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Über das Schalenmodell für Atomkerne

von K. Bleuler und Ch. Terreaux
Theoretisch-physikalisches Seminar der Universität Zürich.

(15. III. 1955.)

Abstract. Within the framework of the shell-model the shape of the potential
well and the distribution of the nucléons in space are calculated (this leads to the
charge-distribution). A good agreement is found with the experimental results
from high energy electron scattering. Some questions of the consistency of the
model are treated and the charge independence of nuclear forces is tested in a new
way. Finally a more detailed 2-dimensional representation of the level-scheme of
shell-structure is given.

§ 1. Einleitung.

Das Schalenmodell für die Atomkerne wurde bisher hauptsächlich
zur Deutung der Termschemata (Parität- und Drehimpulszuordnung)

und zur Abschätzung der Grössen der magnetischen Momente
und der Quadrupolmomente der Grundzustände verwendet. In
dieser Arbeit dagegen sollen mit Hilfe desselben Modells diejenigen
Kerndaten berechnet werden, welche in letzter Zeit experimentell
sehr eingehend untersucht worden sind :

1. Die elektrische Ladungsverteilung im Innern des Kernes: sie
wurde experimentell aus der Winkelverteilung schneller, gestreuter
Elektronen bestimmt1-3). Dabei ergab sich das auffallende Resultat,
dass der sogenannte Ladungsradius wesentlich kleiner ausfiel als
die bisher angenommenen Kernradien. Im Innern ergab sich die
Verteilung annähernd konstant, und der Abfall der Dichte erstreckte
sich über einen wohlbestimmten Bereich.

2. Die Analyse der Streumessung von Neutronen an vielen
schweren Kernen4) ergab einen neuen Wert für die Tiefe des mittleren

Kernpotentials.
3. Mit Hilfe der Analyse der Termschemata der Spiegelkerne

und der erfolgreichen Einführung der Quantenzahl für den isotopen
Spin im Gebiete der leichten Kerne, konnte die Ladungsunabhängigkeit

der Kernkräfte sichergestellt werden. Es müssen sich deshalb
die mittleren Kernpotentiale für Protonen und Neutronen gerade
um die mittlere Coulombenergie pro Proton unterscheiden.
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4. Durch weitere Messungen der sogenannten magnetischen
Anomalie5)6) (Unterschied der magnetischen Aufspaltung im homogenen
äusseren Felde gegenüber derjenigen im inhomogenen Feld der
Elektronenhülle) ergab sich ein Hinweis dafür, dass die Stromverteilung

im Kerne nicht homogen anzunehmen ist.
Es ist nun wichtig, zu bemerken, dass die Gültigkeit des Schalenmodells

gerade an den hier besprochenen Kerneigenschaften
weitgehend geprüft werden kann. Dieses Modell stellt nämlich vom
mathematischen Standpunkte aus ein Näherungsverfahren der
folgenden Art dar:

Um das wellenmechanische Mehrkörperproblem zu vereinfachen,
werden zunächst sämtliche Kernkräfte durch ein mittleres
Kernpotential W ersetzt, welches in gleicher Weise auf alle Protonen,
resp. Neutronen wirkt (bei Ladungsunabhängigkeit muss für die
Protonen nur das Coulombpotential hinzugefügt werden),
zentralsymmetrisch und nur von Ort und Geschwindigkeit abhängig
angenommen wird. Der allgemeinste Ansatz lautet dann:

W V(r) + G(r) (l-s). (1)

Dieses Kernpotential mit Spin-Bahnkopplung liefert die folgenden
Einpartikelzustände (Nukleonenbahnen) ipn:

%2

Enfn=— ¦=-=- AWn + Wipn ¦ (2)

Die Wellenfunktion des gesamten Kernes wird dann in dieser
untersten Näherung durch das antisymmetrisierte Produkt dieser
Einteilchenbahnen geschrieben :

*xo) __;x-i)pi7</v (3)
n

während die Energieeigenwerte durch die entsprechende Summe-
der Eigenwerte aus (2) dargestellt sind :

E^ ZEn. (4)
n

Damit entsteht bereits ein Termschema des Kernes, wobei jeder
Term durch eine bestimmte Besetzungsart der Einteilchenbahnen
(aus (2)) charakterisiert ist*). Diese Terme sind noch hochgradig
entartet und beschreiben noch nicht die Wirklichkeit.

In einem zweiten Schritt müssen nun im Prinzip die individuellen
Wechselwirkungen Hw, d. h. die Abweichungen vom angenommenen

Mittelwert des Potentials zwischen den einzelnen Nukleonen
berücksichtigt werden (Zwei- oder Mehrkörperkräfte). Dadurch

*) Der tiefste Eigenwert E^ stellt gerade die Bindungsenergie des Kernes dar.
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werden die soeben konstruierten Terme aufgespalten, und die neuen
Eigenfunktionen können immer in der folgenden Form geschrieben
werden:

^(1) ^(0) _ (g)

(Die f(0> bilden ein vollständiges Orthogonalsystem.) Im Falle
einer Störungsrechnung hätte man z. B.

