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Zur Behandlung der Brownschen Bewegung mit Hilfe
der Langevin-Gleichung

von F. Grün*) und K.-F. Moppert**).

(16. VIII. 1954.)

In der vorliegenden Arbeit soll gezeigt werden, wie die übliche mathematische
Behandlung der Langevin-Gleichung1) stark vereinfacht wird, wenn man sich einerseits

des Formalismus der Laplace-Transformation bedient und andererseits
konsequent mit stochastischen Grössen rechnet. Durch eine derartige Darstellung wird
die Struktur der Langevinschen Behandlungsweise auch in komplizierteren Fällen
klar erkennbar; vor allem aber lassen sich so ohne weiteres auch allgemeinere, bis
jetzt anscheinend nicht betrachtete Fälle von Brownscher Bewegung behandeln.

1. Allgemeines zur Methode der Langevin-Gleichung.

Die Langevinsche Gleichung lautet

mu(t)= — ßu(t) + A(t). (1)

Die Bedeutung dieser Gleichung ist die folgende: Wir haben ein
Teilchen mit der Masse m, der Geschwindigkeit u(t) und der
Beschleunigung u(t). Auf dieses Teilchen wirken die Kräfte —ß u, die
Reibungskraft, und A(t). Die Kraft A(t) soll das Resultat der
unregelmässigen Stösse der umgebenden Moleküle auf das herausgegriffene

Teilchen darstellen, soweit nicht bereits in der Reibungskraft

enthalten. Offenbar ist A(t) eine sich rasch und unregelmässig
ändernde Funktion der Zeit.

Die Lösung bzw. mathematische Behandlung der Langevin-Gleichung

erfolgt in zwei Schritten. Zunächst gewinnt man die formale
Lösung von (1), das heisst x(t) und daraus u(f), indem man A(t) als
eine feste, gegebene Funktion betrachtet. Hierauf wird diese
formale Lösung „stochastisiert", das heisst man charakterisiert A(t)
bzw. dem A(t) zugeordnete Grössen A(vAt) durch ihre statistischen
Eigenschaften und erhält so statistische Aussagen über x und u, in
Sonderheit über die Mittelwerte und Streuungen dieser Grössen in
ihrer Abhängigkeit von der Zeit.

*) Physikalisch-Chemische Anstalt der Universität Basel.
**) Nauenstrasse 16, Basel, jetzt Universität Hobart, Hobart (Tasmanien).



418 F. Grün und K.-F. Moppert. H.P.A.

Gleichung (1) und die daraus gewonnenen Beziehungen betreffen
den einfachsten Fall der Brownschen Bewegung eines Teilchens in
einem viskosen Medium, wie sie bereits von Einstein behandelt
wurde. Aus physikalischen und mathematischen Gründen wird man
daran interessiert sein, diese Gleichung zu verallgemeinern. Eine
erste Gruppe von solchen „allgemeineren Langevin-Gleichungen"
erhält man, indem man bei Belassung der Gestalt von (1) eine andere
Annahme über die Grösse der Reibungskraft, oder allgemeiner, der
„systematischen Kraft" macht.

Wir schreiben

mu(t)=f + A(t). (2)

Hier soll nun / nicht mehr proportional der Geschwindigkeit des
Teilchens sein, sondern in allgemeinerer Weise von seiner Geschwindigkeit

und Lage, sowie explizit von der Zeit abhängen. Wir können
dabei noch im einzelnen unterscheiden zwischen dem Fall, dass / eine
Funktion der momentanen Werte von u und x ist, und dem
allgemeineren Fall, in dem / ein Funktional von u und x ist, die mit ihren
sämtlichen Werten seit Beginn des Versuchs den momentanen Wert
von / bestimmen.

Im folgenden soll in Abschnitt 2 zunächst gezeigt werden, wie
man unter bestimmten Voraussetzungen über die Gestalt der
formalen Lösung von (2) das hier gegebene Programm der Behandlung
der Langevin-Gleichung in sehr einfacher Weise realisieren kann;
in Abschnitt 3 sollen zwei Beispiele für Gleichung (2) mit dieser
Methode behandelt werden.

2. Statistische Aussagen über h(0 und x't) für den Fall, dass die formale
Lösung der Langevin-Gleichung die Gestalt eines Faltungsintegrals hat.

