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Etude des oscillations piézoélectriques du quartz par la
diffraction des rayons X

par R. Mermod (Genève).

(28. VIII. 1955).

Résumé: Les courbes d'intensité des rayons X, diffractés par une lame de quartz
(x-cut), ont été relevées. Ces courbes présentent lorsque le quartz oscille, une forte
augmentation d'intensité d'une part, et un élargissement asymétrique d'autre part.

L'élargissement asymétrique permet de conclure à une nonlinéarité des
déformations élastiques en fonction des tensions. Une nouvelle interprétation de
l'augmentation d'intensité confirmée quantitativement par l'expérience est proposée.
Cette interprétation implique que l'état de mosaïque du cristal augmente
considérablement lorsque le quartz oscille.

Introduction.

L'effet des oscillations piézoélectriques sur la diffraction des

rayons X se rapproche beaucoup de l'effet dû à l'agitation
thermique. Du point de vue théorique il en constitue un cas particulier,
où l'on a affaire à une seule onde dans le cristal. Toutefois l'amplitude

de l'onde d'une oscillation piézoélectrique est beaucoup plus
grande que celle qu'on rencontre dans les oscillations thermiques
et ne permet pas les mêmes approximations.

L'effet de deux ondes ultra-sonores parcourant le cristal en sens
inverse pour former une onde stationnaire, comme c'est le cas lorsque

une lame de quartz taillée perpendiculairement à l'axe x oscille
à sa fréquence de résonance, a été calculé par la méthode du réseau
de Fourier1).

Cette méthode consiste à décomposer la densité électronique du
cristal en séries de Fourier. Cette densité ayant pour période la
maille du cristal dans les trois dimensions, les coefficients de Fourier

sont la transformée de la densité électronique dans l'espace
de Fourier aux points bhl. l où

bi,,k,i Jlbx+kb2 + lb3
h, k, l entiers

et

"f ak O,- /c

i,k l, 2,3.
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Les a, étant les vecteurs de base de la maille du cristal et ô{k le
symbole de Kronecker.

L'esp.,ce de Fourier n'est autre que l'espace réciproque tel que
l'a introduit Ewald, et les points bh:k ; correspondent aux familles
des plans d'indices de Milles h, k, l.

On démontre alors que le coefficient de Fourier d'indice h, k, I

est égal au facteur de structure du cristal pour les plans h, k, l.

En résumé, la décomposition en série de Fourier de la densité
électronique nous donne le réseau réciproque en attachant à chacun
de ces points la valeur du facteur de structure des plans correspondants.

Si l'on suppose maintenant que le cristal est le siège d'une onde

élastique stationnaire de vecteur d'onde k, on introduit une
nouvelle périodicité de la densité électronique du cristal; ce qui ajoute
au réseau de Fourier de nouveaux points ayant pour vecteur:

h,k,i~nk
n= ±(0,1,2...)

Chaque point du roseau de Fourier est donc entouré de points
supplémentaires dans la direction du vecteur k. A chacun de ces

points numérotés h, k, l, n est associé un facteur de structure. Ces

facteurs de structure diminuent très rapidement lorsque n croît, et

deviennent négligeables pour n > A n bh k ;-f ; où f représente
l'amplitude maximum du déplacement des atomes dû à l'onde stationnaire.

La somme de tous les facteurs de structure entourant un point
h, k, l est égale au facteur du point correspondant, du roseau non
perturbé par une onde élastique.

D'autre part, le vecteur fc étant très petit par rapport aux
vecteurs bi, les points supplémentaires entourant le point bnkl sont très
serrés et très nombreux, si bien que l'on peut considérer que chaque
point du réseau réciproque s'étale en un segment de droite ayant
la direction de fc. Ce segment se réduit à un point lorsque le produit
°h,k.A f s'annule, c'est-à-dire lorsque le déplacement des atomes se

fait parallèlement au plan réticulaire réfléchissant.
La répartition angulaire de l'intensité X diffractée par une famille

de plans h, fc, l présentera donc un élargissement correspondant à

l'étalement du point h,k,l dxx réseau réciproque (fig. 1).
Toutefois cette méthode de calcul suppose implicitement que les

rayons X utilisés sont suffisamment pénétrants pour traverser plu-
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sieurs ondes stationnaires, et trouver ainsi une périodicité de la
densité électronique due à l'onde élastique.

Ceci est réalisé lorsque lc cristal est une lame mince, oscillant à
une harmonique supérieure de sa fréquence de résonance, mais ceci
n'est plus le cas lorsque la lame oscille à sa fréquence fondamentale,
puisqu'elle ne contient qu'une demi-longueur d'onde de l'oscillation
élastique.

Il faut alors renoncer à cette méthode de calcul et partir de
l'équation de Bragg:

• .-. n A

sm0=2T
où d, la constante réticulaire des plans réfléchissants, est modifiée
par l'onde élastique.

Mais avant de poursuivre nous devons encore préciser les conditions

expérimentales. Nous supposons que le cristal est taillé en une

m

t
Fig. i.