-H(1)
C* i + k (6)

zu setzen, wobei HA> das Matrixelement von i_(l) bezüglich der
ungestörten Zustände f^0' bedeutet. Es ist nun sehr wesentlich für die
Anwendung des Schalenmodells, dass die genannten zusätzlichen
Kräfte H{1) tatsächlich als Störung aufgefasst werden können. Wie
durch Vergleich mit experimentellen Daten vielfach geprüft worden
ist, werden nämlich die Termfolgen der ersten Näherung nicht
wesentlich geändert. (Es ist aber dabei wichtig, dass die grosse Spin-
Bahnkopplung bereits in der untersten Näherung mitberücksichtigt
wird.) Damit ist aber ersichtlich, dass in den linearen Verbindungen
nach (5) und (6) nur Zustände vorkommen, für welche die ungestörten

Energiewerte iEm und infolgedessen auch die Besetzungszahlen
der ungestörten Einteilchenfunktionen nicht stark untereinander
abweichen. Handelt es sich z. B. um den Grundzustand des Kernes,
so werden dem tiefsten, ungestörten Zustande der Form (3) (er
entspricht einer „kompakten" Besetzung der Einpartikelniveaus) nur
Zustände beigemischt, welche sich in der Besetzung der obersten
Energiestufen unterscheiden. Der Grossteil der Nukleonen bleibt
aber in den selben ungestörten Bahnen. Ganz ähnliche Verhältnisse
hat man etwa in einem Fermigas.

Hat man nun z. B. die Ladungsverteilung im Grundzustand zu
berechnen, so genügt es offenbar, die ungestörte Eigenfunktion ^0*
zu verwenden. Ebenso wird der ungestörte Eigenwert E(0) schon
eine gute Näherung für die gesamte Bindungsenergie des Kernes
darstellen. Allgemein kann man sagen, dass alle physikalischen
Grössen, für welche sämtliche Nukleonen gleichmässig beitragen,
schon durch die erste (unterste) Näherung gut dargestellt werden
können. Im ganzen handelt es sich um eine Verfeinerung des
statistischen Modells; es wird sich aber zeigen, dass es sehr wesentlich
ist, die Lösungen der Gleichung (2) an Stelle der einfachen ebenen
Wellen zu verwenden.

Im zweiten Abschnitt wird nun zuerst gezeigt, wie man auf Grund
dieser ersten Näherung mit Hilfe der empirisch gegebenen Bindungsenergien

und Kernradien die Tiefe der Potentialmulden V für Proton
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und Neutron schon festlegen kann. Damit wird bereits die
Ladungssymmetrie verifiziert. Es ergibt sich auch eine quantitative Bestimmung

des bekannten Termschemas des Schalenmodells, wenn man
noch die Werte für die Spin-Bahnkopplung aus einer Analyse der
Terme einiger leichten Kerne entnimmt.

Im dritten Abschnitt werden mit Hilfe der selben Näherung
die Form der Dichteverteilung, insbesondere der Ladungsradius
diskutiert werden. Für die Untersuchung der experimentell gefundenen

Termschematas der Kerne ist die Berücksichtigung der direkten

Wechselwirkung iî(1) zwischen den Nukleonen natürlich wesentlich.

Hierzu braucht es aber besondere Annahmen (z. B. Paarabsätti-
gung, welche für ungerade Kerne wieder zu Einpartikelzuständen
führt, oder Diskussion allgemeiner Konfigurationen). Es ist wichtig,
dass die Grössen, die hier berechnet werden, von diesen Annahmen
noch unabhängig sind. "

Nebenbei sei bemerkt, dass die hier betrachtete Näherung im
Gebiet der leichten Kerne versagt (A^> 1 ist notwendig zur Definition

des mittleren Potentials). Dagegen kommt es in diesem Falle
vielfach zur Bildung relativ stabiler Strukturen (O16, C12), so dass
die tiefliegenden Terme vieler ungerader Kerne in der folgenden
Weise aufgefasst werden können: Ein „Leuchtnukleon" bewegt sich
im Kraftfelde, welches von einem stabilen Rumpfe erzeugt wird.
Da dieses Feld wieder kugelsymmetrisch ist, hat man es wieder mit
Lösungen der Gleichung (2) zu tun. Es gibt aber ein Zwischengebiet
(Kerne bei A •—¦ 23), wo man weder das Schalenmodell, noch die
genannten Vereinfachungen für leichte Kerne verwenden kann. Es

zeigt sich tatsächlich, dass dort viele Zustände durch kompliziertere
Konfigurationen beschrieben werden müssen.

§ 2. Berechnung des mittleren Potentials, der Coulombenergie und des

jViveausehemas.

I. Das mittlere Potential.

Im Rahmen der besprochenen ersten Näherung gilt nun folgendes :

Sind für einen bestimmten Kern der Radius und die Bindungsenergie

empirisch gegeben, so können daraus mit Hilfe naheliegender

Annahmen die Tiefen der Potentialmulden für Protonen und
Neutronen bestimmt werden. Angenommen wird dabei folgendes:

1. Der Verlauf des mittleren Potentials wird bis auf zwei
Parameter V0, B0 für Längenmaßstab und Tiefe vorgegeben:

nr)=V0.vfe) (7)
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(V0 in MeV, B0 in KU13 cm). v(£) stellt eine dimensionslose Funktion
dar, welche die Form des Potentialverlaufes charakterisiert.

2. Die Spin-Bahnkopplung wird für diese Betrachtung zunächst
vernachlässigt. (Die entsprechende Aufspaltung der Terme hat einen
sehr geringen Einfluss bei der Bildung der gesamten Bindungsenergie)

3. Bei der Besetzung der einzelnen Bahnen durch Protonen und
Neutronen muss verlangt werden, dass die Energie der obersten
durch ein Proton besetzten Bahn um 1,26 MeV höher liegt als
diejenige für das entsprechende Neutron, oder mit anderen Worten:
beim Auffüllen der Bahnen müssen die Gronzenergien für Protonen
und Neutronen bis auf ihre Massendifferenz übereinstimmen
(ß- Stabilität; würde man noch den K-Einfang berücksichtigen, so
wären anstelle von 1,26 nur 0,75 MeV zu verwenden).

