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Traitement semi-classique des forces générales dans la
représentation de Feynman?)

par Ph. Choquard?) E. P. F., Zurich, et Université, Berne.
(19. T. 1955.)

Résumé. Dans son approche spatio-temporelle 4 la Mécanique quantique?),
M. FEYNMAN fait une restriction?) quant & la validité de ses équations en impo-
sant aux potentiels la condition de ne pas contenir des puissances de x supérieures
a deux. Que se passe-t-il lorsque les potentiels sont quelconques, en particulier
fortement anharmoniques ?

C’est I'objet d’une partie de ce travail que d’y répondre. On utilise & cet effet
la solution semi-classique des noyaux de FEYNMAN que M, PAULI a donnée®).
On montre (II.1) que dans le cas de forces anharmoniques, tout un spectre de
trajectoires conduisent d’une position initiale & une position finale données, dans
un temps donné. On développe (I1.2) une méthode de calcul des actions correspon-
dant & ces trajectoires, on étudie I’allure de ces actions en fonction de la position
initiale et, par le truchement des noyaux associés aux actions, on évalue (III)
l'effet quantique de ces forces de réflexion. Cet effet est mesuré par la contribu-
tion de ces noyaux & la fonction d’onde finale. On montre alors que, pour de petits
intervalles de temps (petit au sens précisé par I'équation 12), seul le noyau associé
a la trajectoire directe importe, que ce noyau a déja les mémes propriétés que le
noyau exact et que les forces de réflexion ont un effet négligeable. Ces résultats
sont résumés dans un théoréme & la fin du chapitre IIL.

On généralise sous IV la construction des noyaux de FEYNMAN au cas de sys-
témes quelconques, conservatifs ou non, au cas de systémes possédant des parti-
cules douées de spin et au cas de systémes donnés en coordonnées curvilignes.
Jusqu’ici d’une maniére non relativiste. Enfin on développe deux méthodes de
détermination relativiste de ces noyaux, la premiére ou 'on utilise la représenta-
tion en fonction du temps propre due a M. Fock; la seconde plus directe, évitant
de passer par une intégration sur une variable auxiliaire. Ces constructions semi-
classiques constituent de bonnes approximations aux solutions exactes, dans
certains domaines de leurs arguments; ces domaines sont définis par la regle (64).

Ces résultats permettent de conclure que les noyaux donnés par les équations
(1%, 28, 33, 55, 63, 55.1, 63.I) sont les instruments d’une méthode générale de traite-

ment des problémes non stationnaires, méthode applicable dans le cadre défini
par la régle (64) et ses cas particuliers.

1) These de doctorat présentée a4 I’Ecole Polytechnique Fédérale, Zurich.

%) Actuellement & « Battelle Memorial Institute» & Genéve.

3) Space-Time Approach to Non-Relativistic Quantum Mechanics. R. P. FEYN-
MAN, Rev. of Mod. Phys. 20, 367 (1948).

4) Note 15, p. 376.

5) Ausgewahlte Kapitel aus der Feldquantisierung. Prof. Dr. W. PauvLr. Cours
donné a 'E.P.F. de Zurich en 1950/51.
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I. Introduection.

Dans la représentation de FEYNMAN, ce ne sont pas les fonctions
d’onde, mais les noyaux K(1,0) définis par cet auteur qui sont déter-
minants. Ces noyaux sont reliés a la représentation habituelle par la
définition | '

Kﬂ@=§w®ﬁ@

ou les y, seralent les solutions stationnaires d’un probléme donneé.
Posons 1 =gq,t, 0 =¢,t,; K est la solution de 1’équation de
SCHROEDINGER

h o0
(5 +H)E=0
qui, pour t = t,, se réduit a la fonction § de Dirac:

K @3 gm to’ to) = (SN@'_ q)o) ’

ou N est le nombre de dimensions. Ce noyau fournit la solution
w(q, t) correspondant a toute fonction initiale donnée (g, t,):

v, = [0 K@ 070t (0t

S1 H ne contient pas le temps explicitement, ce que nous suppose-
rons jusqu’a nouvel avis, ce noyau ne dépend que de la différence
des temps t — ¢, = 7.

M. FEyNMAN a donné de ce noyau une solution semi-classique
approchée. Par un procédé analogue & la méthode W. K. B., M.
Pauri?!) en a fondé une construction semi-classique reposant sur
I'essa1

Kc:Rexp{%S}.

En introduisant cet essai dans ’équation de SCHROEDINGER, en or-
donnant les termes suivant les puissances croissantes de & et en
annulant les coefficients de 2% et 7!, on trouve pour S I'équation
d"HamILTON-JACOBI:

t=¥+7
+H(%§,§)=o S:det'

to

o8
ai

et, avec
R2—C-D, C=2mih) ¥

1) Loc. cit. (3), p. 139 et suiv.
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étant une constante de normalisation, une équation de continuité

pour la densité D:

0D 0 -

On en dérive la solution, appelée formule de van HovE:
- (1) |28 |
Dy gy ) = (1) doh lﬂqazﬂqkh
La solution ainsi construite
w5 = 1 \N2 R
K.@,30%) = (ga7) DPexp{; 8@ 0o} ()

satisfait I’équation de SCHROEDINGER jusqu’aux termes en %2 non-
compris, soit:

(e +H) Ko

h? R
BTE e 2)
En général K, est différent du noyau exact K. On se demande si,
pour de petits intervalles de temps 7, soit pour 7 < 7y, 7, étant une
limite supérieure, mesure de I'inhomogénéité des forces et que 'on
déterminera quantitativement plus loin (voir chapitre ILI), cette
fonction K, a les mémes propriétés que la fonction exacte K, c’est-

a-dire si
K. (9,49, 0) = 06" (g—

—

q0)

et
K-K,

T—0 T

=0.

Iim

Ces deux propriétés peuvent étre formulées simultanément par
I’équation

[d g K q QO’T)TP(QW 0) = 'l’(zjﬂo)“{‘i%HW((_j)+T'g(§a1/"’r) (3)

~ q @: v, 7) = 0.
ft—0

Si ce théoréme est vrai, on peut construire la fonction K exacte par
le procédé connu:

K@*,a’o, —hme—>0 fHK qv-l—l’qv’ )dQI d v dqn
ou T = const. est divisé en n mtervalles £1T = M€,
Dans les cas ou AR = 0, K, est la solution exacte et I'on vérifie

aisément I’équation (3). Donnons quelques exemples:
Particule libre (N dim.)

By == (m)m exp {%M{—w“}
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Particule dans un champ électrostatique homogéne (3 dim.)?)

(. m  \3e i (m (G- q,)? (E,(4+74) E)}
K“_Kﬂ(zmﬁ'r_) eXp{f( 5, T FE 3 Tz4m

Particule dans un champ magnétostatique homogeéne (2 dim.) H-=
(0,0, H), ® = eH/2 mec.

KC:K:gﬁM—BXp{%(mw (?—_@o)zcoswr+ e (1:_"1’[(—1*’60]))

2nihsinoT 2sinwt 2mec

S,

Oscillateur harmonique (1 dim.)

A ( mw )1/2 exp {7, (m - (¢®>+qf) coswT—2qq, )}

2mihsinowt 2sinwt

Dans ces exemples, le potentiel est «faible», ¢’est-a-dire que dans le
sens de la restriction de M. Frey~NmaN, il ne contient pas de puis-
sance de x supérieure a deux.

Que se passe-t-il lorsque le potentiel est quelconque, en particu-
lier lorsqu’il est fortement anharmonique ?2)

(C’est sous II et III que 'on répond & cette question. Sous II.1,
on analyse les forces de réflexion dérivant de potentiels anharmo-
niques ; sous I1.2 on développe une méthode de calcul des actions S;
sous IIT on construit les noyaux K, et analyse leur comportement,
en fonction de la variable d’intégration g,, on évalue les termes en
h? de I’équation (2), on détermine la limite supérieure 7; de 7 et 'on
calcule les contributions des noyaux K, a I'intégrale (3). On est alors
conduit & formuler le théoréme qui clét la premiére partie de ce
travail.

Ce théoréeme démontré, on développe sous IV une série de géné-
ralisations. Sous IV.1, on étend la construction de K, au cas de
forces dérivant de potentiels scalaires et vectoriels, ceci pour des
systémes conservatifs ou non; cela revient a généraliser le calcul
des actions. Ensuite, en prévision d’une construction semi-classique
relativiste des noyaux, on calcule les actions relativistes. Sous IV.2,
on traite le cas de coordonnées curvilignes, le cas non-relativiste de
particules douées de spin s, enfin le cas relativiste de particules
douées de spin 15 et 0. On établit pour finir une régle générale,
exprimée sous forme d’une inégalité, que @ = (72 — z2/c)?¥ (v 4 la
limite non-relativiste) doit satisfaire pour que ’emploi des noyaux

1) L. pE Broorie: Introduction & I'étude de la Mécanique ondulatoire, Ch.XIII,
p- 191, Paris, Hermann 1930.
2) C’est cette question que nous a posée M. PAULI et qui a été l'origine de ce
travail.
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semi-classiques construits par les différentes formules soit justifié,
c¢’est-a-dire pour que ces noyaux constituent de bonnes approxima-
tlons aux noyaux exacts.

Le théoréme et la régle finale nous permettent de formuler la con-
clusion de ce travail.

II. Systémes anharmoniques.
11.1. Forces de réflexion.

Répondons qualitativement & la question posée dans I'introduc-
tion. Le mouvement d’un systéme, prenons pour simplifier une par-
ticule de masse m dans un potentiel quelconque V(Z), mouvement
effectué en partant de g, & ¢ = 0 pour arriver en ¢ & ¢ = 7, n’est en
général pas unique. Les trajectoires sont les extrémales correspon-
dant & un probléme de variation en grand avec condition isopéri-
métrique (7 = const.) relatif & I'action S. L’existence d'un ensemble
de trajectoires est évidemment liée & la forme du potentiel donné,
et pour illustrer ce phénoméne nous donnerons plus bas deux
exemples. L'une de ces extrémales a une longueur minimum: ¢’est
la trajectoire directe qui conduit de ¢, & ¢; ¢’est le mouvement le
plus «économique», ¢’est-a-dire celul qui se réalise avec le minimum
d’énergie. Les autres extrémales fournissent des trajectoires «in-
directes»; par «indirect» nous entendons que la particule subit des
- réflexions avant d’aboutir en q et I’énergie de la particule croit avec
le nombre de réflexions qu’elle subit. Nous appellerons «forces de
réflexion» les forces qui permettent de telles trajectoires. Pour
définir les points de réflexion d’une trajectoire, nous remarquerons
que ce sont ceux ou s’effectue un certain rebroussement du mouve-
ment de la particule; décomposons I'impulsion p en deux compo-

santes P, et P, appartenant au plan P, K(K=—gradV), p ;) étant
paralléle et p o perpendiculaire & K. Un point de réflexion C sera,
caractérisé par le fait que () =0, c’est-a-dire 7 (¢) [ K(Z). En
ces points I’énergie cinétique n’est pas nécessairement nulle. On
peut établir la condition d’orthogonalité (5(2), K(Z)) = 0 en partant
d’un principe d’extremum pour ’énergie cinétique T(Z):

— g g
—

T=2_ §T=0=(F6p) =F.5)ot=5t(p (5. K() =0.

La solution K = 0 est évidemment & exclure; de méme le cas des

forces centrifuges, ot (B(), K(¢)) = 0. La solution 7 = 0 est valable
pour les problémes & une dimension ou bien & N dimensions dans
le cas des points de rebroussement. Enfin, si ’on a des potentiels

vectoriels, le principe s’applique a4 T =1} mi?: 6T =0 — (EE, K)=0.
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Exemples.

a) La «boule de billard». C’est le modeéle bidimensionnel d’une
particule se mouvant dans un potentiel nul a 'intérieur d’un rec-
tangle et infini & partir des bords. Suivant la grandeur et la direction
de 'ilmpulsion 1nitiale donnée a la particule, on se rend compte qu’ll
v a une double infinité de maniéres d’arriver en ¢ au temps ¢t = ©
grice aux réflexions possibles aux parois. Ces trajectoires s’ob-
tiennent en reliant g, successivement & toutes les images-miroir de
q. L’énergie cinétique admet un spectre de valeurs dépendant de
deux parametres m et n, ces nombres entiers quelconques indiquant
le nombre de réflexions aux parois du potentiel.

b) Mouvement a une dimension d’une particule dans un potentiel
de la forme

V(z) =Ty (x/L)** ).

Nous supposerons pour simplifier k entier; I'exposant 2 k exprime
une condition préalable de périodicité; en effet, si 'exposant était
impair, on aurait la trajectoire directe et éventuellement une et une
seule trajectoire indirecte, ce qui nous intéresse peu. Exprimons la
période T' du mouvement en fonction de I’énergie:

' dx da 0
T — fﬁu' - 9€V2—/nTCE‘—“V@ -2 9€da;1/m/2 (B —V(x))

et en introduisant V(x), il vient

T = (_2%)”2. L-C, (1 + %) (%g)lﬁ (1-1/k)

_ an 4 T(3/2)- Tk
,Ck_nguVl wrk = 4. LOBLUE

avec

pour k > 0. Cette formule met en évidence la relation entre la pé-
riode d’un oscillateur anharmonique et son énergie. Analysons la
fonction T' = T (K, k) ou k est parameétre.

k = 1. C’est Poscillateur harmonique, T est indépendant de 1’éner-
gie I, comme 1l se doit. Cela signifie qu’avec nos variables (q, q,, )
une et une seule trajectoire est possible.

I > 1. La période diminue quand 1’énergie augmente; les trajec-
toires indirectes sont possibles; il y en a une infinité! On peut en
effet décomposer le temps 7 donné comme suit:

_ 0 )
=1, +nT,

1) Nous traiterons plus loin en détail (I1.2) ce cas «standard».
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ce qui correspond & une trajectoire n fois réfléchie a laquelle est as-
soclée une énergie K, donnée implicitement par I’équation

¢dx[ (B, —V(z))

k< 0. Qa01t alors V(x) = —| Vy | (2/L)~2¥. La position q étant
fixée d’avance et pour autant qu’elle ne se situe pas a la singularité -
(ce que nous exclurons dorénavant), 11 y a un nombre fini de trajec-
toires car W = — | /| est limité par W, <| V(q)|. Cet exemple
ne doit pas nous inciter a croire que la périodicité soit une condition
nécessaire pour 'existence des réflexions. En effet, périodicité est
liée a séparabilité du systéme envisagé. Dans le cas de systémes non
séparables, les réflexions demeurent alors que toute périodicité dis-
parait. On peut se poser la question du dénombrement des trajec-
toires; il y en a une infinité: quel est I'ordre de cet infini? Dans
un espace & N dimensions, cet ordre est égal & N, s’1l existe un réfé-
rentiel particulier ot le systéme est séparable, c’est-a-dire si

V@) = f V(2.

ce que nous ne pouvons supposer. Dans 'exemple (a) si I'on rem-
placelerectangle par un polygone & n cotés, 'ordre dépendra de n. On
en conclut que la forme du potentiel joue un role prépondérant et
qu’ainsi on ne peut répondre & la question dans toute sa généralité.

L’essentiel est toutefols qu’on ait reconnu l’existence d'un en-
semble de trajectoires. Comme & chacune d’elles est associée une
action S, donc d’aprés la définition (1) un noyau K, aussi, la ques-
tion posée dans l'introduction devient: comment se manifeste ce
phénomeéne de réflexion par I'intermédiaire des noyaux K,, autre-
ment dit: quelle est la contribution de cet ensemble de K, au mem-
bre de droite de I'équation (3)?