Es gilt der folgende Satz : Ist die Langevinsche Gleichung formal
lösbar und hat ihre Lösung die Gestalt eines Faltungsintegrals, so
ist die Lösung auch „stochastisierbar", das heisst, man kann aus ihr
explizite statistische Angaben über Geschwindigkeit und Lage des
Teilchens als Funktionen der Zeit gewinnen2). Es soll also gelten

x(t) \F*A + 0(t)*). (3)
und damit

u(t)=x(t) W*A+0'(t). (A)

— t

*) W*A (Faltungsintegral) =f,P(t-tj)A(ç)d£.
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Zur Durchführung des Beweises approximieren wir zunächst (3)
und (4) durch die folgenden Summen*)

At

x(t) £W(t-vAt) A(vAt) + 0(f),

u(t)=2JW(t-vAf)A(vAf) + <P'(f).

(5)

(6)

Hierauf geben wir den in diesen Ausdrücken vorkommenden A(vAf)
eine neue Bedeutung. Zunächst stellen diese Terme natürlich Grössen

mit ganz bestimmten Werten dar; nunmehr sollen die A(vAf)
jedoch als stochastische Grössen betrachtet werden, die lediglich
durch ihre Erwartungswerte (und daraus abgeleitete Angaben)
gekennzeichnet sind. Im einzelnen nehmen wir an, dass für alle v
Folgendes gilt:

a) die A(vAf) sind untereinander statistisch unabhängig; (7)

b) die A(vAf) sind normal verteilt; (8)

c) AlAFJt)=0; (9)

d) a2(A(vAf)) o2(A(Afj). (10)

Die Bedeutung der Annahmen a) bis d) und die der Auffassung der
A(vAt) als stochastische Grössen überhaupt, ist dabei die, dass wir
so in mathematisch fassbarer Form die zunächst ganz unbekannte
Funktion A(f) charakterisieren. Im einzelnen werden uns diese
Annahmen durch die physikalische Anschauung nahegelegt. Von der
Annahme (8) lässt sich überdies zeigen, dass sie notwendig und
hinreichend ist dafür, dass der Erwartungswert der Geschwindigkeit
des Teilchens für grosse t asymptotisch eine normale (Maxwellsche)
Verteilung besitzt3)4).

Zusammen mit den A(vAf) werden nun auch die Geschwindigkeit

u(f) und die Lage x(f) zu stochastischen Grössen. Wegen der
Linearität der Beziehungen (5) und (6), sowie auf Grund der
Annahmen (7) bis (10) erhalten wir unter Anwendung der Sätze5) über
das Rechnen mit stochastischen Grössen folgende statistische
Aussagen über x und u. Für die Mittelwerte gilt

x(t)=0(t) (11)
und

ü~(t) 0'(t). (12)

*) Wir betrachten den durch die Approximation erzeugten Fehler als
vernachlässigbar.
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Entsprechend wird für die Streuungen

°2 (* {-)) =£lP2 (t - vA t) a2 (A (A t)) A t2. (13)
und

a2(u(t))=£lF'2(t-vAf)a2(A(At))At2. (14)

Approximieren wir die Summen durch Integrale*), so erhalten wir
t

a2(x(t)) a2(A(At))At /V2(f)d| (15)
u

und
t

a2(u(t)) e2(A(At))At fw2(Ç) dÇ (16)
u

Die erhaltenen Ausdrücke können wir nun zur Beschreibung der
Brownschen Bewegung verwenden ; wir haben dabei lediglich zu
berücksichtigen, dass für die Geschwindigkeit des betrachteten
Teilchens im thermischen Gleichgewicht, das heisst also für grosse t,
gelten muss

li_ïï(i)=0**) (17)
t-^ oo

und

lim„(J)=^ (18)
£—>¦ oo

und daraus wegen der allgemein gültigen Beziehung

a~Ä=a2 + a2(a) (19)
auch

lima2(u(t))=k^. (20)

Die Formel (20) gestattet uns, aus Gleichung (16) das in seinem
Zahlenwert noch unbekannte cr2[^4(d£)] auszurechnen. Durch Einsetzen
dieses Wertes in (15) erhalten wir dann

t

rH!r.(i\\='zZr.AL
m t

j¥'2(ï)dH
a2(x(t))=AA_ALt ***) (21)

