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Acausalité de l'interaction non-locale

par E. C. G. Stueckelberg et G. Wanders*).
Institut de Physique de l'Université, Genève (Suisse).

(21 X 54.)

Summary. The possibility of a unitary and causal S[V]-matrix containing a
form-factor is investigated. A necessary and sufficient causality condition is established

and it is shown that it can he satisfied in second approximation (the result
being different from that given by perturbation methods). However it is found
impossible to satisfy the condition in third approximation. Thus we conclude that
form factor theories necessarily contradict causality requirements.

1. Introduction.

De nombreux auteurs ont admis qu'il devait être possible d'éviter
les difficultés de convergence rencontrées dans l'application de
méthodes de perturbation aux problèmes de la théorie des champs,
en substituant à l'interaction ponctuelle une interaction étendue,
caractérisée par un facteur de forme. Une généralisation de la
méthode de Yang et Feldman a permis de construire le développement

de la matrice de transition résultant d'une telle interaction.
Ce développement ne s'exprimant pas, comme l'a signalé Rayski5),
à l'aide des propagateurs causaux Dc(x — y), il n'est plus possible
d'interpréter les processus décrits en termes de créations et
d'annihilations de quanta virtuels. Il est cependant couramment admis
qu'un choix convenable du facteur de forme permet de limiter ses
effets acausaux à de petites régions spatio-temporelles, et rétablit
ainsi l'interprétation causale. Le but du présent article est de montrer

que ces spéculations ne se vérifient pas en fait.
Une suite de travaux antérieurs1)2)3) a permis de montrer que,

dans le cas d'une interaction ponctuelle dite renormalisable, le
développement de la matrice de transition S[V] est univoquement fixé
par les conditions d'invariance, d'unitarité et de causalité, après
normalisation de certaines constantes. Il était donc intéressant
d'examiner si des circonstances analogues sont réalisées lorsque
l'interaction est étendue, en particulier de chercher si les conditions

*) Recherche subventionnée par la Commission Suisse de l'Energie Atomique
(C. S. A.).
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dans lesquelles un développement causal est possible sont réalisées

par une interaction étendue. Dans ce but nous établissons au § 2

une condition de causalité nécessaire et suffisante, puis nous examinons

s'il est possible de la satisfaire dans les trois premières approximations

d'une théorie scalaire.
Partant donc d'une interaction scalaire étendue entre un champ

chargé et un champ neutre scalaires, contenant un facteur de forme
F(x, y, z) (§ 3), nous montrons au § 4 qu'il est possible de construire
une deuxième approximation unitaire, causale et convergente,
différente toutefois de celle fournie par la méthode de perturbation.
Le § 5 est consacré à l'examen du terme trilinéaire de la troisième
approximation. Nous montrons que des acausalités graves sont
inévitables. Ce résultat n'étant pas lié au cas particulier de la
théorie scalaire envisagée, nous pouvons affirmer qu'une matrice
S[V] unitaire et causale, contenant un facteur de forme est impossible.

2. La condition de causalité.

Dans ce paragraphe nous présentons une condition de causalité
nécessaire et suffisante, telle qu'elle ressort de la signification
physique que nous donnons à cette notion. Les conditions utilisées dans
les précédents travaux2)3) apparaissent comme des conditions
suffisantes (donc trop fortes), excluant d'emblée une interaction
étendue.

L'amplitude de probabilité de la transition entre un état initial
de N' quanta distribués sur les paquets cp'x, ¦ ¦ -, cp'N, et un état final
de N" quanta distribués sur cp!f, ¦¦ ¦, cp'^, est donnée en «ième approximation

par:

Sn[<PÏ---l---<PN.;V] f--.fcpr(xï)...cp'iHx>>„).
V,xA V,x's,

¦Dlm(xl,-..,x's.;V)cp[(x[)...cP'N,(x'N)

m N'+N"; [-¦¦ f (dx)* V(x) •••*). (2.1)
v",x

V(x) est une fonction continue, indéfiniment derivable, de
support V (donc nulle en dehors et sur la frontière de V, domaine
d'évolution); dans V elle est égale à 1, sauf dans une couche étroite
en bordure de F2)4). Soit un ensemble de fonctions positives vA(x),
continues, indéfiniment dérivables, et de supports VA, définissant