][2 ~1/2

r—/dm[ (B, —V(a))|

11.2. Intégrales d’action.

La prochaine étape consiste & développer une méthode de calcul
des intégrales d’action. Nous appellerons S, 'action associée 4 une
trajectoire possédant n points de réflexions; S, sera donc 'action
correspondant & la trajectoire directe de ¢, & ¢. Il convient de
traiter le calcul des actions en deux phases, soit de déterminer
d’abord S, et de déterminer ensuite les S,,.

L’action S,. Elle est identique & ’action habituelle S sans indice.
S == @’, t, 4o, o) satisfait les équations d"HamrinroN-JAcCOBI:

SEHH(EEG) =0 =S (G o) =0, @
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Considérons ¢ et #, fixés; S est une fonction régulitre de ¢, g,

=q — ¢, pour autant que ces positions ne se situent pas aux
singularités des champs de forces donnés (s’il y en al), ce que nous
avons déja exclu. Cette condition de régularité est nécessaire pour
déterminer univoquement la solution de (4). Il faut en plus con-
naitre la condition initiale S(q, g, 1y, t,) qu’il est commode de for-
muler ainsi:

A la limite t = t; la fonction (f — ¢,)-S a un zéro de forme ponc-
tuelle pour ¢ = q,; plus exactement:

3 o . L
llmt_)tg (t_tO)'S(q:’q03tJt0) :E_,m_(q__qo)Z.

Pour étabhr cette condition initiale, montrons d’abord que:
limi_) e (t—10) 0o (4Gt to) =q— o

ol v, (..) est la vitesse initiale de la particule soumise & une force
K(qg t,) quelconque. Posons t,= 0, t — t{,= 7 et partons de I’équa-
tion du mouvement | _

mé(t) = K (& 1)

dont on peut écrire la solution sous la forme

t’
z§0+f (9,907, ) dt mv =K
0

—>

pour des valeurs de ¢’ <<z < T période du mouvement 5’1l y en a
une. Pour t'= 7 on a & = ¢, donc
i—Go= [ (@ om0 di.
0

Développons v (t) par rapport & la variable ¢; en utilisant 1’équation
du mouvement, 1l vient

—_ = — —_ = = E’—*,O t2 - OK
v (g, 90,7, 1) =0,(q, gy, 7) +1 (iz )+2m [(UO’ )KT—OT]—F‘

que 'on 1ntroduit sous la derniére intégrale' on a alors:
- - — 2 0K
q—qozvo-t—k; (q0,0)+ [(UO,V)K+ ]+--

Passons a la limite 7 — 0, le 2° et 3° terme étant de la forme 0(z2),
1l reste
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Ce résultat intermédiaire nous permet de poser
ol _ 4 v 7
@O(Q’Qw T) — T T v (q’QO:T)
ou v’ est une fonction réguliére de v. Caleulons maintenant

.
" 1
det avec T =--mv?,

D

ot nous introduisons le développement de v (%) et de v4(7), il vient:

_m (4= d0\?, ,, (4= §) + 5524 0( )
( - )+m( T ,7-7 | 2 T

et

ensulte
T 1
/ dtV(E(t),t) =T / Vigo+(q@—qo)+70 %+, 7u) du

LY o

0 0

avec 1/t = u et la solution E(t) Avec la définition de

S medt, L=T-7,

formons 7-S: 4
1

8 = _’21 (= g2+ m(q—qpv')T—12 /V(u) du

(1]

et passons a la limite 7 — 0, on a bien la condition énoncée:

—_——

lim _ 78(¢,q07) =" (@ d0)*

T —

Ce résultat nous permet de poser:

T—3G,)2 E =%
S =5 54 5(d, 6o, )

2 T

ot S'(q, gy t, t,) est une fonction réguliére de T =t — t,. Cette condi-
tion est générale, elle est valable dans un espace de dimension quel-
conque et pour des systémes conservatifs ou non. Si le systéme est
conservatif, S ne dépend que de la différence des temps 7, et si les
forces ne dépendent pas des vitesses, 0S/07 (+ t) = 08/07 (— 1),
c’est-a-dire S est une fonction impaire de 7. Revenons & nos forces
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de réflexion. Soit V(q) un potentiel quelconque contenant des puis-
sances de g supérieures 4 deux. L’action S, satisfait les équations

08y | 1 {88\, i 08 | 1 08, i
or s (ag) TV @ =0 Go+ g (= 5 V@) =05 @)
les remarques précédentes sont valables et le fait que S, est une
fonction réguliére de = nous incite a chercher la solution de (4') sous
la forme de la série

So :Zn Oy n-1(q,qo) 71 | (5)
U

ol les g,,_; ne dépendent que de ¢, g, et non de 7. Introduisons cet
essal dans les équations (4'), il vient
1

7 () _ i
z;@n_Jg%ndrmwt+ém(zn‘E%lﬂnl)+l()=0

et
1 7 Oo 2
Z’n (2’)1 )0272 1T2ﬂ 2+ 2m ( n 02;() = TZn 1) (QO)
Ces équations devant étre identiquement satisfaites en 7, on annule

les coefficients de 72"~1, ce qui conduit & écrire deux systeémes
d’équations différentielles dont le premier est:

(g%adfzzma] (6.0)
h +%fﬁaénﬁ — V(g (6.1)
R ) 02
b Cidlle a5 03
T nlt e ——wle o) - ler) 69
ot 2 (5 o=~ 2 B 2 52 0

Quant au second il n’est pas nécessaire de ’écrire, car on remplace
simplement 0/0q par—0/0q, et V(q) par V(q,) dans (6). La premiére
équation mise & part, on a un systéme d’équations aux dérivées par-
tielles linéaires et du premier ordre. L’'intérét de l'essai (5) réside
dans le fait qu’il «linéarise» I’équation d’HamiLtron-Jacosi. On peut
résoudre le systéme par récurrence.
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Solutron. —

(53 —2men (55  —2men 60)

d’ou
o3=0_1(0—4q0).
Posons & = q — qo; ¢ = |q — q, | et o_, = (m/2) F?

(a—gf) 2F2( ) = & oy =m2 >

’équation (6.0) devient

{22 1) -0

la solution triviale ' = 0 étant exclue, on a

(2

dont une intégrale compléte, dépendant de N constantes, est:

F= Z;nk:)ck = (n,x)+C

OF \2 Mmoo = ne
(3;;'::) ='n2=1 0‘_]——-7((’)’6,17)-:"0) -
La condition initiale exige 7_; (¥ = 0) = 0, donc €' = 0; cette méme
condition exige que 7_y (£ * 0) = 0 pour tout z. Or, la solution ci-
dessus est nulle sur toute la surface £ [ 7, on obtiendra la solution
cherchée, appelée solution des caractéristiques, qui en £ = 0 a un

zéro ponctuel, en éliminant les n; entre

o =»~Tg~(ﬁ,§)2 et m2=1

par la méthode des multiplicateurs de LAGRANGE.

0P 00_, om? o B B
Tnkﬁo ony, —l dny, —m(n’w)wk 2/177/];40

Dm*(n,x)? 2422"% 44 - A:i—g—%m(ﬁ,i)

Ly,

7(n,ar:)[mkIF-‘::sfn,k]:0 - n,czjo
m o X X - m —
_ x| _ 2
3 (Samn) g

01 = % (@—qo)* (8.0)
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Avec 1/m (0o_1/0q) = z, le systéme d’équations (6) devient:

1 +@ 55 =—VE+o) (7.1)
O R ) 72
. &
R L B
[
1

—

n—1/ do, oo 5
2n—1+( ,a" )}azn = zlm;’,,( R 1). 7.n)
Chaque 0,,_, se compose en principe de la solution générale de son
équation homogéne et d'une solution particuliére de son équation
inhomogeéne. La premic¢re étant singuliére en = 0 (et ceci pour tout
n > 0), la condition de régularité I’exclut et I’on ne doit ainsi tenir
compte que de la solution réguliére en £ = 0 de I’équation inhomo-

géne. Ceci est mécaniquement évident, car si V(z) = 0 (particule
libre),

m (§—qq)?% o_
Soz_z__ QTQ’O — Tl,
Oan_y = 0 pour tout n =1 et si V(x) * 0, les 0,,_; du systéme (7)
répondent de la perturbation due au potentiel. En résumé, 'unicité
de la solution S, donc de chaque coefficient o,,_;, est bien garantie
par la condition initiale et la condition de régularité énoncées plus
haut. Résolvons (7.n):

{ ﬂ—1+( ) aa )}O'Zn—-l(giﬂ’go_’_z)=f2n—1(§0’§0+5);

en remplacant £ par z -u, £ 0/0 = u d/du pour =1 et I’équation
devient:

d
{2ﬂ~1+% }Uzn—1(90,90+$u)_fzn#1(90’§l0+$“)

or d 1 d op_1

{2%——1—{—% du}':uzn—z duu -
donc 1 P

u2n—2 W?’LQWVI Og2n—1 (u) = fzn—-l ('LL)
1
w0y () | = [duutn o (0
‘ 0

enfin

—

Oan-1 (Q!ZI)O) = /d'“' "2 fona @0’ 60"5‘53)“) .

0
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Cette équation générale appliquée au systéme (7), on a, en posant
0y/ox =y :

1
6 = —/du V(go+7-u) (8.1)
1
oy, = -~-1- /du u?(a (u))? (8.2)
"3
1 1
= [ * (61, 55) (8.3)
o; - / duus[(c,)2+2(s;,07)] (8.4)
1 ]o o1
0'2“‘1 == _—2"% / d% 'u;zn—2 |i2" ((72,]]__1 ’ G;(n ») __1) . (8.]:1)
& 1

On peut ainsi calculer

So(q:90 7 Zno'znwl@br qo) 72" (5)
(§)

dans toute approximation de 7 désirée, et ceci pour tout espace et
tout potentiel. Nous généraliserons sous IV cette méthode au cas
de potentiels vectoriels et au cas de systemes nonconservatifs et
relativistes. Il est & peine besoin de souligner que les équations (8)
offrent un moyen rapide de calculer 'action S(q, ¢, 7)-

Bemarque. — On peut dégager le principe sur lequel repose la mé-
thode développée: au lieu d’intégrer

S=/TLdt
0

le long de la trajectoire effective reliant g,4a ¢, on a fait un certain
développement en série et chaque terme s’obtient en intégrant le

long de la droite ¢,q.

Convergence. — Supposons ¢, fixe, origine d’un systéme de coor-
données et £ =q— g, variable N-dimensionnelle. On peut poser
la question suivante: dans quel domaine de I’espace & N + 1 dimen-
sions (la N + 1¢ étant la variable 7) la série S, converge-t-elle?
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Il convient de se libérer de la dimension de S, (m-1%¢{-1) en ex-
trayant o, -7 de la série amputée de son premier terme:

o0 2
— 2p—1__ M T .
80—20;(7211—1": ke TRl @

0

— S & ~ )
Cbzztpn—l(qO:fE, T) (pn_1:2_n}__,rzn 2
1

les termes ¢,_; de la série @ sont alors sans dimension. On a le droit
de mettre o,-7 en évidence, car o,(qy, *) est une fonction réguliére
de z. S, converge avec @ et @ converge si

B, o (‘an)m(n_l’) =0 @0’ Ty 7) <1.

L’équation p (q,, Z, 7) = 1 représente une surface dans notre espace
a N + 1 dimensions et la série S, converge a I'intérieur du domaine
limité d’une part par le plan 7 = 0 (& cause du premier terme mx?/
2 1) et d’autre part par cette surface. On ne peut donner plus de
détails sans connaitre le comportement des 6,,_;, ¢’est-a-dire sans
spécifier le potentiel V(z). Etant principalement intéressé aux po-
tentiels anharmoniques, nous supposerons par exemple

Sy

V(x) = Vo (z) =1/2-m-w? L?-py (/L)

polynome de degré 2k en z/L, la parité assurant ’existence des
réflexions. Soit y,,(#) une forme de degré m en u, on a d’aprés les
équations (8) et la définition de ¢,_:

. Ppq = (@7)2D Yom-1)@-1 (E/L)
e

9(60 T, T) = 0T Yy @0’ z/L) .

Si k =1, le domaine consiste en une tranche (limitée par v = 0 et
wT = 7 s0it T = z/w) d’épaisseur indépendante de Z, ce qui est con-
firmé par 'exemple page 92 de l'oscillateur harmonique dont
I’action est connue sous forme finie. En revanche, s1 k£ > 1 la sur-
face-limite est o (z/L,7) =1 qui pour | z | > L est asymptotique-
ment donnée par I’hyperboloide

wt-(|z|/L)*-* = Const.

On clot ici I’analyse de ’action S, et entreprend celle des S,,.

Les actions S,. Avant de procéder au calcul des actions S,, dans
le cas général (N dimensions, potentiel quelconque), il est indiqué
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de traiter le cas standard de 'oscillateur anharmonique & une di-
mension. Soit

Viz) =V, (z/L)?*
le potentiel, et soit 4, I’abscisse d’un point de réflexion
V() =E dou A= (H/V,)Y2k L

ou K est I’énergie de la particule. Soit ensuite F, ’action maupertui-
slenne prise sur une période

e épdm-VZmE#ﬂ@—- 2)/B dx = Vsz A0,

3. TGERTA2 k)
Ok‘fﬁ””“”d“”‘l TB2T12- k)

ou

La période T est donnée par

_ ()F . s _’j 1 E—1)/2k
T—W—I/QWLVO ]2k0k(? )E 1)

2k

d’olt inversement on exprime l’énergie F en fonction de T'. Formons
I’action

y=F—HKET
1l vient
1 \k+1/(k=1)
L= (“@*)
avec
k-1 ik, g kH1)2RGE=D
=gy /2m- LYy Oy S

Jusqu’ici T est une variable indépendante; si maintenant on pose

T=z/v ou »=1/2,1,8/2,2,---
Iexpression
v\ (&+1)/(k—1)
xv =V %k (ﬁ)

T

représente ’action d’une particule partie de l'origine 0 & ¢ = 0 et
revenue en 0 & t = 7 aprés n = 2-y réflexions (n = 1,2,..). On voit
ainsl comment s’exprime mathématiquement le phénoméne de ré-
flexion: la fonction initiale S(0, 0, 7) de I'action S qui admet, en
I’absence des réflexions, une seule valeur, en admet maintenant tout
un spectre
smmn_>sm0ﬂ_vn()

(k+DIE—1)
= 2,(7); n=2.v.

A partir de ces fonctions initiales, on va construire le spectre d’ac-
tions S,(q, qp. 7). Etablissons d’abord l'action S,(ge, 0, 7). Pour
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chaque n entier donné, on aura deux actions correspondant aux
deux réalisations possibles du mouvement, suivant que celui-ci
commence dans le sens + ou — de 'axe z, so1t:

l 1 (1) 0 n (0,905 7y,

S (0, 0, 7) =
l 1w (Ly) + So.m (90- 0. 753)

ot l'on a

m- __ _ + —
vI, —1,,=7 vIF+7,,=1.

Enfin pour établir S,(q, gy, T) on remarque qu’indépendamment du
sens du mouvement, 1l faut encore distinguer deux cas, suivant que
n est pair ou impair. On trouve:

n pair, v entier

l w(T))— SU,n (90> & Tov) (9.1)
S (@5 o> T) = .
l yv ) + SU,n(Q’ qOJ T()v) (92)
ou
vI, —1,, =1 et »Tf +7,7 =r;

n 1mpair, ¥ demi-entier

S ( ) 1 (T ) = S0, (90 05 75,) — S0, (0,4 75,) (9:3)
@)= .
% {T5) + Sg,0 (0 44, 755) + So,n(q’o Tg::) (9.4)
ou
v, —1,—75, =1 et »T+7l) +137 ==.

