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‘Acausalité de I’interaction non-locale
par E.C. G. Stueckelberg et G. Wanders*).

Institut de Physique de I'Université, Genéve (Suisse).
(21 X 54.)

Summary. The possibility of a unitary and causal S[V]-matrix containing a
form-factor is investigated. A necessary and sufficient causality condition is estab-
lished and it is shown that it can be satisfied in second approximation (the result
being different from that given by perturbation methods). However it is found
impossible to satisfy the condition in third approximation. Thus we conclude that
form factor theories necessarily contradict causality requirements.

1. Introduetion.

De nombreux auteurs ont admis qu’il devait étre possible d’éviter
les difficultés de convergence rencontrées dans l’application de
méthodes de perturbation aux problémes de la théorie des champs,
en substituant & l'interaction ponctuelle une interaction étendue,
caractérisée par un facteur de forme. Une généralisation de la mé-
thode de YANG et FELDMAN a permis de construire le développe-
ment de la matrice de transition résultant d'une telle interaction.
Ce développement ne s’exprimant pas, comme ’a signalé Rayski®),
a l’aide des propagateurs causaux D°(x — v), il n’est plus possible
d’interpréter les processus décrits en termes de créations et d’anni-
hilations de quanta virtuels. Il est cependant couramment admis
qu’un choix convenable du facteur de forme permet de limiter ses
effets acausaux & de petites régions spatio-temporelles, et rétablit
ainsi 'interprétation causale. Le but du présent article est de mon-
trer que ces spéculations ne se vérifient pas en fait.

Une suite de travaux antérieurs!)?)3) a permis de montrer que,
dans le cas d’une interaction ponctuelle dite renormalisable, le déve-
loppement de la matrice de transition S[V] est univoquement fixé
par les conditions d’invariance, d’unitarité et de causalité, aprés
normalisation de certaines constantes. Il était donc intéressant
d’examiner si des circonstances analogues sont réalisées lorsque
Iinteraction est étendue, en particulier de chercher si les conditions

*) Recherche subventionnée par la Commission Suisse de I’Energie Atomique

(C. S. A)).
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dans lesquelles un développement causal est possible sont réalisées
par une interaction étendue. Dans ce but nous établissons au § 2
une condition de causalité nécessaire et suffisante, puis nous exami-
nons 5’1l est possible de la satisfaire dans les trois premieéres approxi-
mations d une théorie scalaire.

Partant donc d’une interaction scalaire étendue entre un champ
chargé et un champ neutre scalaires, contenant un facteur de forme
I'(x,y,2) (§ 8), nous montrons au § 4 qu’il est possible de construire
une deuxiéme approximation unitaire, causale et convergente, dif-
férente toutefois de celle fournie par la méthode de perturbation.
Le § 5 est consacré a I'examen du terme trilinéaire de la troisiéme
approximation. Nous montrons que des acausalités graves sont
inévitables. Ce résultat n’étant pas lié au cas particulier de la
théorie scalaire envisagée, mous pouvons affirmer qu’une matrice
S[ V] unitaire et causale, contenant un factewr de forme est vmpossible.

2. La condition de causalité.

Dans ce paragraphe nous présentons une condition de causalité
nécessaire et suffisante, telle qu’elle ressort de la signification phy-
sique que nous donnons & cette notion. Les conditions utilisées dans
les précédents travaux?)?) apparaissent comme des conditions suf-
fisantes (donc trop fortes), excluant d’emblée une interaction
étendue.

I’amplitude de probabilité de la transition entre un état initial
de N’ quanta distribués sur les paquets ¢, -- -, - et un état final
de N" quanta distribués sur ¢/, - -, @5~ est donnée en n'*™® approxi-
mation par:

S, (@] @l s V] zf...f(plw(m;)...qgg,:r (L) -
Vig," V,zy

cDp (s s V) @y () - @y ()
m=N+N"; [... :/(da;)4V(m)---*). @.1)

o/
V,z

V(x) est une fonction continue, indéfiniment dérivable, de sup-
port V (donc nulle en dehors et sur la frontiére de V, domaine
d’évolution) ; dans V elle est égale a 1, sauf dans une couche étroite
en bordure de 172)%). Soit un ensemble de fonctions positives v, (),
continues, indéfiniment dérivables, et de supports V,, définissant