*) ïx"' signifiera l'intégration sur tout l'espace-temps.
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une partition de l'unité dans V (1 EA vA(x) si x est dans V; les
domaines VA définissent un recouvrement localement fini de V6)). Alors :

V(x) EAVA(x), si VA(x) V(x)vA(x). (2.2)

Introduisant (2,2) dans (2.1) on obtient une somme dont le terme
général est proportionnel à

exp [— i(k'lx'l+ ¦¦¦ + k"N„x'^)] ¦

V
• »L ¦¦¦;V)exp[+i(k'xx'x + -.. + k'N, x'N,)] (2.3)

si les paquets cp sont des ondes planes. (2.3) est l'amplitude d'un
processus au cours duquel les quanta émergeants (incidents) d'énergie-
impulsion k", ¦ ¦ ¦ (k'x,- •¦) sont créés (annihilés) dans les domaines

„/'•••(_/>•••)• Si l'étendue temporelle AT des domaines VA

est assez grande:
AT^pi-i (2.4)

p masse des quanta les plus légers

ces créations et annihilations correspondent à des émissions et
absorptions d'énergie, l'incertitude d'énergie AE (résultant de la
localisation temporelle), ne pouvant inverser le signe de leur bilan
d'énergie (A E AT ~ A).

Nous sommes maintenant en mesure de préciser la notion de
causalité. Un processus (2.3) est causal (anticausal) si un ensemble
quelconque de créations et d'annihilations se soldant par une émission

(absorption) d'énergie est localisé dans le futur de l'ensemble
restant de créations et d'annihilations se soldant par une absorption
(émission) d'énergie. Les qualificatifs «causal» et «anticausal» se

rapportant au déroulement énergétique d'un processus n'ont de sens

que si (2.4) est vérifiée et si le noyau D" assure la conservation de

l'énergie, c'est-à-dire si V s'étend à tout l'espace-temps (V(x) s 1).
La condition de causalité exige alors que les processus anticausaux
macroscopiques (pour lesquels les deux ensembles d'événements sont
séparés par une grande durée) apportent une contribution asympto-
tiquement négligeable à l'amplitude totale (2.1)*). En d'autres
termes, les processus dans lesquels de l'énergie négative se propage
vers le futur ne doivent asymptotiquement pas contribuer à l'amplitude

de transition8).

*) Les fonctions VA (x) ayant un spectre de fréquences illimité, il n'est pas
possible d'annuler exactement l'amplitude d'un processus anticausal.
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Imaginons que le noyau Dcnm se décompose en un terme «à grande
distancer FA^m et un terme «à courte distance)) Anm

D:m=2>cnm + Anm. (2.5)

Anm étant tel que sa contribution à un processus macroscopique,
causal ou anticausal, soit négligeable;

lim T"

VX'*XX VX' vb."Vi
f--- f...%XV\-i(klx'l+-+plyl+-)i.

¦Anm(xï,...,y1/,...;V)exp[+i(k'xx'x + .-.+p'xy'x + ...)] 0 (2.6)

c'est-à-dire que cette contribution décroît plus fortement que
toute puissance de T, si chaque domaine VAi„, ¦• -, VA,,- • ¦ est séparé
de tout domaine VBi„, ¦••, VBi,, ¦ ¦ ¦ par une durée plus grande que T
et quelles que soient les énergies-impulsions finies kx,•••*). Autrement

dit, Anm ne rayonne pas et n'est pas soumis à une condition
de causalité.

Par contre, la causalité impose à CDnm une condition sur son
spectre de fréquences :

2>L( _.• • • _>• • • ..• • • y[,¦ ¦ ¦) =/<* _• • -fàp'l--fdk'x-.-fdp'x-¦ ¦

ö+(fc1'* +—ft„*—-)^.(_.-pr.- _-¦¦•_.•••)

exV[+i(k'lx'l + -..+p';y';+...)-i(k[x'x + ...+p'xy'x + -..)] (2.7)

si ^TO «,•••) Hm ^m(<,•••; F)
F-i-oo

et xf*,...^,..^^,...,^,....
Ainsi, pour que la condition de causalité soit satisfaite, il faut

et il suffit que Dcnm puisse être décomposé selon (2.5), les deux termes
satisfaisant (2.6) et (2.7). Les conditions de causalité formulées
antérieurement omettaient la possibilité de fonctions «à courte
distance» Anm et introduisaient Dcnm dans (2.7)3).