Toutes les S, ,(..) des formules (9) sont données avec leurs argu-
ments respectifs par des séries du type S, (équation 5 et 8); ces
séries convergent pour 7,; < I';/». On remarque en outre que les
fonctions initiales S,(0,0, 7) contiennent 7 a la puissance — (k + 1)/
(k—1) < —1, qu’ll efit été ainsi illusoire d’en chercher le dévelop-
pement par rapport & des puissances entiéres de 7. On en conclut
que dans le cas ou les points de réflexion sont du type 4, ¢’est-a-dire
des points ol ’energie cinétique est nulle

V(i) =B, A~EWE  j~ (15

le calcul de S(4, 0, ) ne peut se faire avec la série (5). Une telle
série divergerait, car 4 se trouve sur la surface limitant le domaine
de convergence. Nous avons conservé jusqu’ici explicitement les
deux variables T et 7,;, liées par une seule équation & 7. Etant
donné que seules 7, n, ¢, g, sont les variables indépendantes, il faut
exprimer T, et 7,, en fonction de ces derniéres. Une seconde relation
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nous est fournie par le théoréme d’énergie: les réflexions étant élas-
tiques, les trajectoires sont situées sur des niveaux d’énergie qui
s’élevent avec le nombre des réflexions et forment un spectre dis-
continu pour g, q,, 7 fixés. Prenons alors un des quatre cas de S,

1 \NE+DIE-1)
n=2v S,=v.y (—) ¥ So, n (q! 4> T()J;) (9.2)

73
avec
0 2u-1. A o
On Z G%,’?l q’QO)T+ LT+, =7,
on a
28, o 1 \G+DGE 1) 38,
e ==y () “ont

done deux équations pour calculer T), et 7y,:

k+1 1 \2EGE-T)  m (g—qy)® e
?_T.,,.yk(__) =S Y @u—1) oy, T

T +
& Ty p? .
et

4 b
VTv +7,, =7.

Si la question est résolue en principe, pratiquement le calcul est
malalsé et ne pourra se faire que par approximations: de la seconde,
on tire T que 'on introduit dans la premiére, et 'on évalue 13,
fonction de 7 en considérant que 73, << v. N'ayant toutefois pas
besoin des solutions explicites, nous n’irons pas plus loin dans cette
vole. Démontrons pour finir une propriété des S,, propriété qui
jouera un certain role par la suite: Les fonctions S, ne s’annulent pas
dans tout I'espace des q, q,- En effet, q et g, étant toujours plus

petits que 4, point de réflexion,

S0 (@t To) <L et 8, ,(¢0.7,)<2

ces inégalités introduites dans les équations (9), on voit immédiate-
ment que dans tous les cas S,(q, gy, 7) > 0, pour n > 0.

L’analyse de notre exemple standard, 'oscillateur anharmonique,
étant terminée, passons au cas général: soit un potentiel quelconque
et N dimensions. Nous avions déja remarqué sous 11.1, page 93 que,

dans un espace & N dimensions, les points de réflexion Z; ne sont en
général pas des points du type 4, ¢’est-a-dire des points ot I’énergie
cinétique s’annule. Ce fait est important, car I'inégalité 1EZ| < 4 est
une condition suffisante pour pouvoir calculer S (Ei, Ek, 7)) & 'aide
d’une série du type (5). Soient donc ¢; les points de réflexion,

®
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1=1,2,..n et posons pour snnphfler Pécriture q, = CO, = Cnﬂ.
L’action étant additive, on peut écrire

Sn = SU,]_ +Sl,2+ e Snfl,n—E_Sn,n-i-l

n

n
:ESi,i—i—l T= 2ili+r1e
v 0

Par cette décomposition, on introduit explicitement les ¢, définis
sous II.1 et n + 2 nouvelles variables 7; ;.;; on pourra plus bas
éliminer ces derniéres en utilisant comme précédemment le théoréme
d’énergie qui fournit les n + 1 relations suivantes

— B = 08,4 _ 08,4 . — 08, _1.n — 08,041 .
2

07y, 0Ty, 9 0Ty 1.1 Ty, pi1

n

avec T = J'; T; ;11 on an + 2relations pour les n + 2 variables auxi-
0

liaires 7, ;4. Il serait en outre utile de connaitre la dépendance des
¢; en fonetion de ¢, ¢y, T et d'un paramétre indiquant le nombre de
réflexions. Bien qu’on ait la définition

—

(B (), ke (

1)) =0, avec p B e 0

0;2-
cette détermination est malaisée, méme en spécialisant les champs
de forces. S1 2 k est le degré d’un polynome pris comme potentiel,
onn’a d'immédiat que la relation qualitative, valable asymptotique-
ment

—

1 1 \V/&-1)
:11‘< }-i’“‘(T_)
2

ou T; est lui-méme fonction de ¢, g, et 7. Cette connaissance expli-
cite des ¢; ne sera heureusement pas nécessaire par la suite, on con-
servera donc ces points de réflexion tels quels. L’essentiel est que
ces points se trouvent a I'intérieur du domaine de convergence per-
mettant le calcul de S; ;,; par une série du type (5), soit:

—_ i, i+ 1 2u 1
Si,i+1“2“zy 1 %+

~ -
ghitl =™ (Ci+1—' L)
-! 2 Tiit+1
1
a Y = /.d%V(C»;‘F (Cm_iz)u)

0

etc. Eliminons, comme prévu, les 7; ;4,, ceci par approximations
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successives en se basant sur 'inégalité =, ;,; < 7. Posons pour sim-

plifier l’écriture

- = a i
é‘ TG54 Uy 5i+1 7 54
1l vient en premiére approximation de
— o
Tit1= Ty,

et en seconde approximation

L (zf' V)2 (Zv,)?

développons les |/ et la fraction, on a

Tl. z‘-]

m (2 vy,)?

ou 'on a défim
1 o -
&= [duV (it (Civa—Ei)u) .
0

On a besoin de 'inverse

r.._lzr@i(l;%rz D, )1/2/2,k (leE 72 @,c) )1/2

ZkvA {1 T % [(pi —Eki]k—qz’ﬁﬁ] +0(z3)- -

1 L Vg Jl 7* [GD 250y Py J} 1 (0(73
= g s B ey o s el : T .
Tiiv1 T Y | m (X}, vp)? 2. v ( )
que l'on introduit dans la série S; ;44
m 7)2'2
Si,i+1 9 T,m—l_rl 1+]@ — 73
_m v 2 HL L P 0D
R 2kvk [@ X, oy T E o ©
_om v vy [3 1 2,0, D, 3
Si,i+1_ 2 T rEvk [EQD" 2 v, +0(z%) - -
L’action S, est alors
n
B m (X v;)? 2 v; D, o
Sa=2iSiii =g T g T
soit, en réintroduisant les définitions de @; et v,:
B e \C 2 Bl
2w (BT St e
SR T R e A il
26— &
-+ T3' .

(10)
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Par analogie avec la série (5) on est tenté d’écrire S, sous la forme

—

S Z,uoénzt 1 _> .Ci...g)T2;¢—-1

et 'on pourrait chercher la construction générale des 63"’ _ . N'ayant
pas besoin par la suite des approximations supérieures, nous ne
pousserons pas plus loin ce développement. Pour finir, mettons en
évidence une propriété de ¢'), propriété que nous utiliserons plus
bas; en posant ¢® = 15 m- 2, on a:

F=3,Ca—2Ci|>0
0

dans tout l'espace de ¢ et ¢q,. En effet, F' n’est nul que si
Go= (1 =0y = .. Cp=q. Ce cas trés particulier correspond & une
immobilité compléte de la particule, ce qui peut se réaliser si la
particule se trouve en une des singularités mémes du potentiel,
possibilité que nous avons exclue.

Avec les formules établies dans ce § (5, 8, 9 et 10) nous sommes
maintenant en mesure de construire les fonctions K, définis par (1),
de préciser quantitativement le sens qu’il faut attribuer & «v petit»
et d’évaluer les contributions des noyaux au membre de droite de
I’équation (3); ainsi nous répondre & la question posée dans I'intro-
duction et précisée a la fin du § II.1. C’est le programme du pro-
chain §.

III. Effets quantiques des forees de réflexion.

A chaque action S,, on associe un noyau K% défini par la relation

1 \N2Z 5 v
Kr = (gazs) DU exp {E 8, (1.n)
Pour mesurer 'effet des phénomeénes de réflexion, la somme de ces
noyaux est & substituer au noyau K, de I’équation (3) et I'on a a
évaluer

—

1(G.7) = [ g, 3, K2 @.d0. ) v (0. 0) (11)
V)

dans le sens de contributions ordonnées par rapport aux puissances
croissantes de 7. Ce développement permettra de conclure dans
quelle mesure les noyaux construits semi-classiquement se rap-
prochent des noyaux exacts.

Le noyau K9. C’est celui qui est associé a ’action S, de la trajec-
toire directe. Pour de petits intervalles ¢ — ¢, (domaine dont I'im-
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portance se révélera par la suite), on peut construire ce noyau
d’apres (5) et (8):

L - o 2p—1__ ™ (ﬁ_?o)f_sf
O-anzn-qf =5
0

T

ou 'on définit
S’_ = 2n—1.
—_2 ;n62%~1T s
1

formons D,

028, |
Dy = (—1)¥ dét. 0
0 ( ) !J‘OQOz‘()Qk!
avec
()280 L m . / ’ — 028’
o S0~ 0w Sa SaSgg o
1l vient '
: m ’ ’ |
'_7_811 —Siw
1Dl = (—1)%| - =
’ m ’
_SN]""_“?_—SNN’

| T

T ’ ’
1"‘7,,?’811 ;{Sm’

T
m

I4
SNN

T ’
¥ RS B

Evaluons ce déterminant par rapport aux puissances de 7, il vient:

: ] P e[S S
Do_—“‘f‘(*) ll_W;Sii_'_(m) %Z;h,det>s;” S;L 3
m o S S s B
+(%)3i’k’1dét'8;cz ;hk S;”} i ,._}_(T)Ndet.ié ”
‘iSEE S;k S;Z 'S;V] S;vN

ou l'on a posé

F=Zis;i+;fzf‘ dét.'}!: H +(§;—)$1[ E
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ceci introduit dans la définition de K9, on a:

, m N/2 T 1/2 1 [ mx? ;
K = (52557 --{1+EF} exp. {g( LT 8 )} 1)’

Détermination de 7,. Sous I nous avons introduit qualitativement
la notion de «v petity, ¢’est-a-dire v < 13, 7; devant donner une
mesure de I'inhomogénéité des forces et fixer une limite supérieure
au choix de la variable 7, limite au-dessus de laquelle K, n’est plus
une bonne approximation de K exact, autrement dit son emploi
n’est plus justifié. La connaissance explicite de K nous permet de
déterminer 7;. On sait en effet que K{ satisfait I’équation de ScaroE-
DINGER jusqu’aux termes en h?:

7 0T ¢

El+m)r=—F 20 k=, K (@)

U,, «potentiel quantique» est en général fonction de ¢, q, et 7; 1l
n’est nul que dans quelques cas particuliers, ceux ou K, est déja
le noyau exact K (voir exs. sous I).

Nous disons que 'emploi de K, est justifié dans la mesure ot

T Uy LS
c¢’est-a-dire dans la mesure ou l'action due aux «forces quantiques»

est plus petite que I'action due aux forces classiques, cette derniére
étant la différence entre ’action d’une particule libre

o (G-
ASD_ p B m B) ’E_‘_—

et ’action générale donnée par (5). Considérant ¢ et q, fixés, cette
1négalité nous fournit une condition pour 7. Calculons Uy:

D= (Z)'(1+ZF) 5= VD, _ omVF

D, 0¢ D, 1+z/mF
4YD, :ﬁi(i&f 1__@__3( t/m-VF ) 1 _jm-AF
VD, 4\ D, 2 D, 4 \1+7/m-F 21+t/m-F

R AYD, ., T {L+7/m [F-1/2 (VF)*|AF]}
Yo=aw 5, =" ame 4F A+ t/mF)?
r [ BT\2 {1+7/m[F—1/2 (VF)*AF]}
T[’Oﬁ(?n"{) AL (1+7/m F)?

iy
L P
ht\2 o & (1+7/m-F)

(Zm) < AF {1+r/m[F—1/2(ﬁF)2/AF] :

la condition devient:

en divisant par AF -
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Nous sommes naturellement conduit & définir la limite supérieure
de 7 comme étant la solution de ’égalité

2 8 { (1+z/m-F)*
(?E) ~ AF |1+1/m[F-1/2 (FF)/AF]

correspondant a la premiére intersection entre la parabole (membre
de gauche) et la fonction du membre de droite qui est croissante
en 7 et > 0 pour v = 0. Le choix de 7; étant dans une certaine
marge arbitraire, 1l est commode d’adopter pour cette valeur la
premiére approximation de la solution exacte, soit

TAZm(S’ ...])1r’2 .
A V) 8 e

Perreur étant faite par défaut, ce choix est convenable. Introduisons
maintenant les définitions de S’ et F, 1l vient:

T =224 (12)
ou

j &
2= ) et o= [ du Vg Fw),
\ 02 1 s

0

Si V(x) est proportionnel & x ou x2, le potentiel quantique U, étant
nul, 7 n’est pas limité supérieurement, 7, est donc infini ce que 'on
peut vérifier immédiatement avec la formule (12). 4 est directement
proportionnel & I’inhomogénéité des forces; prenons par exemple
V(z) proportionnel & exp(—kz) ou sin (kx), 'opérateur A(V,, V') est
alors essentiellement proportionnel & k¢ et 4 ~ 1/k. 7, ainsi défini
jouit bien des propriétés désirées: il est une mesure de l'inhomo-
généité des forces et il est d’autant plus petit que celle-ci est plus
grande. C’est dans le sens indiqué par la formule (12) qu’il faut
entendre «t petity, soit

TL 2222

Cec1 précisé, revenons au calcul des contributions des noyaux a
I'itégrale (11).

Contributions des noyaux. La coordonnée g, étant variable d’inté-
gration, il faut connaitre le comportement de D et S en fonction
de ¢, non seulement dans le voisinage de ¢ (équation 1'), mais dans
tout le domaine d’intégration. Nous nous bornerons essentiellement
a décrire l'allure de S et D en fonction de g, et & indiquer comment
on évalue les contributions des noyaux. Pour fixer les idées, nous
tralterons ensuite un cas simple dont le résultat pourra étre géné-
ralisé progressivement.
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Considérons les cas ou les forces sont attractives et dérivent d’un
potentiel V = V(q,), la généralisation au cas de potentiels vectoriels
étant renvoyée a la fin de ce paragraphe. On pourra tirer des infor-
mations intéressantes concernant D et S si I'on considére d’abord
la fonction donnant I’énergie du systéme E = — 0S/0t = E(q, qq, 7).
Regardant 1’énergie comme (N + 1)’ dimension ajoutée au N de
I’espace g, elle est représentée par une surface que nous appellerons
surface-I par la suite. Si, dans ce méme espace, on représente la
surface potentiel £ =V (q,) (surface-V), cette derniére enveloppera
ou, si I'on veut, contiendra la surface-E. En inversant E =FE(q, q,, 7)
on peut écrire ¢, = G,o(q, E, 7) ou encore v = 7(q, ¢, E). La derniére
fagon d’écrire conduit & interpréter la surface-E comme surface des
énergies et positions initiales g, compatibles avec la condition 7 =
const. donnée, la position finale g étant supposée fixe.