Etalement des points du réseau réciproque dû à une onde élastique.
Sphères d'Ewald pour une réflexion 4 2 0.

lame parallèle aux plans réfléchissants et que l'onde élastique est
plane, stationnaire, de plans d'onde parallèles aux plans réfléchissants.

La lame oscille donc dans le sens de l'épaisseur à sa fréquence
de résonance fondamentale. Les plans réticulaires subissent une
déformation, maximum au centre de la lame et nulle sur les deux
faces, tandis que leur déplacement est maximum sur les deux faces
et nulle au centre.

La constante réticulaire a donc pour expression :

d(x, t) d0 11 + ô sin FF cos mt\

d0 étant la constante réticulaire non perturbée, x la profondeur à
l'intérieur de la lame d'épaisseur b, et ô la variation relative maximum

de d0.

Divisons, à un instant donné, la lame en tranches d'épaisseur ôx
parallèles aux plans diffractants, chacune de ces tranches donne
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une raie de diffraction. Toutes ces raies sont déplacées les unes par
rapport aux autres suivant la valeur do la constante réticulaire de

la couche considérée à la profondeur x.
Il faut toutefois tenir compte de l'absorption des rayons X dans

le cristal : les couches situées près de la face irradiée par les rayons X
(où x 0) reçoivent plus d'intensité que les couches intérieures.

L'intensité diffractée par une couche d'épaisseur ôx doit donc
être multipliée par un facteur e^fiX tenant compte de la décroissance
de l'intensité incidente à l'intérieur du cristal.

Si nous admettons que la courbe de l'intensité diffractée par une
couche, en fonction de l'angle de diffraction, a la forme d'une
courbe de Gauss, nous obtenons pour la courbe de l'intensité
diffractée à un instant donné, par toute la lame sous l'angle cp,

l'expression suivante :

b i
-li x — I (f — <r0 sin —-— cos <

I(cpA) / e e •
'

*> i òx
b

où cp est compté à partir de l'angle de Bragg pour les plans non
perturbés. cp0 est la variation de l'angle de Bragg pour la perturbation

maximum de la constante réticulaire.
Pour obtenir l'expression de l'intensité diffractée par une lame

oscillante, il faut encore prendre la moyenne sur le temps, pendant
une période T de l'oscillation, en intégrant.

im ||xvH°sini^cos wt)2ôxôt.

b u

Cette expression donnant l'intensité relative, nous n'avons pas
fait figurer les termes constants devant l'intégrale.

L'intégration ne peut malheureusement être effectuée que si cp0

est petit par rapport à cp, en développant l'exponentielle en série,
mais ceci n'est évidemment pas le cas pour toute valeur de cp, d'autant

plus que cp0 est de l'ordre de la largeur de la courbe de Gauss.

Méthode expérimentale.

1. Description générale.

Pour relever les courbes d'intensité des rayons X diffractés en
fonction de l'angle de diffraction, nous avons utilisé un spectromètre
du type de Bragg (fig. 2).
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Le rayonnement d'un tube à rayons X à anticathode de molybdène,

était limité par une première fente et dirigé sur une lame de

quartz disposée sur l'axe du spectromètre. Un compteur Geiger-
Müller, précédé d'une deuxième fente, mesurait l'intensité X
diffractée par le cristal en fonction de sa position angulaire. La vitesse
de rotation du compteur était double de celle du cristal de manière
à conserver les conditions de réflexion.

Compteur 6M
témoin ictie/e

tt f
fil/res

o Quartz fette/ie

SpectroscopeTube R X

Compteur G.m.

Fig. 2.

Plan général de l'installation.

Un autre compteur Geiger-Müller, servant de témoin, mesurait

l'intensité X émise par le tube et évitait ainsi toute déformation
de la courbe de diffraction, due aux variations de l'émission du tube.

Le cristal métallisé sur ses deux faces était disposé sur une platine
verticale, à la terre du point de vue électrique. La tension haute
fréquence, entraînant l'oscillation de la lame de quartz, était appliquée

entre la terre et la face libre de la lame.

2. Bayonnement X.

Ve rayonnement X utilisé était la raie _5_a- du molybdène
(0,708 Â), car il est nécessaire que les rayons X pénètrent suffisamment

à l'intérieur de la lame pour atteindre les couches où la
constante réticulaire varie fortement lors de l'oscillation. Nous avons
vu en effet que le maximum de déformation a lieu au milieu de

l'épaisseur de la lame.
Les mesures faites avec la raie Kai du cuivre (1, 537 A) n'ont

montré aucun effet des oscillations piézoélectriques du quartz sur
les courbes de diffraction. Ces mesures ont été faites sur des lames
de 2 mm d'épaisseur (fréquence d'oscillation 1, 4 Mc) et de 0,4 mm
(7 Mc). Même dans le deuxième cas la pénétration n'était pas
suffisante.
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Le tube à rayons X utilisé était démontable, à anticathode
interchangeable. La cathode était en forme de cylindre creux et focalisait
les électrons sur l'anticathode selon un rectangle très allongé, parallèle

à la première fente. Le tube était évacué par une pompe à diffusion

d'huile; il était alimenté par un générateur de haute tension de
100 kV continus au maximum, à redresseurs au sélénium. Le
filament du tube était au potentiel de la haute tension et alimenté par
un transformateur isolé compris dans le groupe haute tension.