*) Vgl. Fussnote vorstehende Seite.
**) Es muss also gelten Cp'(t) -> 0 für t -*¦ oo.

oo

***) Wir setzen die Konvergenz von f ¥'*(§) d£ voraus.
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und daraus schliesslich einen Ausdruck für den experimentell
beobachteten quadratischen Mittelwert der Verschiebung des Teilchens
in seiner zeitlichen Entwicklung

t

X2(t) 0z(t) + A^AL (22)

/¥"2(f) dS
o

3. Behandlung zweier Fälle, in denen die formale Lösung der Langevin-
Gleichung die Gestalt eines Faltungsintegrals hat.

a) Für den Fall einer linear von u und x abhängigen systematischen

Kraft
f -ßu-yx (23)

lautet die verallgemeinerte Langevin-Gleichung*)

mu — ßu — yx + A(f) (24)

mx —ßx—yx + A(f); (25)

x S*A + B, (26)

l

oder auch

daraus wird

wobei

und

S(f)=L~1(—X, À**) (27)w \ms2+ßs + y)f ' x '

B(f) (mx0 + ß x0) 8(f) + mx0 S'(f) ; (28)

aus (26) erhält man weiter

u(t)=x =S'*A + B'. (29)

Schliesslich wird aus (27) nach kurzer Rechnung
oo

f8a &** -& (3°)
0

und
00

fs'2®dt=-eß- ^
I 0

*) Dieses Beispiel ist schon - allerdings mit mehr Rechenaufwand - von anderen
Autoren behandelt worden, siehe zum Beispiel die Darstellung bei S. Chan-
deasekhab, 1. 0. oo

**) L-1 bedeutet Umkehrung der Laplace-Operation L; L(F) fe-stF(t) dt.
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Durch Einsetzen von (30) und (31) in (22) erhalten wir als asymptotischen

Mittelwert der quadratischen Verschiebung des Teilchens

x^t) B2(f)+^f. (32)
t-+ OO t^r OO '

Interessiert man sich auch für die zeitliche Entwicklung dieses

Mittelwerts, so hat man aus (27)

S2(i)dï
0

zu bilden und diesen Wert, sowie (31) in (22) einzusetzen. Man
erhält so

^ E2(i)+_X^_X__^(içX+X!!__Xe-(,+.A (33)w w nifiv m(fi-v)2 \ 2(t 2v fi + v I

WO

v + pi -=-, vpi A- (34)' m 'm
(v und pi sind der Einfachheit halber als reell und verschieden
angenommen). Durch eine Reihe von Umformungen wird daraus

xm) B2(t) + — —e~(IX+V)t xw *¦ ' mpv nifiv

2 (~)2sÌnh2 (~2~t) + (TS) SÌnh (("-'>.«) + 1] - (35)

In dieser Form ist der Ausdruck identisch mit der Formel (214), die
Ohandeasekhab am angeführten Ort als Lösung desselben
Problems gibt.

Entscheidend ist nun, dass die eben gegebene Behandlungsweise
in keiner Weise gerade auf Gleichung (24) beschränkt ist. Es lassen
sich eine ganze Reihe von Verallgemeinerungen der Langevin-Gleichung

angeben, deren formale Lösung die Gestalt eine» Faltungsintegrals

hat und die dementsprechend nach den Angaben in
Abschnitt 2 behandelt werden können. Ein spezielles Beispiel, das

physikalisches Interesse besitzt, soll im folgenden als Fall b)
besprochen werden.
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b) Wir nehmen an, dass die systematische Kraft selbst ein
Faltungsintegral ist aus einer Funktion _ und der Geschwindigkeit u
des Teilchens, nämlich

f -K*u. (36)

Die dazugehörige Langevin-Gleichung lautet dann

m ù —K *u + A (37)
bzw.

mx — K*x + A. (38)

Diese Gleichung, die wegen des Vorkommens einer beliebigen Funktion

_ natürlich sehr viel allgemeiner ist als zum Beispiel (24),
scheint in diesem Zusammenhang noch nicht behandelt worden zu
sein. Man erhält aus (38)

x Q * A + P, (39)
wobei

und

p« T -x ma x0 + m x0 + L(K) ¦ x0\F W L [ mt- + aL(K) ' (41)

aus (39) erhält man weiter für u

u x Q'*A + P'. (42)