Ou la surface-E est tangente & la surface-V, la vitesse initiale
—08/0q, est nulle; le point de contact est donc un point d’extremum
pour I'action S. Comme S se trouve & l’exposant de la fonction a
intégrer, ces points d’extremum jouent un réle essentiel. Nous ver-
rons qu’en I'un d’eux, S est minimum et qu’aux autres, S est maxi-
mum. Dans le cas de forces anharmoniques, ces derniers peuvent
exister en nombre infini; ce sont des points du type A dont nous
avons parlé sous II; ils jouissent de la propriété particuliere de
tendre vers I'infin1 quand = — 0. Pour déterminer le caractére de
P'extremum de S, il convient de calculer

028 o8
( 0G5 090; )T pour 04,

—0 (i=1...N),

1

étant sous-entendu que seuls les points ou S est extremum absolu
(c’est-a-dire relativement & toutes les composantes g,;) nous inté-
ressent. Ces secondes dérivées partielles peuvent s’obtenir comme
suit: soit g, une position d’extremum, pour un tel point = = 7(q, q,) ;
pour tout autre ¢, on peut poser: T = 1'(q, q,) + 7;. Nous nous in-
téressons a (02S/0q,; 0qy1)r pour 7, =0; cette valeur étant un choix
particulier de 7; = const., il est indiqué de changer de variable et
de poser apres la différentiation 7; = 0. On a:

(), = () + (22).. 2
‘)60)71— a_éo)T ()?0)7; o7
0

d’ou
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et de méme pour (0/0g)7. Si I'on applique cette opération & S que
I'on peut poser = Sy(q, qo) + S;(q, qos 1), On trouve:

(()S)' zo_bSo_aT“()SI
0Gy/T/T,~0 0, dg, 07y
avec
o8 oS —

. OT; =‘(TE":_V(QO) pour 7; = 0
1l vient

08, oT —

e e ey V »
ago ()Q(} (QO)

L’opération (0/0q,;)r appliquée maintenant & 0S/0q,; donne, pour
7, = 0, la seconde dérivée cherchée:

( 028 ) . orT _f)l/:_
0o 0q0;: /7T, =0 0Gy;  O¢p;

Cette équation suppose T = T'(q, ¢,) connu. En I’appliquant au cas
traité plus bas, on trouvera que cette seconde dérivée est négative
(S max.) pour les points du type 2. Quant au point, que nous appel-
lerons qq, ol S est minimum, c’est le seul qui demeure dans le cas
de forces harmoniques ou constantes, comme 1'indique ’exemple
suivant :

Soit V = 1/2 mw? ¢2; la surface-V est un paraboloide et la sur-
face-E (voir exemple sous I)
08  mo? G +¢,°—2(4q, ¢, cos ot
0T 2 sin?wT

E—=—

Pest aussi. Ces deux surfaces ont un seul point commun (dans le

fini) en ¢, :—60, solution de 0S/d¢, = 0 pour lequel on trouve aisé-
ment

.
D=9 st
et
028 mw
Sl SR SRR
0¢0; 9905 "Figwr

Remarquons que '_éo/_;-i) 0 et que iﬂ/r—:z q; pour de petits 7, on
ago=~q(l+% w27?) =qq—|—('52/2 m) (0V]0q), résultats que I'on trouve
en résolvant 0S/0q, = 0 par rapport a g, pour de petits 7 en utilisant
la série (5) donnant S pour un potentiel quelconque. Mentionnons
encore le fait que la surface-E est minimum en ¢, = q, (solution
de 0S/0g = 0) pour lequel on trouve

Qo =g CcoswT ‘_T*_"*=V(Q)'
T [go=q,
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St V =7V, (q,) (par exemple Cg?, C > 0, q, = | gy |, » > 2 et pair),
la surface-1 est un paraboloide d’ordre n mais la surface-E se trans-
forme entiérement. Rappelons en effet que pour un certain g, donné,
une infinité de trajectoires, caractérisées par leur nombre de points
de réflexion, conduisent de cette position initiale a la position finale
donnée dans le temps 7. Ces trajectoires sont situées sur des «niveaux
d’énergie» croissant avec le nombre des points de réflexion. Consi-
dérant la surface-E résolue par rapport & ¢, cette fonction mani-
feste une certaine periodicité en fonction de K, car qo(E,, q, 7) =
Qo(Ey, @y 8) = ... qo(Ens @, 7). .., Hy..E, étant les énergies des tra-
jectoires 1 x.. n « réfléchies. En variant K de fagon continue, on
voit donc que ¢, oscille, mais en restant toujours intérieure a la
fonction inverse de V

60 (q’ E’ T) £ gﬂ(V)iV:E’

I’égalité ayant précisément lieu pour les points de contact g, 7 ot
S est extremum. ¢, étant continue et oscillante, il existe une série
de lieux géométriques caractérisés par I’équation
-
(u;)ugEg" )‘EZ A

Cet ensemble de lieux délimite des portions de la surface-E et l'on
se rend compte que tous les niveaux d’énergie associés aux trajec-
toires possédant le méme nombre de points de réflexion sont situés
dans une de ces portions. Entre le point (¢g, B = V(q)) et le pre-
mier lieu (0¢,/0F)2=0, on a le domaine correspondant aux trajec-
toires dites directes (les plus «économiques»). Le lieu (0G,/0F)?=0
représente celui des amplitudes maxima que la position initiale g,
est susceptible d’admettre, afin qu'un mouvement direct jusqu’en
q soit réalisé dans le temps 7. La projection de ce lieu dans 'espace
q, est représenté par une certaine surface F' = F, enfermant un
volume 2, ot 'action Sy(¢q, ¢,, 7) sera définie. En dehors de 2, S,
n’'existe pas. Les énergies des trajectoires 1 réfléchies se situent
entre le premier lieu (0¢,/0E)? = 0 et le second (0q,/0E): = 0. La
projection de (0q,/0E): =0 dans I’espace g, est représentée par une
surface F'; enfermant un volume £2; ot S;(q, q,, 7) sera définie, et
ainsi de suite,

Nous n’avons encore rien dit de D(q, q,, 7). Formé avec le déter-
minant dont les éléments sont (025/0g,0q, )z, on peut calculer ces
derniers aux points d’extremum avec la méme technique que
028/0q, 109, ;; on trouve:

( 928 T v
04z 09y, )r/rl=0% 0 Odo;
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Nous allons montrer que D, qui est régulier dans le domaine £2,,
est singulier & la surface Iy. En effet, dérivons ’équation d’Hamrr-
ToN-JAacoBr 08/07+1/2m (08/06)2 + V(?j) =( par rapport a qo;

on a:
0

=90
dgor 0T Z qu 0%09’0.‘!{
avec
£=—E ___09’01«: 0 qox _ 1 _n
_ 3t * T 3E  0(08j07)  0tRjogy ot
1l vient ,
= ()
()Q'Ok/aE Z qu f)%ago:c
, 1 08 082
d’ou— 2 = oo pour a—q‘”“

des éléments 5——<=— au moins est infini, ce qu prouve notre
;0G0

proposition. Ce méme phénomeéne se répéte pour D, a la surface F,
de son domaine de définition 2,.

Ces faits nous aménent & définir chaque noyau K" —= Cte YD, exp
t/h S, dans un domaine 2, limité par une surface F,, projection
dans I'espace q, du n™® lieu (0¢,/0E)" = 0, et & interpréter I’équation
fondamentale (11) de la facon suivante:

g I o oA
1(5’7):/ dNQOZnK?‘P:Zn / d¥ gy Ky - (11.1)
— 00 v v f)n
Pour évaluer I'effet quantique des forces de réflexion, nous traiterons
plus bas un cas particulier en détail, le plus simple qui soit, puis,
en généralisant progressivement, nous montrerons que I(q, 7) est
donné par la formule suivante

ey "(‘q‘"’o>+0<ﬂ>}
—i—O(rSmeXpn 21 TP(O)“f‘ZeXp S(q,ln, T) -

cp () (14 1(2,)) (11.2)

ou J représente une sommation discréte et/ou continue sur le spectre
in
des points d’extremum Z,.

Comme exemple nous allons traiter le cas trés instructif d'une
dimension, avec V = C-¢%, C > 0, n > 2 et pair et poser pour sim-
plifier au maximum g = 0. De ce fait on a aussi q,= q, = 0, les
minimas de la surface-F et de ’action S coincident a 1’origine. Cette
simplification n’a pas d’autre conséquence que de permettre des

I(g, 7) = exp4 S, 50, v {9(@0)—
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calculs aussi exacts que possible et les généralisations s’avéreront
aisées. Nous allons donner les valeurs de S et D pour toutes les
classes de trajectoires et pour les points ¢, importants tels que
qo=¢o="0 (S min.), g,=42 (S max.) et g,= ), (D infini); ceci sans
entrer dans le détail des calculs, ce qui nous entrainerait trop loin.

En ce qui concerne K9, on a:

2 n
pour g, =~ 0 (voir équation 1) So(0, go,7) = - Ca" ...

27 n+1
10 =S8 de (1) = m2qt.,2 [1—720]
F '
gl == — de (1) Dy(0, g, 7) = ‘T_[l + 72 4];

pour q, = =+ 4,, 4, étant donné grice a

A
dx
T = I/_—m /‘“——"m_________ — _ﬂ 1—n/2
2 § YO im—can 20 A %n

N :fl dt  T@A+1/)) I(1/2)
" ; Vi—eg  L(1/2+1/n)
avec 1' =1
2
Jo = (L WTEZ/EQ)H-Q E,=C it
-9 C +1

So(0, Ao) = Sp = Z+2 n m2 02
iS'(’)(O, ).0 = O

Pour le point g, = @, solution de (0q,/0E)? = 0, le calcul donne
approximativement

Qo= o(1+8fm)  duln) = 0 (55;v),

2 2
nta,;

et s1 I'on caleule D pour g, = @, on trouve en partant de la formule

0F
D= —2%— (55{): et en posant q = A5(1 +u):

D, (0, u, 7) = T —Sol®)

T V‘So"u
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ou 4, est une fonction réguliére de u, et tend vers une constante
quand % tend vers §,. C’est tout ce dont nous aurons besoin en ce
qui concerne le noyau K¢

En désignant par » le nombre de réflexions (au lieu de n utilisé
auparavant, ceci pour éviter toute confusion avec n actuellement
degré du potentiel), on a

pour g, = 0, avec

1 e

Tv:'—2—vf, }.yi(Z'V) e lo:

2n
5,(0,0,7) = (2») "2 8§,
S,:, (OJ O: T) == :I: Vm—é AO? (2 v)“ﬁ_.iz
S:(O; O: T) = 7@_7_%"2— 'ﬁ.:“

n m | iDdépendant de »! v+ 0

D, 0,0, 1) = -

+ Dy(0,0,7) ==;
pour q, = 4+ 4,, avec

1

v = 3yl ¥ Ay = (2% +1)22 ]
2n
S,(0,4) = (2 v-+1)"=% So
81’)(0’ Z’v) =0

8,00, %) = —n(n—2)o2-" (2 v+1)?
= (2v+1)%5;(0, 49)
D,(0, 4,) = (— 17 2v+1) 5 oy

T

et pour q, =~ ¢),, en remarquant que

A, < Q, <A, soit 1<%£<“‘Fmiﬂzz
et avec
Q, =4, (1+3,)

Qo = A, (1 4+ )

_ m A (u)
D (O, u, T) = (-— 1)’”}_ (2 ’V+1) ml?é—vji.
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Il sera utile par la suite de connaitre S dans le voisinage immédiat
de son maximum en g, = 4,:

1 "
S,(0, Go> V) = 8,0, 4,) + 5 (g0 — A0)? Sy(0, 4,) +

avec g, = A4,(1 + u), u variable, on peut mettre S sous la forme

ou

g 20
2n n+2
-1 __ n—2 l n—2
xv - (2 v+ 1) ( 't)
2n n+2

=@2v+1)" % qh Yo =T 2

Les formules données ci-dessus permettent de construire les fone-
tions S, D et la surface-E qui se réduit & une courbe. Dans un plan
(4o E), la courbe ¢,(E, 7) s’inscrit dans la courbe g, = (E/C)Y", elle
lul est tangente aux points 0, 4 4, et a ses extrema aux points
+ @,. Dans un plan (S, q), S, croit comme une parabole pour de
petits gy, puis sa pente décroit; S, passe ensuite par un maximum
en q, = 4 4, puis décroit légérement jusqu’'en g, = =+ ¢)y; au-dela
de | Qo |, Sy n’est plus définie. A partir de + ¢, une branche de S;
commence avec une méme valeur et une méme tangente que S,
puis augmente pour ¢, décroissant, passe par S4(0, 0) puis atteint
son maximum en ¢, = — A; enfin décroit et est définie jusqu’en
o = — @1, d’ou s’embranche I'action S, définie de — Q) a + Q;
de méme pour la seconde branche de Sl qui est définie de — ¢, &
+ @, et ainsi de suite. Quant a D, son analyse montre que dans le
plan (D qo) D, est symétlique par rapport & 0, positif, croit lente-
ment jusqu’a - 4,, puis de la tend vers I'infini comme 1/)/[g, — Qo] ;
1l .y a ensuite changement de signe, D; est négatif, vient de — oo en
+@)y, croit pour g, décroissant, passe par un maximum (< 0), puis
tend de nouveau vers — oo en — )y; il y a alors nouveau change-
ment de signe et ainsi de suite. De méme pour la seconde branche
de D, également négative et qui est définie de — @, & + ¢,. En
désignant par (a, b) I'intervalle a < g,< b, et en posant @, ~=4Q,|,
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on obtient le schéma suivant donnant les domaines de définition de
S et D, donc aussi des noyaux:

(@5, Q) — 8o Do K
v=1,2... (Q;l,Qj) — Sf, Dy, K}*
(Qv: 2, ) - S;, D;, KZ;_
Remarquons que l’existence des singularités de la densité D a une

conséquence importante en ce qui concerne les «potentiels quan-
tiques» U, qui pour g, ~ ¢, ont le comportement suivant:

U - _ Ayp, 1
¥ 2m /D, (Qv—g0)*

Nous pouvons procéder maintenant & l'intégration de 1'équation

(11.1), 08t 3 — X- 3

A, +.— 0
0 fo'e] Q’: Q:—l
10,7 = [dg Ky + X,| [Kir+ [K|v@) e (113)
0o Qr—1 Qv

Contribution de K?: étant donné le comportement de S, et D, 1l
convient de séparer le domaine d’intégration comme suit:

+Qo —E} Jﬂ"‘el +£ +Qo
0—/ d‘]ol/ 507 P& So e ( /'1’ / ‘*‘./ )Kgfl’d%
—Q — “Ez —& el +&2

=172+ I;V+ 1) + I + I®

ou g est choisi aussi prés de l'origine que 'on veut, mais indépen-
dant de 7 et & est choisi = 4y (1 — d,) par symétrie avec @y =
Ao+ (1 4 dy). Calculons d’abord IJ; dans le petit intervalle 2 ¢, on a

So =8, (0,0, 7) + mTQO—[l—rza}

DOZ%(1+TZA);

posons
+& +al
qo(1 — 720)'2 / w /
—& *Ell/#

A, = dw
Qo = T—72e)E— 2 W (@J(1— 20)' %)
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afin de simplifier I’évaluation de I, évaluons

-r£1 Vm imWwe

C (Lr2apnn /
/1/23”,}3-5 -/dweZE‘r [(1 72 )1/2 112W 0./1 '1'20')“3 ]‘P(W/I/ )

._&1/

281]/% L Max/(4+0) p/ 7 = 0 (e, 7" M)

d,
T imW?
ﬁ]/%m exp {5 S0, 0, )] [ dw e2h y(IW) + &,0 (27 M.
o
Afin d’obtenir par intégration partielle la compensation des termes
de la forme /7 exp 1&%/7-y(0), il convient de poser

p(W) =»(0) + (p(W) —»(0)

et avec 2 fit/m = &, on a

+& T Wt nee
1 Ty 1 &
l/mﬁfdwe " (0) = 3(0) [1+2|/m. e expi‘i (1+O(ﬁ))]
- +& 21W2 i W*
l/ fd 27,W p(W)—yp(0) 1 eT w(W)—u(0) +&
Ti P 2:W ) wid 2i W9 |-
—&
& T W
; L __ y(W)-»(0)
due o 2w ¥ (W) *7“},

en développant sous la derniére intégrale
W2 "
p(0) = »(W) — Wy (W) + - y"(OW)
avec 0 =@ =1, 0 = (W), il vient

B ¥
288

= -;1.—19——6 4 ziel{’l’(+51)+'P(—81)_‘2'#’(0)}“
__ +&
. _—fdwe v ifw " (OW);

en développant & nouveau
Y(OW) =3"(0) + OWy"(O'W)
avec 0<< @' @, O'(W), on obtient

1&!