Esquissons pour terminer comment la condition de causalité
jointe à celle d'unitarité fixe le développement de S[V] en série de

puissances de la constante de couplage g (S[Vj =1 + Engn Sn[VJ).

*) L'existence de telles fonctions, malgré l'invariance, a été démontrée par
Chrétien et Peierls7).
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La condition d'unitarité donne la partie hermitienne de Sn en termes
des approximations précédentes2):

ra-1
Hn -f E SmSLm; Sn Hn + An;Hn Hl;An -Al(2.8)

m X

Va condition de causalité définit une décomposition de Hn en parties

causale et anticausale:

Hn ^(Sl + Sl); S:=(Stf. (2.9)

An est alors définie par :

AK A\(Sl-SA (2.10)

de telle sorte que Sn soit causale, égale à Scn. Va décomposition
(2.9) résulte d'une décomposition des noyaux D\m de Hn :

ni _ _L ITV -L. T)1* \ /F <7)c + A _l <7)a a. A* \ (2 11Ì
nm 2 'nm' nml 2 ^ nm'nm' "i/nm~T~ nml ' \'a-J--L/

On voit que la partie imaginaire de Anm est indéterminée, il s'ensuit
que, si la décomposition (2.11) est possible, Dcnm est univoquement
définie, à une fonction (imaginaire) «à courte distance» près.

3. La première approximation.

Nous passons maintenant au cas particulier d'un champ chargé
u(x) et d'un champ neutre (p(x), tous deux scalaires:

(n-x2)u(x)=0; (U-ft2)<p(x)=0; 2x>pi (3.1)

en interaction scalaire, caractérisée par la première approximation :

SX[V]

if f Jh(x,y,z)=iJ---(tf(x)tp(x)u(x))~r(x,y,z)*) (3.2)

V,xV,y V,z V,x

*) ~ signifie que les opérateurs sont bien ordonnées (produit S de Wick).
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où r(x, y, z) est le facteur de forme. L'interaction ponctuelle
correspond au cas particulier F(x,y,z) ô(x — y) ô(z — y). L'invariance

du facteur de forme est assurée soit par la représentation de

Fotjriek :

F(x,y,z) =l2^f(dp)if(dqyr[p2,(p + q)2,q2]ei^x-v) + i^-v) (3.3)

soit par:

r (x, y, z)=Ja[(x- a)2, (y - a)2, (z -a)2]. (3.4)

a

Les deux représentations sont liées par :

A(i2,rj2,^)==A\= f(dp)i-..r(p2,q2,k2)eiPt+i" + ik**). (3.5)

Va valeur de la constante de couplage est définie par la normation
du facteur de forme :

r(-K2,-pi2,-x2) l. (3.6)

La condition d'unitarité est vérifiée si :

r(x,y,z) F*(z,y,x); F(k\, k2, fc2) T* (k\,k2, k2). (3.7)

(3,7) est incompatible avec (2.7), et la causalité n'est assurée que
si le facteur de forme est une fonction «à courte distance» satisfaisant

(2.6) (avec m ri). Ceci est réalisé si toutes les dérivées de

r (fc2, k2, fc2) sont bornées pour toutes valeurs de k\, k\ et fc2 (Chré-
tien-Peierls7)) :

d"* à", d", „„o t2 ,2N
d(k2)», d(k2)^ d(k2)«* r{^X'\'h) <Cn,n2n,- (3-8)

Nous envisagerons en particulier le facteur de forme factorisable :

F(k\,kl,kl) =A:(kl)A^(kf)Ax(kl)**) • (3-9)

*) Tandis que x,y,z--- représentent des points de l'espace-temps, f, rj, £, ¦ • •

représentent des déplacements (x—y), ¦¦¦.
**) Des exemples satisfaisant (3.8) sont:

T l2-v2 J*2_j,2-1^<*>-[4+F + e*i^]! c + c* l; A-A**0;

Ax(k2) exp [-Qi(k2 + x2)2].
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4. La deuxième approximation.

