum. Dagegen kann man
statistische Mittelwerte bekanntlich nicht als Grenzwerte irgendwelcher
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Häufigkeiten betrachten. Streng genommen ist also die „statistische"

Mechanik keine statistische Theorie im Sinne der
Wahrscheinlichkeitsrechnung. Man darf darum mit einem gewissen Recht die
Meinung vertreten, den statistischen Gesamtheiten der statistischen
Mechanik komme keine direkte physikalische Bedeutung zu; sie
seien mathematisch nützliche Fiktionen.

Die Quantenmechanik freilich handelt grundsätzlich von
statistischen Gesamtheiten. Hier spielt der Wahrscheinlichkeitsbegriff
eine entscheidende Rolle. Für die Wärmetheorie kommt es aber auch
hier wieder auf eine Zeitgesamtheit an.

I. Klassische Theorie.

Wir betrachten ein einziges, energetisch abgeschlossenes System
mit sehr vielen Freiheitsgraden. Sein Zustand wird mikroskopisch
durch einen Punkt im Phasenraum (pk, qk) beschrieben (k 1... /).

Falls sich der Phasenpunkt in dem Gebiet Ga des Phasenraumes
befindet, so beobachtet der makroskopische Beobachter den
makroskopischen Zustand a. Den verschiedenen makroskopischen Zuständen

a entsprechend, wird der Phasenraum in Phasenzellen eingeteilt,
deren Phasenausdehnung üa durch

Qa=jndp,edqk (1)

gegeben ist.
Eine der makroskopischen Zustandsgrössen ist die makroskopische

Energie. Der Energiewert E wird dann beobachtet, wenn der
Phasenpunkt in der Energieschale Gehegt, die durch die Ungleichung

E<H(p,q)<E+AE (2)

charakterisiert ist. AE ist dabei ein Mass für die Messgenauigkeit
des Beobachters. Die Ausdehnung der Energieschale nennen wir QE.
(Falls das System aus N gleichartigen Teilchen besteht, so hat man
die Phasenausdehnungen (1) noch durch Nl zu dividieren.)

Da der Beobachter neben der Energie noch andere Zustandsgrössen

messen kann, ist die Energieschale in entsprechende Phasenzellen

eingeteilt, die wir Ga]s nennen. Wir nehmen an, die Anzahl
der Zustände M in der Energieschale sei zwar sehr gross, aber endlich.

Es gilt& M

££>«*= ß™. (3)
a-l

Im Verlaufe der Zeit bewegt sich der Phasenpunkt in der Energie-
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schale. Die makroskopische Zustandsänderung kann darum durch
eine Funktion %a(t) beschrieben werden, die folgende Eigenschaft
besitzt :

xjt) 1 wenn der Phasenpunkt in Gx \
0 wenn der Phasenpunkt ausserhalb Ga\

(%-(.) ist nur innerhalb der Energieschale E von Null verschieden.
Wir lassen darum im folgenden den Index E neben oc weg.) Da der
Phasenpunkt sich irgendwo in der Energieschale befinden muss, so

gilt stets :

cc

Der Verlauf von %A[t) hängt von den Anfangsbedingungen ab und
ist durch die Hamiltonschen Gleichungen des Systems bestimmt.
Diese können freilich für ein makroskopisches System nicht gelöst
werden. Für die Anwendung in der statistischen Mechanik genügt
aber folgende Aussage über das mittlere Verhalten von %A[t) im
Verlauf der Zeit: Für „fast alle" mikroskopischen Anfangswerte
(Pk> lie) ist die mittlere Häufigkeit, mit der ein Zustand a
angetroffen wird zu -2_ proportional :

™

X^irn-L-fXa(t)dt=^-. (6)