) [y~ signifiera I'intégration sur tout 'espace-temps.
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une partition de Uunité dans V (1 = X, v,(x) si ¢ est dans V'; les do-
maines V; définissent un recouvrement localement fini de V6)). Alors:

Viw)= Z,V,(2), si V,(2)=V()v,(). 2.2)

Introduisant (2,2) dans (2.1) on obtient une somme dont le terme
géneéral est proportionnel a

[ exp[—ilia{+ -+ T ag)-

VA,”’xl Ve ,xv,
(@l V) exp[+ ok oy +- -+ ki o)) (2.3)

si les paquets @ sont des ondes planes. (2.3) est I'amplitude d’un
processus au cours duquel les quanta émergeants (incidents) d’énergue-
fimpulsion ey (ky,---) sont créés (annihilés) dans les domaines
Viryeoo Wy ,) Si I'étendue temporelle AT des domaines V,
est assez grande: :
AT > u=t (2.4)

4 = masse des quanta les plus légers

ces créations et annihilations correspondent & des émissions et
absorptions d’énergie, I'incertitude d’énergie AL (résultant de la

localisation temporelle) ne pouvant inverser le signe de leur bilan
d’énergie (AE AT ~ L

Nous sommes mamtenant en mesure de préciser la notion de
causalité. Un processus (2.8) est causal (anticausal) s1 un ensemble
quelconque de créations et d’annihilations se soldant par une émas-
ston (absorption) d’énmergie est localisé dans le futur de l’ensemble
restant de créations et d’annihilations se soldant par une absorption
(émrssion) d’énergie. Les qualificatifs «causal» et «anticausal» se rap-
portant au déroulement énergétique d’un processus n’ont de sens
que s (2.4) est vérifiée et sile noyau D¢  assure la conservation de
I’énergie, ¢’est-a-dire si V g’étend a tout 'espace-temps (V(z) = 1).
La condition de causalité exige alors que les processus anticausaux
macroscopiques (pour lesquels les deux ensembles d’événements sont
séparés par une grande durée) apportent une contribution asympto-
tiquement neégligeable a 1’amplitude totale (2.1)*). En d’autres ter-
mes, les processus dans lesquels de l’énergie négative se propage
vers le futur ne doivent asymptotiquement pas Contrlbuer al’ampli-
tude de transition®).

*) Les fonctions V4 (x) ayant un spectre de fréquences illimité, il n’est pas pos
sible d’annuler exactement 'amplitude d’un processus anticausal.
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Imaginons que le noyau D, se décompose en un terme «a grande
distance» 75 et un terme «a courte distance» 4,,),

Am étant tel que sa contribution & un processus macroscopique,
causal ou anticausal, soit négligeable;

hm T? f / f j cexp[—e (k] x/+-+p) y  +)]-

T— e xln VA . xlf VBI”: ?h” VBL" Jl
Ay (B Yt V) exp [Fa(k o+ pryy +-)] =0 (2.6)

c’est-a-dire que cette contribution décroit plus fortement que
toute puissance de T, si chaque domaine V,,---,V,.,--- est séparé
de tout domaine V3.,--, Vy.,--- par une durée plus grande que T
et quelles que soient les énergies-impulsions finies k/,---*). Autre-
ment dit, 4,, ne rayonne pas et n’est pas soumis & une condition
de causalité.

Par contre, la causalité impose a &9, une condition sur son
spectre de fréquences:

Qcm(xfa'"ylﬂa"'mi:“'yi,“')x/dk{"“/dp /dk’ dpl
@+(]£”4 ——ki*i_-) @im(klﬂ"”’plﬂ"“ki’“'pl"“)
exp[+a (ki@ +---+p/y/+-)—i(ky+ - +pry,+--)] (2.7)

si o (x),--)=lm D¢ (z],-; V)
V—o
o e a8 Sy gl

Ainsi, pour que la condition de causalité soit satisfaite, 4l faut
et ol suffit que D5, puisse étre décomposé selon (2.5), les deux termes
satisfaisant (2.6) et (2.7). Les conditions de causalité formulées an-
térieurement omettaient la possibilité de fonctions «a courte dis-
tance» 4,,, et introduisaient Dy, dans (2.7)3).