Les termes de la partie hermitique de S2 que nous allons discuter
sont:

H2=--±SxSt --.+ f--- f((tf(x) <p(y) <p(v)u(w)y-
V,x V,w

¦Dl2i(x,y;v,w;V)+.-.+j j (cp (y) <p (v))~ D\22(y ; v;V) + - - -. (AA)

V,yV,v

Ve noyau du terme quadrilinéaire («effet Compton») est donné par:

£Ì_4 - iy Jr(x,y,z)Dl(z-u)F(u,v,w)*). (4.2)

V,z V,u

Va décomposition D\ —i (Dcx — D") conduit à une décomposition

(2.11) de D\2i dont le premier terme est causal, comme le
montre l'évaluation directe de l'amplitude d'un processus anticausal

macroscopique. Soit:

Q(x;p,VA;q,VB) J(dyf[(dzfr(x,y,z)VA(y)é^VB(z)e^\ (4.3)

Alors :

*/ /VXX, „,X>VA)Dì(z-u)p(u;px,VBi;p2,VB) (AA)
V,z V,u

est proportionnelle à l'amplitude d'un processus, anticausal et
macroscopique si VBi, VB^VAi, VA% et si les fréquences (fc* + fc*) et
(P_ + ï_ sor,t positives.

Chrétien et Peierls7) ont montré que, en vertu de (3.8),
q(x; p,VA; q, VB) est une fonction fortement décroissante (cf. (2.6))
de (x4, — | (xA + xB)) et de (xA — xB), si xA et xB sont les centres
des domaines VAetVB. Dès lors, on ne modifie pas sensiblement
(4.4) en remplaçant D% (z — u) par -|- Dx (z — u), sa valeur pour
%A > zi-Q*(z; fc., VBi; k2, VB) ayant un spectre de fréquences centré

*) On a Dx(Ç) =^ (Dx + Dx (§). Les autres fonctions apparaissant dans la
suite sont:

DH($) A. (D+-D-) (i); Dsx(S) j\s($*) Dl (S)

et le propagateur causal:
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autour de — (fc4 + fc*) — m < 0 et de largeur A co < co, D~ (z — u)
un spectre de fréquences négatives (inférieures à —x), (4.4) est
négligeable. On vérifie que des circonstances semblables sont
réalisées pour tous les autres processus anticausaux possibles.

Il est donc possible de choisir le noyau causal :

Dx2i(x,y;v,w;V)=i / F(x,y,z)Dx(z — u) F(u,v,w), (4.5)

V,u V,z

qui correspond à celui de la méthode de perturbation*). La
discussion de la «diffusion de Möller» est analogue.

La self-énergie du champ cp a pour noyau :

dU2=^(d;22 + D;22). (4.6)

n+ L vuß2t- 16 x

x f f f fr(x,y,z)D+(x-w)D+(z — u)r(u,v,w). (AA)

V,x V,z V,u V,w

D~22s'°btenant en remplaçant D+ parDx. Remarquons que dans
la limite où le domaine F s'étend à tout l'espace-temps (V(x) 1),
la fonction D^22(y;v;V) est une fonction invariante Df22(y — v),
de spectre de fréquences positives (négatives), supérieures en valeur
absolue k 2 x. Ainsi, le noyau:

DU2(y;v;V)=Dl22(y;v;V)+^e(y*-v*)(D+22-Dß22)(y-v) (4.8)

satisfait la condition de causalité (2.7), et nous pouvons le choisir
comme noyau causal de la self-énergie du champ cp. Ve noyau que
fournit la méthode de perturbation peut être écrit symboliquement :

_i r (Di Di -Di Di + {D'i DI) F (4.9)

On peut voir que la différence entre (4.8) et (4.9) est une fonction
(imaginaire) «à grande distance». Le noyau (4.9) de la méthode de

perturbation ne satisfait donc pas la condition de causalité, deux
noyaux causaux ne pouvant différer que par une fonction «à courte
distance» (voir fin § 2).