Wenn (6) erfüllt ist, nennt man das System ergodisch. Der Ausdruck
„fast alle" ist hier in dem Sinne gemeint, dass es in der Menge aller
Anfangszustände eine Nullmenge von Ausnahmezuständen (pk,qk)
geben kann, für die (6) nicht gilt. Diese kann man von vorneherein
aus der Betrachtung ausschliessen, indem man eine statistische
Dichte q > 0 im Phasenraum einführt, von der man z. B. annimmt,
sie sei stetig. #a(.) ist dann die Wahrscheinlichkeit, das System zur
Zeit t im Zustande a anzutreffen :

*.(*) =J9(i)àpdq

und kann alle Werte zwischen 0 und 1 annehmen. Das System ist
dann ergodisch, wenn unabhängig von der Anfangsverteilung q stets

Xa~ fi.3™

ist. Wir halten es freilich für richtiger, an dieser Stelle auf das
Einführen einer Dichte q zu verzichten und anzunehmen, dass nur ein
einziges System und seine Zeitgesamtheit betrachtet wird. Da näm-
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lieh die Ausnahmezustände eine Nullmenge bilden, so darf man mit
Recht erwarten, dass sich das System nicht in einem solchen
Zustand befinde.

Wenn das System ergodisch ist, so kann man, im Sinne Boltz-
manns, Qa als Mass für die Wahrscheinlichkeit eines Zustandes
betrachten.

In manchen Fällen können die Wahrscheinlichkeiten üa durch
kombinatorische Betrachtungen gefunden werden, und dann ergibt
sich bekanntlich, dass derjenige Zustand, der dem thermodyna-
mischen Gleichgewicht entspricht, erdrückend wahrscheinlich ist.

Allgemein führt die folgende Überlegung zu diesem Resultat, die
sich auf den Zusammenhang von Wahrscheinlichkeit und Entropie
stützt. Man definiere die Entropie sa des Zustandes et, mit Boltz-
mann, gemäss:

*« lg-X (7)

[Die Boltzmannsche Konstante setzen wir gleich (1).]

Der Zustand ct. ist in der Zeit veränderlich; ebenso seine Entropie,
was durch

M

s(t)=ZX-(t)S- (-)
a-l

ausgedrückt wird. Falls der Ergodensatz (6) gilt, ist der Zeitmittelwert

der Entropie s(t) durch

W~E%*0. (9)
a-l "¦

gegeben. s(t) ist immer kleiner als die mikrokanonische Entropie
s(E) lg ÜE, welche dem thermodynamischen Gleichgewicht
entspricht. Man erkennt nun, dass die folgende Ungleichung erfüllt ist :

«(E)—7(tj < lg M. (10)

Das Gleichheitszeichen tritt dann ein, wenn alle _2a gleich gross sind.

Makroskopisch messbare Entropiedifferenzen, in einem System
mit / Freiheitsgraden, haben die Grössenordnung /, d. h. 1020. Wenn
wir nun in (9) zwei Summanden ct. und et' vergleichen, für die sich
die zugehörigen Entropiewerte merklich unterscheiden, so wird der
Term mit der kleineren Entropie einen, gegen den anderen,
verschwindenden Beitrag ergeben. Denn aus

lg ß,-lg £>„, -/ (H)
folgt
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e kann sehr klein sein, wenn es nur noch messbar ist, also z. B.
e IO™8, so ist immer eei riesig gross. Die Terme, die in (9)
massgebend sind, besitzen darum alle eine annähernd gleich grosse
Entropie. Auf sie darf man sich in (10) beschränken, und ihre Zahl sei

M. Daher gilt:
s(E)-s(i)<lgM. (10')

lg M ist aber immer unmessbar klein. Denn wenn wir auch M e10"

setzen, so folgt aus (10'), dass die Entropie fast nie messbar vom
mikrokanonischen Werte abweicht.

Grundsätzlich ist freilich eine kleine Abweichung vorhanden, die
den statistischen Schwankungen entspricht.

