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The Contribution of Non-Static Forces to the Binding-Energy
of the Deuteron

by Frans Cerulus, Basel*).
(20. XII. 1954.)

Summary: The Bethe-Salpeter equation for the bound states of a neutron and
a proton, having a scalar interaction with a charged meson-field, is set up. Keeping
the binding energy fixed the eigenvalue for the coupling constant g is determined,
taking into account the g2 and the g* terms in the equation. This is done by means
of a perturbation method, starting from the static approximation, and showing
that the non-static forces contribute an important part to the binding. For a
2,18 Mev binding energy there results g% = 0,54 g2 where g, is the value obtained
from the static approximation.

In‘troduction.

The equation for a function describing bound states in a relativ-
istically invariant way, was first given by Berar and SALPETER?),
and derived from field-theory by Grru-Max and Low?). (We shall
henceforth call it B.-3. equation.) Unfortunately it is hitherto known
explicitly in the form of an expansion of doubtful convergence only.
An investigation of the first term of this expansion, however, shows
1t to yield the static approximation as we known 1t from classical
meson-theory?), provided possible retardation effects are disregard-
ed. This fact might give us some confidence in the validity of the
expansion, as the static approximation has some, at least qualita-
tively, desirable features. At the same time, 1t gives us the oppor-
tunity of carrying out a quantitative comparison between the
results from the static approximation and those from a more refined
theory to which the former is only a first approximation.

In view of the mathematical intricacies of the problem, it is un-
avoidable to start from a particular model of a bound state in order
to do any actual calculations.

*) Present address: Natuurkundig Laboratorium der Universiteit, Rosier 6,
Gent (Belgium). ‘
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Results will consequently have only a broader significance than
that of corrolaries from some mathematical assumptions if they
are derived from physically meaningful features of the model. It
might be noted that, as the mathematics of the B.-S. eq. are not
altogether clear, such corrolaries do have some interest. We will,
however, attach ourselves to the physical aspects of the theory, and
make fully use of arguments from physics in the course of our cal-
culations.

As a model we take a deuteron-like structure consisting of a neu-
tron and a proton having a scalar, symmetrically charged inter-
action with a meson-field. We will compare the value of the cou-
pling constant for a given binding energy, as derived from the first
two terms of the expansion of the B.-S. eq., with the value derived
from the static approximation. |

Similar investigations have been published by Lrvy%) and
WENTZEL®) for the scalar neutral case. The range of validity of
some of their approximations is not clearly defined; when we en-
counter similar problems we will endeavour to show under what
circumstances our results are valid. But the important difference
lies 1n the fact that non-static forces behave differently in the
neutral and in the charged case, giving in the latter a substantial
contribution to the binding energy.

Our notation closely follows that of ref.4).

The B.-S. Equation in the g*-Approximation.
We start from the general B.-S. equation:
x(1,2)= 7}/8;(1,3) S1(2,4)G(8,4;5,6) x(5,6)dw(3,4,5,6) (1)

as derived by Gerr-Max and Low?). We have written 1, 2, ...
instead of x;, s, ... The primes () and (”) mean that the operators
so marked operate only on the first (or second) particle. The coeffi-
cient 1/4 is due to a different definition of S,; we use the definitions
of Pavrré) and Dyson?) throughout with & = ¢ = 1.

We shall calculate now the first two terms of the expansion of G
in terms derived from irreducible graphs. The first two of these are
shown 1n fig. 1.

As hamiltonian density of interaction we take

3

Hi=g ) v(2)7,v(x) ()

a=1

1. e. a scalar, charge-symmetric interaction; y(z) is a nucleon-field
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operator, g, (« =1, 2, 8) an operator of the charged meson-field;
y(x) incorporates an isotopic spin part.

The first term of G, the so-called ladder approximation, is
—9%0(8—-5) o(4— G)ZT 9, (5) 759 45(6).

The second term, derived from (b), is

gt 3 2 7.y (3) w'(5) T " (4) v"(6) 75 9u(8) #5(5) @,(4) 94(6) -

a,B v, 0

The operators are now taken in pairs, according to the graph, and
these pairs replaced by their vacuum expectation value, the rules
being the same as those applied in the S-matrix calculations.

I 2 4

5 ) V6

Fig. 1.