*) Nous discutons au § 5 l'effet de l'adjonction à (4.5) d'un terme imaginaire à
courte distance.
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Nous évaluons encore la transformée de Fourier de (4.8) afin
de voir dans quelles conditions la difficulté de divergence est évitée.
D'après ce qui précède, la transformée de D+22 doit avoir la forme:

üU2(p) G(-p2)^0(-p2-Ax2)0(p*)
oo

=fde2G(e2)D+(p). (4.10)
(2 k)1

D+22 peut donc être représenté par une superposition de fonctions
Df, et une représentation analogue est valable pour D£22:

oo

Di22(p2) -2ifde2G(Q2)Dliy2)

oo

__
* Fl„2tll„2\ 1&I„2 i „2\ l

1 °/
(2^)3 J

(2xï
On trouve:

dQ2G(Q2)[ô(p2 + Q2) + ^-fl¥\. (4.11)

öte")^—â^ïl^(-**.-e,.-»ï)l2(i—^)* (4-12)

et l'intégrale (4.11) converge si \r(—x2, — q2, — x2)\2 ne présente
pas de singularités non intégrables pour (2 x)2 < q2 < oo (ce qui
est assuré par (3.8)) et tend vers zéro comme (o2)~s (s > 0) lorsque
q2 tend vers l'infini. On voit donc que l'effet du facteur de forme
est équivalent à celui d'un facteur de convergence. En particulier, la
correction de masse Api2 due à la self-énergie est négative (signe
correct et vaut :

'de2\r(-x2,-e2,-x2)\2(i-^f¥^2<o. (4.is)

5. La troisième approximation.

Nous nous limitons au terme trilinéaire (vertex-part) : le noyau
D33 (x, y, z) de sa partie hermitique est donné symboliquement par :

- 8 D\3 [rD* r (Di rD' + D- rDt)+ permutations] (5.1)
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en vertu de (2.8), (3.2) et (4.5); le premier terme correspond, par
exemple, à (fig. 1) :

/"• • • fr(x,x", x'") Di (x"-z") F(z',z", z) x

xD+(z'-y"')r(y',y,y'")D:(y'-x'"). (5.2)

d:.

N,

oy

Dt

Fig. 1. Fig. 2.

Il est utile d'introduire les fonctions de un et trois déplacements
suivantes :

A.(ï)=1^r l(dkyr(-x\-fi\k2)eikt;(2 71
(5.3)

(5.4)A-(*) F2AA !{dkY r(~ **' fe2' "^ eU"';

Dl(£,n,Ç)==^ff(dkx)V..r(k21,kl,-x2)x

x^^ri-x2,^,^)«''*51'"^-1. (5.5)

Dx étant définie de manière analogue. La limite du premier terme
de (5.1) lorsque V s'étend à tout l'espace-temps peut alors s'écrire
(fig. 2):

j f fDi(x-x',x'-z',z'-z)Di(z'-y')AiJ(y-y')Dx (y'-x') (5.6)

x' y' z'

du fait que les transformées D+(p) et Dx(p) contiennent le terme
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ò(p2 + x2). On met en évidence la limite de (5.1), formée de termes
du type (5.6), en écrivant:

-8D\3=[Dl(DÏ A^D- + D-X AiiDi)+-..} +

+ {{rDirDÏ TD: -D^Di AliD-x)+--.].*) (5.7)

La première partie de (5.7) peut encore s'écrire:

[A*xDiAx(DiAßD: + -..) + ...]+[Ai(DiAFD:+-..)+-.} (5.8)

- Ai

o/

Dt.

Fig. 3.

où le premier terme du premier crochet correspond à la figure 3,

avec le «triangle interne» (x', y', z'), et où __* est la fonction «à

courte distance» de trois déplacements:

A'„ (i, n, C) Di (S, n, C) -A*x D« (rf) Ax (C). (5.9)

Vu D+D- + D-D+ 2(D1D1 + D°D°) et vu l'identité, valable
pour tout «triangle interne» : 4 D$DSDS + DSD°D° -\ 0, la
première partie de (5.8) se décompose sans autres en parties causale et
anticausale (2.11) :

- 4 (A*x DcßAx DexAß Di + <a) « <«>), (5.10a)

alors que la seconde partie donne :

-AAl[{DiAßDi-DiAßDi-^DlAßDx) +

+ (piA^Dl-DlA^Di—Î-D24.D2)] +••• (5.10b)

*) Les intégrales s'étendent à tout l'espace-temps, sauf celles du terme en r
qui sont pondérées par V(x).
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Le terme écrit de (5.10b) se décompose de la même manière si

yi ^> x* ~ z*; en effet, _4„ et les branches en (x — x') et (z'— z) de
__* étant «à courte distance», les contributions non négligeables
viennent des régions ?/4> :r'4~ z'4, où (DID* + i £>££>£) est nul.
Ainsi, si une décomposition de (5.10b) en parties causale et
anticausale est possible, le terme en __* de sä partie causale doit être
le premier terme du crochet multipliant z_* dans (5.10b) (à une
fonction «à courte distance près»). Des considérations analogues

s'appliquent aux termes en Asx et /_**. On en déduit que, pour
autant qu'il existe, et à une fonction «à courte distance près», le

noyau causal ne peut être que:

A*xDiAxDiAfiDi + {Ai(DiAfiDi
DiAßD*x-A)-DlAßDl) +•••}. (5.11)

Pour démontrer l'acausalité de ce noyau, il suffit de vérifier que
la contribution à l'amplitude d'un processus anticausal du deuxième

terme de (5.11) (contenant les fonctions «à courte distance» j*,
Ax et __**) ne disparaît pas lorsque les trois domaines VA, VB et Vc

(centrés autour de x0, y0, et z0), où sont localisées les créations et
les annihilations, sont séparés par de longs intervalles de temps.
(Nous allons même trouver que cette contribution diverge, si une
droite de lumière peut passer simultanément par les trois domaines.)

Nous démontrons cette acausalité pour un facteur de forme fac-
torisable (3.9). Alors:

^,r1,C)=A*x(^)Ai(r1)Ax(C) (5.12)

avec:

Ai(x'-z')
=f /\ (x'- x") Di (x"- z") Aß (z"- z') -Di (x'~ z') (5.13)

x" z"

et le second terme de (5.11) s'exprime aussi en termes de «triangles
internes» :

fJ)(x',y',z')=Ai(x'-z')x

x (Di (z'- y') Di (y'- x') -Di Di-\ D\ D°) + • • •. (5.14)
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La contribution à une amplitude de transition s'exprime alors,
à l'aide de ce triangle:

fffexX) es (*') 0> (X y', F) q2 (y') (5.15)
x' y' z'

et des «sources»:

Q3(z')= fAx(z'-z)u(z);.-- (5.16)

Fa

centrées également autour de z0, y0, x0 (vu que les Ax, Aß, sont
«à courte distance»). En introduisant le «potentiel de deux sources»:

*{y)= f fox(x)Q3(z)2)(x,y,z). (5.17)

(5.15) devient Jy& (y) Q2(y). Examinons le cas où VA ^> VB ^> Vc.
On peut alors, sans altérations sensibles, remplacer dans Fù les
fonctions Dc, Ds et D° par leur valeur pour xi^yi^zi, qx, q2

et q3 étant très petites en dehors de VA, VB et Vc. Alors :

r?)(x,y,z)->-\{Ai(z-x){D-(y-x)DÌ(y-z)-DÌD; +

+ DÏDÏ + DX Dx) + D; A'HDt + D: D; Ai*}. (5.18)

Examinons la contribution du terme en AßDx Dx au potentiel <P.

En termes des représentations de Fourier par rapport au temps :

At-xi).Qi(x) / dco q (x, co) e

D+(x)= f dcoDi(r,co)e-iat;--- (5-19)

elle prend la forme :

£ / (dx)3 / (dz)3 I dcox dco3Qx (x, cox) q3 (z, co3)

G-+ (rx, r2, r3; cox, co3) fl-«•*«.+ «*« (5.20)

t, y xu, t?= y z0
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avec le noyau :

+ 00

G-+(rx,r2,r3; cox, co3) J d v G~+ (v) (5.21)

- OO

G-+(v) D- (rx, cox - v) Ai (r2, v) Dt (r3, co3 + v)

dépendant du triangle spatial T1=\x — y\, r2 \x — ~z\ et
r3 \~z— y\- On sait que:

Dt(r,œ)=1^^0(±œ^x)(ei^-e-i^);œo Vco^^2 (5.22)

et (voir Appendice) :

hm Ai(v)=-*!(«"" +«-«"). (5-23)
V—r =_00 * '

Ainsi:

lim G-+(v) =1^—(ei('""',r'-e "i{v °">n) •

„^ + oo
W 4 (2JI)6 rxr2r3

^ '

'ei*r, + e-irr^ ^i(v+ra,)r,_ g -i(v + a,3) rBj (5.24)

lim G-+(v) 0.
V—> — oo

Or, une fonction représentée par (2A)-1 fdvf(v)eivs avecf(v) —> 1

lorsque v —*¦ + oo et f(v) -> 0 lorsque v —; oo, possède à l'origine
la singularité ô+(s) ; il s'ensuit que G~+(rx, r2, r3; cox, cos) est singulier
chaque fois que le triangle spatial dégénère en une droite. En
particulier, on a la singularité :