Unsere Überlegungen bleiben auch dann richtig, wenn (6) nicht
streng erfüllt ist. Es könnten sich #a und QjüE um mehrere
Zehnerpotenzen unterscheiden, ohne dass das makroskopisch ernste Folgen
hätte. Dies entspricht der „Insensabilité de la formule de Boltz-
mann", die besonders H. A. Lorentz betont hat4).

II. Quantentheorie.

In der Quantentheorie wird das System durch eine ^-Funktion
beschrieben, die nach Eigenfunktionen des Hamilton-Operators : cpa

entwickelt werden kann :

W Zracpa. (12)
a

Die makroskopischen Zustände definieren wir nun gleich wie
v. Neumann:

Alle stationären Zustände cpa, deren Energie Ea zwischen E und
E + AE liegt, gehören zur gleichen makroskopischen Energie. Ein
nichtstationärer Zustand, für den die ra in (12) nur dann nicht
verschwinden, wenn

E<Ea<E + AE, (13)

liegt in der „Energieschale" E. Diese soll ÜE Zustände enthalten.
ÜE entspricht der Phasenausdehnung der Energieschale in der
klassischen Theorie und darum verwenden wir die gleiche Bezeichnung.

Die mikrokanonische Entropie ist wiederum gleich lg QE. Ferner
wird der Beobachter, bei gegebener Energie, M Zustände a
unterscheiden können. Zu jedem makroskopischen Zustand gehören üa
verschiedene Eigenfunktionen coa_, wobei x — 1... Qa. Jede
Eigenfunktion von der Gestalt

V Z Kr «ar
T-l

beschreibt denselben makroskopischen Zustand; dieser liegt in der
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„Phasenzelle" a. Da die Zustände a alle in der Energieschale E
liegen und diese erfüllen, so gilt wiederum

27 £>„--£>,*).
a

Ein Zustand y in der Energieschale — und nur von solchen wollen
wir der Einfachheit halber sprechen — kann nach den coaT entwickelt
werden :

M fla
W Z EKr^r- (14)

a-lT-l
Die Wahrscheinlichkeit, den Zustand a anzutreffen ist durch

*_(*)=-27" |t„l* (15)
T 1

gegeben. Anders als in der klassischen Theorie können die %A[f) alle
Werte zwischen 0 und 1 annehmen. Hierin äussert sich der wesentlich

statistische Zug der Quantentheorie.
Das System ist wieder dann ergodisch, wenn

Xlt) %- (6')

Das besagt hier, dass die Wahrscheinlichkeit, den Zustand a
anzutreffen, im Zeitmittel proportional zu üa ist, während klassisch die
gleiche Formel (6) diese Aussage über die mittlere Häufigkeit der
Zustände macht. Aus (6') folgert man nun, genau wie in der klassischen

Theorie, dass die Wahrscheinlichkeit, das System im
Gleichgewicht zu finden, fast immer erdrückend gross ist.

Der „Ergodensatz" (6') ist nicht nur eine Aussage über das

System, sondern auch eine über den Beobachter. Diese lässt sich,
im Unterschied zur klassischen Theorie, noch genauer formulieren.

Zu diesem Zweck führe man die unitäre Transformation J7aTi-

ein, welche die Eigenfunktionen ~>„ mit denjenigen der makroskopischen

Variablen coar verknüpft:

<oaz=EF cpa.
a

Man drücke nun mit Hilfe der Uar<a die tar in (15) durch die
Entwicklungskoeffizienten ra aus. Falls das System nicht entartet ist,
findet man

aE ßa
*«(*)-= 27 27 l*X,X|X2 (iß)

-=1 T l
*) Bei Pauli und Fierz2) wird statt QE und ß-, SE und sv geschrieben. Unsere

Bezeichnung soll die Parallele zur klassischen Theorie betonen.
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(6') soll nun unabhängig von den Werten der ra zutreffen, was dann
der Fall ist, wenn für alle a

J7|tX,X |^ (17)

gültig ist. Die Gleichung (17) bringt eine Beziehung zwischen einem
System und dessen Beobachter zum Ausdruck. Ist sie erfüllt, so
ist für diesen das System ergodisch.