Taking only these two terms of G into account we obtain the g*-
apprommatmn to the B.S. equation:

7(1,2)=— js (1-8) 87 (2—4) 8 (3—5) & (4— 62’1:; vl 5 4,(5-6)x

x % (5,6) dor(3,4,5,6) +
[80-8)812-4) 3 X7 (—5) Su8—5) 7w (—5) x

a,f y,0

X SH(A—6) 750,500, 5 A4—5) 1 (5.6)d0(3,4,5,6). @)

In constructing the vacuumpropagators S, (3—5) and S (4—6) we
have to sum over the two charge states. The isotopic spin part of
these S, is therefore unity, and we can take the isotopic spin opera-
tors together.
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We use the identity
Z’ 7, T3 T, Tg=98+2(7',7") and we define the symbol T'=(7',7").
The equation 1s then:
7 (1,2) =—g? ?/ S(1-3)S,2—4)A4,8—4)T%(3,4) dw(3,4)+
+ g4~2]~;;./'8,'3(1 —8)S8/(2--4) S,(8—5) S,(4—6)4,38—6) x

X A,(4—5)[3+2T]%(5,6) dw(3,4,5,6). (3)
In a neutral scalar theory we would get the corresponding equation
by replacing T by 1 in the g*term,

3+ 2 T by 1 in the g*term.

The g*-B.-S. Equation in Momentum Space.

Let us denote, in general, by f(p) the 4-dimensional Fourier-
transformation of a function f(x) of Z, z, =t

f(z) — [ @@= itf (p) d dp.

We assume the center of mass of the two bound particles to be at rest,
and we call W the total energy of the system. Let p be the momen-
tum of the first nucleon (and therefore — p that of the second) and
W /2 + p, its energy, in the state described by x (1,2).

The easiest way to write Eq. (3) in the momentum-energy repre-
sentation is to make use of the Feynman rules, starting directly
from the graphs, after having satisfied the momentum- and energy-
conservation laws by inspection.

For the sake of convenience, in order to write down at once the
23
(2 m)*
out of the usual defimition of S, and 4,, and we will call the funec-

tions so defined S and 4.

Next to every line of the graph we write the correspondmg mo-
mentum and energy (cf. flg 2).

An undotted line, with p, p,, gives a factor

numerical factors in front of each term, we will take the —

i

20 iy, P)=vape—m 24 = .
TR T mmingiopy - @ > (PPl

*) The imaginary part -i7,, in the denominator serves only to indicate the right
way of integrating around the poles. The index will be found useful when carrying
out successive integrations over 4th codrdinates, as e. g. in the calculations for the
formulae on p. 79.
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A dotted line gives a factor

214 1 20 N
B (2m)* p2+(m—iey)?— pd - (2 m)* A(P,pe)

A vertex point gives a factor (2 =)

The numerical factors that might arise in the transformation
from y(xy, 25) to y(py, Ps) Occur on both sides of the B.-S. equation,
and may thus be left out.

woV i W
Y po"‘? - P, _P0+T
— —_— W’ ’_——7:: ______ —_— — ‘
DA g, potqo+ 9 s "p"%_po“%'*““z“
i X |
(@)
Al all
. w . 114
pap(}_!'? — P “?0+§‘
. G b
. A N Lo W
p+q, ?’0’*‘90“*‘7 TN —P—- 9 —po"%"‘—g“
.{/_" ) -3
.1
P+ g+l Pytgotlyt—- —P=d-b Pl t—5-
1 X |
(b)
Fig. 2
The result 1s:
— w W ) — w
x p:p0+_m5 po = 1 gzsf p:p0+__ X
2 (2 m) : 2

" e £ g o 1 w
xS (ﬁp,—pﬁ—ffﬂ(q,qo)Tx(erq,poJrqo—f-—g_;
. Wy 5
Mp“q"*po“*%'l'*?)dqd%_
e W\ arfl = W
(2n)8 94’8 (p Do + W“)S( p0+ )
r LU o 4
/S P+ds Pot o+ )6( —L, —po—lo+ 5 X
— = w
XA(‘lf%)A(lfl)[3+2T]%(P+Q+l: Potdo+lg+—5;
W s —
—F—4—1,—Py—qo—lo+5) 44 dgy Al dl, (4)

It 1s known?) that y(x,, x,) may be split into two factors, the first
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depending only on the center-of-mass coordinates, the second on
the relative coordinates:

’i:W ty‘!‘tg_

—iW 2 i(p, m—m)—ipe(ti—ts) > .
x(210 @) =e : fe A(p,po) dp dp,

where 4 (p. p,) 1s the Fouriertransformation of the second factor.
(4) leads to the following equation for A(p, p,):

AF, 1) = — e S (B, 2o +-5)S" (- B —Pot 5 [ 4@, 00) ~

x TA(P+q, py+q) dq dgy—

b0t (5,20t )

S Fonr g[S (a3

n" T 7 w =
X 8" (=B =t —pg—ly+—5) A4, 2) A (L) [3+2T]
x A(P++1 Pyt gotly) dg dgy dldl, . (5)

This will be the starting-point of our investigation.

The B.-S. Equation for unrelativistic Nueleon~-Momenta.

We assume that, at least for the ground-state of the deuteron.
the relative momenta of the nucleons lie practically always in the
unrelativistic region, i. e. {p> <€ m (m is the nucleon mass).

This assumption 1s suppported by an elementary qualitative argu-
ment from classical quantum mechanics, viz., if the binding may
be described by a central potential that vanishes sufficiently strong-
ly at infinity, the eigenfunction of the relative coérdinates, say .
has an asymptotic behaviour such that

" E () > = for r — oo (6)

where F is the binding energy (counted positively). Near the origin
yw behaves as i . o
sin (37 u) (7)

(where 1/u is the range of the nuclear forces).

If we expand into plane waves the functions obtained by fitting
(6) and (7) to one another at » = 1/u, we obtain a distribution for p ;
this exhibits maxima at |p| ~ YmE and |p | ~ #/2 u and de-
creases afterwards as p—2. | '

Consequently the approximation we are going to use is valid 1if

VmE <m and p<m. (8)
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The mesons we shall of course treat by relativistic methods, and we
will more specifically look into the effects of retardation on the
eigenvalue problem, as contrasted to the so-called static approxi-
mation.

Our assumption will allow us to simplify the equation (5) to a
great extent, because the components of the spinor-field can now
be separated into small and large ones. By neglecting the small
components we introduce at most an error of the order of (v/¢)2 And
as we use a scalar theory we need only consider one large component.

First of all 4 (p, p,) 1s thus reduced from a 16-component spinor
to a scalar function.

Secondly the operators in the numerator of S are reduced to
scalars in the following manner:

R p2

V(YD) —VaPo—M —> 5 ——Pp— M
Po1s the deviation from the mean value, W/2, of the energy of one
nucleon, and is therefore of the order of its kinetic energy, so

2

lpolm s

2m
Putting m — W/2 = E/2, and in view of (8)

o W —-2m
S(Fp+ ) PAmA—pW—in,

We introduce the symbols

_ 9-2_ __“*2 E .
b= ASgptyTim %)

o=+ (u—ie) (9)

Eq. (5), as a result of our assumptions (8), reduces to

— _ s A 1 [TA(B+ ¢, Pot ) 77 .
A(p:po) - v 27 /11,2—2902 j wqe';;goz dq dgo
e 1 / B+2T) AB+G+1> Po+dotl)
(2 m)* A;pz-— Po® (g% — o) (2= 1,?) (Ajn-j-q"'pD_QO) (Ap+1+ Pot+1y)
 dg dg, dldl,. (10)

We have to calculate from this integral equation the lowest eigen-
value of A as a function of the parameters m, u and K which have
to satisfy (8). (We will not go into the much more arduous problem
of finding the eigenfunction associated with 4.) We propose to do

*) A, has the opposite sign as in the work of L#ivy?); it is positive for all p.
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this by a classical perturbation calculation, starting from a suitable
trial-function for A(p, p,). For this purpose we will take the static
approximation. As the latter strictly agrees with classical, non
relativistic meson-theory of nuclear interactions our choice has the
additional advantage of showing clearly any departure from non-
relativistic theory.

The Static Approximation.