Durch diese Methode sollen nun die Potentialmulden für alle
Kerne des periodischen Systems bestimmt werden. Zur Durchführung

der Aufgabe muss man sich zunächst eine Übersicht über den
Verlauf der zu einer Potentialmulde gehörenden Eigenwerte als
Funktion der beiden Parameter V0, B0 verschaffen. Dabei wurden
3 verschiedene Potentialformen »(£) untersucht :

1. Die flache Mulde,

v l: 0<K1; v 0: £>1.
2. Das Stufenpotential,

v 2: 0<£<X v l: ±<f<l; t> 0:f>l.
3. Das Oszillatorpotential.
Die zugehörigen Eigenwertprobleme (2) sind in längerer Arbeit

gelöst worden. Die Resultate haben wir für die Formen 1. und 2.

in Fig. 1 graphisch zusammengestellt. Die Lösung hat die Form
(in üblicher Bezeichnung) :

ym yXn(r)Yr(H,<p), (8)

"UAl^ln\ + Vxn FrtXn- (9)
2 M

Daraus sieht man, dass die beiden Parameter Tq, B0 nur in der
dimensionslosen Kombination

X Ty~^0Bt (10)
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in die Eigenwertgleichung eingehen, wenn auch die Eigenwerte in
der dimensionslosen Form

en ^r (11)

geschrieben werden. Die Grössen en sind doshalb als Funktionen
von X in Fig. 1 aufgetragen worden. (Kurven en(X) für die
Potentialformen (1) und (2) ; dabei ist für jeden Eigenwert die
Drehimpulszuordnung und die Besetzungszahl angegeben.) Der
Parameter X stellt in gewissem Sinn ein Mass für das Fassungsvermögen
einer Potentialmulde dar, wenn die Funktion i?(|) in geeigneter
Weise normiert wird*).

In dieser Übersicht ist zu erkennen, dass der Verlauf derjenigen
Eigenwerte, die einen hohen Drehimpuls (d. h. hohe Besetzungszahlen)

aufweisen, für die beiden Potentialformen nicht wesentlich
verschieden ist. Die Rechnung wird deshalb hier nur mit der flachen
Mulde fortgeführt. Man wird später sehen, dass sich dieselbe für die
schweren Kerne am besten eignet.

Jetzt stellt sich die Aufgabe, für jeden Kern die richtigen
Potentialmulden (d. h. die richtigen Parameterwerte V0P, BP; VA7, B®)
für Protonen und Neutronen zu bestimmen: Zunächst wählt man
für die Radien BP, B^ beider Mulden den empirischen
Kernradius**) Bk:

Bp B^ Bh l,AA^. (13)

Für die beiden Parameter V0P und V0N bleiben dann gerade noch zwei
Bedingungen :

1. Die experimentell gegebene Bindungsenergie B des
Grundzustandes soll mit dem theoretischen Wert (4) der ersten Näherung
übereinstimmen. Mit unserer neuen Bezeichnungsweise heisst dies

B Vp£ en (X") + V0"£en{X*). (IA)

*) Will man verschiedene Potentialverläufe untereinander vergleichen, so ist
die folgende Normierung von »(f) zweckmässig

oo

fyn(sjds i. (i2)
o

Dies entspricht nach (11) einer eindeutigen Festlegung der Einheit für den
Parameter X. Damit werden jetzt für gleiche X die Mittelwerte der e_ (alle mit Gewicht 1)
für verschiedene Potentialverläufe ungefähr gleich. Bei dieser Normierung hat man
in Fig. 1 für das Stufenpotential den neuen Parameter Xi2) 1,138 X zu
verwenden.

**) Die Verwendung dieses „alten" Wertes für die Potentialmulden erweist sich
als richtig (vgl. § 3).
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Dabei bedeuten Xp bzw. XN die Parameterwerte, welche nach (10)
zu den Werten Vp, Bp bzw. V0N, B*f gehören. Die Summen
müssen für eine „kompakte" Besetzung mit Z-Protonen bzw. N-
Neutronen der Niveaus ausgeführt werden.

IL.

s£v_;£,-17^ «^Ä<S
M*

h_.

<̂*fc

Fi
IM

IW

170

/ay

P_J_
5W

o

Pig- 1.

en(X). Übersicht über die Energieniveaus En der flachen Potentialmulde (ausgezogene

Linien) und des Stufenpotentials (strich-punktierte Linien). Die
dimensionslose Grösse _„ En/V0 aufgetragen als Funktion des Parameters X, definiert
nach (10). Die Kurven P und N ergeben für einen Kern mit Z-Protonen resp.
ZV-Neutronen (Ordinate) die Parameterwerte der dazu gehörigen Potentialmulden.
Die Zackenkurven geben die Grenzenergien (oberste besetzte Niveaus) für Protonen

resp. Neutronen im Grundzustand (kompakte Besetzung).

2. Die Grenzenergien für Protonen und für Neutronen sollen sich
um ihre Massendifferenz unterscheiden:

-VF e. -1,26 MeV. (15)*)

Aus diesen Bedingungen wurden nun durch grössere Rechnung
die gesuchten Werte Xp und XN (und daraus sofort V0P, V0N) für

*) Die Vorzeichen und Konstanten der Energie-Eigenwerte und Potentialtiefen
sind immer so gewählt, dass die gebundenen Zustände positive, die kontinuierlichen

Zustände negative Werte erhalten.
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einige Kerne, welche über das ganze periodische System gleich-
massig verteilt sind, bestimmt.