Esquissons pour terminer comment la condition de causalité
jointe & celle d’unitarité fixe le développement de S[V] en série de
puissances de la constante de couplage g (S[V]=1+ 2, ¢g» S,[V]).

*) L’existence de telles fonctions, malgré I'invariance, a ¢été démontrée par
CHRETIEN et PERIERLS?).
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La condition d’umitarité donne la partie hermitienne de S, en termes
des approximations précédentes?):

n-1
H ——5 38,8, S,~H-+A,;H ~Hj; A,— Al (28
m=1

La condition de causalité définit une décomposition de H,, en par-
ties causale et anticausale:

H, = 5 (S;+81); 85— (S (2.9)
A, est alors définie parf
A, = (S;—8) (2.10)

de telle sorte que S, soit causale, égale & S,. La décomposition
(2.9) résulte d’une décomposition des noyaux DL, de H,,:

Dlp= s (D5, 4 D5) = 2 (Dot Ayt Dl + 45, (211)

On voit que la partie imaginaire de 4,,, est indéterminée, il s’ensuit
que, si la décomposition (2.11) est possible, Dy, est uniwoquement
défimie, & une fonction (tmaginaire) «a courte distance» prés.

3. La premiére approximation.

Nous passons maintenant au cas particulier d'un champ chargé
u (x) et d'un champ neutre ¢ (), tous deux scalaires:

(O—=2u(x)=0; (O—p2) @(x)=0; 2x>u (8.1)

en interaction scalaire, caractérisée par la premiére approximation:

SI[V]=
—wf f fhmy,z)—fb/ (! (2) @ (z)u(z))” [(z,9,2)%) (8.2)

V,e V,y V,z

*) ~ signifie que les opérateurs sont bien ordonnées (produit § de Wick).
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ou I'(z, y, 2) est le facteur de forme. L’interaction ponctuelle cor-
respond au cas particulier I'(x, y,2) =d(x—y) 6(2—y). L'inva-
riance du facteur de forme est assurée soit par la représentation de
FouriEr:

I(@,y.2) = g )fdp)“/(dq4f[p (p+@% gl Ve (3.3)
soit par:

I'(x,y,2) fA r—a)?, (y—a)2 (z—a)?]. - (8.4

Les deux représentations sont liées par:
1 ipEti ik
A L) = e [(@D) o D% @ ) 60+ iane k5% (3.5)

La valeur de la constante de couplage est définie par la normation
du facteur de forme:

I'(—x? —u? —x?) =1, . (3.6)
La condatron d’unittarité est vérifiée si:
Mgy, =1*@0a; LB —=1"E,E. k. B

(3,7) est incompatible avec (2.7), et la causalité n’est assurée que
s1 le facteur de forme est une fonction «a courte distance» satisfai-
sant (2.6) (avec m = 3). Ceci est réalisé si toutes les dérivées de

I' (K%, k2, k2) sont bornées pour toutes valeurs de k7, k2 et k (CHRE-
TIEN- PEIERLS"’)):

s o™
’0(;@%)’% 0 (k" 0 (k2)ms

' B )| < e (3.8)

Nous envisagerons en particulier le facteur de forme factorisable:
I (K%, k3, K3) = A5 (k%) A (k) A, (k3**) . (3.9)

*) Tandis que z, y,2 .- représentent des points de 'espace-temps, &, 9, , --- re-
présentent des déplacements (x— y), -

*%) Des exemples satisfaisant (3.8) sont:
12 - %2 }'*2 o %2
o B T I Ml T
e T i

Ay (k?) = exp [—o* (k2 +2%)%].

A,,(kz):[c }; c+er=1; A-A*£0;
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4. La deuxiéme approximation.