Um explizite Formeln zu erhalten, wollen wir für das Folgende _
spezialisieren zu

K(!) ee-|/r (43)

(für t -> 0, re -> ß erhält man daraus den allereinfachsten, klassischen

Fall der Brownschen Bewegung zurück). Aus (43) wird dann
zunächst

L(£)=-^- (44)

und damit aus (40)
X

mQ(t) L-1[ 7%-T" I" ^
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Man verifiziert, dass für Q dann gilt

und für Q'

mit

Q(t) a
q(q-

e~Qt- e

o(q- <X
at i Q + a

ga

m Q'(t)=- a

Q-a
e Qt, Q

Q-a
e-at

Q + a
1

QO
e

m

(46)

(47)

(48)

Aus (47) folgt weiter

™2/ra«4(^X + ^). (49)
o

Für das entsprechende Integral über Q2 überlegt man sich, dass der
Integrand ebenso wie Q(t) selbst aus Exponentialtermen und einer
Konstanten besteht. Durch Integration erhalten wir daraus Expo-
nentialterme, Konstanten und einen in t linearen Term, nämlich

Somit erhalten wir die asymptotische Formel s

^tM^^m^)9- (51)
t -* oo •{

Durch Einsetzen von (49) und (51) in (22) erhalten wir schliesslich
für den quadratischen Mittelwert der Verschiebung pro Zeiteinheit
für grosse t

2 (g+M2
lim X_ J_ \ e° l *) (52)

t m g+a 1 ' v '
t—r CG

Q er Q + a

*) Unter der Voraussetzung, dass P2(t)jt=*0 für t ->- oo
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oder auch wegen (48)

limSU^(___V (53,
t-»°o \ 1 + er —\ m

4. Diskussion der erhaltenen Formeln.

Wir haben am Anfang der Arbeit Gleichung (1) eingeführt als
Beschreibung der (translatorischen) Brownschen Bewegung eines
Teilchens in einem viskosen Medium. Dementsprechend beschreiben die
Verallgemeinerungen a) bzw. die Gleichungen (24), (32) und (33) die
Bewegung eines harmonisch gebundenen Teilchens in einem viskosen

Medium. Die Verallgemeinerung b) [Gleichungen (37) und (53)]
beschreibt die Bewegung unter der Wirkung einer Rückstellkraft,
deren Grösse zur Zeit t von der Vorgeschichte der Bewegung des
Teilchens abhängt.

Von grösserem Interesse ist es jedoch wohl, die Formeln aufzufassen

als Beschreibung einer rotatorischen Brownschen Bewegung ;
als solche können wir sie zu Experimenten in Beziehung setzen.

Wenn wir x als Winkel der Ablenkung aus der Ruhelage, m als

Trägheitsmoment auffassen, so gibt (32) bzw. (33) die rotatorische
Brownsche Bewegung zum Beispiel eines Galvanometerspiegels wieder,

unter der gleichzeitigen Wirkung eines elastischen Drehmoments
(—yx), erzeugt durch die Torsion des Aufhängedrahtes, und eines

Reibungsmoments (—ßxx), hervorgerufen durch die umgebende
Luft (vgl. E. Kappler6)).

Gleichung (53) ist entsprechend aufzufassen als Beschreibung der
Brownschen Bewegung eines solchen Spiegels unter der Wirkung
eines Drehmoments M K * u, das heisst bei Vorliegen von
elastischer Nachwirkung im Draht mit der Nachwirkungsfunktion K
bzw. der speziellen, besonders einfachen Nachwirkungsfunktion
K e e~t/T. (Die äussere Reibung wurde hier der Einfachheit halber
vernachlässigt, sie lässt sich ohne weiteres auch berücksichtigen.)

Da wir im Prinzip stets mit elastischer Nachwirkung zu rechnen
haben und eine rein elastische Rückstellkraft nur eine Idealisierung
darstellt, besitzt Formel (53) ein gewisses Interesse.

Der eine von uns (K.-F. M.) dankt dem Schweizerischen Nationalfonds

für ein Stipendium.
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