Es handelt sich um ein schrittweises Anpassen mit Hilfe der
graphischen Darstellung der en(X) nach Fig. 1. Da die Grenzenergien
ep und eN in unserer Näherung als Funktion der Besetzungszahlen
diskontinuierlich verlaufen, ist die Gleichung (15) nur im Mittel über
ein bestimmtes Intervall im periodischen System erfüllt worden.
Die numerischen Resultate sind zunächst in Tabelle 1 zusammengestellt.

Tabelle 1.

z
El A

N

R
IO"13

cm

Xp
X*

£(Exp) Bp
MeV BN

Vp
VN

VK-VP' 0 ' 0
C C" y.

8
0 16

8
3,53

2,87

2,97

58,3
127,2

68.9

24,40

26,13
1,73

15,7 3,0 1,59

20
Ca 40

20
4,79

3,90

4,05

153,6
342

188,4

24,37

26,32
1,95

72,2 7,5 3,24

24
Cr 52

28
5,22

4,29

4,45

208,5
459,2

250,7

24,90

26,77
1,87

95,2 8,7 3,60

47
Ag 107

60
6,65

5,12

5,71

325
906

581

21,80

27,18
5,38

287,2 16,9 5,75

64
Gd 155

91
7,51

5,58

6,49

406
1282

876

20,37

27,47
7,10

471 22,5 7,00

82
Pb 208

126
8,30

5,93

7,18

445
1626

1181

18,81

27,58
8,77

701 28,3 8,20

92
U 238

146
8,68

6,05

7,46

451
1790

1339

17,93

27,21
9,28

844 31,6 8,83

Mit diesen Resultaten kann man die Werte für das ganze
periodische System durch Interpolation angeben. In Fig. 1 sind die
Parameterwerte Xp und XN als Funktion von Protonen- und Neutronenzahl

durch zwei kontinuierliche Kurven dargestellt, ebenso die
diskontinuierlich verlaufenden Grenzenergien (Zackenkurven). Schliesslich

sind in Fig. 2 alle physikalisch wichtigen Energien als Funktion
der Nukleonenzahl A dargestellt : Energien der einzelnen Bahnen,
Tiefen der Potentialmulden für Protonen und Neutronen, Mittelwerte

der Grenzenergien (d. h. Mittelwerte aus den Zackenkurven
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Fig. 2.
Die Einteilchenniveaus sämtlicher Kerne für einen flachen mittleren Potentialverlauf

(Rk 1,40 All!>). Eigenwerte En in MeV aufgetragen als Funktion der
Nukleonenzahl A (ausgezogene Linien für Neutronen und gestrichelte Linien für
Protonen) ohne Spinbahnaufspaltung. Tiefen der Potentialmulden Vp, V^1 für
Protonen resp. Neutronen, Mittelwerten der Grenzenergien und Ionisationsenergie J.
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von Fig. 1 ; diese erfüllen nach dem Gesagten die Bedingung (15))
und schliesslich die Ionisationsenergie für ein Nukleon. Für einen
bestimmten Kern mit der Nukleonenzahl A können also auf einem
Vertikalstrich sämtliche Grössen (in MeV) abgelesen werden. Es
zeigt sich auch hier, dass die Tiefen der Potentialmulden für
Neutronen über das ganze periodische System praktisch dieselben sind
(ca. 27 MeV) ; da nach (13) auch die mittleren Nukleonendichten
von A unabhängig sind, ist dieses Resultat eine gute Verifikation
des Modells.

IL Die Coulombenergie.

Es ist nun von Interesse, die Tiefen der Protonmulde mit derjenigen

für die Neutronen zu vergleichen, Sind die Kernkräfte
ladungsunabhängig, so müssen sich diese gerade um die mittlere

",,pV6-V„, V.' '.

!___

WO

Fig. 3.

Vergleich der mittleren Coulombenergie pro Proton (ausgezogene Kurve) mit den
berechneten Unterschieden der Tiefen der Potentialmulden für Neutronen und

Protonen für die 7 gerechneten Kerne (kleine Kreise).

Coulombenergie Ve pro Proton des entsprechenden Kernes
unterscheiden.

ÜXX c c 5 _.,.
c- zm. (16)

C bedeutet den mittleren Wert der Coulombenergie einer homogenen

Ladungsverteilung im Innern des Kernes, während C den
Beitrag des Austausches darstellt; er wurde mit Hilfe des statistischen

Modells abgeschätzt7), was im Hinblick auf den verhältnismässig

kleinen Anteil (5% für schwere Kerne) erlaubt ist. Die
entsprechenden Zahlenwerte sind in Tabelle 1 auch angegeben. In
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Fig. 3 ist nun Ve (ausgezogene Kurve) mit den berechneten
Unterschieden der Potentialmulden (kleine Kreise) verglichen. Es zeigt
sich im Gebiete der schwereren Kerne eine recht eindrückliche
Übereinstimmung. Bei den leichteren Kernen, wie z. B. Ca, sind
die Schwankungen der Nukleonenzahl noch zu gross, um eine
kontinuierliche Kurve zu erhalten. Auch ist zu berücksichtigen, dass

man in Formel (15) auch den kleineren Wert 0,75 MeV für die
Differenz der Grenzenergien verwenden könnte.