Pour une anticathode de molybdène la tension de fonctionnement
était de 35 kV environ pour 7 mA de courant électronique.

3. Le spectromètre.

Va lame de quartz et le compteur mesurant l'intensité diffractée
étaient montés sur un spectromètre permettant de déterminer leur
position angulaire avec une précision de % seconde. La première
fente était solidaire du spectromètre et un déplacement de
l'ensemble de l'appareil permettait de l'amener on face du foyer de

l'anticathode sans modifier le réglage du spectromètre.
Un système d'engrenage permettait d'entraîner simultanément le

compteur et le cristal avec une forte démultiplication. Les déplacements

pouvaient ainsi être inférieurs à la seconde tout en maintenant

les conditions de réflexion.

Les deux fentes étaient disposées à égale distance de l'axe du
spectromètre de manière à satisfaire la condition de focalisation, ce

qui facilitait le réglage de la position angulaire du cristal, par rapport
au compteur.

Le réglage de la position de la lame de quartz par rapport à l'axe
de rotation se faisait en mesurant l'angle entre deux réflexions
symétriques par rapport à un plan vertical passant par l'axe et la
première fente. Il fallait évidemment pour cela opérer une rotation
de 180 degrés sur le support du cristal de manière à retrouver la
face libre du quartz pour la deuxième réflexion.

L'angle mesuré devant être égal à 4 fois l'angle de Bragg, il était
facile d'après la différence avec les valeurs des tables, de calculer
le déplacement à donner à la lame pour amener les plans réfléchissants

à passer par l'axe. Cette méthode a l'avantage de tenir compte
de la pénétration des rayons X dans le cristal.

Les autres réglages des divers éléments du spectromètre se
faisaient par les méthodes classiques.
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4. Mesure de l'intensité X.
Les compteurs utilisés pour mesurer l'intensité des rayons X

furent soit des compteurs Philips à fenêtre de verre de Lindemann,
soit des compteurs Tracerlab à fenêtre de mica. Les deux types
donnèrent satisfaction.

Les deux compteurs étaient suivis d'un étage d'amplification
conservant au système de comptage un bon pouvoir de résolution.
Les impulsions étaient ensuite transmises à deux échelles de 32
permettant l'enregistrement d'une intensité suffisamment élevée. Le
compteur témoin mesurant l'intensité émise par le tube devait en
effet compter un nombre de coups suffisamment grand pour ne pas
ajouter d'erreur de statistique à la mesure de l'intensité diffractée.

D'autre part le compteur témoin ne devait mesurer que l'intensité
de la raie Kax émise, et non pas le spectre entier; car les variations
d'émission dues aux instabilités de la haute tension ne sont pas les
mêmes pour les différentes longueurs d'onde. Nous avons obtenu
une bonne proportionnalité entre les intensités mesurées par le

compteur témoin et le compteur mobile, en interposant entre
l'anticathode et le compteur témoin un filtre d'oxyde de zirconium
(0,2 g/cm2 de Zr) éliminant les petites longueurs d'onde, et un filtre
d'aluminium absorbant le reste du spectre continu. Le compteur
témoin était placé en face d'une fenêtre latérale du tube, une fente
permettait de limiter et de régler l'intensité reçue.

L'emploi d'un intégrateur en place des échelles n'était pas justifié,
car l'intensité diffractée était relativement faible. La largeur des
fentes était en effet limitée à quelques centièmes de millimètre (à
24 cm de l'axe) pour ne pas élargir les courbes de diffraction.

5. La lame de quartz.

Le quartz était taillé en une lame de 2 mm d'épaisseur par 53 sur
44 mm de côté, perpendiculairement à l'axe x. Les plans réticulaires
parallèles aux faces étaient donc des plans 2, ï, 0, de distance inter-
réticulaire de 2,445 Â.

Les deux faces du quartz étaient métallisées par evaporation sous
vide, d'une couche d'or de 0,5 mg/cm2, n'absorbant pas trop les

rayons X tout en étant suffisamment épaisse pour supporter le
courant haute fréquence. La surface métallisée s'étendait jusqu'à
3 mm du bord du quartz pour éviter les décharges.

Avant de procéder aux evaporations sous vide, nous avons
nettoyé la lame de quartz au mélange chromique chaud, puis à la
potasse caustique, et enfin à l'acide fluorhydrique à 50% pendant
20 minutes environ. Un lavage à l'eau chaude courante pendant
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y2 heure au moins éliminait toute trace d'acide, et un dernier
rinçage à l'eau distillée bouillante évitait les dépôts calcaires.