v. Neumann suchte nun zu beweisen, dass ein jedes System für
fast jeden makroskopischen Beobachter ergodisch sein werde. Dabei
wurde vorausgesetzt, dass alle Beobachter, die durch die Zahlen ÜE
und üx charakterisiert sind, gleich wahrscheinlich seien. Das ist in
folgendem Sinne gemeint: Die Wahrscheinlichkeitsverteilung der
Transformationen E-TjCT soll invariant sein gegen alle unitären
Transformationen des ß^-dimensionalen Funktionenraumes, der
durch die Energieschale definiert ist.

Falls man diese Hypothese gelten lässt, so ist die Wahrscheinlichkeit

dafür, dass 27|Ua_j(r| zwischen y und y + dy liegt, durch

W(y) dy const. "ß~™i(l - yf^"^1 dy (18)

gegeben1). Da lg QE von der Grössenordnung 1020 sein wird, folgt
daraus, dass y mit einer an Sicherheit grenzenden Wahrscheinlichkeit

in der Nähe von ÜX/ÜEliegen wird. Nichtergodische Beobachter
sind zwar möglich, aber äusserst unwahrscheinlich.

Die physikalische Berechtigung der Hypothese ist freilich anfechtbar,

denn die Annahme gleicher Wahrscheinlichkeit für alle
Beobachter ist ganz unbegründet.

Nicht jede makroskopische Observable im Sinne v. Neumanns
wird wirklich messbar sein. Zudem wird sich der Beobachter
bemühen, gerade diejenigen Grössen zu messen, die ihm für ein
vorgelegtes System charakteristisch scheinen. Daher kommt es, dass
die Eigenschaft, ergodisch oder nicht-ergodisch zu sein, eher dem
System als dem Beobachter zuzuschreiben ist. Ein System ist dann
nicht ergodisch, wenn sich eine von der Energie verschiedene
makroskopische Grösse als Integral erweist. Dann werden seine
Gleichgewichtszustände vom thermodynamischen Gleichgewicht
abweichen.

Es gibt Systeme, die sehr lange Zeit in Zuständen verharren die

ganz wesentlich vom thermodynamischen Gleichgewicht abweichen.
Diese Zustände werden jedoch nicht als wirkliche Gleichgewichte
betrachtet; denn eine kleine Störung genügt, um den Übergang ins
thermodynamische Gleichgewicht zu erzwingen.
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Wir wollen an einem einfachen Beispiel untersuchen, wie diese
Vorstellung im Rahmen unserer Theorie formuliert werden kann*).
Wir betrachten ein System, das aus zwei ungekoppelten
Teilsystemen besteht.

Der makroskopische Beobachter kann die Energiewerte der beiden

Systeme einzeln messen. Diese seien Ex und E2. Im
makroskopischen Zustand Ex + E2 E gilt für die Eigenwerte eXa + e2g

Eag des Hamiltonoperators:

Ex<ela<Ex + AE; E2<e2g<E2 +AE.

Die Eigenfunktionen coar der makroskopischen Observablen sind in
diesem Falle identisch mit denjenigen des Hamiltonoperators:

Es ist klar, dass ein solches System nichtergodisch ist. Man führe
nun eine kleine Koppelung X zwischen den Systemen ein, so dass
der Hamiltonoperator die Gestalt

Hx+H2 + Â

annimmt. Seine Eigenfunktionen seien tp„. Es gibt sodann eine uni-
täre Transformation Ua welche die Funktionen ipae und cpv

verknüpft :

Wao= EF Cpv.
v

Die UCTfi)- entsprechen den früher betrachteten Transformationen
LTaT0. Wenn sie daher die Gleichung (17) erfüllen, wird das