Les termes de la partie hermitique de S, que nous allons discuter
sont:

Hy=— 58 S]=t [ [(((2) 9 () 9 0) ulw) ™

V,x V,w

Dlgu(@,y;v,05V) -+ [ [(9(y) 90) Dl (y30:7) -+ (4)
V.yV,v

Le noyau du terme quadrilinéaire («effet Compton») est donné par:

L = —»_—1— f fF(:z:, y,2) D! (z—w) I (u, v, w)*) . (4.2)
V.2 V,u
La décomposition D} =—1(D;,— Dj) conduit & une décomposi-

tion (2.11) de DLy, dont le premier terme est causal, comme le
montre I’évaluation directe de I'amplitude d’un processus anticau-
sal macroscopique. Soit:

e (z;p, V30, Vy) = f (dy)* / (da)* I (z,y,2) V, (y) €7V Vp(2) €17 (4.3)
Alors:

if e ek Vs ke Vi) Dole—w) 0 (w5 by Vi s Vi) (44

V,z2 V,u

est proportionnelle & 'amplitude d™un processus, anticausal et ma-
croscopique si Vi, Vo >V, , V, et si les fréquences (ki + Ik3) et
(P + pd) sont positives.

CHRETIEN et PrIErLS?) ont montré que, en vertu de (3.8),
o(z; p, Vy; q, V) est une fonction fortement décroissante (cf. (2.6))
de (z* — % (24 + z%)) et de (24 — x%), s1 4 et xp sont les centres
des domaines V, et V. Des lors, on ne modifie pas sensiblement
(4.4) en remplagant D¢ (z—u) par £ D, (2—u), sa valeur pour
w* > z40%(2; k,, Vs ks, Vp) ayant un spectre de fréquences centré

*) On a Di(é) =3 (Di +D ) (£). Les autres fonctions apparaissant dans la

suite sont: i ; . ) ) 1 .
D (&) = 5 (Dy =D ) (&) Dy(&) =5 (€Y D, (8)

et le propagateur causal: )
?

D5(8) = (D3 + 5 D) ).
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autour de — (k3 + k) =— w <0 et de largeur do < w, D, (2 —u)
un spectre de fréquences négatives (inférieures a —x), (4.4) est
négligeable. On vérifie que des circonstances semblables sont réa-
lisées pour tous les autres processus anticausaux possibles.

Il est donc possible de choisir le noyau causal:

D, (2, y;0,w; V) = fz}f fF(;c, Y,2) DS (2 —u) I'(w, v, w), (4.5)

V,u V,z

qui correspond & celul de la méthode de perturbation*). La dis-
cussion de la «diffusion de MOLLER» est analogue.
La self-énergie du champ ¢ a pour noyau:

1 B &
DL22=‘2‘(D,T22+DM22) 4 (4-6)
1
D:22 - —1€ X

w [ I'(2,y,2) DT (2 —w) D} (¢ —w) I'(w, v,00) . (4.7)
V;/;c V;[ V,{ V:/w

D, ;;8’obtenant en remplagant D} par D,;. Remarquons que dans
la limite ot le domaine ¥ §’étend & tout 'espace-temps (V(z) =1),
la fonction D, (y; v; V) est une fonction invariante D, (y —v),
de spectre de fréquences positives (négatives), supérieures en valeur
absolue & 2 %. Ainsi, le noyau:

¢ 1 _
Duzz(ywiv) =DL22(95'0§V) +§8(y4—@4) (D:22—D,u22) (y—v) (4.8)

satisfait la condition de causalité (2.7), et nous pouvons le choisir
comme noyau causal de la self-énergie du champ ¢. Le noyau que
fournit la méthode de perturbation peut étre écrit symboliquement:

(DD, DD+ DLDYT. (4.9)

On peut voir que la différence entre (4.8) et (4.9) est une fonction
(imaginaire) «a grande distance». Le noyau (4.9) de la méthode de
perturbation me satisfait donc pas la condition de causalité, deux
noyaux causaux ne pouvant différer que par une fonction «a courte
distance» (voir fin § 2).

*) Nous discutons au § 5 I'effet de ’adjonction a (4.5) d’un terme imaginaire &
courte distance.
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Nous évaluons encore la transformée de Fourier de (4.8) afin
de voir dans quelles conditions la difficulté de divergence est évitée.
D’aprés ce qui précéde, la transformée de D,y doit avoir la forme:

D) = G (—p?) 525 0 (— 12— 453 O (p¥) =
- [de*G(@*) D (p). (4.10)

(2%)*

Dy peut donc étre représenté par une superposition de fonctions
Df, et une représentation analogue est valable pour Dg,:

Dsu(p?) = —2i [de* G (¢ Dy (p?) =

(2)*

BCE) fdezG(eg) |82 +0?) +H-%HLQ—2_]. (4.11)
(2 #)*

On trouve:

GeY) = — g (T (72—t — )P (1-25) (412)

92

et I'intégrale (4.11) converge si [I'(— =%, — 02 —x2)|% ne présente
pas de singularités non intégrables pour (2 %)% < p2 < oo (ce qui
est assuré par (3.8)) et tend vers zéro comme (02)~* (s > 0) lorsque
0? tend vers I'infini. On voit donc que 'effet du facteur de forme
est équivalent & celui d’un facteur de convergence. En particulier, la
correction de masse Au? due a la self-énergie est négative (signe
correct!) et vaut:

1
Axuz:mgg (2 )8 X
x/dgz|F(—%2,—Q2,*x2)]2(1~—49’;2)%?{—”—2<0. | (4.13)

(2 7)*

5. La troisiéme approximation.

Nous nous limitons au terme trilinéaire (vertex-part): le noyau
D (x, y, 2) de sa partie hermitique est donné symboliquement par:

—8 Dy, =[I'Di, I'(D} I'D; + D I' D}) + permutations] (5.1)
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en vertu de (2.8), (3.2) et (4.5); le premier terme correspond, par
exemple, & (fig. 1):

/r(a; 2", 2" D (2" — 2" T'(2, 2", 2)
1’ x” V"
% DT (z’___yﬂ/)l'v(y Yy, Y w)D (y ,w ) (52)

Fig. 1.

Il est utile d’introduire les fonctions de un et trois déplacements
smivantes:

(5) 2 T / (AR T (=, — g2, P %5 (5.8)
A,(8) =z | (@R T (2, k2 —a) €K, (5.4)
D (&,1,8) = s [ (dRy)*- T (2, K2, — %) x

x D2 (k3) T'(— 5%, k3, 13) € B S lan bk (5.5)

D,, étant définie de maniere analogue. La limite du premier terme
de (5.1) lorsque V s’étend a tout I'espace-temps peut alors s’écrire
(fig. 2):

m //D5 (x—ux',a'—2",2'—2) D} (/—y)A,(y—y) D, (y—a’) (5.6)

du fait que les transformées D} (p) et D, (p) contiennent le terme
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d(p% + %%). On met en évidence la limite de (5.1), formée de termes
du type (5.6), en écrivant:

—8D},= D5 (D} 4,D; +D; 4,D}) +---] +
+[(rpyrpf rD; — D\ DF A, D7) +---] %) (5.7)
La premiére partie de (5.7) peut encore s’écrire:

[Af DA, (Df A, Dy +---) -]+ [ A% (DF A, Dy ++-) +---| (6.8)

Fig. 3.

ol le premier terme du premier crochet correspond a la figure 3,

avec le «triangle interne» (x', y', 2’), et o A est la fonction «a
courte distance» de trois déplacements:

&2, (&,9,) = D2, (§,,8) — A%(8) D (m) 4,,(2) - (5.9)
Vu D+D-+ D~ D+ =2(D' D'+ D°D® et vu I'identité, valable
pour tout «riangle interne»: 4 D*DsD*+ D*D°D° + ... =0, la pre-

miére partie de (5.8) se décompose sans autres en parties causale et
anticausale (2.11): ‘
—4 (4, D5 A, DA, Di4 @@ @) | (5.10a)
alors que la seconde partie donne:
18 c c s s 1
—4 43| (D34, D5 — Dy A, Dy — 3 DVA, DY) + '
a @ 3 13 S 1 V
+ (D24, Di— D34, DH—IDQA”DQ)] +... (5.10b)

*) Les intégrales s’étendent & tout 1’espace-temps, sauf celles du terme en I”
qui sont pondérées par V(z).
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Le terme écrit de (5.10b) se décompose de la méme maniére si
Yt > 1t ~ 24; en effet, 4, et les branches en (x — ') et (2'—2) de
er‘ étant «& courte distance», les contributions non négligeables
viennent des régions y'4> 2’4~ 2’4, ou (D5, D;, + } D% DY) est nul.
Ainsi, si une décomposition de (5.10b) en parties causale et anti-
causale est possible, le terme en Zﬂi de sa partie causale doit &tre

le premier terme du crochet multipliant Zi dans (5.10b) (& une
fonction «& courte distance prés»). Des considérations analogues
s’appliquent aux termes en A%, et A%* On en déduit que, pour
autant qu’il existe, et & une fonction «a courte distance prés», le
noyau causal ne peut étre que:

AEDEA, DA, Di+{ﬁi (DgA#Dim
— DA, D}~ DA, DY) +-- } (5.11)

Pour démontrer I'acausalité de ce noyau, il suffit de vérifier que
la contribution & 'amplitude dun processus anticausal du deuxiéme
terme de (5.11) (contenant les fonctions «& courte distance» ZIE ,
A et A3*) ne disparait pas lorsque les trois domaines V, V3 et V,
(centrés autour de x,, y, et zy), ot sont localisées les créations et
les annihilations, sont séparés par de longs intervalles de temps.
{(Nous allons méme trouver que cette contribution diverge, si une
droite de lumiére pevt passer simultanément par les trois domaines.)

Nous démontrons cette acausalité pour un facteur de forme fac-
torisable (3.9). Alors:

A2 (5, 8) = A5 (8) A5,(n) 4,(2) (5.12)
avec: |
A5 (a'— ) =
— f /”AM (@—a") D (z'— ) A, (¢'—#) — D (z'—2)  (5.18)

xﬂ‘ Z"

et le second terme de (5.11) s’exprime aussi en termes de «triangles
internes»:

D@y, ) = A4 (') x
X (D‘; (#—y') DS (y—z') — D Di—% D?{ Dg) +.oe, (5.14)
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La contribution & une amplitude de transition s’exprime alors,
& ’aide de ce triangle:

[ [ [e@) ae) 2y, ew) (5.15)
z’ y 2z
et des «sources»:
0s() = [4,(¢—2) u(2); - (5.16)
V.2

i)

centrées également autour de zy, Y, %, (vu que les 4,, 4,, sont
«& courte distance»). En introduisant le «potentiel de deux sources»:

D (y) = f f 01(x) 03(2) D (z,y,2) . (5.17)

(5.15) devient [, ® (y) 05 (y). Examinons le cas ou V; > V> V.
On peut alors, sans altérations sensibles, remplacer dans 2 les
fonctions D¢, D* et D° par leur valeur pour z%> y*> 24, 01, 02
et p; étant trés petites en dehors de V,, Vg et V. Alors:

Dz, y,2) — ——{As (2 —x) (D y—ax) DI (y—2)— D} D; +
+DfDf+D, D;)+D, A5D}+D, D; A*}.  (5.18)

Examinons la contribution du terme en 45 D; D; au potentiel &.
En termes des représentations de FouRrIlER par rapport au temps:

+ oo ‘ |
o1(2) = [dwe (@ ) e ioC; ... :

+ o0
Di(z)= [ do D (r, ) e™ "%+ (5.19)

elle prend la forme:

~ L [(@3) [ (@9 [ do, [ doses F 0;) o5 G oy

G_+ (Tln T2’ ’i"3; Wy, wa) eui(wl P (520)

o 4 4 A
b=y"—x,, L=Y—2%
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avec le noyau:

+ 00
G+ (13, 7oy a3 03, 05) = f dv G-+ () (5.21)

G=+(v) =D, (ry, o, —) Aft (re v) Dy (13, w3+ )
dépendant du triangle spatial » =|Z—y|, ro=1]%—7%| et

ry = |7 — y|. On sait que:

DE(r, ) =t~ O(Lo—n) (6™ —et97); 0=Vl —n? (5.22)

(Z2m)2 or

et (voir Appendice):

; . R 5
lim A5(v) =— ) —r_(e’“ T4e v, (5.23)
y—> 4 00
Ainsi:
hm G_+('V) :_EI'_ 1 _ 1 ei(‘v—ﬁh)ﬂ_e“’i(”"w;)ﬂ) ]
v— -+ o0 4 (275) REXF

(-t g o en) (520
Iim G-*(»)=0.

