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Etude des oscillations piézoélectriques du quartz par la
diffraction des rayons X

par R. Mermod (Genéve).
(28. VIIL. 1955).

Résumé.: Les courbes d’intensité des rayons X, diffractés par une lame de quartz
(2-cut), ont été relevées. Ces courbes présentent lorsque le quartz oscille, une forte
augmentation d’intensité d’une part, et un élargissement asymétrique d’autre part.

L’élargissement asymétrique permet de conclure & une nonlinéarité des défor-
mations élastiques en fonction des tensions. Une nouvelle interprétation de 'aug-
mentation d’intensité confirmée quantitativement par ’expérience est proposée.
Cette interprétation implique que ’état de mosaique du cristal augmente considé-
rablement lorsque le quartz oscille.

Introduetion.

L’effet des oscillations piézoélectriques sur la diffraction des
rayons X se rapproche beaucoup de l'effet da a I’agitation ther-
mique. Du point de vue théorique il en constitue un cas particulier,
ou l'on a affaire a4 une seule onde dans le cristal. Toutefois 'ampli-
tude de I'onde d’une oscillation piézoélectrique est beaucoup plus
grande que celle qu’on rencontre dans les oscillations thermiques
et ne permet pas les mémes approximations.

L’effet de deux ondes ultra-sonores parcourant le cristal en sens
inverse pour former une onde stationnaire, comme c¢’est le cas lors-
que une lame de quartz taillée perpendiculairement & I’axe x oscille
a sa fréquence de résonance, a été calculé par la méthode du réseau
de Fourier?).

Cette méthode consiste & décomposer la densité électronique du
cristal en séries de Fourier. Cette densité ayant pour période la
maille du cristal dans les trois dimensions, les coefficients de Fou-
rier sont la transformée de la densité électronique dans l'espace
de Fourier aux points LI;M,’ ; ol
bz =hb, +kby+1b,

h,k, 1 entiers

et ~
bz"a,’c = 51‘, k
i k=1,2,3.
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Les aj étant les vecteurs de base de la maille du cristal et d,; le
symbole de Kronecker.

L’espace de Fourier n’est autre que l'espace réciproque tel que
I'a introduit Ewarp, et les points b:’k,l correspondent aux familles
des plans d'indices de MiLLER h, k, L. _

On démontre alors que le coefficient de Fourier d’indice h, k, !
est ¢gal au facteur de structure du cristal pour les plans h, k, [.

En résumé, la décomposition en série de Fourier de la densité
électronique nous donne le réseau réciproque en attachant a chacun
de ces points la valeur du facteur de structure des plans correspon-
dants.

81 'on suppose maintenant que le cristal est le siége d’une onde
élastique stationnaire de vecteur d’onde l?, on introduit une nou-
velle périodicité de la densité électronique du eristal; ce qui ajoute
au réseau de Fourler de nouveaux points ayant pour vecteur:

bh,k,l—nk
n—-4+(0,1,2...)

Chaque point du réseau de Fourier est donc entouré de points

supplémentaires dans la direction du vecteur k. A chacun de ces
points numérotés h, k, [, n est associé un facteur de structure. Ces
tacteurs de structure diminuent trés rapidement lorsque n croit, et
deviennent négligeables pour n >4 = l;;l ME; ot & représente 1’am-
plitude maximum du déplacement des atomes da a 'onde station-
naire.

La somme de tous les facteurs de structure entourant un point
h, k, I est égale au facteur du point correspondant, du réseau non
perturbé par une onde élaqtique

D’autre part, le vecteur I étant trés petit par rapport aux vec-
teurs by, les points supplementalres entourant le point bh r, Sont trés
serrés et trés nombreux, s1 bien que ’on peut considérer que chaque
point du réseau réciproque s’étale en un segment de droite ayant
la direction de k. Ce segment se réduit a un point lorsque le produit
bh k.1 £ g ‘annule, ¢’est-a-dire lorsque le déplacement des atomes se
fait parallélement au plan réticulaire réfléchissant.

La répartition angulaire de 'intensité X diffractée par une famille
de plans h,k,l présentera donc un élargissement correspondant &
I’étalement du point h, k&, du réseau réciproque (fig. 1).

Toutefois cette méthode de calcul suppose implicitement que les
rayons X uvtilisés sont suffisamment pénétrants pour traverser plu-
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sieurs ondes stationnaires, et trouver ainsi une périodicité de la
densité électronique due a l'onde élastique.

Ceci est réalisé lorsque le cristal est une lame mince, oscillant &
une harmonique supérieure de sa fréquence de résonance, mais ceci
n’est plus le cas lorsque la lame oscille & sa fréquence fondamentale,
puisqu’elle ne contient qu'une demi-longueur d’onde de 'oscillation
élastique.

Il faut alors renoncer & cette méthode de calcul et partir de
I'équation de Bragg:

. n A
sin @ = 57
ou d, la constante réticulaire des plans réfléchissants, est modifiée
par 'onde élastique.