III. Die Lage der Grenzenergien.

Aus den Figuren 1 und 2 ist ersichtlich, dass die Grenzenergien
alle in der Nähe des oberen Randes der Potentialmulde liegen. (Man
vergleiche die „Zackenkurve" in Fig. 1 und deren Mittelwert in
Fig. 2 mit der Nullinie). Dies bedeutet, anschaulich gesprochen, dass
die Potentialmulden gerade vollständig mit Nukleonen ausgefüllt
sind. Berücksichtigt man noch, dass man bei den leichteren Kernen
von der hier angenommenen flachen Mulde allmählich zum
Oszillatorpotential übergehen sollte, so ergibt sich ein vollständig horizontaler

Verlauf in der Nähe der Nullinie. Wir werden gleich sehen, dass
diese auffallende Tatsache mit der Konsistenz des Modells in engem
Zusammenhang ist.

Es muss aber zuerst bemerkt werden, dass wir die Kurven für die
Energieeigenwerte in Fig. 1 und 2 immer ein Stück über die Nullinie
in das Gebiet der kontinuierlichen Zustände extrapoliert haben.
Dies war notwendig, um in allen Fällen genügend Zustände für die
Nukleonen des Kernes zur Verfügung zu haben. Dazu ist folgendes
zu beachten: Das mittlere Potential V(r), das hier verwendet wird,
ist für die folgenden relativen Lagen der Nukleonen im Räume eine

gute Näherung:
a) Sämtliche Nukleonen befinden sich im Innern des Kernes

(d. h. im praktisch realisierten Falle).
b) Sämtliche Nukleonen im Aussenraume (mit dem Werte Null

für V erhält man dann gerade den richtigen Wert (4) für die gesamte
Bindungsenergie).

Betrachtet man aber z. B. den Ablösungsvorgang eines einzelnen
Nukleons (d.h. A-l Nukleonen im Innern, 1 Nukleon im Äussern),
so ist in unserem Falle gerade noch die Ionisationsenergie von ca.
8 MeV zum Potentialwall hinzuzufügen. Es muss nämlich berücksichtigt

werden, dass beim Ablösungsvorgang eines Nukleons die
mittlere Potentialmulde verkleinert wird (sie entspricht jetzt
derjenigen von N-l Nukleonen) und dass dadurch sämtliche besetzten
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Niveaus etwas gehoben werden. Die hierzu notwendige Energie
wird gerade durch den zusätzlichen Potentialwall von 8 MeV
dargestellt. Diese Verhältnisse sind in Fig. 4 graphisch dargestellt.

Man verifiziert anhand dieser Zeichnung leicht, dass man jetzt
durch sukzessive Ionisation wieder zum richtigen Werte (4) für die
gesamte Bindungsenergie kommt. Damit erhält man nun das
gesamte Potential, welches z. B. für die Neutronstreuung verwendet
werden muss. Die Tiefe beträgt 27 + 8 35 MeV und die Breite

n-2 n-in
Fig. 4.

Zur Diskussion der Ionisationsenergie.

etwas mehr als 1,4 A113. Diese Werte entsprechen ungefähr dem exp.
Befund4). Mit dem zusätzlichen Potentialwall erhält man aber auch
auf den extrapolierten Stücken der Eigenwertkurven noch stationäre

Zustände und die Eigenwerte werden hauptsächlich für die
grösseren Drehimpulse (wegen dem entsprechend grossen
Drehimpulswall) und für Protonen (Coulombwall) noch gute Näherungen
bilden. Man sieht aber, dass für die kleineren Drehimpulse bei
Neutronen bereits Abweichungen zu erwarten sind und dass es für die
Konsistenz der ganzen Methode sehr wesentlich ist, dass man mit
den Grenzenergien nur wenig über die Nullinie kommt. In gewissem
Sinne stellen also die experimentellen Radien Bk 1,40 A1/3 gerade
minimale Werte dar ; ein kleinerer Wert für Bk würde nämlich bei
der vorgegebenen Bindungsenergie zur Besetzung vieler Zustände
über der Nullinie führen. Die zugehörigen Eigenfunktionen würden
dann eine Dichteverteilung der Nukleonen ergeben, die wesentlich
über die ursprünglich angenommene Potentialmulde herausreicht
(vgl. §3).

IV. Das Termschema des Schalenmodells.

Nachdem nun sämtliche Grössen, welche in der ersten Näherung
eingehen, bestimmt worden sind, ist es jetzt möglich, die Spin-
Bahnkopplung quantitativ richtig zu berücksichtigen: Bei einigen
leichten Kernen lässt sich der Wert der Spin-Bahnaufspaltung
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direkt ablesen: 2,5 MeV für die P8/2'Pi/2"AufSpaltung bei Hf, ca.
5 MeV für die Aufspaltung d5/2 — d3j2 bei C13, N13, F17. Da die Tiefe
des entsprechenden Kernpotentials bei diesen leichten Kernen
ungefähr denselben Wert besitzt, lässt sich diese Spin-Bahnaufspaltung

m

120

120 »0 m 2W
(Mer)

<¥*

f*

100 120 200 220 210ito

Fig. 5.

Das Termschema des Schalenmodells für Neutronen.