This is obtained from (10) by dropping the A%-term altogether,
and neglecting the g,-dependence of the kernel in the first term. The
physical meaning of this is well-known: we thus assume an instan-
taneous interaction between nucleons, replacing

+ 00
A,(@, 1) by cS(t)fAc(EE, ) dt.
This leads to -
_ ; 1 P (B, i) o
Ao(P,Po) = —1 5, ] oL Pt dg dgy  (11)

2_ .2 2
7T Ap Po Wy

The p,-dependence 1s obvious, and (11) yields

. Ao (05 po) =(p)-b(P, Py) (12)
with
24
e= —/ﬁ‘ (13)
and a(p) satistying
— o [Talp+7q) 1=
a(F) =5 [ 220 dg. (14
The latter equation we write concisely as
a(p) =2, K, a(p) (15)
denoting by K, the operation
1 - T
s | 1 (16)

It is known that (14) 1s nothing but the momentum space represen-
tation of the Schriodinger equation for the relative codrdinates with
Yukawa potential:
1 —ul7] X
(_-ﬁA_znzzOLTT+L)¢(m):o (17)
where

(@)= (2 n)—3f2fei<5?5a(ﬁ) dp.
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The Matrixelement for the Eigenvalue.

In order to get a better view of the method we give Eq. (10) the
concise form

A—(AK+2L) 4 (18)

where K und L stand for the linear integral operators producing the
tirst and second terms on the r.h.s. of Eq. (10). Suppose we have
an eigenvalue problem, given by an equation

A4=00)4

derived from an operator £ containing a parameter 1, and by certain
boundary conditions.

If we know an eigenfunction 4 we get immediately the correspond-
ing eigenvalue A by constructing the expectation value

A*[ QM) [ 4> = A*[ 4 (19)

which gives us implicitly 4 as a function of the parameters of the
problem.

Suppose we do not know 4 exactly, but only an approximation
(4 + ¢). If we use (4 + &) instead of 4 in calculating the matrix-
element of (AK + A%2L) we shall get an approximated value for 4,
say A + n: ,

LA+e)* (A+n) K+ (A +n)2L|(4d+e))={(d*+s* A+ 6.

Making use of (18), we see that the only term linear in # and not
containing &
(A*|nK+22nL| 4>

must be equal to an expression at least linear in e so that in general
1 will be of the order of ; but if ¢ is nearly orthogonal on 4, % will
be almost of the order of 2 A first choice for 4 + ¢ might be the
static approximation 4,. We will see later on that this choice leads
to errors of the order v/e, so that we want to take a better trial-
function. Due to the special character of our problem which permits
to solve the simplified equation

A=iK4 (20)

this may easily be obtained.
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Solution of the Ladder Approximation by an Iteration Method.
Let, in an eigenvalue problem, the equation be
Kyp=Fky (21)

where K 1s an operator having a complete orthogonal set of eigen-
functions p; with corresponding eigenvalues k.
Let there exist furthermore a greatest eigenvalue k,

| Ko | > | ;| (7+0) (22)

Then y, may be calculated to any degree of accuracy.

We suppose the y; normalised to unity, and the k; numbered in
order of decreasing absolute value.

We choose a function p with the single restriction that it can be
expanded in a series of y;, in the sense that if

v=X 0w, 29)
then
/ |p|2dr = )} |c,|*={finite number (23")

holds.
On this function ¢ we operate n times with the operator
(1/kg) K ; a function which we will call ™ results

or, in view of (23")

This means that

/{‘P(H)*COWO 12dv 22

i=

k;
ko

1
| kg ‘znZ!C 2
\kl znflw |2dv— /l%%!g dr).  (24)

Which proves that the sequence of v™ converges towards ¢, v, in
the sense of (23).

Now, Eq. (20) 1s of the type (21), with k& = 1/1. It may be taken.
in analogy to (15), to describe bound states. Keeping the binding-
energy F fixed, the eigenvalue k; = 1/4; belongs to a system with
v + 1 stationary states, the highest of which has the prescribed
value I/ of the binding-energy.

2n
;|

H/\
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But we are interested only in the eigenfunction corresponding to
kg = 1/2,, describing a system with only one level.

It 1s obvious that 4, must be smaller than all other eigenvalues,
as 1t 1s a measure for the strength of the nuclear forces. For the
problem in hand, a solution of the simplified equation (15) or (17)
gives (for B = 0)8)

A, 168 1

7, 645 384"

For the eigenfunction this leads to errors of at most 1/3,8 and 1/15
in first and second approximation, respectively.