Mais avant de poursuivre nous devons encore préciser les condi-

tions expérimentales. Nous supposons que le cristal est taillé en une

// /7§&/ / // /
Mza/
o

//7”////

Fig. 1,
Etalement des points du réseau réciproque dii & une onde élastique.
Sphéres d’Ewald pour une réflexion 4 2 0.

lame paralléle aux plans réfléchissants et que 'onde élastique est
plane, stationnaire, de plans d’onde paralléles aux plans réfléchis-
sants. La lame oscille done dans le sens de ’épaisseur 4 sa fréquence
de résonance fondamentale. Les plans réticulaires subissent une
déformation, maximum au centre de la lame et nulle sur les deux
faces, tandis que leur déplacement est maximum sur les deux faces
et nulle au centre.

La constante réticulaire a donc pour expression:

d{z,t) =d, (1 + 4 sin f;— cos wt)

dy ¢tant la constante réticulaire non perturbée, z la profondeur &
I'intérieur de la lame d’épaisseur b, et § la variation relative maxi-
mum de d,.

Divisons, & un instant donné, la lame en tranches d’épaisseur oz
paralléles aux plans diffractants, chacune de ces tranches donne



546 R. Mermod. H.P.A.

une raie de diffraction. Toutes ces raies sont déplacées les unes par
rapport aux autres suivant la valeur de la constante réticulaire de
la couche considérée a la profondeur x.

Il faut toutefois tenir compte de 'absorption des rayons X dans
le cristal : les couches situées prés de la face irradiée par les rayons X
(ot z = 0) recoivent plus d’intensité que les couches intérieures.

Lintensité diffractée par une couche d’épaisseur dx doit done
étre multiplice par un facteur e #* tenant compte de la décroissance
de I'intensité incidente & 'intérieur du cristal.

51 nous admettons que la courbe de l'intensité diffractée par une
couche, en fonction de 'angle de diffraction, a la forme d'une
courbe de Gauss, nous obtenons pour la courbe de l'intensité dif-
fractée a un instant donné, par toute la lame sous 'angle ¢, I'ex-
pression suivante:

b . ( L oaw t~2
— —lg—ay sin cos w
Lp, 1) = /e I b ) ox

0

ou ¢ est compté a partir de 'angle de Bragg pour les plans non
perturbés. @, est la variation de l'angle de Bragg pour la pertur-
bation maximum de la constante réticulaire.

Pour obtenir I'expression de 'intensité diffractée par une lame
oscillante, 1l faut encore prendre la moyenne sur le temps, pendant
une période T de oscillation, en intégrant.

bf{! ( . Tz )2
e —lg—aqy 81 —— cos wl
I(‘P)://e P v szot.
0 0

Cette expression donnant l'intensité relative, nous n’avons pas
fait figurer les termes constants devant 'intégrale.

L’intégration ne peut malheureusement étre effectuée que si ¢,
est petit par rapport & ¢, en développant 'exponentielle en série,
mais cecl n’est évidemment pas le cas pour toute valeur de ¢, d’au-
tant plus que @, est de I'ordre de la largeur de la courbe de Gauss.

Méthode expérimentale.

1. Description générale.

Pour relever les courbes d’intensité des rayons X diffractés en
fonction de I'angle de diffraction, nous avons utilisé un spectrometre
du type de Brace (fig. 2).
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Le rayonnement d’un tube & rayons X & anticathode de molyb-
déne, était limité par une premiére fente et dirigé sur une lame de
quartz disposée sur ’axe du spectrométre. Un compteur Geiger-
Miiller, précédé dune deuxitme fente, mesurait l'intensité X dif-
fractée par le cristal en fonction de sa position angulaire. La vitesse
de rotation du compteur était double de celle du cristal de maniére
a conserver les conditions de réflexion.

Genérateur fehele
/A

Compleur GH,
Jemorn

fuarle Lchelle

Pompe  Tube RX. Jpecirascope -

Fig. 2.
Plan général de I'installation,

Un autre compteur Geiger-Miiller, servant de témoin, mesu-
rait I'intensité X émise par le tube et évitait ainsi toute déformation
de la courbe de diffraction, due aux variations de I’émission du tube.

Le cristal métallisé sur ses deux faces était disposé sur une platine
verticale, & la terre du point de vue électrique. La tension haute
fréquence, entrainant l'oscillation de la lame de quartz, était appli-
quée entre la terre et la face libre de la lame.

2. Rayonnement X.

Le rayonnement X utilisé était la raie Ky du molybdéne
(0,708 A), car il est nécessaire que les rayons X pénétrent suffisam-
ment & l'intérieur de la lame pour atteindre les couches ol la cons-
tante réticulaire varie fortement lors de l'oscillation. Nous avons
vu en effet que le maximum de déformation a lieu au milieu de
I’épaisseur de la lame.