Einpartikelniveaus ___ in MeV mit Spinbahnaufspaltung auftragen als Funktion
der Nukleonenzahl __. Der Wert der Spinbahnaufspaltung (k-l-2,5 MeV) ist
proportional l und dem Faktor k(A), welcher ein Mass für den Gradienten des Potentials

darstellt. (Kurve k als Funktion A in der oberen Hälfte.) Die Zackenkurve
stellt die Grenzenergie für die Grundzustände dar: Das Auftreten der magischen
Zahlen ist aus den grossen Sprüngen bei N 8, 28, 50, 82, 126 ersichtlich (Kurve
N(A)). Alle Terme sind für flache Potentialmulden gerechnet. Für leichte Kerne ist

noch der Übergang zum Stufenpotential angegeben (s2).

in folgender Weise auf die schweren Kerne übertragen. Die
Aufspaltung wird proportional den folgenden Grössen angenommen:
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Bahndrehimpuls l und einem gemittelten Wert /. des Gradienten
des Potentials, wobei als Gewicht das Quadrat der Wellenfunktion
verwendet wird. Damit ergibt sich das vollständige Termschema
der Einnukleonzustände (Fig. 5). Es ist hier instruktiv die erwähnte
„Zackenkurve" für die Grenzenergien in entsprechender Weise
einzutragen. Die grossen Stufen, welche jetzt das System der Kerne
vollständig in einzelne Gruppen aufteilen, geben in eindrücklicher
Weise das Auftreten der magischen Zahlen wieder:

8, 28, 50, 82, 126.

Die kleineren Stufen bei

6, 20, 38, 64, eventuell 100

entsprechen den sogenannten halbmagischen Zahlen. Die Zahlen
38 und 64 sind auch schon bei der Untersuchung der angeregten
Zustände von geraden Kernen in eindrücklicher Weise in Erscheinung

getreten8). Im Gegensatz zu den üblichen eindimensionalen
Darstellungen des Termschemas trägt unsere zweidimensionale Form
den Verschiebungen der Niveaus mit wachsendem A Rechnung.
Auch sind die Aufspaltungen durch Analyse der leichten Kerne
bestimmt, und das ganze Schema ist im wesentlichen ohne irgendwelche

Anpassung gezeichnet worden (nur bei den höchsten
Drehimpulsen (1=5 und 6) wurde bei der entsprechenden grossen
Aufspaltung der Schwerpunkt aus den beiden Zweigen etwas nach
oben verschoben). Für Protonen wäre nach Fig. 2 ein etwas anderer
Verlauf zu erwarten. Auch müsste man bei den leichteren Kernen
den Übergang zum Oszillatorpotential durchführen. Die Spin-Bahn-
Aufspaltung ergab sich etwas grösser als in den meisten Term-
schematas, welche bisher angegeben wurden, was zur Folge hat,
dass die Aufteilung der Terme in einzelne Gruppen noch deutlicher
wird als früher.

Beim Vergleich mit der Erfahrung muss man beachten, dass bei
Berücksichtigung der zweiten Näherung die Reihenfolge der einzelnen

Terme innerhalb der Gruppen zwischen je zwei magischen
Zahlen verändert werden kann. Es hängt dies im Rahmen der zweiten

Näherung davon ab, wieviele energetisch benachbarte Zustände
bereits in der ersten Näherung existieren, mit welchen ein
herausgegriffener Einpartikelzustand kombinieren kann. Die energetisch
grossen Sprünge bei den magischen Zahlen werden aber nie
überbrückt; es gilt ausnahmslos die Regel, dass die Zuordnungen der
Grundzustände und der tiefsten angeregten Niveaus eines unge-
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raden Termes aus einer Gruppe zwischen zwei magischen Zahlen
zu finden sind. Wohl aber werden die Energiestufen bei den
magischen Zahlen durch die nächste Näherung etwas verkleinert. Sind
zwei Gruppen nur durch eine halbmagische Zahl getrennt, so können
gelegentlich Überbrückungen vorkommen. Aus diesen Tatsachen
kann man sich auf empirischem Wege eine Vorstellung darüber
verschaffen, wie gross der Einfluss der direkten Wechselwirkungskräfte
(2. Näherung) auf das Termschema ist; doch soll auf diese Frage in
einer späteren Arbeit näher eingegangen werden.

§ 3. Berechnung der Ladungsverteilung.

I. Das Näherungsverfahren.

Die wichtigste Anwendung der ersten Näherung ist nun die
Bestimmung der Dichteverteilung der Nukleonen, insbesondere der
Verteilung der Protonen, welche zur experimentell bestimmten
Ladungsverteilung des Kernes führt. Nachdem nämlich der
Vergleich der experimentellen Resultate über die Drehimpulszuordnungen

bei ungeraden Kernen mit der ersten Näherung zeigt, dass
eine Mischung der Zustände nur in relativ geringem Umfange
vorkommt, kann man jetzt mit einigem Vertrauen diese Näherung
allein zur Bestimmung der Dichteverteung verwenden.