1 l
=V iz © 575;{#’ + &) +p(—21) —29(0) -}
R 1 &
s 1 8
— 5 v'(0 (”2 o e € (1+0(*9)))-
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En tenant compte de la compensation des termes ~ )& (0) la con-
tribution de IJ est donnée par

imel”

B=p(0)— o y"(0) + |/ g € 72"

2im 2mihT

s (W 81) +p(—e1)]

+0(7*3).
Calculons I3?!

ISLl=fdQOl/*27(}g9XP‘%So”‘P(%)
&1

par intégration partielle:

0, 1@ oS8

fz r)qo “ ho0gy
avec
08\  meg iS_ _ “%E
(aqo)/&_ - (1+0(z? (a 5 )/Ea Const T
D ="7(1+0(z%)) D, =% % ~[1+0(s?)]
il vient
i méet 5
T T
1= =) g AT (e (140 (e +

) 1 :
B gy

ol )
De méme pour la contribution de I;?, on a

i me?

I == g e T v e L+ 0+

2nikT miu e
2 1 ¢
e '_'S(_ES)

+0(Tm ? el -w(—az))'

Si 'on additionne It + I3 + I, on voit que les termes

SIHE”
~]/r g 2h3 ("/’("f‘ &) +TP(—£1))
se compensent de sorte que
H . 2 50,0,7)
/ dgyKlyp =e”

- Es

|9(0)— 51 ¥"(0) +0(%9) | +

4 mée 1 —_S( J
+0(r3’237i 27 w(O))+0( ’ 'w(ea))'
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Il reste a intégrer I2, I52; avec qp= A¢(1 + u), il vient

o e S I WS B
g fan /A
T1hT 750 I/(So_u
I _2 i —l:éo 1 e b
S e B N L = S
= N HET B U e o) 9
I/Q'ﬂmk 2¢ Vio , o— U

a cause de la singularité u = d,, 1l faut encore séparer 'intégration;
on pose ‘

et 11 convient de choisir 6, = 6 — - y,, alors, avec d, —u = v,

ox _t b(S—0)?

1
const. dvo *VA (0—vye ® % | (A
onf VY Ay(6—n) v =00z (%))

La singularité ayant été éliminée, il reste

___,_ﬁ__ iu?

const. —-- fd Vé B2 4. (A (1 +u)) =

i o2
e [1+0(V£{.- o)
de sorte que

i«

Ij%= jdqu“ =% 7 (2) (140 () + 0 ()]

et 1l en est de méme pour la contribution de I; 2. Ainsi la contribu-
tion de K} est donnée par

/d% K2 =exp —;— S,(0,0, 1)~ [‘tp (0)— ;_f »"(0) + 0(%2) ]
7.{Qo
( g ... £ o4, o A5
+ 0 2¥2eh 27 4(0)) + b (== 2g) [1+0 (414 + 0 ()2,

Contribution de K%; on pose
Q+ +

v 82
[ Eryag = | [+ / K2+ ydgy
Q;’——-l Qv 1 €9 v
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ou & = A,(1 —é,). On calcule la premiére par intégration partielle
comme pour I et la seconde comme I7; on trouve

L8(= Ay .
I,=+ Cteeh V(—A, J1H0(y, )M
4 s, _
+er (A [1+0 ()" +0(x,)"
ou
- 1 e
X’V - xn (2 v+1)2’"-/ﬂ'~ 2 S(Og }Ly) - xv .

Pour I’exemple traité ’équation (11) devient ainsi

—86(0,0, 7)
10,7 =eh " [p(0)— 5 p"(0) + 0y

2im
NI N B e b o
+O0\T2e 2T y(0))+ D) e p(£24)[1+0(5)+0(x2)]. (11.4)
+,- 0

En admettant que y(x) — 0, donc que w(4,) < w(4,), la derniére

| z—00

somme peut étre évaluée &

n4-2 1 const.

22 ek "” ~ () (hxo 67;-’ %o w(Z) :0(7?2 Bfwzm b (}vo)))

Ces résultats correspondent au cas d’une dimension. Pour un poten-
tiel analogue et & N dimensions, on intégre 1’équation (11) en en-
tourant les extrema de S de petits éléments de volume appropriés

N
et la } devient [[; 3. La généralisation du cas précédent donne ainsi

Ay 1 2%
L 8000,0,7) 5 ,
10,7) = e* [9(0) =55 ¥"(0)+0(z2)]
ime, nt2 _ icomsh.
(321\1 2771, ) ( an2 LnH2in-2 ) 11
+0 e w(0)] +0 e p(dy) ) (11.5)

Si maintenant ¢ est différend de 0, il faut se souvenir qu’en ¢, =
q0(q, T) S etalt mlmmum et qu’ainsi I’équation (1) devient, en inté-
grant I) de ¢ q0 £, 4 g{0 + &

—So(q s r) [

IG5 =c""" {o@) — 375,

i " (@0} + iy .y (116

/fN(T:qﬂAU)/_>O'

ft—0

ou
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Ce n’est qu’en procédant & un développement en 7 plus poussé que
I'on retrouve le résultat conventionnel, comme le montre ce qui suit:

1
So(d> Gow) =500 — 1 [ du V(go+ T u) +0(?).
' U

1

08 _ (d—q,) o [ 4

d. M= T 7, / du T
1]

0 = 2 oV

—““aro“——-o — qO— q+ Im OT]’ +"

v(do) = v(@) + (Co—q)

0F
=y(g) +0(72y'(§));

avec ces valeurs, 1l vient

—

%So(gs Q-‘;; T
e

V@) — oy @) = 9@ — 4 (£2 + V() v(@)

= i ’ = i 55 =
+(%“‘“Q)1P(5)+[3h _(1—"7;TT/(Q))]TP(QO)-
Ainsi, I(q, 7) devient

I, v) =y(q) —— H,p(q) +79(q.9.7) (11.7)
ou
g

Q:MW—QW@H{J w@m%wV@ﬂw@&+MQﬁw%
lg| >0
[t—0
Si l'on se reporte a l’équation (3), on remarque que la formule
ci-dessus lui est identique. Toutefois, avant de formuler le théoréme,
nous allons encore traiter le cas général de forces dérivant de poten-
tiels scalaires et vectoriels ainsi que du temps. La définition (1) de
K, demeure valable, mais le temps imitial £, et le temps final ¢ inter-
viennent explicitement en plus de T = t — t,. L’action S est solution
des équations
o8 1 o8
o3t T 2m (a—g

+ A, H) + V(g ) =0
et

08 1 oS — 2 e
—“()t—o‘fh'.z_m(—?q;; + A (q o, to)) +V(qo t) = 0.
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Nous prenons du chapitre IV (Généralisations) les formules (18 0,
.1, ..) donnant 'action S pour de petits intervalles T et £ =¢ — G,:

N
i V+7V (G- v, t—-70)]
1
On a T
o8 m ; i 0 :
x; .
M =3 +O/dqui—Ak\:’mk qwb[dvAk 7 ()qoiofd'vV

- et le minimum de S est atteint en ¢, = ?0 solution de 08/0q, = 0,
pour laquelle on trouve

ainsi

S, 40 ™) =—7(V(d, ) + 5 4%, 1) +0(=?).

Pour connaitre S dans le voisinage de son minimum, calculons ses
secondes dérivées partielles

28 _ m 104, o4,
Saodte ~ 0wtz (o 30, ) +00
/Qofczgok

i

ainsi, pour g, =~ qo et avec g, — 90 &

- e = 1—(m 1 0d; ody\ , \=
S(q,qo,‘t) —S(q, 90, T) +§_2_‘Ei(76”0+2(0qk aqi)—l_ )ajk )

Evaluons aussi D(q, q,); avec

028 m 04; 0A
S B k) +0
aQiaQOk T m_i_ (()QIC afh ( )

et les formules établies au début de ce chapitre, 1l vient

N

D= ()" {2 S + 007+
=(—;) {1+1:2F}.

Ces relations introduites dans la définition du noyau K3 permettent
de calculer Iy(q,t,1t,). Par une rotation convenable des axes

rotation telle que
1 o - 1
§Z$i°€ikiﬁk :Z_i Bi &2
i,k i
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et en appliquant la méme technique que celle utilisée 4 une dimen-
sion, on établit aisément que

10@ T) = /Kg pd¥ q,=

(-0¥| 5|

. ) IaQ’L ()—q——‘;c is(q?aﬂst) ’t:T — e
[ o5 e (1*§ﬁmP2)w+Tfo(qp%T)- (11.8)
1040 0or || /avg, = Tog,

(Quant a la contribution des noyaux K}, elle est du méme ordre que
celle établie précédemment et nous n’y reviendrons pas. En revanche
nous allons développer en détail le résultat ci-dessus. Avec

1

E/czf.}i-:“q"ai: (%)N [1 T %Z aa;é[:_ T 0(12)]

K4

| o8

YAy

et D(q, q,), 1l vient

FEFT 1 v 0F e
VHIaAz. =1—g g T00%;

m 0¢;
avec
. o i =
exp S 40 1) = exp — - v(V+ g 42 -
. N 1 —
(T oy ) <00
et enfin

— (E,%)wwmz—%% 1,0)+0(12)={1—%[V(q,t)+
b A L (AR ) A e (B a])v+ 0y

et en remarquant que

el
¥
e

(P+A)2=p2+p A+ AP+ A2=p2r24-p+A2+(
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on a le résultat final:

LG mt) = [ @Ky —{1—T 5, B+ A+ 7 |ly(at)+

+ rf(Q’ w? T’ t) (11)’
et
I(q, 1) jZK”wd“qo—{lﬂijw(q to)+79(q, v, 7)
. on (11)”
ou
g — O
[t—>0.

La contribution essentielle des noyaux est fournie par 1’équation
(11)" (c’est-a-dire par K9 et ’équation (11)” remplit les conditions
exprimées par l’équation (3), relatives aux propriétés des noyaux
semi-classiques; d’ou:

Théoréme. Sous I’hypothése de petits intervalles de temps, I'effet
quantique des forces de réflexion est négligeable, les noyaux semi-
classiques ont les mémes propriétés que les noyaux exacts et seule
importe la connaissance du noyau K? dans le voisinage du minimum
de l'action S,.

IV. Généralisations.

Sachant maintenant qu’il importe de connaitre K seul, on peut
se proposer d’en généraliser la construction pour les cas susceptibles
de se présenter pratiquement. On supprimera dorénavant l'indice 0
de K2, toute confusion étant exclue pour la raison citée plus haut.

IV .1. Généralisation du calcul des actions.

Dans le cadre de la définition (1) de K., les cas non-relativistes de
systémes conservatifs et non conservatifs sont inclus. On va les
traiter explicitement.

Cas des systémes conservatifs. Prenons ’exemple courant d’une
particule de masse m douée d’une charge + e soumise aux forces
dérivant des potentlels e D(q) et efc- A(q). L’action S suffisant &
déterminer K, on a & résoudre les équations:

08 1 08 e I 2 -
ot 2m(()q ¢ ( ))+6@(Q):0
et : ‘ (4")
08 o8 e a2 —
e ‘[‘“2““;;( ﬁ“;A(QG)) +eD(q,) =0

Le temps jouant un role particulier, il est indiqué de chercher S
sous forme d’une série en 7, mais les forces dépendant de la vitesse,
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08/07 ne posséde plus I'invariance par rapport & l'inversion du
temps; la série possédera donc des puissances impaires et paires
de 7, soit
S = 3u0uld Go) ™ (19)
-1
En introduisant cet essai dans les équations (4'') et en annulant les

coefficients des puissances successives de 7, on est conduit & écrire
deux systémes d’équations dont le premier est:

("a"_g:l J=2mo, (18.—1)

(2, ?)%_ — & Afg)) = (13.0)

o 2 B d)m oo (2] s

e LB a3 B td)
e o (57 )l o (B 53— 04) -

7w 2 (5 555): (142)

Quant au second, il n’est pas nécessaire de I’écrire: on remplace
simplement dans (14) ¢ par ¢, et 0/0¢G, par — 0/0¢,.

Solution. La condition de régularité imposée & S et la condition
initiale S(q, q,, 0) établie sous I1.2 pour des forces quelconques
déterminent 1'unicité de la solution. On a:

B == 9; @'_é*o)z, (15 -1)
en 1ntroduisant
19 et o3
m 9§ 0= —Go=1%

dans (14), on obtient un systéme analogue au systéme (7), 1l n’est
donc pas nécessaire de ’écrire. Toutefois, une équation est d’un
type nouveau: c’est (14.1) qui devient

— 00, e 7\
Notons que la solution 0c,/0q = ¢/c A est exclue, car on aurait la
contradiction

rot grad o, = 0 = ¢/c rot A = efc H!
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posons donc

da, e e —
3§ ¢ Az
alors o

(xr,%) =0 et roty =—H.
Formons

V@, %) = {1+ @&, V)}x+[%, rot 71 =0
{1+ @ V)}7 =+, H];

on retrouve un type d’équation connu dont la solution est

1
fzfdu[f-u,ﬁ(§0+5u)]
0

d’ou

1
a wr —_— — — ?
= A +%/du[m-u,H(qo+xu)] (15.0")

et I’on peut maintenant intégrer ¢,. Exemple:

—

H = const. 4 = —l[q, ﬁ]

da, 1
= — 5[4 H+ 2 [§—Go Hl =— 5 ¢ [do H]
L=5-[8 H  oy=—" (H,[d do);

et dans le cas général:

1
%o :%fdu(az’, AlGo+5uw). (15.0)
0

On remarquera que dans toutes les équations (14.n) suivantes,

00,/0q et efc A ne se manifestent que par leur différence e/c y. La
solution de o, et des g, suivants ne comporte pas de nouvelles diffi-
cultés et 'on a:

2

01(@. 7o) = — f dule By +Tu) + 5og 22W)|  (15.1)

- fan[(25, 1)+ 5 )] 5

[g=qotzu

pour n > 1. La convergence de la série (18) se discute d’une fagon
analogue & celle de la série (5) en spécialisant les champs. Dans

I’exemple précédent ot H = const. et @ = 0 on trouve évidemment
que (18) converge pour T<m/w w—e|H|/2me. Sous III, page 111,
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nous avons calculé la limite 7; de = pour un potentiel scalére. En
adoptant les mémes conventions dans le cas d’un potentiel vectoriel,
on trouve

2
T1=~‘7'?’%*22
avec ]
Zzz( i )5 o Ae/dufb’za-i—iu.
AT, V) o, 0 CO" (9, )

S connue, on peut calculer D, construire K, avec (1) et I'utiliser pour
des temps v << 7, évalué ci-dessus.