Les mesures faites avec la raie Ky, du cuivre (1, 587 A) n’ont
montré aucun effet des oscillations piézoélectriques du quartz sur
les courbes de diffraction. Ces mesures ont été faites sur des lames
de 2 mm d’épaisseur (fréquence d’oscillation 1, 4 Mc) et de 0,4 mm
(7 Mc). Méme dans le deuxiéme cas la pénétration n’était pas
sutfisante.
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Le tube & rayons X utilisé était démontable, & anticathode inter-
changeable. La cathode était en forme de cylindre creux et focalisait
les électrons sur 'anticathode selon un rectangle treés allong¢, paral-
lele & la premicre fente. Le tube était évacué par une pompe a diffu-
sion d’huile; il était alimenté par un générateur de haute tension de
100 kV continus au maximum, & redresseurs au sélénium. Le fila-
ment du tube était au potentiel de la haute tension et alimenté par
un transformateur isolé compris dans le groupe haute tension.

Pour une anticathode de molybdeéne la tension de fonctionnement
était de 35 kV environ pour 7 mA de courant électronique.

3. Le spectrométre.

La lame de quartz et le compteur mesurant I'intensité diffractée
étalent montés sur un spectromeétre permettant de déterminer leur
position angulaire avec une précision de 14 seconde. La premiere
fente était solidaire du spectrométre et un déplacement de l’en-
semble de 'appareil permettait de I'amener en face du foyer de
I’anticathode sans modifier le réglage du spectrometre.

Un systéme d’engrenage permettait d’entrainer simultanément le
compteur et le cristal avec une forte démultiplication. Les déplace-
ments pouvailent ainsi étre inférieurs a la seconde tout en mainte-
nant les conditions de réflexion.

Les deux fentes étaient disposées & égale distance de 'axe du
spectrometre de maniére a satisfaire la condition de focalisation, ce
qui facilitait le réglage de la position angulaire du cristal, par rapport
au compteur.

Le réglage de la position de la lame de quartz par rapport a ’axe
de rotation se faisait en mesurant I'angle entre deux réflexions sy-
métriques par rapport a un plan vertical passant par 'axe et la
premiére fente. Il fallait évidemment pour cela opérer une rotation
de 180 degrés sur le support du cristal de maniére & retrouver la
face libre du quartz pour la deuxiéme réflexion.

I’angle mesuré devant étre égal a 4 fois 'angle de Bragg, 1l était
facile d’apreés la différence avec les valeurs des tables, de calculer
le déplacement a donner a la lame pour amener les plans réfléchis-
sants & passer par I’axe. Cette méthode a I’avantage de tenir compte
de la pénétration des rayons X dans le cristal.

Les autres réglages des divers éléments du spectrometre se fai-
salent par les méthodes classiques.
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4. Mesure de 'intensité X.

Les compteurs utilisés pour mesurer l'intensité des rayons X
furent soit des compteurs Philips & fenétre de verre de Lindemann,
soit des compteurs Tracerlab & fenétre de mica. Les deux types don-
nerent satisfaction.

Les deux compteurs étaient suivis d’'un étage d’amplification
conservant au systéme de comptage un bon pouvoir de résolution.
Les impulsions étaient ensuite transmises & deux échelles de 32 per-
mettant I'enregistrement d’une intensité suffisamment élevée. Le
compteur témoin mesurant l'intensité émise par le tube devait en
effet compter un nombre de coups suffisamment grand pour ne pas
ajouter d’erreur de statistique a la mesure de l'intensité diffractée.

D’autre part le compteur témoin ne devait mesurer que I'intensité
de la raie K, émise, et non pas le spectre entier; car les variations
d’émission dues aux instabilités de la haute tension ne sont pas les
mémes pour les différentes longueurs d’onde. Nous avons cbtenu
une bonne proportionnalité entre les intensités mesurées par le
compteur témoin et le compteur mobile, en interposant entre ’anti-
cathode et le compteur témoin un filtre d’oxyde de zirconium
(0,2 g/em? de Zr) éliminant les petites longueurs d’onde, et un filtre
d’aluminium absorbant le reste du spectre continu. Le compteur
témoin était placé en face d’une fenétre latérale du tube, une fente
permettait de limiter et de régler I'intensité recue.

L’emploi d’un intégrateur en place des échelles n’était pas justifié,
car l'intensité diffractée était relativement faible. La largeur des
fentes était en effet limitée & quelques centiémes de millimétre (a
24 cm de I'axe) pour ne pas élargir les courbes de diffraction.

5. La lame de quartz.

Le quartz était taillé en une lame de 2 mm d’épaisseur par 53 sur
44 mm de coté, perpendiculairement a ’axe x. Les plans réticulaires
paralléles aux faces étaient donc des plans 2, 1, 0, de distance inter-
réticulaire de 2,445 A.

Les deux faces du quartz étaient métallisées par évaporation sous
vide, d’une couche d’or de 0,5 mg/ecm?2, n’absorbant pas trop les
rayons X tout en étant suffisamment épaisse pour supporter le
courant haute fréquence. La surface métallisée s’étendait jusqu’a
3 mm du bord du quartz pour éviter les décharges.

Avant de procéder aux évaporations sous vide, nous avons net-
toyé la lame de quartz au mélange chromique chaud, puis a la
potasse caustique, et enfin & 'acide fluorhydrique a 509, pendant
20 minutes environ. Un lavage a I'eau chaude courante pendant
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15 heure au moins éliminait toute trace d’acide, et un dernier rin-
cage a I'eau distillée bouillante évitait les dépots calcaires.