But, as a matter of fact, (K, — K) 4 1s in our case orthogonal
with respect to K, at least up to terms of order (v/c)?, so that the
errors on expectation values calculated with the help of the first
approximation will be more like 1/15. This fact may be seen from
the explicit forms of K, and K [cf. Eq. (29)].

The first approximation

A, =1K A, (25)

will thus already be quite satisfactory.

The Formula for the corrected Eigenvalue.

Substituting 4, for 4 in (18) we obtain
AKA,=1*K?*A4,+12LK A, - (26)

As the p,-dependence of 4, is known we may as well integrate both
sides of Eq. (26) over p,, and keep only an integral equation in p:

I_fa:lR_zaJrﬁzL_Ifa (27)
where the dash over the operators indicates the py-integration, e.g.

E = [ K050 .

In order to compare this with the result, 4, of the static approxima-
tion we will write in K the static interaction explicitly

K=K, + K,

where K, [cf. (16)] is independent from p,,.
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Multiplying (27) on the left with a*(p) = a(p) and integrating
over p leads then to the following equation between matrixelements.

Koy +<Kyy=i<(K3+ 2K K, + K% + 2*(LK,+ LK,>
where e.g.

<K1> f dp .

We shall now have to make some assumptions on the relative
magnitude of the various terms. We do this by a perturbation
method procedure, putting

, A=Ay+ 24, %)
and assuming

<2y (Kp><<Kp» (L < <Ky

The justification of this will become apparent when the explicit
form of the K and L will be given.
If we drop all terms of third or higher order in the small quantities
we get
(Bo> + (By>=ho (K + 2, (K2 +2 3y (Ko K> +

+2 4y (Ko Ky + Ao <K +
FA2CLKY 42 2 Ay (LK > + 22<LK > .
This may be simplified by noticing that, for any K or L
/10 <KK0> = <K>
because of (15). Hence:

M RO+ KED+IY] 2D+ ALK
2o Koy +2 <KD (Koy+2 (K

(28)

Explieit Caleulation of the various Expectation Values.

From (16):
_ Tal p+q
Koo = 24, f

From Eq. (10), (18), and (16):

Kab——i-1 1 {/T“(5+E)Z’(5+§,?u+%)

21 A%~ py? W = o2 dq dQO o

/Ta p+yq p+q Do+ Qo) dé’dqo.}

*) This 1; has of course no connection with the one on p. 77.
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Hence

C 1 TA+A4, Ja(B+79) 1=
Kyo——gy [ ot D4, (&)

We calculate K2 by using the following identity:
K=K K+ RK:.
Iterating K once gives

1 1
2qb=—
K2ab=—— A7t %

" f 24y, 4 T2a(F+G+7) d dldg, dl,
(0= 4%) [

Azm-q— (Po+90)2] [ovy® —17] [A2p+q-+l— (Po+qo+b)2] "

Hence
1
44,

K2q = X

-

s / (Ap+/1p+q+/1:o+_q_—_+-l+ w,+ wy) Tz“(ﬁ"‘—ff“'ﬁd? di
wg Wy Ay Ayt Ay, o+ o) (Ap+ Ay grit gt o) (Appg+Ap, ot w) ’

And further iterating K:

R2g—_ f T2a(F+ ¢+ dgdl _
44, wq(Ap+l+Ap+q+l+wq) Ay oy (Ap+ Ay, + o)

By iterating (29) once we get:

Kia=

1 f (Ap s+ Apy ) A+ A,,) T2a(B+G+1) dg dl
44, 0 (Ap 1+ Ay gt og) Ay o (Ap+Ayy + o)

Before going further we shall examine these results, making use of
our assumptions (p. 72) as to the momentum distributions; as we
have hitherto dropped systematically all terms in (v/¢)? ~ (u/m)?
there 1s no need to retain ‘such terms here. We assume—which will
prove to be self-consistent for small p/m—that
A |2

| <
From (14) we may infer that 2, ~ u/m [cf. %), p. 80].

It follows  that we should discard all terms of order /¢ (or u/m) in
<K?> and <L, and drop the <K,> in the denominator.