L'attaque du quartz à l'acide fluorhydrique éliminait les couches
perturbées par le rodage et évitait l'augmentation d'intensité qui
en résulte2) 3).

La lame de quartz était maintenue contre la platine servant de

support par quatre lamelles élastiques en bronze disposées aux
quatre angles; ces lamelles permettaient en même temps d'appliquer
la tension haute fréquence au quartz. La platine était parcourue
dans sa masse par un courant d'eau circulant dans des canaux percés
à cet effet pour éviter réchauffement du quartz lorsqu'il oscillait.
Cet échauffement devient en effet considérable aux puissances haute
fréquence utilisées.

Le générateur à haute fréquence variable était constitué par un
oscillateur et un étage d'amplification en push-pull utilisant une

Fig. 3.

Circuit électrique équivalent d'un quartz.

815 comme lampe de sortie. Etant alimenté par des tensions stabilisées,

le générateur avait une fréquence suffisamment constante pour
que les conditions d'oscillation du quartz ne varient pas. Ce montage
nous permettait de disposer d'une plus grande puissance que lorsque
le quartz pilote l'oscillateur, comme dans le montage de Pierce; il
nous donnait d'autre part la possibilité de fixer la fréquence à la
résonance série du quartz. Un quartz peut en effet résonner à deux
fréquences voisines, comme nous allons le voir ci-dessous.

Le circuit électrique équivalent d'une lame de quartz au voisinage
de la résonance est constitué par une capacité C0 en parallèle avec
une self L et une capacité C en série (fig. 3).

C0 est la capacité des électrodes disposée sur les deux faces de la
lame, compte tenu de la constante diélectrique du quartz, alors que
C et L constituent l'oscillateur proprement dit. Si l'on augmente
progressivement la fréquence de la tension appliquée aux électrodes,
la branche L C a tout d'abord une impédance capacitive, qui devient



Vol. 28,1955. Etudes des oscillations piézoélectriques. 551

purement ohmique à une première résonance série (la résistance
correspondant à l'amortissement ne figure pas sur le schéma).
Lorsqu'on dépasse la fréquence de résonance série la branche L C devient
selfique et peut entrer en résonance parallèle avec la capacité C0

pour une fréquence déterminée dépendant de la surface des
électrodes.

Ces deux résonances, série et parallèle, sont d'autant plus
voisines que les électrodes sont plus grandes. A puissance égale, la
résonance série nécessite une tension haute fréquence beaucoup plus
faible que la résonance parallèle, ce qui diminue les risques de
décharges entre les deux électrodes. On calcule d'autre part facilement
que pour un amortissement relativement faible le courant dans la
branche L C est le même pour les deux résonances, et que par
conséquent, l'oscillation mécanique est la même. A la résonance série
la puissance est fournie à basse tension fort courant, alors que c'est
l'inverse à la résonance parallèle.

6. Les mesures.

Examinons tout d'abord qu'elles purent être les causes d'erreur
dans le relevé des courbes de diffraction.

La largeur des fentes, placées à la sortie du tube à rayons X et
devant le compteur mesurant l'intensité diffractée, a pour effet
d'élargir les courbes. Si nous admettons que l'intensité diffractée,
en fonction de l'angle, a la forme d'une courbe de Gauss pour une
fente infiniment mince, la courbe relevée avec une fente de largeur
finie est donnée par l'expression:

q> + A (p

l(cp) ±r f e-*'äcp
c

rp— A rp

où 2 Acp est la largeur de la fente exprimée en angle et C un facteur
de normation ramenant la courbe à la hauteur unité, qui vaut donc :

/
Acp

e

—A(p

Appelons cp0 la demi-largeur de la courbe I (cp) à la hauteur 1/e.
Comme cette demi-largeur vaut 1 pour la courbe de Gauss, cp0

représente le facteur d'élargissement de la courbe; il est donné par
l'expression:

rp„+Arp +Aq>

f e-*2dcp ~ I e-f'dcp.
(1,,— Atp —Acp
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En utilisant une table de l'intégrale de la fonction de Gauss, nous
avons calculé l'élargissement de la courbe en fonction de la largeur
de la fente 2 Acp. Cette largeur est mesurée en unités de demi-largeur
de la courbe de Gauss; c'est donc plus précisément le rapport entre
la largeur de la fente, et la demi-largeur de la courbe de Gauss à

la hauteur 1/e.

2 Acp
<Po

2

1,35

1

1,085

0,5
1,020

0,2
1,0030

Nous voyons que l'élargissement décroît très rapidemment avec
la largeur de la fente puisqu'il n'est déjà plus que de 2% pour une
fonte égale à la moitié de la demi-largeur de la courbe.

-2 0 _ t 6%o

Fig. 4.

Mo Kx, 1er ordre, sur quartz inerte (I) et oscillant (II, III).