L’attaque du quartz & 'acide fluorhydrique éliminait les couches
perturbées par le rodage et évitait 'augmentation d’intensité qui
en résulte?) 3),

La lame de quartz était maintenue contre la platine servant de
support par quatre lamelles élastiques en bronze disposées aux
quatre angles; ces lamelles permettalent en méme temps d’appliquer
la tension haute fréquence au quartz. La platine était parcourue
dans sa masse par un courant d’eau circulant dans des canaux percés
a cet effet pour éviter I’échauffement du quartz lorsqu’il oscillait.
Cet échauffement devient en effet considérable aux puissances haute
fréquence utilisées.

Le générateur & haute fréquence variable était constitué par un
oscillateur et un étage d’amplification en push-pull utilisant une

%

T
O
Fig. 3.
Circuit électrique équivalent d’un quartz.

815 comme lampe de sortie. Etant alimenté par des tensions stabili-
sées, le générateur avait une fréquence suffisamment constante pour
que les conditions d’oscillation du quartz ne varient pas. Ce montage
nous permettait de disposer d’une plus grande puissance que lorsque
le quartz pilote 1'oscillateur, comme dans le montage de Pierce; il
nous donnait d’autre part la possibilité de fixer la fréquence a la
résonance série du quartz. Un quartz peut en effet résonner & deux
fréquences voisines, comme nous allons le voir ci-dessous.

Le circuit électrique équivalent d’une lame de quartz au voisinage
de la résonance est constitué par une capacité C, en parallele avec
une self L et une capacité C en série (fig. 3).

C, est la capacité des électrodes disposée sur les deux faces de la
lame, compte tenu de la constante diélectrique du quartz, alors que
C et L constituent l'oscillateur proprement dit. Si 'on augmente
progressivement la fréquence de la tension appliquée aux électrodes,
la branche L C a tout d’abord une impédance capacitive, qui devient
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purement ohmique & une premiére résonance série (la résistance
correspondant & I’amortissement ne figure pas sur le schéma). Lors-
qu’on dépasse la fréquence de résonance série la branche L C devient
selfique et peut entrer en résonance paralléle avec la capacité C
pour une fréquence déterminée dépendant de la surface des élec-
trodes.

Ces deux résonances, série et paralléle, sont d’autant plus voi-
sines que les électrodes sont plus grandes. A puissance égale, la ré-
sonance série nécessite une tension haute fréquence beaucoup plus
faible que la résonance paralléle, ce qui diminue les risques de dé-
charges entre les deux électrodes. On calcule d’autre part facilement
que pour un amortissement relativement faible le courant dans la
branche L C est le méme pour les deux résonances, et que par con-
séquent, l'oscillation mécanique est la méme. A la résonance série
la puissance est fournie & basse tension fort courant, alors que c¢’est
I'inverse & la résonance paralléle.

6. Les mesures.

Examinons tout d’abord qu’elles purent étre les causes d’erreur
dans le relevé des courbes de diffraction.

La largeur des fentes, placées a la sortie du tube & rayons X et
devant le compteur mesurant 'intensité diffractée, a pour effet
d’élargir les courbes. Si nous admettons que l'intensité diffractée,
en fonction de I’angle, a la forme d’une courbe de Gauss pour une
fente infiniment mince, la courbe relevée avec une fente de largeur
finie est donnée par ’expression:

1 p+d e
Ilg)= [ e "dg
g—Ag

ot 2 Ag est la largeur de la fente exprimée en angle et C un facteur
de normation ramenant la courbe & la hauteur unité, qui vaut done:

R
¢ = / e~ de.
4
Appelons ¢, la demi-largeur de la courbe I (p) & la hauteur 1/e.
Comme cette demi-largeur vaut 1 pour la courbe de Gauss, ¢, re-
présente le facteur d’élargissement de la courbe; il est donné par
I’expression:
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En utilisant une table de I'intégrale de la fonction de Gauss, nous
avons calculé I'élargissement de la courbe en fonction de la largeur
de la fente 2 Ag. Cette largeur est mesurée en unités de demi-largeur
de la courbe de Gauss; c¢’est donc plus précisément le rapport entre
la largeur de la fente, et la demi-largeur de la courbe de Gauss a
la hauteur 1/e.

24¢ 2 d 0,5 0,2
®o 1,35 1,085 1,020 1,0030

Nous voyons que 1'élargissement décroit tres rapidemment avec
la largeur de la fente puisqu’il n’est déja plus que de 29, pour une
fente égale a la moitié de la demi-largeur de la courbe.

%_
§
N /5
f
S S R ==
-2 1 Z ¢ 6% gimation
Fig. 4.

Mo K, 1¢r ordre, sur quartz inerte {I) et oscillant (IT, III).

Nous avons utilisé des fentes d’environ 4/100¢ de millimétres, ce
qu correspond & un angle de 34”. L’élargissement dfi aux deux
fentes est donc de 49, pour les courbes du troisieme ordre, de 109,
pour celles du deuxiéme ordre; il est nettement supérieur pour le

* @ = double angle de Bragg & une constante prés.
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premier ordre dans lequel il est difficile d’en donner une valeur, car
la courbe s’écarte trop de celle de Gauss.