System ergodisch werden. Dafür ist notwendig, dass die Störung X

einen merklichen Bruchteil aller Zustände des ungekoppelten
Systems, für welche

Ex+E2<eXa + e2e<Ex+E2 + AE

erfüllt ist, koppelt. Dies sollte der Fall sein, wenn die Matrixelemente
der Störung, A- a,g>, ihrem Betrage nach mit der Energieunschärfe
AE vergleichbar sind. Denn die Eigenwerte der ungestörten Hamil-
tonfunktion, die in der Energieschale AE des Gesamtsystems liegen
sind dann praktisch entartet, so dass U„ „ wesentlich von der
Einheitstransformation abweicht. Da (17), genau wie (6), auch dann
noch als erfüllt zu gelten hat, wenn Abweichungen von mehreren
Zehnerpotenzen auftreten, so kann auch X um viele Zehnerpotenzen

*) Damit nähern wir uns der Auffassung von Delbrück und Molière5).



Vol. 28,1955. Der Ergodensatz in der Quantenmechanik. 713

kleiner sein, als AE. Die Art der Störung X ist weitgehend willkürlich

; sie soll nur im angegebenen Sinne klein sein. Der Gesamtheit
aller möglichen Störungen entspricht eine Gesamtheit der
Transformationen Uag>v. Deren Verteilung wird zwar wesentlich von der
Gleichverteilung im Sinne von Neumanns abweichen. Da jedoch
(18), der enormen Grösse von QE wegen, beinahe einer «.-Funktion
gleichkommt, so darf man immer hoffen, dass fast jede Störung das

Gleichgewicht erzwingen wird.
Die letzte Überlegung kann nur den Wert einer Plausibilitäts-

betrachtung beanspruchen. Denn eigentlich hätte man, auf Grund
konkreter physikalischer Annahmen über die Art der Störung und
über ihre statistische Verteilung, die Verteilung der Eaev herzuleiten.
Die Lösung dieser Aufgabe übersteigt unsere Möglichkeiten. Zudem
würde man so nur für spezielle Systeme etwas beweisen, während
ja niemand daran zweifelt, dass die Thermodynamik allgemein gültig

ist. Eine allgemeine Beweisführung aber wird ohne irgendwelche
Annahmen über a priori-Wahrscheinlichkeiten unmöglich sein, und
bleibt daher stets anfechtbar*).

III. Über den quantenmechanischen Ausdruck für die Entropie.

In den Arbeiten von v. Neumann, Pauli und Fierz wird vom
quantenmechanischen Ausdruck für die Entropie:

s*(t) E xjt) lg Qa~ ZxJt) lg *«(<) (19)
ce a

ausgegangen. Dieser unterscheidet sich von (8) durch den positiven
Zusatz "2J Xa -g Xx- Es wird gezeigt, dass für fast alle Beobachter

a

s(E)-s*(t)<e (20)

sein wird, wobei e klein gegen 1 sein kann. Dieses Resultat folgt aber
nur, wenn das System nicht nur nicht entartet ist, sondern wenn
auch alle Energiedifferenzen verschieden sind:

E.-E.-E-. + E.^O; (g,q) + (a'Q'). (21)

Das Ergebnis (20), wie auch die Bedingung (21), hängen aufs
engste mit dem genannten Zusatz im Entropieausdruck zusammen.
Die Gleichung (20) ist viel schärfer als (10'). Man kann aus ihr
schliessen, dass nicht nur der Zeitmittelwert der %a(t) nahezu den