Nous avons utilisé des fentes d'environ 4/100e de millimètres, cc
qui correspond à un angle de 34". L'élargissement dû aux deux
fentes est donc de 4% pour les courbes du troisième ordre, de 10%
pour celles du deuxième ordre; il est nettement supérieur pour le

double angle de Bragg à une constante près.
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premier ordre dans lequel il est difficile d'en donner une valeur, car
la courbe s'écarte trop de celle de Gauss.

Cet effet d'élargissement se manifeste peu sur les courbes de
diffraction du quartz oscillant qui ont déjà par elles-mêmes une largeur
beaucoup plus grande.

Une deuxième perturbation des mesures pourrait être due à un
échauffement de la lame de quartz sur la face libre qui n'est refroidie
par le courant d'eau que par l'intermédiaire de l'épaisseur du quartz.
Mais en supposant que la puissance, dissipée à l'intérieur de la lame,
est de 10 watts, ce qui est très largement compté, on arrive à une
élévation de la température de 1° dont l'effet est imperceptible.

_F

3%.

dilatation

Fig. 5.

Mo --a,, 2e ordre, sur quartz inerte (I) et oscillant (II, III, IV).

Le fait que la lame de quartz en oscillant se déplace par rapport
à l'axe du spectroscope ne crée pas non plus d'élargissement appréciable

de la courbe. En effet, pour le deuxième ordre par exemple,
le déplacement de la raie dû à une augmentation de la constante
réticulaire est 40 fois plus grand que celui dû à la dilatation de la
lame qui en résulte; les effets sont d'ailleurs opposés.

La stabilité de l'amplitude des oscillations du quartz était
contrôlée par un radiometro, constitué par un disque placé en face
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de la lame, suspendu à un fil, et formant avec un contrepoids un
pendule de torsion. Les fluctuations instantanées du radiomètre
autour de sa position moyenne étaient de l'ordre de 5%.

Les courbes de diffraction ont été relevées point par point pour
le quartz inerte, et oscillant à différentes amplitudes, pour les trois
premiers ordres de diffraction (fig. 4, 5, 6).

Ces courbes montrent toutes, lorsque le quartz oscille, d'une part
une forte augmentation de l'intensité diffractée et d'autre part un
élargissement asymétrique de la courbe, imprévu par la théorie
donnée en introduction. La pénétration des rayons X dans la lame

2 i 6 io n

' dilatation

Fig. 6.

Mo Ka,, 3e ordre, sur quartz inerte (I) et oscillant (II, III).

de quartz étant meilleure pour les ordres supérieurs, on pouvait
s'attendre à un effet de plus en plus grand pour les ordres croissants.
Toutefois la courbe du quartz inerte, au premier ordre, subissant
un élargissement non négligeable du fait de la largeur de la fente
ne permet pas de bonnes mesures. Les courbes du deuxième ordre
présentent les meilleures conditions et c'est sur elles que nous ferons
les mesures nécessaires à l'interprétation.
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Nous donnons dans le tableau ci-contre, les paramètres des
différentes mesures ainsi que les indications relatives du radiomètre
pour chaque courbe.

Tableau des conditions expérimentales des différentes mesures.

1er ordre 2e ordre 3e ordre

I II III I II III IV I II III

Largeur des fentes en "
Durée de chaque mesure

Nombre maximum de

coups en milliers
Tension haute fréquence

en Volts
Courant haute fréquence

en Ampères
Indications du radio-

mètre

35

3

3,3

0

0

0

35

Ò

6,0

82

0,15

11

35

3

7,4

85

0,38

45

35

4

2,1

0

0

0

35

4

3,6

83

0,20

11

35

4

5,1

70

0,24

22

35

4

6,1

80

0,40

45

35

4

1,3

0

0

0

35

4

2,2

80

0,12

11

35

4

2,5

103

0,48

46

Tube à rayons X: 34 kV, 7 mA

Interprétation des mesures.

1. Augmentation de l'intensité diffractée.

L'effet des oscillations piézoélectriques sur la diffraction des

rayons X a déjà été observé par différents auteurs; mais dans la
plupart dos cas en diagrammes de Laue, ce qui n'a permis
d'observer qu'une augmentation du noircissement de la photo sans pouvoir

faire de mesures précises sur l'intensité intégrée diffractée, ni
sur l'allure des courbes4-10).

Plus récemment Miller11) a fait des mesures on diffraction de

Bragg avec un compteur Geiger-Müller, mais il semble que seule
l'intensité maximum ait été mesurée et non pas l'intensité intégrée.

Différentes explications de l'augmentation de l'intensité ont été
proposées. Jatjncey et Bruce12) ont pensé que l'intensité était
empruntée aux réflexions diffuses, qui de ce fait, devaient diminuer
d'intensité; mais les mesures ont montré que les réflexions diffuses
ne subissent pas de modification lorsque le quartz oscille11). D'autres
auteurs ont supposé qu'une variation des coefficients d'extinction,
primaire pour certains, secondaire pour d'autres, était la cause de

l'augmentation d'intensité. Toutefois les variations observées
semblent être trop fortes pour justifier une telle hypothèse.