Or, une fonction représentée par (27)~1 [dv f(v)ei”* avec f(v) — 1
lorsque » — + oo et f(») — 0 lorsque » = — oo, posséde & l’origine
la singularité é,(s); il s’ensuit que G=*(ry, ¥y, r5; 4, @) est singulier
chaque fois que le triangle spatial dégénére en une droite. En parti-
culier, on a la singularité:

1 1 1 =i (w7 — w3 7y)
4 (2 m)° st (e 6+(TIMTZ + "'3) +

4 et 1 (w1~ @y 73) 6+ (_ ry+ 71— ’)‘3)) . (5.25)

Le second terme (en 45 D; D, ) de (5.18) donne une singularité
analogue avec d_ remplacant ¢, alors que les termes restants ne
présentent pas de singularité. La contribution & @ (y) des singularités
enr; — 1, + r3 = 0 vaut donc (avec 6,(s) — 6_(s) = 1/m 1/s):

i1 1 o Frerg 1 1
w09 [0 e

* (91 (5’ ty+71) 03 (E’ ty—13) — 01 (5’ ty —11) 03 (E’ ts + "'3)) . (5.26)

L’'intégrale du premier terme diverge si des droites de lumiére
passant par le point y interceptent les supports de g,(x) et de o5(2);



Vol. 27, 1954, Acausalité de I'interaction non-locale. 681

le second terme et les autres singularités de G+ et de G+~ (pour
ry + 1y — 13 = 0,--.) ne peuvent compenser cette divergence.

Lorsque le facteur de forme n’est pas factorisable selon (3.9), la
méme méthode de calcul peut étre utilisée et conduit encore a I'ex-
pression (5.26). Aucune restriction sur les spectres de fréquences de
01(x) et de ps(2) n’intervenant en cours de calculs (si ce n’est qu’ils
ne contiennent que des fréquences finies) tout processus au cours
duquel des créations et des annihilations ont lieu dans des domaines
Vi, Vg et V5 tels que chacun d’eux est en relation de lumitre avec
les deux autres a une amplitude infinie, ce qui est inadmissible. Ce
résultat est inévitable lorsque l'effet Compton a le noyau (4.5) et
la diffusion de MOLLER un noyau de méme structure. Si ’on ajoute

a ces deux noyaux des fonctions & courte distances, 43, - -+ se trans-

forment en de nouvelles fonctions & courte distance /A7, — 4 PAERE
Un choix convenable permet d’éviter la divergence (5.26), mais des
anticausalités macroscopiques non négligeables subsistent, le terme
singulier en (5.26) étant remplacé par une fonction de (r; — ry + 73)*)
4 moins que ANZ = A4,. Dans ce cas, le noyau causal se réduit au
premier terme de (5.11), qui a pour triangle interne le noyau de la
théorie ponctuelle; si ce noyau divergeait il ne serait pas possible
de le rendre convergent. Un tel procédé permet de satisfaire la cau-
salité a toute approximation, avec des noyaux de méme structure
que le premier terme de (5.11). Du fait de la normation des 4,,
A,,--- on obtient des amplitudes de transition entre quanta libres
identiques & celles de la théorie ponctuelle. Nous pouvons donc
conclure qu’une matrice S[V] unitaire et causale ne peut contenir
effectivement un facteur de forme.

Appendice.

La transformée de Fourier de 43, vaut, en vertu de (5.13):

8 1 f(k*+u?)
A,u(kz) = @)t k2+;; (A]')

avec f(k? + u?) = 1 —[A4,(k* + u¥]% Par la normation de 4, et
du fait que 4, (k? 4+ u?) — 0 lorsque k% — + oo, on a:
f(0)=0 et lim f(k%2+pu2)=1. (A.2)

k?— 4 o0
*) L’expression analogue & (5.26) décroit comme une puissance de

(r10" +730") (10 = |[Fo— > 730 = [Zo—FI)-

(2.6) n’est pas satisfaite.
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D’autre part:

A% (r, v) P (K2 —v?) et K7, (A.3)

Ainsi:

8 1 | iyor+oo 1 iur
Au(r,v)=m—(~§;)—3u 5 [e fdu-&ﬁf(u(u—i—Zvo))e +

-+ oo
g Vi? /du —:?f (4 (u — 2)) e““‘},

st v = »* — p® En vertu de (A.2), on peut donc écrire:

1
(2n)? .‘Zw

lim 4% (r,v) = —
v—r 4+ 00

(?,vr_}_e 'Lvr Pffdu 'wr (A4)

d’ou résulte (5.23).
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