Cas des systémes non-conservatifs. Si I’hamiltonien dépend expli-
citement du temps, S = S(q, t, ¢, tp) et le noyau K, dépend de ¢, ¢,
et non seulement de leur différence 7; toutefois sa définition de-
meure

. . 228 | Ji g
[ Nj2 L3
Kc(q3t’q0tﬂ) ( 2.’7‘6’!;7?:) (d t h ag[)zaqk |) plh SI.
Reprenons 'exemple d’une particule chargée dans un champ électro-
magnétique quelconque, on a alors a calculer S, solution des équa-
tions:

OS+21m(aS 2 A, ))+6®( H—0

ot 0q
e 4 2 —
T By T om (_ 0q, _ZA(Qo’to)) +eD(qq b)) =0.

Dans ce cas, le temps ne jouant plus un role particulier, un essai du
type (5) ou (18) n’est plus justifié. Mais U'intérét des développements
en série de 7 était du au fait que ces essais «linéarisaient» les équa-
tions d’Hamivron-Jacosi. (est cette linéarisation que l'on re-
cherche et que l'on peut obtenir comme suit: constatant que si,
dans la série (5), on pose V = e-®, le développement en 7 est simul-
tanément un développement en puissances de e, on supposera dans
notre dernier cas que S peut s’exprimer en une série de pulssances
de e, soit

S=8;+8;+8,+---+8,+--- ou S,~e (16)

En introduisant cet essal dans les équations (4'"') et en admettant
qu’elles doivent étre satisfaites pour toute valeur de e, on est conduit
a écrire deux systémes d’équations dont le premier est:

08, | 1 [a8,\2

= +2m(a§9) ~0 (17.0)
08, | 1 (38, 38,\ e (38, g\ _ -
az”+m(ag? ag’l)“mc(a‘gff’A) P (17.1)
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08, 1 (08, 08\ 1 (38 e 7\
Sttw st o3) = wmlor —4) A5
28, i(aso asn)g__l_ 28, _@l_mﬁA)+
TR AN P A m(a‘g*’ A

1 ""?/38,., 08
- = o 17.n

2m ¢ ( 0q 0q ) ( )
et le second que I’on obtient de la facon connue.

Solution. Les mémes conditions de régularité et conditions initiales
sont encore valables et I’on peut résoudre le systéme par récurrence.
Donnons-en les solutions:

(ﬁ“@') m  x2 o_
So = 5= T2 (- 0 o I a3 (L)
Sl-fdu[—etcb(q t) + w"fA@lt)]/;:ﬁ;_M (18.1)
t—t:+r-u
1
28 T 2
Sp=— g [du (G =+ A@0) o o (182
5 ft=t:+r-u
1
T [ gy (% 5 e T
S (-,/d Sort s —eA)+
1T (08, O8N] .
N oy . 57)]) iz, (180)

La convergence de cette série se traite de la facon connue; il nous
reste & déterminer la limite supérieure de l'intervalle { —i, au-
dessous de laquelle I'emploi de K, est autorisé. Cette limite sera
fonction du temps initial ¢,. En appliquant la méthode habituelle,
on trouve:

t—ty € Tyty) = 25- A2

1
S(t-——t) \”2 ~ e — = .=
At :( Tl L S.(t=t)=—/du(xA(q,+x-u,ty).
(to) AW, V)S(l*t{,)) 1(t=1o) Ca/ ( (90 o))

Cas des systémes relativistes. En prévision d'une construction rela-
tiviste des noyaux K., calculons l'action S(q;, go;) qui satisfait les

équations
2 2 9
2/ (Wh— ) +mgc* =0
et (19)

271( Oy _%@})ﬁmgc?-:o._
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La méme hypothése d’un développement (16) en puissances de e
permet de linéariser les équations (19). On obtient un premier sys-
teme (la sommation sur A est sous-entendue)

(231) +myet =0 (20.0)
2(5or: (S —9y)) =0 o)
(5 52 =~z (5 —294) (20.2)

(35, 25) (s, (352 g,)) 1 15 05er %) oy

et un second associé au premier de la fagon connue.

Solution. S est une fonction réguliére de ¢, et g, dont la condi-
tion initiale est donnée par S(gy;, q¢;) =0. Le premier terme de la

série représente l’action d'une particule libre. Posons
+

Li=q—%,» S= [721 a2, s=1ic. O, O = VTZ*:E‘;
1l vient
Sy = i m s = F mye - 0; (21.0)

on a deux solutions correspondant aux énergies 4+ et —. Il est com-
mode de les réunir en posant

Sy = &:my=cs  ou &= + 1.

Le second terme, solution de

(m,,%;jw-;i@ﬁ):o et (ac,-_,—gé_o;j__;@l):o

peut se calculer comme suit. Soit

oD oD
F, =""#__""4
AT g Vg
posons
08, € _{__i
0q; ¢~ ¢ Xh>
alors
QX oxs 2 0
oq g~ T =l
et
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Formons 5 .
- . C9X
Sqn @21 =0+ %1 3g, =0
avec
0xi _ Oxu .
o dg. = dg; Fui o
1l vient

o%
Onpu iyt 2 5g — Tl ua =0

> 1
{1 = mz“aqj}Xu = (22 F ;) -

C’est une équation de type connu dont la solution est
1

Zlu = +/ du-u ',E}\,F,uﬂ, (qo_f'a:u)
0

compte tenu des conditions citées plus haut. Avec ce résultat, il vient

: 1
o8 e
qu == [@M +Jdu wxy Fyy (g + a:u)]
et " :
Sy =‘E_/ du(m/‘. Ql(%v'}'mv'u))' (41.1)
0

Si, par exemple, F',; = const. ,, = FY,, on trouve

Sy = —*Z%QMF&A Qo2 -
S1 'on introduit S, dans (20.n), on a a résoudre des équations du
type 5

ol Laa v Su="1alq)

dont la solution qui nous convient est

Sp =

EM

1
Soc fdu fn (Qgy+ Ty 1)
0

cette formule générale donne les solutions cherchées:

1
1 8 e\2 a2 ¢
o= — 5 s (%) fdu 0 (21.2)
0
¢ 7 0S8
8 e
Sy = — it du(a—qj, m)/q,,:qu,,-u (21.8)

n—2

o=t fan[ (e ) + E 5 (B )]
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On remarque que les S, dépendent explicitement de s, de x;, de g,
et gy, que d’autre part 05;/0q; et (¢/c) @; ne se manifestent que
par leur différence (e/c) y;. On voit ensuite aisément que

Sn”"(s;&jc)n 1( )lxl ot ]?EINIJJMFMA\

s~ 5 (e )

et 'on utilise cette forme pour discuter de la convergence de la série
(21); on procede de la méme fagon que pour la série (5). Enfin, s1
Pon écrit séparément les deux solutions de (19), on a:

ou

St=—mct@+ S+ + 875 Si~(C2) T (Czl)" (.

n m 0

S== +mec2O+ 8+ +8;; s,;~(+_@_)” Yzl e

On va développer une seconde méthode de calcul de ’action rela-
tiviste, méthode dont nous aurons besoin par la suite, et qui ne
repose pas sur I’hypothése d'un développement de S en puissances
de e, mais qui fait intervenir explicitement le temps propre ¢ comme
variable auxiliaire. On substitue & I’équation

(55— 2 @) +mie> =0
le systéme
= 2mo [2}( = )+mgcz] ~0 (22.1)
%ﬁ- ~ 0. (22.2)

La premiére équation est du type Haminron-Jacosr, avec V =
1/2 myc?, et la seconde exprime la condition qui garantit 1’équi-
valence des deux formes!). Grace a cette substitution, on peut cal-

culer formellement S (q;, ¢y, #), comme on avait calculé S(g,Go,7):

T ¢
S=[Ldt devient S=[d¢ L(®)
/ /
avec

L-Zwr2_ m"; —%(@Aéﬁ,)‘iz"g”?ﬁ ¢

1) (22.2) exprime la conservation de m, dans le passage S — S.
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Les équations du mouvement sont

e 2
C)L T mge F}"u S

avec les conditions initiale et finale
B'=0:803 = qo ¥ =9:0=q.

A P'aide de ces équations et de la définition de S, on établit la con-

dition initiale S(g;, ¢y; 0) comme dans le cas non relativiste, on
trouve:

. o m

lim 4 8(g, 492 0) = 5" Z 4.

—0

On en déduit que

= mg X% . ; vy
S =—5 45— + fonction réeguliere de &.

Cette propriété permet de chercher S sous forme d’une série:
S=3gs,0m (23)
=]

ou les ¢, sont fonction de ¢; et gy, et non de &. On introduit (23)
dans (22.1) et celle-ci devant étre identiquement satisfaite en ¥, on
annule les coefficients des puissances successives de &, ce qui fournit
le systéme:

oy (5 e =0 341

(5t S2—£@;) =0 (24.0)

U (e 20 =8 2w (o 0 %) 24D

e ol L o i B
(5 (5 20 o= (o 2~ £ %)

2w (B 0) @4

On obtient un deuxiéme systéme en remplac¢ant 0/0q; par 0/0q,; et
q» Par 4o;-

Solution. La. condition de régularité imposée & S et la condition
initiale S(# = 0) déterminent univoquement la solution. Seules



136 Ph. Choquard. H.P.A.

interviennent les solutions réguliéres pour z; = 0 des équations
inhomogenes du systéme (24). Avec

4 "
- “mo g. 1 ao‘_]_ s
G—1“7§1w/.: my 04, = &y,

et
-
()Z;' =~ (P, + 25)
le systéme d’équations devient
mg c* 1 A2 o 9 -
{1+a;la }61: o (6) L (25.0)
¢ l= & [085,
{2+$laqilozu moc(()q;;x,{) (252)

dont les solutions sont

oo = S; (voir équation 21.1) (26.0)

Elz_m% 2m0( )jd Z'm (26.1)

Egz—;nec /}udu(a;, Z;t) (26.2)

1 2 "
1 1 i aaﬂﬂ e ) fn —V aav 26.
i;no;j/ d’u ’N 1[(_()5;_'_1_, .-E- v ) 2 ( aq] ? ()Q’i.)]/q ( n)
u

~JouTTu-U

La convergence de la série (26) se discute d’'une maniére analogue
a celle de la série (5). Nous avons jusqu’ici fait abstraction de I’équa-
tion (22.2) qui nous assure de ’équivalence des deux formes. En
fait, ’action habituelle S(q;, q,;) s’obtiendra en éliminant ¢ entre

S et la condition OS/O@ 0. Remarquons que, mis & part I’exemple
que nous donnerons ci-dessous, la possibilité de cette élimination
est toute théorique; elle n’est en général pas possible d’une fagon
exacte.
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Exemple: Considérons le cas de la particule libre:

S mys? _ myc?
s 29 2 9
09 2 92 2

d’ott
9= @2 s Pr-— 1 0

c

introduit dans S, il vient

= 22 2
S:_m[,c@ myC

TG T3 ()0 = F myc2 @ =8+

Cet exemple nous apprend qu’a ¢ > 0 correspond une énergie posi-
tive et & ¥ < 0 une énergie négative,

Pour traiter les problémes relativistes, on a donc les deux mé-
thodes:

S=3'S, S, ~e*  donnée par (21.n) (16)
0

S=356, 9, o, donnée par (26.n) . (28)
—1

Ces calculs des actions relativistes ont pour but d’une part de pré-
parer I'approche semi-classique des noyaux relativistes et d’autre
part de compléter 'analyse des systémes donnés avec les variables
(4,1 Gos ty)s ce choix de variables étant quelque peu inhabituel en
mécanique ordinaire.

1V.2. Généralisation de la construction des noyauz.

Cas des coordonnées curvilignes. Tout au long de ce travail nous
avons utilisé la métrique cartésienne. Cette restriction doit étre
levée ici. Soit || g;.(q) || le tenseur symétrique d’'une métrique don-
née, dans laquelle nous supposerons que ds?= g;,dq;dq; est une
forme définie positive. Nous supposons en outre que les masses sont
déja distribuées sur les g, et adoptons par la suite la convention
d’EINsTEIN, relative aux sommations.

Soit g% = G/g, G,y est le sous-déterminant de g = dét. || g ||
on a la propriété g¢*-g,, = 6. Dans ce cas ’équation d’HaMILTON-
JACOBI 8’écrit

o8 1 o o8
3?+§”m@”ﬂf*”:0=5?+ﬂo
avec 59 )
foy = +4;, Hy= 7, g% m + V.

0q;
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En posant ¢ = /¢, ’hamiltonien de I'équation de SCHROEDINGER

o0
(@*5’;"+H) = 0
devient
3 Hmzigﬂi'g.gtk.ﬂk—}_v
avec
T, = f + 4.
o

Dans cette représentation, la normalisation est donnée par

fg d¥ q v* v = const.

En vue d’obtenir pour le noyau K, une formule générale, indépen-
dante de la métrique, il convient d’introduire une nouvelle fonction
p, soit R _

¥ =)oy
telle que i
' / p*ypdY q = const.

et que
= [a¥g, K(1,0,7) %(0).

Dans cette nouvelle représentation, ’équation de SCHROEDINGER
est

fio 0 -~ . e — 1
(; o +H)'q)——0 o H—|oH
1 0 [ ,.0/F
H H T 2 Ve 0g; (g’” ‘)Qk) (27)

avec 1
HU - zglkﬂk+ V

K satistait cette méme équatmn; on en cherche 'approximation

semi-classique par 'essai

S
c=c*')D eﬁ

que l'on mtroduit dans I’ equatlon précédente; 1l vient:

(3 B (22 )« 53+ ]+

24| D ot " Dc)

5 ([ e (0 32) - (gk%y;)”K

Le coefficient de h°, équation d’Haminrox-Jacozrr, est nul; le coeffi-
cient de k! posé égal a 0 fournit I’équation suivante pour la densité

D: aD
dT ()qi

(Dg'*m) =0,
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o n'intervient pas explicitement dans cette équation; I'influence de
o se trouve déplacée en des termes proportionnels & h? et c’est ce
qui fait I'intérét de cette représentation. On va montrer que cette
équation est satisfaite avec

- [0 o

r)qmaqo; 04,090, "V
En effet, partons de

gf + 5 g(q)((;)qS +Ai) (%-%Ak) +V(g) =

dérivons par rapport a g,

d 08 1 028 /28 28 1
AT dqy; 29@[690901(0qk+A")+(0q_z+A) ] 0,

avee ¢, = Jr; 11 vient

o oS 028
b (254 ) 28,
X3 ()9’05 g 0g; ) 04040,
dérivons maintenant par rapport a q,,
0 0*8 / 0 m(‘)S )\_jL
57 92,00 g, I o, T Sq.0m,
08
it A) xR
9 (qu ) 400000,
en posant
2
il vient T 01

e (2 ) g

Multiplions par S™, sommons sur [, puls sur m; avec S™ Sy, = 0}’
on a ‘

. ; S
» :
enfin, par définition
oD 08
—~— =D Stm —tm
ou ou
done
19D . 2 1 3D
D or T oag WEm) Hgt A 5 =0
oD
o7 T aqz (Dg*me) = 0.

On a donc formellement pour toute métrique la méme définition de
K, mais les termes proportionnels & k2, que ’on néglige dans I’'appro-
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ximation semi-classique, dépendent de cette métrique et ne prennent
pas la forme A4 |/.-./)/---; d’autre part les fonctions d’onde de cette

représentation sont les ¢ et I’hamiltonien est H.