Des tentatives ont été également faites pour mesurer une
diminution dans l'intensité du faisceau principal lors des oscillations du
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quartz; mais ces expériences n'ont donné aucun résultat positif. Il
semble en effet peu probable que l'augmentation de l'intensité
diffractée puisse affecter beaucoup le faisceau principal, car son intensité

reste toujours très grande par rapport à celle des diffusions
cohérentes.

Mesurons l'intensité intégrée des raies de diffraction pour le
2e ordre ; ceci revient à calculer la surface limitée par les courbes de
diffraction jusqu'au niveau du fond continu. Nous trouvons un
rapport entre l'intensité intégrée de la courbe IV (oscillation
maximum), et celle de la courbe I (quartz inerte), égal à 12. L'augmentation

de l'intensité diffractée est donc considérable; le pouvoir
réflecteur du cristal semble être profondément modifié par les
oscillations piézoélectriques.

D'autre part on sait qu'un monocristal est en réalité constitué
par la juxtaposition de petits cristallites, formant une mosaïque
dont chaque élément présente une désorientation plus ou moins
grande par rapport à ses voisins. Dans le cas où la désorientation
est nulle, chaque atome occupe par rapport à ses voisins la position
définie par les constantes réticulaires du cristal; on a alors affaire
à un cristal parfait. Si au contraire les désorientations de chaque
cristallite sont réparties statistiquement autour de la position
moyenne, on parle alors d'un cristal idéalement imparfait. C'est le
cas lorsque le cristal n'a subi aucune déformation permanente, ni
polissage, qui donnent une orientation préférentielle aux cristallites.

Les phénomènes de diffraction des rayons X sont très différents
si le cristal est une mosaïque idéale ou s'il est parfait. Dans le
premier cas, lorsqu'on fait tourner le cristal autour de l'angle de Bragg,
chaque cristallite est amené successivement en position de réflexion
mais les rayons incidents et diffractés ont peu de chance de subir
une deuxième diffraction; ils sont simplement absorbés avec un
coefficient d'absorption ordinaire. Chaque cristallite diffracte donc
à son tour et les intensités s'additionnent sans interférences puisqu'il

n'y a pas de relation de phase entre les différentes ondes. 11 se

produit par contre un élargissement de la courbe de diffraction.
Dans le deuxième cas, où la désorientation des cristallites est nulle,
les rayons diffractés par les plans réticulaires doivent retraverser
ces plans, pour sortir du cristal et sont à nouveau diffractés dans
le sens de l'onde incidente. Comme chaque diffraction se fait avec
un déphasage de n/2 ils se trouvent en opposition de phase avec
les rayons incidents et en diminuent l'intensité.

On voit donc que l'intensité diffractée est plus faible dans le cas
d'un cristal parfait que pour une mosaïque idéale. Le calcul exact
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de l'intensité intégrée réfléchie par une face du cristal donne (voir
par exemple 13)) :

pour un cristal en mosaïque :

N2?-3 t„]9 I e2 \2 1 + cos2 2 0I \F\
\ mc2 f2/i ' ' \ mc2 ' 2 sin 2 0

pour un cristal parfait :

r 8-NÀ2\F\ e* 1+!cos20l
* 3n i * mc2 2 sin 2 © '

_V nombre de mailles par unité de volume.
î. longueur d'onde des rayons X.
/x =- coefficient linéaire d'absorption.
F facteur de structure des plans réfléchissants.
0 angle de Bragg.

Ces deux formules sont valables dans les cas limites du cristal en
mosaïque idéale ou du cristal absolument parfait. Si la mosaïque
est peu désorientée, les rayons X peuvent traverser plusieurs cristallites

ayant l'orientation de Bragg et le coefficient d'absorption pi s'en
trouvera augmenté, car une partie de l'intensité sera réfléchie
plusieurs fois. On peut ainsi avoir tous les cas intermédiaires entre la
mosaïque et le cristal parfait.

Remarquons que le coefficient d'absorption pi qui intervient dans
la première formule ne se trouve pas dans la seconde. En effet
l'absorption ordinaire peut en général être négligée, pour un cristal
parfait, devant la diminution de l'intensité incidente causée par les
réflexions sur chaque plan successif. Cette diminution d'intensité
est caractérisée par un coefficient d'extinction f qui intervient
implicitement dans la deuxième formule et dont nous donnerons plus
bas l'expression.

Faisons le rapport des deux intensités Im et IP pour une mosaïque
et un cristal parfait :

Im 3.T NX i p |

e2 l + cos22©
Jp 16 p,

' I mc2 l+|cos2@|
et calculons la valeur de ce rapport dans le cas d'une réflexion du
deuxième ordre de la raie Ka,, du molybdène, sur les plans 2, 1, 0,
(4, 2, 0) du quartz. En introduisant N 89 1020 cm™3 ; pi 9,65 cm™1 ;

| Foio | 18,2 et 2 0 33° 33' on trouve:

-X 17,8.
tp

Ve facteur d'augmentation d'intensité pour un quartz en mosaïque
ou pour un quartz parfait est donc d'environ 18. Or, nous avons
trouvé comme rapport des intensités diffractées par le quartz oscil-
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lant et le quartz inerte, la valeur 12. Il semble donc que lorsque le

quartz oscille, il se forme à l'intérieur du cristal une désorientation
des cristallites, les uns par rapport aux autres, qui fait augmenter
son pouvoir réflecteur dans des proportions comparables à
l'augmentation due au passage du cristal parfait à la mosaïque.