^zr («T*<'**-<»""> ô+(rx-r2 + r3) +4 (2nY rxr2r3

+ e+i(-m'r>-a"r>)ô+(— rx + r2 — r3)) (5.25)

Le second terme (en AsßDi Dx) de (5.18) donne une singularité
analogue avec ô_ remplaçant ô+, alors que les termes restants ne
présentent pas de singularité. La contribution à 0 (y) des singularités
en rx — r2 + r3 0 vaut donc (avec ô+(s) — cL(s) ifre 1/s) :

--4-lAr f(dxf [(dz)3-1 —-•ti 32 (2ji)3 J v W rxr2rz rx-r2 + rs

¦ (ôx (x, tx + rx) q3 (z, t3 — r3) — qx (x, tx — rx) ç>3 (z, t3 + r3)). (5.26)

L'intégrale du premier terme diverge si des droites de lumière
passant par le point y interceptent les supports de Qx(x) et de ç3(z) ;



Vol. 27,1954. Acausalité de l'interaction non-locale. 681

le second terme et les autres singularités de G~+ et de G+~ (pour
rx + r2 — r3 0, • ¦ •) ne peuvent compenser cette divergence.

Lorsque le facteur de forme n'est pas factorisable selon (3.9), la
même méthode de calcul peut être utilisée et conduit encore à
l'expression (5.26). Aucune restriction sur les spectres de fréquences de
Qx_(x) et de q3(z) n'intervenant en cours de calculs (si ce n'est qu'ils
ne contiennent que des fréquences finies) tout processus au cours
duquel des créations et des annihilations ont lieu dans des domaines
VA, VB et Vc tels que chacun d'eux est en relation de lumière avec
les deux autres a une amplitude infinie, ce qui est inadmissible. Ce

résultat est inévitable lorsque l'effet Compton a le noyau (4.5) et
la diffusion de Möller un noyau de même structure. Si l'on ajoute
à ces deux noyaux des fonctions à courte distances, /_*, • • • se

transforment en de nouvelles fonctions à courte distance Asu — __„, •••
Un choix convenable permet d'éviter la divergence (5.26), mais des
anticausalités macroscopiques non négligeables subsistent, le terme
singulier en (5.26) étant remplacé par une fonction de (rx — r2 + r3)*)
à moins que /i* Aß. Dans ce cas, le noyau causal se réduit au
premier terme de (5.11), qui a pour triangle interne le noyau de la
théorie ponctuelle; si ce noyau divergeait il ne serait pas possible
de le rendre convergent. Un tel procédé permet de satisfaire la
causalité à toute approximation, avec des noyaux de même structure
que le premier terme de (5.11). Du fait de la normation des Ax,
Aß,--- on obtient des amplitudes de transition entre quanta libres
identiques à celles de la théorie ponctuelle. Nous pouvons donc
conclure qu'une matrice S [F] unitaire et causale ne peut contenir
effectivement un facteur de forme.

Appendice.

La transformée de Fourier de Asß vaut, en vertu de (5.13) :

avec /(fc2 + pi2) 1 —[Aß(k2 + pi2)]2. Par la normation de Aß et
du fait que Aß(k2 + pi2) —> 0 lorsque fc2 -> ± oo, on a:

/(0) 0 et lim / (fc2 + /i2) 1. (A.2)
Jb»-».±0O

*) L'expression analogue à (5.26) décroît comme une puissance de

(To1 + To1) „ I*. -% T> I
_ -W-

(2.6) n'est pas satisfaite.
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D'autre part:

Al(r,v)=^fdKKA*ß(K2-v2)eKr. (A.3)

Ainsi:

Ai(r,v) (2tc)3 2ir du ~f (u(u + 2v0)) eiur+
0

+ 00

+ e-""r fdu — f(u(u-2v0))eiur

si v2 v2 — pi2. En vertu de (A.2), on peut donc écrire:

+ 00

lim As(r,v)=—X^_J_(e"»- + e-i").p^ [du — eFr (A.4)
1, \ 1 (2ti)3 2ir x ' ' u x '

v —> ± 00 y ' -,

d'où résulte (5.23).
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