Cet effet d’élargissement se manifeste peu sur les courbes de dif-
fraction du quartz oscillant qui ont déja par elles-mémes une largeur
beaucoup plus grande. |

Une deuxieme perturbation des mesures powrrait étre due a un
échauffement de la lame de quartz sur la face libre qui n’est refroidie
par le courant d’eau que par I'intermédiaire de I’épaisseur du quartz.
Mais en supposant que la puissance, dissipée a I'intérieur de la lame,
est de 10 watts, ce qui est trés largement compté, on arrive a une
¢lévation de la température de 1° dont I'effet est imperceptible.

-

— [nlensité

Z ¢ 4 4 W — p
~f 0 ! 2 Fo
dialalion
Fig. 5.

Mo Kg,, 2 ordre, sur quartz inerte (I) et oscillant (11, III, IV).

Le fait que la lame de quartz en oscillant se déplace par rapport
a I’axe du spectroscope ne crée pas non plus d’élargissement appré-
ciable de la courbe. En effet, pour le deuxiéme ordre par exemple,
le déplacement de la raie dit & une augmentation de la constante
réticulaire est 40 fois plus grand que celui da a la dilatation de la
lame qui en résulte; les effets sont d’ailleurs opposés.

La stabilité de 'amplitude des oscillations du quartz était con-
trolée par un radiomeétre, constitué par un disque placé en face
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de la lame, suspendu & un fil, et formant avec un contrepoids un
pendule de torsion. Les fluctuations instantanées du radiomeétre
autour de sa position moyenne étaient de I'ordre de 59,.

Les courbes de diffraction ont été relevées point par point pour
le quartz inerte, et oscillant a différentes amplitudes, pour les trois
premiers ordres de diffraction (fig. 4, 5, 6).

Ces courbes montrent toutes, lorsque le quartz oscille, d’une part
une forte augmentation de l'intensité diffractée et d’autre part un
élargissement asymétrique de la courbe, imprévu par la théorie
donnée en introduction. La pénétration des rayons X dans la lame

— ehsité

2 ¢ 6 & 0 12 W

¥ T T T 9
7 ! 2 1% de

Fig. 6.
Mo Ky, , 3¢ ordre, sur quartz inerte (I) et oscillant (II, III).

de quartz étant meilleure pour les ordres supérieurs, on pouvait
s’attendre a un effet de plus en plus grand pour les ordres croissants.
Toutetois la courbe du quartz inerte, au premier ordre, subissant
un élargissement non négligeable du fait de la largeur de la fente
ne permet pas de bonnes mesures. Les courbes du deuxiéme ordre
présentent les meilleures conditions et ¢’est sur elles que nous ferons
les mesures nécessaires & I'interprétation.
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Nous donnons dans le tableau ci-contre, les parameétres des diffé-
rentes mesures ainsl que les indications relatives du radiomeétre
pour chaque courbe.

Tableau des conditions expérimentales des différentes mesures.

1eT ordre 2¢ ordre 3¢ ordre
I I IIEy I | IT | 110} IV | I II | III

Largeur des fentes en " | 35| 35| 35 |.35| 35| 35| 35| 35| 35| 35
Durée de chaque mesure

en minutes . . . . . 3 3 3 4 4 4 4 4 4 4
Nombre maximum de

coups en milliers . . {33 (60| 7421|3651 |61|13|22]|2,5
Tension haute fréquence

enVolts . . . . . . 0| 82| 8 0} 83| 70| 80 0| 80 |103
Courant haute fréquence .

en Ampéres . . . . 0 (0,15 (0,38 0 10,20 0,24 |0,40 010,12 10,48
Indications du radio-

metre . . . . . . . 0 11| 45 0] 11| 22| 45 0] 11| 46

Tube & rayons X: 34 kV, 7 mA

Interprétation des mesures.

1. Augmentation de Uintensité diffractée.

L'effet des oscillations piézoélectriques sur la diffraction des
rayons X a déja été observé par différents auteurs; mais dans la
plupart des cas en diagrammes de Laue, ce qui n’a permis d’ob-
server quune augmentation du noircissement de la photo sans pou-
voir faire de mesures précises sur 'intensité intégrée diffractée, ni
sur I'allure des courbes419).

Plus récemment MrmmLer!'!') a fait des mesures en diffraction de
Bragg avec un compteur Geiger-Miiller, mais il semble que seule
I'intensité maximum ait été mesurée et non pas 'intensité intégrée.

Différentes explications de I'augmentation de I'intensité ont été
proposées. JAUNCEY et BruUcE!'?) ont pensé que l'intensité était
empruntée aux réflexions diffuses, qui de ce fait, devaient diminuer
d’Intensité; mais les mesures ont montré que les réflexions diffuses
ne subissent pas de modification lorsque le quartz oscille!?). D’autres
auteurs ont supposé quune variation des coefficients d’extinction,
primaire pour certains, secondaire pour d’autres, était la cause de
I'augmentation d’intensité. Toutefois les variations observées sem-
blent &tre trop fortes pour justifier une telle hypothese.