Ceci n'est possible que si le cristal non perturbé peut être considéré

comme relativement parfait, ce qui est bien le cas pour le

quartz. Pour d'autres cristaux piézoélectriques,moins parfaits,
l'augmentation d'intensité doit donc être beaucoup plus faible; ce qui
est bien vérifié par l'expérience11).

Il est évident d'autre part, que le rapport limite de 18 ne peut
être atteint, car le cristal inerte n'est pas absolument parfait et
que le quartz oscillant n'est probablement pas exactement une
mosaïque idéale. Ainsi il semble que les oscillations piézoélectriques
transforment en une mosaïque le cristal du quartz.

Il faut encore vérifier les différentes conditions nécessaires à

l'application des formules donnant les intensités intégrées.
La formule des intensités intégrées réfléchies par un cristal en

mosaïque est établie dans le cas où les rayons incidents sont entièrement

absorbés à l'intérieur du cristal. Dans le cas du deuxième
ordre, avec une lame de quartz de 2 mm d'épaisseur, le rapport
entre l'intensité transmise à travers le cristal et l'intensité incidente
est d'environ l°/00 ce qui est négligeable.

Nous avons vu également que le coefficient d'extinction linéaire f
doit être grand par rapport au coefficient d'absorption pour que
l'on puisse appliquer la formule donnant l'intensité réfléchie par
un cristal parfait. L'expression de f est13) (p. 60) :

Ì lNA F
2 ' ' mc2

ce qui donne £=510 cm™1 dans notre cas ; f est donc plus de 50 fois
plus grand que fr. f et u intervenant comme exposants de e,
l'extinction est donc considérablement plus grande que l'absorption.

2. Elargissement asymétrique des courbes.

Pour tous les ordres les courbes présentent un élargissement beaucoup

plus grand du côté des grandes valeurs de la constante réticulaire.

Cette asymétrie ne peut pas être causée par une désorientation
préférentielle des cristallites d'un côté de la normale aux plans
réfléchissants, car elle n'est pas modifiée par une rotation du cristal
autour de cette normale. Il n'y a d'ailleurs aucune raison pour
qu'une désorientation préférentielle se produise, la lame étant
parfaitement symétrique par rapport à sa normale.
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D'autre part une augmentation de la température du quartz ne
peut pas non plus être la cause d'une asymétrie car, comme nous
l'avons vu, le quartz était refroidi et le gradient de température ne
pouvait en aucun cas dépasser 1° sur l'épaisseur de la lame ce qui
ne donne pas de modifications perceptibles de la raie de diffraction.

Il ne semble pas non plus que l'asymétrie puisse être imputable
à une augmentation asymétrique des réflexions diffuses, car Miller
a montré11) que l'intensité des réflexions diffuses n'augmente pas
d'une manière appréciable.

L'explication la plus plausible de ce phénomène nous a paru être
que l'amplitude des oscillations piézoélectriques soit plus grande à

la dilatation qu'à la compression. Mais ceci implique que le module
d'élasticité n'est pas indépendant de la déformation et qu'il est plus
élevé à la compression qu'à la dilatation, à condition que les amplitudes

soient assez grandes.
Les amplitudes intervenant dans nos mesures sont assez difficiles

à évaluer; nous l'avons fait d'une manière approximative par deux
méthodes différentes: D'une part en mesurant à quelle dilatation

•MJ-*

Fig. 7.

Déformation locale d'une lame vibrante en fonction du temps lorsque le module
d'élasticité est différent à la compression et à la dilatation.

correspond l'élargissement de la courbe à la demi-hauteur ce qui
nous donne une amplitude relative légèrement inférieure à 2°/00;
d'autre part en calculant la déformation provoquée par une tension
continue de même valeur que la tension haute fréquence de crête
appliquée, et en multipliant cette déformation par le facteur de
qualité de la lame. Malheureusement ce facteur est difficilement
mesurable, nous l'avons estimé d'après les conditions d'oscillation
(une face libre14)) à 10000; ce qui nous donnerait une déformation
de l'ordre de l,5°/00. La deuxième valeur est très approximative, elle
est toutefois du même ordre de grandeur que la première. En utilisant

le module d'élasticité donné dans les tables, qui n'est d'ailleurs
probablement plus valable pour ces déformations, nous trouvons
une tension de 800 kg/cm2 pour une dilatation de l°/oo-

Examinons quelles seraient les oscillations d'une lame vibrant
dans son épaisseur lorsque le module d'élasticité n'est pas constant.
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Pour simplifier, nous supposerons que ce module a deux valeurs
différentes Ex et E2 à la compression et à la dilatation (Ex > E2).
Un pendule soumis à des forces semblables aurait un mouvement
composé de deux demi-sinusoïdes de périodes différentes, données

par l'équation T2Ex Tl E2, et dont les amplitudes seraient
déterminées par l'égalité des vitesses au point de déplacement nul pour
les deux sinusoïdes (fig. 7).