Inversement, on peut conserver la représentation habituelle dans
laquelle

/ﬂy)* pod” q = const.
mais alors définir un nouveau noyau K tel que

w(1) = [ 0(0) @ gy R(1,0) p(0).
Avec Dessal '
K, =c)D exp %S

itroduit dans I’équation de SCHROEDINGER, on trouve

B0 58 g1 oD . 1 0, g
{TWﬂLH}Rc:{(_a?JFHO)-FW[ s & (g™ Do) | +

5 or T oD g,
1 (h\2 4D : _ 1 o i O
+5(7) VD }“ﬂ ou A=oned 5y

Le coefficient de h' a pour solution

_ Pl de 7).
e(q) e (g)

R =[o0(q) o{qn)] ™ K,. (28)

Dans les deux cas, la métrique étant donnée, on peut construire les
noyaux a partir de l'action S. Pour calculer celle-ci, on fait un
développement analogue a la série (5) ou (16), mais la donnée expli-
cite des o, n’est possible qu’en spécialisant les g;;. Enfin, on adap-
tera la constante de normalisation & la métrique en question.

done

Cas non relatinste de particules douées de spin. Avec le spin on
mtroduit une nouvelle variable: §. Si 'on considérait celle-ci au
méme titre que les coordonnées de position ¢ et ¢,, on devrait établir
I’équation du mouvement du vecteur s en se donnant sa position
initiale et finale, ¢’est-a-dire a t = 0 et t = 7. Ce serait considérer s
comme une grandeur classique de longueur constante et de direction
continfiment variable. Cette maniére de voir n’est évidemment pas
adéquate. Il faut laisser au spin son sens quantique et utiliser la
représentation matricielle. Soit ¢ la fonction d’onde d’une particule
de spin s; elle est donnée par une matrice & une colonne et 25 + 1
lignes de composantes w,. Soit a; (v = 1, 2, 3) les matrices du spin
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s & 2s + 1 lignes et colonnes; on choisira les fonctions propres v
telles que dans cette représentation o4 et o 2soient des matrices dia-
gonales. y satisfait I’équation de SCHROEDINGER

o 1 (= e \2

?

Y ﬁ)}ip —0. (29)

2mec

Il existe un noyau K, matrice de transformation, qui fournit la solu-
tion yy (¢, t) correspondant & toute fonction initiale donnée:

Yu (1) =de Qo K1y @)’ t, Qo to) 9 (To» to) -

Ce noyau est aussi solution de 1’équation (29): c’est la solution de
I’équation de SchroEpiNGER qui pour ¢ — i, tend vers 6(¢ —¢,) -1
(I = matrice unité)

K,uv (67 tos 60’ to) = 5(6—50) ) ‘3;,“; . (30)

Par analogie avec les cas sans spin traités précédemment, on peut
chercher & construire un noyau K, approximation semi-classique
de K (semi-classique au sens: négligence des termes ~ %2) par Iessal

K, = R exp %S

ou maintenant R est une matrice. Introduisons cet essail dans ’équa-
tion (29), il vient en posant @ = —efc 4,

5 B — {5+ e w
ot HE =38y L VK, 4
B (OR (7 OR 1 0% jo_ Is 2> %
+ 7o * b or ) F omar Bz (9 H) Ble® #

i
1 (k\2 %Y
+ g () AR)-e
Le coefficient de % contient un nouveau terme dit au spin. Il est in-
diqué de scinder R en un produit de deux facteurs

R=(—2nik)2)D-Q

ol D est un scalére et () une matrice; ce coefficient annulé devient
alors:
1 (OD 1

3 o — (30  F 0Q ie ,+ o
275 (or * o7 @D) Q+VD (G + 5 o7 ~ 3me (@ H)Q) =0.

m 0¢ 2mc

On a ainsi séparé les termes responsables du spin des termes habi-
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tuels et 'on exige que les deux (...) s’annulent séparément. On
a pour D la solution connue et ) satisfait 1’équation

d 7 0Q  de ~ o
o @ W oy T Eme (0 H)@ =0

qui est identique &
et en composantes
d 1€ > o
@t Qo= ge (0 H) @1, =0.
Etant donnée la condition initiale (équation 30)

Q‘uy (t = t()) - 6‘u,v

on a le droit d’écrire la solution formellement comme suit:

. t
) = exp {2;‘; (E] H(qt), t') dt’)}-I

ot I est la matrice-unité. On peut mettre ce résultat sous la forme
rationnelle plus pratique
(G [Hdt)

4
€ r .r!‘ 3 L [
— I-cos (52— |} 46 S sin (&
Q= Ircos (g, [HA)) e sin (2

[Har). (31)
Calculons explicitement la phase
t

¢ =y [ (G HW))dr

- 2mec
to

par exemple pour des champs H = ﬁ(q); @, satisfait I'équation

supposons @, développée en puissances de

—

o (6,90,1)=@Lpr+...@ﬁprn;

137

en introduisant ce développement et la définition de

[V

- S e 7 m¥ e — doy | < . "
_ _ B R TR i) I B 1 uation 15
=S — = e + Xt T s (voir équation 15)
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dans ’équation précédente et en annulant les coefficients des 7%, on
est conduit a écrire le systéme

— () — i
; 1
[ A_a_} 2 € e a@uv)
12+$ 0q gpl“’__ me ("{’ 0q
AT ¢ [ 0O, 1\_”“ 1(()% acpg;l)
2 o —— (7. 25 -2k (3 ).

Solution. On a D,,(q, g, 0) =0 et @, est une fonction régulicre,
d’ott 'on conclut que seules les solutions réguliéres pour ¢ = ¢, du
systéme inhomogene ci-dessus interviennent. Il vient

W =fdu (Emﬁ@o e E-u))

=H——/duu(x a% )+49 (32)
lq=qo+xz-u
]
1 - ()@’fyl = (() aqujv
—w%—/duu” [( x> ’_, Zl T
la=t+2z-U

On a donc pour le noyau cherché la formule

—~1

M’ [2
K, = 2nh l/d ’5()%@?: eXp-lfS} (Icos|®|+@ Ism[@|) (33)

Dans le cas particulier d'un champ magnétostatique homogeéne
H=0,0,H (voir exemple page 92), w =eH/2 me, le noyau K, est le
noyau exact K:

K,=K=-"2__ exp -{—i S} (I cos w7 + 103 sIn @7) .

2n1hsino T h

Quant & la détermination de 7, celle-ci n’est pas aussi aisée que
dans les cas précédents, ot seules des grandeurs scaléres inter-
viennent. I étant une matrice ¢/D (), @) =¢'®, on peut formellement
traiter ce cas en remplacant 7, par 7, €!* o « est une phase-matrice.
S’intéressant & la valeur absolue qui physiquement nous intéresse,
on retrouve pour 7, la formule connue.

Cas relativistes de particules doudes de spin 1/2 et 0. Considérons
le cas d’une particule de charge e et spin 1/2 dans un champs électro-
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magnétique D, (4 = 1..4). Soient p, (v = 1..4) les composantes de
sa fonction d’onde et o, B les matrices de Dirac. Posons:
@ = (@ ic)=1 gy, =(gopict)=0 @Dy=iPy 7 =1in,

I ___72_0__ E@ I MEL_E
o icot ¢ 9 AT g c A

p satisfait 1’équation de Dirac
(— 7w+ (2, 71) + fmc) p = 0. (34)
On s’intéresse a la matrice
(g, t] K1 g to)

qui permet de résoudre le probléme des conditions initiales (w,(0)
données)

) = [ @ g0 R, (1.0) 9, (0) . (35)

R est la solution de I’équation de Dirac (34) qui satisfait a la con-
dition 1nitiale

t - tO R”v (6’ tO! 60’ tO) — 63 (Zi - 60) 6;“; £ (36)

La connaissance de cette matrice dans le cas de champs quelconques
est I’objet central de notre recherche. Conformément a la méthode
d’approche semi-classique, on pourrait faire I’essai

i
R,,(1,0) =%, (1,0) exp - S(1,0)

et traiter le probléme comme il I’a été dans le cas des composantes
p,1). Etant données les complications dues au nombre des compo-
santes K, (4 X 4), il n’est pas indiqué de suivre cette vore. On
peut poser:

p(1) ={+ 7+ (o, ) + me B} P(1); (37)

¥ (1) satisfait alors ’équation du second ordre
{nj+mﬁ(;2 «JjM} Y1) =A(1) P(1) =0 (38)

. M= ((¢',H) +i(o, E)) avec ¢ = (E 0) , o= (O 6)

00 G 0

o; (v =1, 2, 3) étant les matrices de PavLr. ¥ est une matrice uni-

1) Voir W. PavLr, Helv. Phys. Acta 5, 179 (1932).



Vol. 28, 1955. Traitement semi-classique des forces générales. 145

colonne & deux composantes. Pour déterminer v (1), il suffit de
trouver la solution ¥ de (38) satisfaisant aux conditions initiales

Yo =p(0) pourt=t,. (39)
On peut mettre cette solution cherchée sous la forme
(1) = [ gy K (1,0) ¥o(0); (40)

le noyau K(1,0) est la solution de 1’équation du second ordre (38)
qui satisfait aux conditions initiales

ANK@L0)=0; E=0 S5 =0%G—q,) pourt=t, (41)

La matrice cherchée & est donnée par

K(L0) = — {4 my (1) — (4,7 (1) +meBYK(1,0).  (42)

En effet, appliquons 'opérateur {m, + («7) + me B} par la gauche
a I’équation (40), il vient

{70+ (4, %) +me BYP(1) —fd3q0{710 +(@,7) +meBYE (1,0) ¥(0) =

= (1) = [ dqy(ary+ 57 +mef) E(1,0)— 5 - p(0) =

— [ @ g0 R(1,0) w(0);

et les conditions initiales (41) et (36) coincident:

0K

t=ty R=0%G —Go)- T == (7, + (a,7%) + mcB) K =57

= s <11 FPp
[’intérét se concentre donc sur la connaissance du noyau K(1,0),
d’out 'on peut tout dériver. Il est en général une matrice & deux
lignes et deux colonnes. Dans le cas particulier ot les champs @;
sont nuls, on connait la solution exacte.

(pi+m2ct) K =0 — ([J;—=?) K(1,0) =0
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(C’est, au signe pres, la fonction 4 connue en théorie des champs:
K = —A-1 (I, matrice unité);

K= (-— Zy%; Ji(x u) - e(u?) +

P (u2)) 1 (48)

2mc

ou
(1 uz>0 .

e(u?) = 1put=0; ul=—st=— 325 =c20?
0 %<0 Ly = 43—, !

et dans ce cas

ﬁ={%—c(&’,~5"?)—%mcﬁ}fxﬁ.

Nous aurons besoin par la suite de la forme asymptotique de (43);
pour x% > 1 on a:

B s ; ;nhu ]/2 nlx . [(_,é):s/z e~ inu 4 ({32 gtinu 4 (;{_1_7;)]2
=K. +K,. (43),.
Dans le cas général, la solution peut s’exprimer sous la forme
K(1,0) = K;,(1,0) e(u?) + Ky 6 (u?) (44)

o K, et K, sont des fonctions continues, K;(1,0) étant appelée la
fonction de Riemanx de I’équation différentielle (38). Exprimons
que K est solution de (38); avec

Oe(u?)=—4d0w?) w2 =0
on a
A(1) K(1,0) = (A1) Ky(1,0)) e+ (A(1) K, +4 53R + 1)K, )6 —
—4 K2R K, 6’ =0 (45)
ou 'on a posé
Q= (-’Ez 5%; + e & @ﬁ,) :

Cette équation est satisfaite si ['on pose

A1) K;(1,0) =0 (46.1)
A(l) K,(1,0) +4 72 (2 +1) K;, =0 pour u? =0 (46.2)
QK,=0 (46.3)

ou (46.2) n’est nécessairement nulle que sur le cone caractéristique
u? = 0. Il est aisé de résoudre (46.3), posons

1l vient
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étant donné que K, = const. = 1/2 7w ¢ s1 @; = 0, on a univoquement
1
I
B == ?U/ du (ml, D, (g0, + T,° u)) .
0

Reportons-nous au calcul de ’action S relativiste, on remarque que
a = Sp, donné par ’équation (21.1); en effet, on avait (page 133)

; o8 08
(20 5g — ¢ P) =00 =+ @it ) Si= [du(a, &)

ainsl i
1 =

K,(1,0) = 5_——e" . (47.3)
Si Pon introduit (47.3) dans (46.2), on peut déterminer K,, mais
seulement sur le cOne caractéristique u?= —2,(q;— qo,)2=0. Le
probléme consiste maintenant & déterminer la fonction de RreMANN
K, (1,0) solution de (46.1). On ne connait évidemment pas la solu-
tion exacte dans le cas général de champs quelconques. On va déve-
lopper deux méthodes d’approche semi-classique de ce noyau, I'une
directe et 'autre indirecte, et préciser dans quel domaine de leurs
arguments ces approximations sont utilisables.

Pour la méthode indirecte, on utilisera la représentation en fone-
tion du temps propre due & M. Fock!).

Cet auteur part de ’équation du second ordre

A(1)-¥(1) =0 (38)
et pose la solution ¥ (1) sous la forme de I'intégrale
Y1) = [d9W(1, ) (48)
‘C

ou ¥ est une variable auxiliaire, C un chemin d’intégration qui dé-
pend de la solution désirée. I.’équation (38) sera satisfaite s1 ¥ (1,0)
satisfait ’équation

) 1
— =g te =g At (49)
et si le chemin d’intégration est choisi de telle sorte que la condition
() )'Il 7 r
7)7,5“?(1):0:/(3; d¥ =¥y ;¢ (49)

&

soit remplie. Comme on le verra plus loin, la variable # joue le role
du temps propre et ’équation (49) est appelée I'équation de Dirac

1) V. Fock, Physikalische Zeitschrift der Sowjetunion 12, 404 (1937).
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avec le temps propre. (48) est valable pour toute solution de (38),
donc aussi pour la fonction de Rieman~ K (1,0). M. Fock pose done

K,(1,0) ~fKF(1,o,a) a9
C

et montre, en se basant sur des recherches de HHapamarp?), qu’en
choisissant pour Ky la solution dite solution élémentaire de 1’équa-
tion (49), la fonction de Riemanx K, est donnée en prenant comme
chemin d’intégration C un petit cercle entourant ’origine du plan
de ¥ complexe; soit

K,(1,0) = _cﬁ K,(1,0,9) d9. (50)

[’auteur traite explicitement le cas d’une particule libre (@3 = 0),
donne la solution exacte de Ky dans le cas de forces constantes,
mais restreint 1’étude du cas général au comportement de Ky et
K, sur le cone caractéristique.

En nous basant sur I’équation (50) qui permet de calculer K,
avec l’équation (49) et la définition de Ky, on va chercher, confor-
mément & 'approche semi-classique de M. FEYNMAN, une approxi-
mation K., de Ky sous la forme

K, (1,0 4) = R(1,0, #) exp - S(1,0, 9).

Introduisons cet essai dans (49), il vient

oD 1 jo8 1
LR 1 om OR 5
i 109 " 2m, Oq - B &y “z'z'}'q'{"c“ MR} +
B2 L3 3
= (T) W‘ﬂ DR el (‘)1)

Le coefficient de h® annulé est précisément 1’équation de l'action
relativiste dans la représentation en fonction du temps propre (p.134
et suiv.) dont la solution qui nous convient est donnée par le systéme
(26). La condition (22.2) se traduit dans la définition de K par la
condition (49°). Le coefficient de h annulé donne I’équation

oR 1

OR, 1

0
me X o, T Tmy

2m, Oql R_M

*_iMR-0, (52)

que 'on va résoudre. Ce qui suit est formellement analogue a ce qui

1) J. HapaMARD, Le probléeme de Cauchy et les équations aux dérivées par-
tielles linéaires hyperboliques. Paris, Hermann, 1932.
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a été fait dans le cas non relativiste d’une particule douée de spin.
On pose

D == 1
R=C-VD.Q, R T T3
ce qui donne B
1 (oD | 1 3
ET (W* o D)) Q

[«%2
ep}@l

+ VD( - | (())j, 2mc WQ)

et I'on exige que chaque (..) s’annule séparément, pour la méme
raison que dans le cas susdit. La solution de la premiére est donnée
par I’équation connue -
~ 5 028 !