Des tentatives ont ét¢ également faites pour mesurer une dimi-
nution dans 'intensité du faisceau principal lors des oscillations du
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quartz; mais ces expériences n’ont donné aucun résultat positif. Il
semble en effet peu probable que I’augmentation de l'intensité dif-
fractée puisse affecter beaucoup le faisceau principal, car son inten-
sité reste toujours trés grande par rapport a celle des diffusions
cohérentes.

Mesurons l'intensité intégrée des raies de diffraction pour le
2¢ ordre; ceci revient a calculer la surface limitée par les courbes de
diffraction jusqu’au niveau du fond continu. Nous trouvons un
rapport entre I'intensité intégrée de la courbe IV (oscillation maxi-
mum), et celle de la courbe I (quartz inerte), égal a 12. L’augmen-
tation de l'intensité diffractée est donc considérable; le pouvoir
réflecteur du cristal semble étre profondément modifié par les oscil-
lations piézoélectriques.

D’autre part on sait qu'un monocristal est en réalité constitué
par la juxtaposition de petits cristallites, formant une mosaique
dont chaque élément présente une désorientation plus ou moins
grande par rapport a ses voisins. Dans le cas ol la désorientation
est nulle, chaque atome occupe par rapport a ses voisins la position
définie par les constantes réticulaires du cristal; on a alors affaire
a un cristal parfait. Si au contraire les désorientations de chaque
cristallite sont réparties statistiquement autour de la position mo-
yenne, on parle alors d’un cristal idéalement imparfait. C’est le
cas lorsque le cristal n’a subi aucune déformation permanente, ni
polissage, qui donnent une orientation préférentielle aux cristallites.

Les phénomenes de diffraction des rayons X sont tres différents
s1 le cristal est une mosaique idéale ou sl est parfait. Dans le pre-
mier cas, lorsqu’on fait tourner le cristal autour de I'angle de Bragg,
chaque cristallite est amené successivement en position de réflexion
mais les rayons incidents et diffractés ont peu de chance de subir
une deuxiéme diffraction; ils sont simplement absorbés avec un
coefficient d’absorption ordinaire. Chaque cristallite diffracte donc
a son tour et les intensités s’additionnent sans interférences puis-
quil n’y a pas de relation de phase entre les différentes ondes. 1l se
produit par contre un élargissement de la courbe de diffraction.
Dans le deuxiéme cas, ot la désorientation des eristallites est nulle,
les rayons diffractés par les plans réticulaires doivent retraverser
ces plans, pour sortir du cristal et sont a nouveau diffractés dans
le sens de 'onde incidente. Comme chaque diffraction se fait avec
un déphasage de 7/2 ils se trouvent en opposition de phase avec
les rayons incidents et en diminuent l'intensité.

On voit donc que l'intensité diffractée est plus faible dans le cas
d’un cristal parfait que pour une mosaique idéale. Le calcul exact
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de I'intensité intégrée réfléchie par une face du cristal donne (voir
par exemple 13)):
pour un cristal en mosaique:

N3 of €* \2 1+cos226
Im“ 2u 'Fl (mcz) 28in26@ '

pour un cristal parfait:

8 9 e? 1+|cos20]|
I”_ 3n N2 EFI me2 2s8in260

N = nombre de mailles par unité de volume.

/4 = longueur d’onde des rayons X.

u = coefficient linéaire d’absorption.

F = facteur de structure des plans réfléchissants.
6 = angle de Bragg.

Ces deux formules sont valables dans les cas limites du cristal en
mosaique idéale ou du cristal absolument parfait. Si la mosaique
est peu désorientée, les rayons X peuvent traverser plusieurs cristal-
lites ayant I’orientation de Bragg et le coefficient d’absorption u s’en
trouvera augmenté, car une partie de I'intensité sera réfléchie plu-
sieurs fois. On peut ainsi avoir tous les cas intermédiaires entre la
mosaique et le cristal parfait.

Remarquons que le coefficient d’absorption x4 qui intervient dans
la premiére formule ne se trouve pas dans la seconde. En effet I'ab-
sorption ordinaire peut en général &tre négligée, pour un cristal
parfait, devant la diminution de I'intensité incidente causée par les
réflexions sur chaque plan successif. Cette diminution d’intensité
est caractérisée par un coefficient d’extinction & qui intervient 1m-
plicitement dans la deuxiéme formule et dont nous donnerons plus
bas I'expression.

Faisons le rapport des deux intensités I,, et I, pour une mosaique
et un cristal parfait:

I, 3= Nll v e?  14cos226

I, 16 pu | mc 1+ |cos 26|

et calculons la valeur de ce rapport dans le cas d’une réflexion du
deu_xiéme ordre de la raie Ky, du molybdeére, sur les plans 2, 1, 0,
(4, 2, 0) du quartz. En introduisant N =89 1022 cm=3; y = 9,65cm—1;
| Fozo | = 18,2 et 2 ® = 33° 33’ on trouve:

L

= 178

Le facteur d’augmentation d’intensité pour un quartz enmosaique
ou pour un quartz parfait est donc d’erviron 18. Or, nous avons
trouvé comme rapport des intensités diffractées par le quartz oscil-
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lant et le quartz inerte, la valeur 12. Il semble donc que lorsque le
quartz oscille, 1l se forme & I'intérieur du cristal une désorientation
des cristallites, les uns par rapport aux autres, qui fait augmenter
son pouvoir réflecteur dans des proportions comparables & ’aug-
mentation due au passage du cristal parfait a la mosaique.