Für diese Rechnung darf man die Spin-Bahnkopplung wieder
vernachlässigen. Um aber das experimentell gut untersuchte Verhalten
der elektrischen Ladungsverteilung am Rande des Kernes besser

wiederzugeben, wird jetzt eine Potentialmulde mit abgeschrägten
Wänden verwendet. In Fig. 6 sind die verschiedenen Masse, welche
für den Ag-Kern angenommen werden, angegeben*). Jetzt stellt
sich aber die Frage für diese Mulde die Eigenfunktionen durch ein
geeignetes Näherungsverfahren zu bestimmen. Die folgende, sehr
einfache graphische Methode führt, wie wir uns durch Vergleich bei
explizit lösbaren Problemen überzeugt haben, bereits zum Ziele:
Die Gleichung (9) für die Radialabhängigkeit, welche nun zu lösen
ist, hat die Form eines eindimensionalen Eigenwertproblemes, und
zwar handelt es sich für 1+ 0 darum, den 1. eventuell 2. Eigenwert
einer eindimensionalen, einfachen Potentialmulde zu bestimmen.
Die Randbedingung auf der linken Seite verlangt allerdings das
Verschwinden von x bereits bei r 0 (an Stelle r -»— oo). Nun
wird auf graphischem Wege diejenige Parabel gesucht, welche die

*) Die Mulde ist so konstruiert, dass das „Fassungsvermögen" gegenüber dem
früheren Fall dasselbe bleibt. Der Coulombwall kann hier gegenüber den hohen
Drehimpulswällen noch vernachlässigt werden.
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vorgegebene Potentialmulde unseres Problèmes am besten annähert
(vgl. Fig. 6) ; die dazugehörigen Eigenfunktionen des Oszillators
bilden dann im wesentlichen die gesuchte Näherung. (Um den
richtigen Eigenwert zu erhalten, genügt es offenbar, den Potentialverlauf

nur in demjenigen Intervall anzunähern, in welchem die
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Fig. 6.
Die Masse der Potentialmulden Vs und F-P für Protonen und Neutronen mit

abgeschrägten Wänden für Ag.
Graphische Darstellung des Näherungsverfahrens. Die gestrichelte Kurve stellt
die gewählte Näherungsparabel Vos dar, für das Gesamtpotential, welches aus der
schrägen Mulde und dem Drehimpulsterm gebildet ist. Das genäherte Niveau fx

für Protonen und die dazu gehörige Wellenfunktion ¥'/, sind angegeben.

Eigenfunktion wesentlich von Null verschieden ist ; im äussern
Gebiet wird die Eigenfunktion durch eine andere einfache Näherung
dargestellt; doch ist dies nur für die p-Zustände tatsächlich
notwendig. Für die S-Zustände können die Eigenfunktionen der
entsprechenden rechteckigen Potentialmulde verwendet werden.)

IL Die Fadungsverteilung.

Auf diese Weise wurde die Ladungsverteilung für den Silberkern
bestimmt (Fig. 7). Es zeigt sich nun in recht eindrücklicher Weise,
dass die Dichteverteilung im Innern des Kernes annähernd konstant
ausfällt, während dieselbe am Rande über eine bestimmte Breite



Vol. 28,1955. Über das Schalenmodell für Atomkerne. 261

gleichmässig abfällt. Die Konstanz kommt anschaulich gesprochen
dadurch zustande, dass sich die ringförmig verteilten Dichten, welche

zu den verschiedenen Drehimpulswerten gehören, der Reihe

nach aneinander lagern (Fig. 7). Anderseits verhält sich der Abfall

o 1

2{2M)I¥,IZ

35-10''

te-n

A-SW

3 t 5 6
iie-S.Sl

tv-2,1

Fig. 7

¦r(io'%)

1. Die Dichteverteilungen der verschiedenen Schalen sx, «2, px... für die Protonen
des Ag-Kernes. (Abgeschrägtes Potential Vp.) Aufgetragen ist die Gesamtdichte

bei vollständig gefüllten Schalen als Funktion des Abstandes r vom Zentrum (die

letzte Schale gx enthält nur 7 Protonen). Gestrichelte Kurve: Verlauf der Oszillator¬

lösung ohne Korrektion, welche nur bei den p-Niveaus notwendig ist.
2. Oben: Verlauf der gesamten Protonendichte für den Silberkern (Summe aus den

Beiträgen der verschiedenen Schalen). Der mittlere Ladungsradius Re und die

Abfallsbreite te sind eingetragen. Der angegebene Wert Rx 1,4 A113 entspricht
dem Radius einer flachen Potentialmulde, welche dasselbe Fassungsvermögen be¬

sitzt, wie der hier verwendete abgeschrägte Potentialverlauf.

im äusseren Gebiet ähnlich wie der Verlauf der Potentialmulde*).
Man hat also erreicht, dass der Gesamtverlauf der Dichteverteilung
ziemlich gut der Form der Potentialmulde entspricht. Diese „Selbst-

*) Eine Potentialform mit etwas weniger steilen Wänden würde die Verhältnisse

etwas besser darstellen (tv 2,8 in Fig. 7).
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Konsistenz" ist schon im ersten Schritt erfüllt worden, da sich zeigt,
dass erst eine wesentliche Änderung des Potentialverlaufes eine
merkliche Änderung der Dichteverteilung hervorbringt. Die kleine
Einsenkung der konstruierten Dichteverteilung im Zentrum des
Kernes nimmt nur einen sehr geringen Bruchteil des Kernvolumens
ein; sie wird verschwinden, sobald beim Übergang zu schwereren
Kernen der nächste S-Zustand aufgefüllt wird. Die auf diese Weise
konstruierte Dichteverteilung ist nun mit dem eingangs erwähnten
Resultat aus der Streumessung für Elektronen zu vergleichen1-3).
Wir erhalten für den Ag-Kern den Ladungsradius Be l,2A-A113
und die „Abfallbreite" s 1,35*); dies entspricht dem experimentellen

Resultat, welches für den Goldkern gewonnen wurde recht
gut (Be 1,2 _41/s, s 1,65). Die Form der Ladungsverteilung, d.h.
der mittlere Ladungsradius und die Breite des Abfalls stimmen also

gut mit der Elektronenstreumessung überein**), während anderseits
unsere Potentialmulde (nach Abschnitt 2) den Resultaten
entspricht, welche kürzlich durch Analyse der Streumessungen von
Neutronen an verschiedenen Kernen erhalten wurde4). Die in dieser
Analyse verwendete Methode des komplexen Potentials lässt sich

gut mit den hier angegebenen Vorschriften interpretieren : Der reelle
Teil dieses Potentials stellt die Wirkung unseres mittleren Potentials

dar (dieses kann nur eine elastische Streuung erzeugen), während

der imaginäre Teil die Wirkung der individuellen Wechselwirkung

zwischen den Nukleonen im Sinne unserer zweiten Näherung

charakterisiert. (Diese beschreibt in der Tat alle weiteren
Prozesse, welche das einfallende Neutron ausführen kann.)