In particular, if all factors of the form /A +  are replaced by o,
in any term of (28), the ensuing error is of the order of u/m times
this term. In the limit 4+ w —

u

A
21 = const. X -— and i 4
m

2o

—

Ki-K¥Ha=—L_ [ L0B+4+Y mq7

44, ] w2 oo+ o)
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Taking for w, + w; a mean value 2 /2 y, this is
<A:n+ q> Av.
2)/2

and contributes a term of order 1/(2 y2) - u/m to the ratio 1,/4,.
The approximation A + o &~ w is thus justified. The term

<_K—1>=— /a(p) gz)(q?"{“ q) dg d /ﬂa(?)A;ﬁpijsl(—ﬁ+?) di‘;’ d‘q‘* (30)

K,a

will be of the order

— (o B> = () By = 5 £ )
so that this procedure 1s justified here too. And by a similar argument
the term K2 may be neglected altogether.

The matrixelement <L> may be computed from the second term
on the r.h.s. of (10) and yields a complicated expression. If we
neglect systematically terms like //w against unity this is reduced to

Lapss f (o ) B2 T) a (PG +]) dF dl =

4 A4 wl—w? \ w? ,3

(3+2T)a D+ q+l B+27)a p+q+l)
- 4/1/ ddl+2/1/ dg dl.

w,% 02 (w,+ wy) Wy wy?

As T2 =3 — 2T, K% and L partially cancel each other*):

A s 2 7 Ta(p+q+l)
(Ki+ L)e=—57 a)anm)+wﬂd qdi+

L1 /w3+2T)( j dqdl 31)
2

2 A;n w3

Our model, with scalar interaction, makes sense only for charge-
symmetric states, as only these give an attractive potential in the
static approximation. We put therefore T' = 1.

The second term in (31) 1s then reduced to
24

which combines with K;a from (30) to form two terms

9 [ Ay ,a(B+T) 1 [ a(p+4q)
zAmjm s dq 2/‘ o 44

Q’

*) In a neutral theory they would cancel exactly. That this is not the case
in a symmetric theory, as Livy assumed, was pointed out without proof by
WENTZEL, loc. cit.
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From our order of magnitude estimates 1t 1s obvious that the second
term in the r.h.s. of (28) is of order (u/m)2 We have, collecting
terms,

e z / A”E;“ a(B+9)dpdg- [ a(P) 55 a(P+q) dpdg
e SR aq o xy
lo 1 o —r —
9 a(p) }1;*(";2 a(p+q)dp dq
I 1 > "
%0 a(F+ g+l dpdgdl
4+ / (7} Ay 0% 02 (wy+ ) a(p+4¢ (32)
s ﬂa(ﬂ 43_—a(f+*)w*d* '
2.,/ # 71,(0(!2 P g0

Numerieal Evaluation of 4,/4,.

From the approximate solution of the Schridinger equation (17)8)
we derive an approximate expression for a(p)

with

Then

1 GEP) a2
A (p+q) 5o [1_ (- B Fe

(G+P)2+a,?

_uH2pa 1
S Zm W (E Y

The flrst term in the numerator of (32), we may call it 4, is therefore

9 e L1 2 d
Ad=5(» +2’“°L1);/ (a12+ P a22+p2) (0> +2%) (1°+ %)% [,>+ (P +§)°]"

The integfal
1= (349 (2497 [0+ (5 +0)%) (12 + ) dp &

can be calculated rigorously. The angular variables occur only in
the factor

T

(2 il i ¥ o 2 _ = %2+ (p+g)*
2%6/ [ag -+ (p +q)2] tsin0d0= = log T (p=y)?

and the logarithm may be written as an integral

5 pta I

JT

- pq / g2+ 12 dl.
lp—qi
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Hence
o ptq il
By =B fdp/ dq/f“ a2+ pY) (g +12) (247 (o2 + ) Yot g
0 Ip—ql

This triple integral may be calculated by writing the single factors
in the integrand as Laplace transformations. This leads to

o0
1622 [ [ 1

dy = / / . BXp [ (o &y + og Xy + p0 T3 + 0y g + qs] x
. 2

ul o
0

X 81N (P x1) 10 (P ) cos (P x,) sIn(qxy) sin(qxz) X
x Jo(uz;) d(pqay my xg 24 25) .

Using the relation
X
/ 0]0 (!,L .’12) &:*21;2* (1(12 == K (H () *)

We may write
oC 00 "0
e 2a [ [ .'W},,e_lz%_ﬂxa*@lf: [e—oc, Ty— sgn (’r —r )_{_e—m.'(svﬁxu)'i %
00 o

X [Ko(u|ee—

The x,-integration gives a different result for 1 =1 and 1 = 2:

)—Ko[p(xe+ x5)]]dxydagd, .