Ceci n’est possible que si le cristal non perturbé peut étre consi-
déré comme relativement parfait, ce qui est bien le cas pour le
quartz. Pour d’autres cristaux piézoélectriques, moins parfaits, ’'aug-
mentation d’intensité doit donc étre beaucoup plus faible; ce qui
est bien vérifié par I'expérience!?).

Il est évident d’autre part, que le rapport limite de 18 ne peut
étre atteint, car le cristal inerte n’est pas absolument parfait et
que le quartz oscillant n’est probablement pas exactement une
mosaique 1déale. Ainsi il semble que les oscillations piézoelectriques
transforment en une mosaique le cristal du quartz.

Il faut encore véritier les différentes conditions nécessaires a,l ap-
plication des formules donnant les intensités intégrées.

La formule des intensités intégrées rétléchies par un cristal en
mosaique est établie dans le cas ot les rayons incidents sont entiére-
ment absorbés & l'intérieur du cristal. Dans le cas du deuxieme
ordre, avec une lame de quartz de 2 mm d’épaisseur, le rapport
entre 'intensité transmise & travers le cristal et I'intensité incidente
est d’environ 19/, ce qui est négligeable.

Nous avons vu également que le coetficient d’extinction linéaire &
doit étre grand par rapport au coefficient d’absorption pour que
I'on puisse appliquer la formule donnant I'intensité réfléchie par
un cristal parfait. L’expression de § est13) (p. 60):

§= N Z IF m 02
ce qui donne £=510 ¢m~! dans notre cas; & est donc plus de 50 fois
plus grand que p. & et p intervenant comme exposants de e, I'ex-
tinction est donc considérablement plus grande que 'absorption.

2. Elargissement asymétrique des courbes.

Pour tous les ordres les courbes présentent un ¢largissement beau-
coup plus grand du coté des grandes valeurs de la constante réticu-
laire. Cette asymétrie ne peut pas étre causée par une désorientation
préférentielle des cristallites d’un coté de la normale aux plans réfle-
chissants, car elle n’est pas modifiée par une rotation du cristal
autour de cette normale. Il n’y a d’ailleurs aucune raison pour
qu'une désorientation préférentielle se produise, la lame étant par-
faitement symétrique par rapport a sa normale.
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D’autre part une augmentation de la température du quartz ne
peut pas non plus étre la cause d’une asymétrie car, comme nous
I’'avons vu, le quartz était refroidi et le gradient de température ne
pouvait en aucun cas dépasser 1° sur I’épaisseur de la lame ce qui
ne donne pas de modifications perceptibles de la raie de diffraction.

Il ne semble pas non plus que I'asymétrie puisse étre imputable
a une augmentation asymétrique des réflexions diffuses, car MiLLER
a montré!!) que 'intensité des réflexions diffuses n’augmente pas
d’une maniére appréciable.

L’explication la plus plausible de ce phénoméne nous a paru étre
que I'amplitude des oscillations piézoélectriques soit plus grande a
la dilatation qu’a la compression. Mais ceci implique que le module
d’élasticité n’est pas indépendant de la déformation et qu’il est plus
élevé a la compression qu’a la dilatation, & condition que les ampli-
tudes soient assez grandes.

Les amplitudes intervenant dans nos mesures sont assez difficiles
a évaluer; nous I’avons fait d’une maniére approximative par deux
méthodes différentes: D’une part en mesurant & quelle dilatation

e

N N

o [

L
~~

Fig. 7.
Déformation locale d’une lame vibrante en fonction du temps lorsque le module
d’élasticité est différent & la compression et a la dilatation.

correspond l’élargissement de la courbe & la demi-hauteur ce qui
nous donne une amplitude relative légérement inférieure a 2°/;
d’autre part en calculant la déformation provoquée par une tension
continue de méme valeur que la tension haute fréquence de créte
appliquée, et en multipliant cette déformation par le facteur de
qualité de la lame. Malheureusement ce facteur est difficilement
mesurable, nous 'avons estimé d’aprés les conditions d’oscillation
(une face libre'4)) & 10000; ce qui nous donnerait une déformation
de I'ordre de 1,59 ,. La deuxiéme valeur est trés approximative, elle
est toutefois du méme ordre de grandeur que la premiére. En utili-
sant le module d’élasticité donné dans les tables, qui n’est d’ailleurs
probablement plus valable pour ces déformations, nous trouvons
une tension de 800 kg/cm?2 pour une dilatation de 19/g.
Examinons quelles seraient les oscillations d’une lame vibrant

dans son épaisseur lorsque le module d’élasticité n’est pas constant.
*
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Pour simplifier, nous supposerons que ce module a deux valeurs
différentes E; et E, a la compression et 4 la dilatation (E; > E,).
Un pendule soumis & des forces semblables aurait un mouvement
composé de deux demi-sinusoides de périodes différentes, données
par 'équation T2 E, = T2 E,, et dont les amplitudes seraient déter-
minées par I’égalité des vitesses au point de déplacement nul pour
les deux sinusoides (fig. 7).