D=dét.| 25 |

| 09,040y |

Quant a la seconde, on peut écrire formellement,
9

i——— '™
259~ g MQ =0 Q="

En imaginant la phase développée en une série de puissances de 9,
on peut calculer les coefficients de 9" par la méthode habituelle:

@ — -
— e i . . 0D 1 0P e
b =5, | M) do 08 T T g = 2me
V]
on pose
o0
o-3 o,
U
et avec
oS8 e _ mua; e — 03,
I Tl T Sy P ok

’ 0 ) N 0P, , 1 (c)o‘,, a@n_,,)
(n+ (225,)) @0 = %:E%ATqT“EZ 5" gy )
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dont les solutions sont, en tenant compte de la condition de régu-
larité:

®, = |+ ;%) (53.1)
d >G
A — & ” 1 -
Do =" 1 U/Odu " (/Cl 54 )/Q;LEQU1+x]_u (53.2)
1 ; d
D 7n—1 gy n_v ol
@, ——EO duw u [ v Oq,l ;’v(dq; 3q; ) . (53.n)
Evaluons encore le déterminant D. En posant
qQ_Q ar = m, 82 My, 2
S:SDIMS ? Sp.l.: 20@ - % 9
G Mg N1 = gn g O
¥ b ;nﬁnﬁ " 8 0¢; 04y,
on a
ERS Y TS LA
ﬁ l Lkl ™k Ski S i
(%) [S“:?, S:k S;l} 1o ro B
#\3 I eyr ’ r &4 S . -S ma\ 4
+ () 2|85 S S+ (5) | G2 G = () e+ 2 F -
okt g QS m ) 1Sy Sy
R R Py b (54)
On a ainsi construit 'approximation cherchée
. 1 771/2 T = . = -
Kp..= 2moch(2n@')2D SR {ESJF’”@}: (55)

ot S, D, @ sont donnés par les équations (26), (54) et (53). Remar-
quons que @ est complexe

9 2
- [(E’,/ﬁdﬁ’)+i(§,]dﬁ’ﬁ)]@1+i@2
0 0

et que I'on peut exprimer =1I-exp i @ = [-exp i @, exp — D,
sous forme rationnelle

D =

Q= {cos 1By T+i-21 sin @11}{1- Chy— 22 Sh|52|},
| @ | | @, |
cette maniere d’écrire étant plus adéquate que la maniére symbo-
lique de (54). Il faut encore déterminer la limite &, de & au-dessous
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de laquelle Kj., est une bonne approximation de Ky exact. Il est
commode d’adopter textuellement les mémes conventions que dans
le cas non relativiste et de poser la condition ainsi

2n, D
1l vient alors
2m ~
Oy =" A2 (56)
avec
/ ‘ST . 1
A= V 5 o ¢t S =fd% 13 D;(qo, + ,u) -
D'(I)Qz ’ aqoa)so 0
Dans le cas particulier de forces homogeénes: F,, = const.,,, 4= oo,

? n’est pas limité supérieurement; ¢’est le seul cas avec celul d’une
particule libre ou I’on peut exprimer S donc aussi K sous forme
finie. Dans le cas général, 9, est bien une mesure de I'inhomogénéité
des forces. Revenons & ’équation (50). En y substituant K., de
(55) & Ky et en intégrant sur 9, on pourra déterminer I’approxima-
tion correspondante de K,, c’est-a-dire exacte jusqu’aux termes
en h%; puis on formera celle de K avec 1’équation (44) et enfin celle
de K avec I'équation (42). Cette méthode est féconde, elle posséde
I'avantage d’étre valable pour des arguments de K(1,0), situés
jusque sur le cone caractéristique u? = 0.

On va développer une seconde méthode qui aura I’avantage d’étre
plus directe que la précédente, mais qui ne sera pas applicable pour
des arguments se situant sur le cone caractéristique. On part de
I'équation

A1) K;(1,0) =0 (36.1)
ou, répétons-le, K, est une fonction continue possédant une singu-
larité non essentielle au point 1 = 0, et I’on cherche son approxi-
mation semi-classique directement par 1’essai

Ky,(1,0) = R exp— S(1,0).
Introduisons cet essai dans (36.1), il vient
A K, (1,0) ={(nﬁ+mgc2) Ko+

i OR  0my .2 -%-3(1,0) — %b} (57)
t 2yt om B—it MRB|eh 4 (7 OR- ¢* .

Le coefficient de h° annulé est I’équation (19) de ’action relativiste,
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dont les solutions qui nous conviennent sont précisément les actions
S+ et S~ données par les équations (21), _. On va mettre 'appro-
ximation K, sous la forme

ch = C+ Krc + O_ ch

ott les constantes C+ et ('~ seront déterminées plus bas en traitant
un cas particulier, de facon & ce que K, soit bien I'approximation
de la fonction de Riemann K;. Pour alléger I’écriture, on va conti-
nuer les calculs avec ’essal général sans indice en nous réservant le
droit de spécifier au moment voulu les deux solutions fondamentales.
Pour résoudre ’équation obtenue en annulant le coefficient de h, 1l

convient de poser -
R e ]/D * Q ’

le premier terme étant unscalaire et le second une matrice respon-
sable des termes provenant du spin; il vient alors:

(@, D)) Q42D (3L~ LiMq) =0 (58)

et 'on exige que les deux (..) s’annulent séparément, soit:

0 '
(7, D) =0 (58)

() . | - rr
ﬂlf(‘)—g;—'l"‘jgc*‘ MQ — 0. (08)

Résolvons la premiére. Nous n’avons pas trouvé pour D de solution
analogue a celle de vax Hovg; toutefois, S étant connue sous forme
d’une série de puissances de e, 1l convient de supposer un tel déve-
loppement pour D, ce qui nous permettra de résoudre (58)" par ré-
currence. Posons

D:ZD“ D, ~ e,

avec
oo
S=358 m-Xw m~e
0

formons le produit (7, D) en groupant les termes de méme puissance
en e; 1l vient

4 0 - B
o \E AR EDT]) = gor (2 » D) =1



Vol. 28, 1955. Traitement semi-classique des forces générales. 153

Cette équation devant étre identiquement satisfaite par rapport
a e, on est conduit a écrire le systéme:

0
0q;

o
04;

0 B f \
o (:n:;’ D,) =— s (Z?J 7, D, ——v) ,

1

0
(”g Dy) =0 (WE Dy) =T o0 (5’5}1 D)

que l'on peut résoudre par récurrence. La premiére équation est
celle que I'on obtient dans le cas d’une particule libre; D, doit
étre fonction de 'invariant s. Avec

0o_ 0 . x; _ x -
=S Sozi@moc?’:smoc?, e= +1
1l vient
() x; o 1 ~
_()_E (8_ DO) = 0 —_ DU = F—. (09.0)
Dans le cas susdit D; = ..= D, = .. = 0; dans le cas général, les

D,, répondent de la perturbation due aux champs extérieurs; si 'on
écrit
D '
D = XD, =Dy(1+Z4)=Dy'D
0

D’ doit étre une fonction réguliere de x. Dans ces conditions on peut
alsément intégrer les D,. On a:

0 mye 1 d
by = et L on) _y,
d’ou
1
;s 3
Dn— gmocfdu‘u’ yn (u)9
1]
alnsi
9 1 5
- _ (ox ‘
Dl N & my ¢ s* /du ¢ (DQZ )/Q='In~:-:c-u (59'1)
et 7
_ . () )
—_ s 317 7 ~
D, = Emocofdu u [aql (12'1,331 Dn#y)J/q=qo+x-u. (59.n)

Pour discuter la convergence de la série obtenue, on utilise 'ex-
pression o
. - D \ H,iE
s=1¢c0 e=-+1; D”~(ie®F)n ol Fm( ’ )

-
0 my ¢ 1 B, H
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et I’on est ramené a un cas connu avec la différence que

a pris la place de 7. Quant & I’équation (58)" pour la matrice ), 1l
vient en posant formellement ¢) = exp 1 ¢(1,0)

DY e . (=)op e —0-
75-“—"—:——6* :"I(Q) = 0 et J'C}w—()—q)‘o —?M(qo) = O,
®(1,0) est une fonction réguliere et ¢(0,0) = 0. Ces conditions déter-
minent univoquement la solution que l'on imagine développée en
une série de puissances de e

=2 ¢n Pn ~ €.
1

Introduisons ce développement et celui de =z; dans I'équation ci-
dessus; en annulant les termes de méme puissance de e, on obtient
le systéme

0q;  2e¢
ZOpy 1 O
eMy €5 gt =— T
em C_:{Ci ()_Q’Jnu — _21 j'glp a(pni
= 0 S ()q}' - v Vi ()qjh

Les conditions prescrites excluant les solutions du systéme homo-
géne (singuliéres pour x; = 0) on a les solutions:

Pr= e [ A M) = £ 50 (o f H{w)du)+i(3 [ i du) | (60.1)
U 0

Py == éﬁm}-)‘—-_/du Ty ) 0 (60.2)
" % n 1
S / ,()r__ —L-G@Iﬂ_[t"
Pp=——— du{ , T =2 ] | | ~ (_**) (60.n)
emocd - A dq; igomiy Aol n 2my0e

De I'équation (36.1), nous avons donc les deux solutions indépen-
dantes semi-classiques, c’est-a-dire exactes jusqu’aux termes en
i non-compris: |

K, =)D exp ( S++ MD+) K . .=)/D exp (7;_ S“%icp—) (61)

L
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ou les actions S+, S (correspondant aux énergies + et —), les den-
sités D*, D, et les phases dues au spin ¢+, ¢, sont données respec-
tivement par les systémes d’équations (21), (59) et (61) ot1 'on pose
¢ = + 1, — 1. Remarquons que la phase ¢ est complexe

p=pitigy @1=e:(@ H) 0=, E)

ol @, est linéaire en o’ et ne contient qu’elle, et g, linéaire en « et ne
contient que cette matrice; on peut mettre la matrice () = exp g
sous la forme plus adéquate:

Q={GOSI%I'I+%’ ,Zﬁl sin I%l} {Uhl%l'l— @21 Shl%l}-

L’approximation semi-classique & la fonction de RiEmaN~ est don-
née par
_ + - K-
Kl-cﬁ c+ Kl-c + C Kl-c

ou les constantes d’intégration sont encore & déterminer, ce qu'on
va faire dans ce qui suit. La question fondamentale qui se pose
maintenant est: dans quel intervalle de temps @ les approximations
(61) sont-elles utilisables?

Un premier test nous est fourni par le cas d’une particule libre
ol, au contraire du cas non relativiste, Kt~ n’est pas la solution
N le
exacte K;"~. (61) donne:

1 3/2 i 5
) exp + — My ¢? @

+ _ {1 32 0 5 R et
Klo=(e) ep—3mct® Ki.=(5g
et pour juger de la validité de 'approximation, on peut utiliser le
critére suivant: il faut que le terme en h? de (57)

5 CIB . 9.5 1 grR 3 1 3
B <mie’;, B=—p 5 =—% ="t iee
R
mg c2

3 h?
-4—?2—@?<m302 —> @>

—0y, 0> i =—  (62)

O est donc limité inférieurement! On obtient plus vite le méme ré-
sultat en comparant K au développement de K exact:

_ ___m 1 N3/2 —inu | (7\3/2 ptin 1
Kas—Klas_ 4:’cﬁu]/2nxu[(—rb) € —{_(?’) e u+0(ﬁ)] (43as)
qui est valable pour

xu>1 - 0> h u=cO.

2
My €
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Cette comparaison nous permet de fixer les constantes d’'intégration
C+ et C—; on trouve

C+:_(mﬁ )1/2 C_:i(ﬂ)lﬂ.

8¢ 8adc
Enfin, d’apres la définition de K
K(1,0) = K,(1,0) e(u? + Ky(1,0) 6(u?) = K; pour u >0  (44)
on a donc 'approximation sous forme définitive

m i _ . isttier o Ly .
KC:ch:—(i)”zlwwﬁ L iyD-eh w}. (63)

8ate

Il nous reste a déterminer la limite @, de @ au-dessous de laquelle
Papproximation (63) est une bonne approximation du noyau exact
K. On cherche a formuler un critére qui fournisse un résultat sous
une forme invariante. On est naturellement conduit a utiliser la
formule (56) donnant la Limite ¢, et & introduire @ en exprimant
# =9(0) au moyen de I'équation (22.2) 0S/0¢ =0, ou bien de la

définition
B i |/1 L 'S
Oj 3

Désirant établir une régle valable en ordre de grandeur, on se con-
tentera de la premiére approximation qui donne ¢ =~ 6. La for-
mule (63) est donc utilisable dans 'intervalle

R 2

oy SN ]
mocz=@0<@:]/‘52——z7<91%191——— o 2, (64)

Nous avons traité jusqu’ici le cas des particules douées de spin 1/,.
Traitons briévement le cas du spin 0. M étant nul, il suffit de sup-
primer dans toutes les formules dérivées la matrice ¢ ou Q. On a

en particulier:
KL = - |/ D" exp (% §) (55);

F-¢c ™ 2mych(2mi)

8#a%¢

. J ( mh )1f2 [VDJF exp (%— S+) —1)/D- exp (% S“)] (63);

et la formule (56) donnant &, demeure inchangée.

En résumé, on emploiera la premiére méthode, qui utilise la re-
présentation en fonction du temps propre, pour des valeurs
de @ plus petites ou de 'ordre de 6,; et la seconde méthode pour
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des valeurs de O satisfaisant la régle (64). Notons que 1’existence
méme d’un intervalle implique:

h 2
-WZQO{ <@1:

my 2
= 4
ou bien
2 2 2 A
[ AT o g d . @ d
7t Ao Ao
ce qu’on peut interpréter, en disant que la variation des forces, me-
surée par 4, doit étre faible sur une distance de I'ordre de 4, lon-
gueur d’onde de Compton; cette condition fixe donc une limite
supérieure a 'inhomogénéité des forces, limite au-dessus de laquelle
I’emplol des noyaux semi-classiques n’a pas de sens.

Si I'on passe déductivement aux cas non relativistes

im Gy =0 <LlImO=17 <"}
on retrouve la formule (12) et dans ces cas, il n’y a qu'une méthode
que nous avons développée en détail dans ce travail.

Conclusion.

Le théoréme démontré sous III attribuant & K9 seul un roéle pré-
dominant, ce noyau donné dans les cas les plus variés par les équa-
tions (1', 28, 83, 55, 63, 55.1, 63.1) est I'instrument d’'une méthode
générale de traitement des phénoménes non stationnaires, méthode
applicable dans le cadre fixé par les régles (12), (56) et (64).

Remerciements.

Que notre maitre Monsieur Paurr, Professeur, veuille trouver ici
Pexpression de notre vive gratitude pour l'intérét constant qu'’il
a manifesté pour ce travail et pour les discussions fréquentes dont
il nous a fait bénificier. Nos remerciements s’adressent également
a Monsieur A. MEroIER, Professeur, pour sa généreuse bienveillance
et & MM. Dr Scmarrorn et D* TurrLnune pour leur dévouement
et leurs suggestions fructueuses. Enfin nous remercions le Battelle
Memorial Institute pour l'aide apportée & la publication de ce
travail.



	Traitement semi-classique des forces générales dans la représentation de Feynman