Axcox A2 co2

ce qui donne
A\EX A\E2.

Dans le cas d'une lame vibrant transversalement, les longueurs
de l'onde de compression et de l'onde de dilatation sont les mêmes,
car les vitesses de propagation sont proportionnelles à la racine
du module d'élasticité vx Tx v2 T2.

ZZfXZZ

Fig. 8.

Nous avons représenté (fig.8a) les déformations locales
(proportionnelles aux tensions) d'une lame vibrant à la troisième harmonique

de sa fréquence de résonance, en portant positivement les

dilatations et négativement les compressions.
Les deux courbes en traits pleins représentent les amplitudes

maxima alors que la courbe en pointillé décrit un état intermédiaire.
La période de la compression étant plus courte que celle de la
dilatation, il se trouve qu'à certains moments — exactement au début
et à la fin de la demi-période de dilatation — toutes les zones de la
lame se trouvent à l'état dilaté; c'est le cas pour la courbe en

pointillé.
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En intégrant les courbes des déformations locales on obtient les

déplacements absolus des différents points de la lame (fig. 8 b). Les
courbes des déplacements sont portées à partir du milieu de la
lame comme origine; les déplacements vers la droite étant positifs.
La figure montre que la lame subit une dilatation permanente
autour de laquelle elle oscille ce qui est très compréhensible puisque
la dilatation locale est de plus grande amplitude et de plus longue
durée que la compression.

Cette représentation graphique des oscillations n'est qu'une
solution approximative de l'équation d'onde, mais elle représente assez
bien l'allure des oscillations. Elle permet entre autre d'expliquer
pourquoi il est possible d'exciter piézoélectriquement les oscillations
d'une lame de quartz au deuxième harmonique. Ces vibrations ne
peuvent en effet pas être entretenues par une tension électrique si
l'on suppose le module d'élasticité constant, car la différence de

potentiel entre les deux faces de la lame est toujours nulle, les
tensions des deux moitiés de l'épaisseur s'opposant exactement l'une
à l'autre. Comme on le voit en considérant les deux premiers tiers
de la courbe des déplacements, les tensions électriques (proportionnelles

aux déplacements) ne s'annulent plus dans le cas de modules
d'élasticité, différents à la compression et à la dilatation.

D'autre part des travaux expérimentaux récents 15)16) ont montré
qu'il est également possible d'exciter des résonances d'une lame
de quartz à des harmoniques demi-impairs (3/2, 5/2...). Ces

résonances peuvent également s'expliquer si l'on considère les courbes
en pointillé. Celles-ci contiennent une oscillation dont la longueur
d'onde est la moitié de l'oscillation principale. Si l'on fait osciller
une lame de quartz à une fréquence 3/2 de la fondamentale par
exemple il existe donc une onde dont la demi longueur d'onde entre
trois fois dans l'épaisseur de la lame et qui satisfait ainsi aux conditions

aux limites d'une onde stationnaire. Il est évident que ces
résonances doivent être beaucoup plus faibles que pour les harmoniques

entiers ce qui est bien le cas expérimentalement.
L'hypothèse d'un module d'élasticité augmentant à la compression

semble ainsi être confirmée par des expériences tout à fait
indépendantes.

Il n'est malheureusement pas possible de donner un rapport entre
les modules d'élasticité moyens, à la compression et à la dilatation,
car les expressions obtenues en fin d'introduction pour l'allure des
courbes ne sont pas intégrables et ne permettent donc pas de tirer
les valeurs de ces modules. Il serait d'ailleurs nécessaire de connaître
la valeur du coefficient d'absorption pi qui nous l'avons vu, varie
avec l'état de mosaïque.
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Conclusion.

La mesure des courbes de diffraction des rayons X, par une lame
de quartz oscillant piézoélectriquement, nous a permis par une
détermination précise de l'intensité intégrée diffractée, de conclure à

la transformation du cristal presque parfait du quartz en une
mosaïque lors des oscillations. Cette transformation est confirmée par
la concordance des valeurs théoriques — des intensités diffractées
par une mosaïque ou un cristal parfait — avec les valeurs
expérimentales.

Le passage à l'état de mosaïque lors des oscillations permettrait
peut-être d'expliquer le vieillissement des quartz dans les horloges.

L'asymétrie des courbes de diffraction fait penser que le module
d'élasticité du quartz augmente à la compression, cette hypothèse
permet par ailleurs d'expliquer l'existence des résonances aux
harmoniques pairs et demi-impairs d'une lame de quartz (X-cut), qui
ont été observées expérimentalement.

Institut de Physique de l'Université,
Genève.
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