*) Man kann sich allerdings fragen, ob nicht eine jede Wahrscheinlichkeitsbetrachtung,

bei der die Wahrscheinlichkeiten nicht, wie z. B. in der
Quantenmechanik, durch Naturgesetze bestimmt sind, als Plausibilitätsargument zu gelten
hat.
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ergodischen Wert (6) besitzt, sondern dass auch die %A\t) selber nur
sehr selten von diesem abweichen. Das bedeutet, dass ein Wellenpaket

nach hinreichend langer Zeit über die ganze Energieschale
zerfliesst. Das Zerfliessen geht freilich sehr langsam vor sich, und
ein System wird viel rascher das thermodynamische Gleichgewicht
erreichen. Die Zeit, die hierfür massgebend ist, hängt von den
Energiedifferenzen ab, die in den %A[t) vorkommen, während für das
Zerfliessen der Wellenpakete die Differenzen (21) entscheidend sind.
Darum ist die Gleichung (20) keine sinnreiche makroskopische
Aussage, und es genügt, wenn die Gleichung (10') erfüllt ist. Aus ihr
folgt, dass der Zusatz —^7 Xa lg/.amikroskopisch klein ist. Man er-

a

kennt das auch daran, dass dieser keinen Faktor von der Grössenordnung

der Loschmidt-Zahl enthält, was für lg i2a immer erwartet
werden darf.

v. Neumann hat die Ansicht vertreten, dass die Bedingungen (21)
für ergodische Systeme charakteristisch seien. Es ist nun zwar richtig,

dass für zwei ungekoppelte Systeme (21) nicht erfüllt ist. Es
sind jedoch Systeme denkbar, die (21) erfüllen und die gleichwohl
nicht ergodisch sind. (Ein Beispiel wäre eine Flüssigkeit, die in einem
vollkommen zylindrischen Gefäss rotiert. Hier gibt es, neben der
Energie, das Drehimpulsintegral um die Gefässachse.)

Da sich (21) nur auf das Verhalten des mikroskopischen Zusatzes
in (19) bezieht, ist diese Bedingung ungeeignet, ergodische Systeme
zu charakterisieren. Falls man dies beachtet, und überdies alle
Beobachter im Sinne v. Neumanns als gleichwahrscheinlich ansieht,
so hätte man zu folgern, dass praktisch jedes denkbare System auch
ergodisch sei. Dieser Sehluss scheint uns aber zu weit zu gehen.
Daraus müssen wir schliessen, dass bei weitem nicht alle
„Beobachter" physikalisch zugelassen werden können.

Ich möchte zum Sehluss noch auf folgendes hinweisen : In unseren
Überlegungen haben wir für die Entropie eines bestimmten
makroskopischen Zustandes den Ansatz

«a=lg--a

gemacht. üa war dabei ein Mass für die Häufigkeit dieses Zustandes,
die man, mit Boltzmann, seine Wahrscheinlichkeit nennen kann.
Von diesem Standpunkte aus ist es künstlich und unnötig, dem
Zustand eine „grobe Dichte" q im Phasenraum zuzuordnen, die
innerhalb G7a den Wert l/üa besitzt, ausserhalb aber verschwindet.
Dies geschieht um für s den allgemeinen Ausdruck

f 9 lg 9- dp dq
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anzuwenden. Man könnte freilich sagen, dass der Beobachter ja
nicht wisse, wo sich Phasenpunkt in Ga befinde, und dass darum
über ihn nur eine Wahrscheinlichkeitsaussage möglich sei, die eben
durch - beschrieben werde. Man mag das zugestehen, aber daraus
folgt noch lange nicht, dass g in 67a konstant sein muss.

Mir scheint, dass mit Hilfe dieser Annahme über ~q, in einer
künstlichen, logisch aber wenig befriedigenden Weise, Wahrscheinlioh-
keitsbegriffe im eigentlichen Sinne in die statistische Mechanik
eingeführt werden. Falls man hierauf verzichtet, so bleibt freilich
dunkel, wie man (19) begründen soll, so dass darum der Ausdruck
(8) für die Entropie, auch in der Quantenmechanik, vorzuziehen ist.

Im Verlauf dieser Arbeit ist mir ein Briefwechsel mit Herrn
W. Pauli von grossem Nutzen gewesen, und ich möchte nicht
verfehlen, ihm hierfür zu danken. Ebenso danke ich Herrn R. Jost für
eine klärende Diskussion.

Seminar für theoretische Physik der Universität Basel.
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