Aus der Konstruktion nach Fig. 6 ist zu ersehen, dass die
ringförmige räumliche Struktur der Schalen, welche zu grossen
Bahndrehimpulsen l gehören, durch den hohen Drehimpulswall erzeugt
wird. Damit wird ersichtlich, dass dieser Konzentrationseffekt bei
Protonen in sehr schweren Kernen durch den ähnlich verlaufenden
Coulombwall noch etwas verstärkt wird. Die Ringstruktur, welche
zu kleinen Relativabständen der Nukleonen führt (Fig. 7), ist aber
furche grossen Paarungsenergien verantwortlich. Diese werden jetzt
durch den Coulombwall noch vergrössert: Man hat also eine
Erklärung für die merkwürdige Tatsache, dass die Paarungsenergie in
schweren Kernen für Protonen etwas grösser ist als für Neutronen9).

*) ist aus unserer graphischen Darstellung nach der von den genannten
Autoren3) verwendeten Definition bestimmt.

**) Der scheinbare Widerspruch, welcher bisher zwischen verschiedenen
Angaben über die Radien bestand, klärt sich auf: Es handelt sich immer um geeignete
Mittelwerte (Definitionen), die erst gebildet werden können, wenn die entsprechenden

Verteilungen (Ladungsdichte, Potentialverlauf) berechnet sind.
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III. Diskussion einiger experimenteller Besultate.

Verschiedene Messungen über die Winkelverteilung von
^-Mesonen10-11) Hessen zunächst vermuten, dass die Ladungsverteilung
im Kerne eine Konzentration im Zentrum aufweisen könnte. Nach
den jetzigen Betrachtungen scheint dies für die schweren Kerne
ausgeschlossen zu sein, in Übereinstimmung mit den Resultaten
der Elektronenstreuversuche und den Messungen über das /^-Mesic-
Atom12'13). Der Ausweg muss wohl in einer Geschwindigkeitsabhängigkeit

der Wechselwirkung zwischen Nukleon und ^-Meson
gesucht werden.

Ein experimentelles Resultat, das sich in diesem Rahmen gut
interpretieren lässt, ist der verhältnismässig grosse Wert der magnetischen

Anomalie. Diese gibt Aufschluss über die Verteilung des

magnetischen Momentes (oder besser Stromverteilung) im Innern
des Kernes. Die empirischen Resultate haben nämlich gezeigt, dass

man eine gute Übereinstimmung erhält, wenn man für die
Kernwellenfunktion einen Ein-Partikelzustand verwendet, während ein
homogen über den Kern verteiltes magnetisches Moment viel zu
kleine Werte liefert5)6). Man muss in unserem Modell allerdings
annehmen, dass durch die zweite Näherung verschiedene Zustände
gemischt werden. Doch hat sich gezeigt, dass nur solche aus
derselben Schale kombiniert werden können. Diese Zustände ergeben
aber noch keine homogene Verteilung, sondern immer noch eine

ausgeprägt ringförmige Verteilung (vgl. Fig. 7).

Zusammenfassung.

Im ganzen kann man wohl sagen, dass die Annahme eines mittleren

Kernpotentials (durch die individuelle Wechselwirkung als

Störungsterm ergänzt) für die schweren Kerne oberhalb A 40
recht gute Resultate liefert:

1. Die berechneten Tiefen der Potentialmulden stimmen mit den
experimentellen Werten überein; sie bleiben über das ganze
periodische System praktisch konstant. Dies ist im engen Zusammenhang

mit dem konstanten Wert der mittleren Dichte, der nach dem
_41/3- Gesetz für die Kernradien zu erwarten ist.

2. Es ergeben sich die richtigen Werte für die Coulomb-Kräfte,
wenn man die Ladungsunabhängigkeit der Kernkräfte annimmt.

3. Die Schalenstruktur der Einpartikelterme ergibt sich in natürlicher

Weise durch Verwendung der Werte der Spinbahnaufspaltung,
die sich aus den Termstrukturen einiger leichter Kerne ergeben.



264 K. Bleuler und Ch. Terreaux. H. P. A.

4. Man erhält die richtige, experimentell bekannte Ladungsverteilung;

die verschiedenen Werte für die Kernradien lassen sich
leicht interpretieren.

Herrn Professor Dr. W. Heitler möchten wir für sein grosses
Entgegenkommen während diesen Untersuchungen recht herzlich danken.

Einer von uns (Ch. T.) möchte auch an dieser Stelle dem
Forschungsrat des schweizerischen Nationalfonds seinen besten Dank
für die weitere Gewährung eines Forschungsstipendiums
aussprechen. Herrn cand. phil. A. Schröder sind wir für die
Ausführung einiger Rechnungen sehr dankbar.
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