Ay 0, =4, 0,
ce qui donne
AE. — A2E,.

Dans le cas d’une lame vibrant transversalement, les longueurs
de 'onde de compression et de 1’onde de dilatation sont les mémes,
car les vitesses de propagation sont proportionnelles a la racine
du module d’élasticité v; T = v, Ts.

Fig. 8.

Nous avons représenté (fig.8a) les déformations locales (propor-
tionnelles aux tensions) d’une lame vibrant & la troisieme harmo-
nique de sa fréquence de résonance, en portant positivement les
dilatations et négativement les compressions.

Les deux courbes en traits pleins représentent les amplitudes
maxima alors que la courbe en pointillé décrit un état intermédiaire.
La période de la compression étant plus courte que celle de la dila-
tation, il se trouve qu’a certains moments — exactement au début
et & la fin de la demi-période de dilatation — toutes les zones de la
lame se trouvent & l’état dilaté; c’est le cas pour la courbe en
pointillé. |
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En intégrant les courbes des déformations locales on obtient les
déplacements absolus des différents points de la lame (fig. 8b). Les
courbes des déplacements sont portées & partir du milieu de la
lame comme origine; les déplacements vers la droite étant positifs.
La figure montre que la lame subit une dilatation permanente au-
tour de laquelle elle oscille ce qui est trés compréhensible puisque
la dilatation locale est de plus grande amplitude et de plus longue
durée que la compression.

Cette représentation graphique des oscillations n’est qu’une so-
lution approximative de I’équation d’onde, mais elle représente assez
bien l'allure des oscillations. Elle permet entre autre d’expliquer
pourquot 1l est possible d’exciter piézoélectriquement les oscillations
d’une lame de quartz au deuxiéme harmonique. Ces vibrations ne
peuvent en effet pas étre entretenues par une tension électrique si
I'on suppose le module d’élasticité constant, car la différence de
potentiel entre les deux faces de la lame est toujours nulle, les ten-
sions des deux moitiés de 1’épaisseur s’opposant exactement I'une
a l’autre. Comme on le voit en considérant les deux premiers tiers
de la courbe des déplacements, les tensions électriques (proportion-
nelles aux déplacements) ne s’annulent plus dans le cas de modules
d’élasticité, différents & la compression et a la dilatation.

D’autre part des travaux expérimentaux récents 1°) 16) ont montré
qu’ll est également possible d’exciter des résonances d’une lame
de quartz & des harmoniques demi-impairs (3/2, 5/2...). Ces réso-
nances peuvent également s’expliquer si 'on considére les courbes
en pointillé. Celles-ci contiennent une oscillation dont la longueur
d’onde est la moitié de l'oscillation principale. Si I'on fait osciller
une lame de quartz & une fréquence 3/2 de la fondamentale par
exemple 1l existe donc une onde dont la demi longueur d’onde entre
trois fois dans I’épaisseur de la lame et qui satisfait ainsi aux condi-
tions aux limites d'une onde stationnaire. Il est évident que ces
résonances doivent étre beaucoup plus faibles que pour les harmo-
niques entiers ce qui est bien le cas expérimentalement.

L’hypothese d'un module d’élasticité augmentant & la compres-
sion semble ainsi étre confirmée par des expériences tout & fait
indépendantes.

Il n’est malheureusement pas possible de donner un rapport entre
les modules d’élasticité moyens, & la compression et a la dilatation,
car les expressions obtenues en fin d’introduction pour I’allure des
courbes ne sont pas intégrables et ne permettent donc pas de tirer
les valeurs de ces modules. Il serait d’ailleurs nécessaire de connaitre
la valeur du coefficient d’absorption u qui nous ’avons vu, varie
avec I'état de mosaique.
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Conelusion.

La mesure des courbes de diffraction des rayons X, par une lame
de quartz oscillant piézoélectriquement, nous a permis par une dé-
termination précise de l'intensité intégrée diffractée, de conclure a
la transformation du eristal prescue parfait du quartz en une mo-
saique lors des oscillations. Cette transformation est confirmée par
la concordance des valeurs théoriques — des intensités diffractées
par une mosaique ou un cristal parfait — avec les valeurs expéri-
mentales. ,

Le passage a I’état de mosaique lors des oscillations permettrait
peut-étre d’expliquer le vieillissement des quartz dans les horloges.

L’asymétrie des courbes de diffraction fait penser que le module
d’élasticité du quartz augmente & la compression, cette hypothése
permet par ailleurs d’expliquer 'existence des résonances aux har-
moniques pairs et demi-impairs d'une lame de quartz (X-cut), qui
ont été observées expérimentalement. |

Institut de Physique de I’Université,
Geneve.
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