1, B //8 a0l (|0 24]) — Kol p (g + 24)] Ydy da, .
U 9

This 1s a two-dimensional Laplace transformation, which is easily

expressed as function of the one-dimensional transformation of K,
say PK,

-~ 1
LK== CrCu ~log (w4 [/u2—1)
oty g (ot | /(oo 2_)
747 | u log(_u ) w )t r |
1 y:" % R (a1+a2)2ﬁ1]3/2 - (Elj£2)2_ 1] .
: H M
FFor 1+ = 2 we have
oC o0
4 ? e =2l (p— 1 T2 =T dz) p— M Ty
12:"&29—&2//7&;6 T(eyx_e a)eurx |
ks < { Ko (pt]y — 5) — Ko [ (05 + x5) | } dizy dizy .

*) WarsoN, Theory of Bessel Functions, Cambridge 1948, p. 425.
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This integral, because of the 1/x, in the integrand may be calculated
from I; by an additional integration.

I, — 8n® {[(m1+a2)2 wl] 10)‘ oc1+oc2+l/ ac1+oc2 B ' B

3 2 2 2
M O™ — 0ty M

[ )

The term we set out to calculate was

A= u 1 +2°;1) (I, L,).
The second term, B say, in (32) gives, with the same methods
4 713 Gﬁi“r' oy
28181 f(a-%«ot ) 1/2F( U )
\ \

. T arcos u u<<1
with I (u) = { ol V=T ez,

The third term 1s more complicated because of the factor (w, + @ ;)*1
in the integrand. We shall obtain a sufficiently accurate value it

we set i
(O)q—l— Cl)l)gl [ 2'(;(1 .

This gives

- 1 R e
The denominator of (32), say D, takes the form
_ _2a'*'m 1 1
D=o=" s [..%_?_‘1_ A
t t
47 m w2 ) (ot + o+ )2

b amot 8 Rayt ) Qogtp)
If we take as values of the parameters

m = 940 Mev w =140 Mev =218 Mev
we get

J 3 ¥ g v 3 -
1, = %—2,63 I, = ;3 0,788
A= 13,63 B=™ 0,592 D=""696.
Iz Iz M
Hence
ﬂZ_A+§,+2/9A — 046, (35)

7 D
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The corrected eigenvalue i1s therefore

A=05414,.
From?) or8) we get 4, = 0,0184 and consequently

Conclusions.

The value of 4 = A, + A; which results 1s so small that—at least
in the static approximation—no bound state could exist.

As we assumed in the course of the calculations that 4; <4, 1t
might be objected that the result (35) cannot be very accurate.
However, 1t 1s beyond doubt that the static approximation is rather
a poor one and that conclusions drawn from it can only claim a
qualitative value. It gives in particular a value for the (positively
counted) binding energy that is substantially too low. It is further
clear—as was pointed out by LEvy for the neutral case—that one 1s
not justified to treat.the ladder approximation in an exact way
and to neglect the next higher graph. The contributions from both
these graphs combine to give forces that are comparable to the
static force.

I am most grateful to prof. M. IFierz who suggested the subject
and actively supervised the elaboration of this paper. Iis extensive
knowledge proved invaluable.

I also owe thanks to prof. P. Huskr, director of the “Phymka-
lisches Institut der Universitat’’ in Basle, for his kind hospitality
at this institute. | |

Reierences.

1
2
3

. A. BETHE and E. SALPETER, Phys. Rev. 84, 1282 (1951).

. GELL-MAN and F. Low, Phys. Rev. 84, 350 (1951).

PAULI Meson Theory of Nuclear Forces, New York 1946.

M. Ltvy, Phys. Rev. 88, 72 (1952).

\ ENTZEL, Phys. Rev. 89 684 (1953).

. PauLl, Ausgewihlte Kapltel aus der Feldquantisierung, Ziirich 1951.
. J. Dyson, Cornell Lectures (unpublished).
. HuLtHEN, Arkiv Mat. Astron. Fysik, 28 A, n® 5 (1941).

r#g@zszm

()]

6

-1

)
)
)
)
)
)
)
)

8




	The contribution of non-static forces to the binding-energy of the deuteron

