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Zur Behandlung der Brownschen Bewegung mit Hilfe
der Langevin-Gleichung
von F. Griin*) und K.-F. Moppert**).
(16. VIIL. 1954.)

In der vorliegenden Arbeit soll gezeigt werden, wie die iibliche mathematische
Behandlung der Langevin-Gleichung?) stark vereinfacht wird, wenn man sich einer-
seits des Formalismus der Laplace-Transformation bedient und andererseits kon-
sequent mit stochastischen Grossen rechnet. Durch eine derartige Darstellung wird
- die Struktur der Langevinschen Behandlungsweise auch in komplizierteren Fallen
kld_r erkennbar; vor allem aber lassen sich so ohne weiteres auch allgemeinere, bis
jetzt anscheinend nicht betrachtete Fille von Brownscher Bewegung behandeln.

1. Allgemeines zur Methode der Langevin-Gleichung.
Die Langevinsche Gleichung lautet
mu(t) =—But) +A). (1)

Die Bedeutung dieser Gleichung ist die folgende: Wir haben ein
Teilchen mit der Masse m, der Geschwindigkeit u(t) und der Be-
schleunigung %(t). Auf dieses Teilchen wirken die Krifte —f u, die
Reibungskraft, und A(t). Die Kraft A(t) soll das Resultat der un-
regelméssigen Stosse der umgebenden Molekiile auf das herausge-
griffene Teilchen darstellen, soweit nicht bereits in der Reibungs-
kraft enthalten. Offenbar ist A(f) eine sich rasch und unregelméssig
andernde Funktion der Zeit.

Die Losung bzw. mathematische Behandlung der Langevin-Glei-
chung erfolgt in zwei Schritten. Zunichst gewinnt man die formale
Losung von (1), das heisst x(t) und daraus u(t), indem man A(f) als
eine feste, gegebene Funktion betrachtet. Hierauf wird diese for-
male Losung ,,stochastisiert”, das heisst man charakterisiert A(t)
bzw. dem A(f) zugeordnete Grossen 4 (v At) durch ihre statistischen
Eigenschaften und erhilt so statistische Aussagen iiber z und «, in
Sonderheit tiber die Mittelwerte und Streuungen dieser Grossen in
ihrer Abhéngigkeit von der Zeit.

*) Physikalisch-Chemische Anstalt der Universitit Basel.
**) Nauenstrasse 16, Basel, jetzt Universitit Hobart, Hobart (Tasmanien).
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Gleichung (1) und die daraus gewonnenen Beziehungen betreffen
den einfachsten Fall der Brownschen Bewegung eines Teilchens in
emnem viskosen Medium, wie sie bereits von EinsteIN behandelt
wurde. Aus physikalischen und mathematischen Griinden wird man
daran interessiert sein, diese Gleichung zu verallgemeinern. Eine
erste Gruppe von solchen ,,allgemeineren Langevin-Gleichungen*
erhélt man, indem man bei Belassung der Gestalt von (1) eine andere
Annahme tber die Griosse der Reibungskraft, oder allgemeiner, der
,»systematischen Kraft* macht.

Wir schreiben
mu(t) =f+ A1) . (2)

Hier soll nun f nicht mehr proportional der Geschwindigkeit des
Teilchens sein, sondern in allgemeinerer Weise von seiner Geschwin-
digkeit und Lage, sowie explizit von der Zeit abhéangen. Wir kénnen
dabeil noch im einzelnen unterscheiden zwischen dem Fall, dass f eine
Funktion der momentanen Werte von % und « ist, und dem allge-
meineren Fall, in dem f ein Funktional von % und 2 ist, die mit ihren
sdmtlichen Werten seit Beginn des Versuchs den momentanen Wert
von f bestimmen.

Im folgenden soll in Abschnitt 2 zunéchst gezeigt werden, wie
man unter bestimmten Voraussetzungen tiber die Gestalt der for-
malen Losung von (2) das hier gegebene Programm der Behandlung
der Langevin-Gleichung in sehr einfacher Weise realisieren kannj;
in Abschnitt 3 sollen zwei Beispiele fir Gleichung (2) mit dieser
Methode behandelt werden.

2. Statistische Aussagen iiber a(#) und x(¢) fiir den Fall, dass die formale
Losung der Langevin-Gleichung die Gestalt eines Faltungsintegrals hat.

Es gilt der folgende Satz: Ist die Langevinsche Gleichung formal
l16sbar und hat 1hre Losung die Gestalt eines Faltungsintegrals, so
15t die Losung auch ,,stochastisierbar®’, das heisst, man kann aus ihr
explizite statistische Angaben iiber Geschwindigkeit und Lage des
Teilchens als Funktionen der Zeit gewinnen?). Es soll also gelten

z(t)=VY+*A+ D) *). (3)
und damit
w(t) =3() = P'rd+ &(1). (4)

t
*} ¥ * A (Faltungsintegral) =f¥’(t—§) A dE.

U
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Zur Durchfithrung des Beweises approximieren wir zunéchst (8)
und (4) durch die folgenden Summen*)

i‘ Y(t—vAt) A(vAt) + (1), (5)
u(t) = E’A—W't—vm)A(MtH@'m, (6)

Hierauf geben wir den in diesen Ausdriicken vorkommenden 4(» At)
eine neue Bedeutung. Zunédchst stellen diese Terme natiirlich Gros-
sen mit ganz bestimmten Werten dar; nunmehr sollen die A(vAt)
jedoch als stochastische Gréssen betrachtet werden, die lediglich
durch ihre Erwartungswerte (und daraus abgeleitete Angaben) ge-
kennzeichnet sind. Im einzelnen nehmen wir an, dass fiir alle » Fol-
gendes gilt:

a) die A(vAt) sind untereinander statistisch unabhingig; (7)

b) die A(vAt) sind normal verteilt; (8)
c) A(vAt) = 0; (9)
d) o(4(v4t)) = o2 (4 (41)). (10)

Dle Bedeutung der Annahmen a) bis d) und die der Auffassung der
A(v At) als stochastische Gréssen iiberhaupt, ist dabei die, dass wir
so in mathematisch fassbarer Form die zunéchst ganz unbekannte
Funktion A(f) charakterisieren. Im einzelnen werden uns diese An-
nahmen durch die physikalische Anschauung nahegelegt. Von der
Annahme (8) lésst sich tiberdies zeigen, dass sie notwendig und hin-
reichend ist dafiir, dass der Erwartungswert der Geschwindigkeit
des Teilchens fiir grosse ¢ asymptotisch eine normale (Maxwellsche)
Verteilung besitzt3)4).

Zusammen mit den A4(»At) werden nun auch die Geschwindig-
keit u(t) und die Lage x(t) zu stochastischen Grossen. Wegen der
Linearitat der Beziehungen (5) und (6), sowie auf Grund der An-
nahmen (7) bis (10) erhalten wir unter Anwendung der Satze5) iiber
das Rechnen mit stochastischen Grissen folgende statistische Aus-
sagen lber z und u. Fir die Mittelwerte gilt

z(t) =D(t) (11)

u(t) = D'(t) . (12)

*) Wir betrachten den durch die Approximation erzeugten Fehler als ver-
nachlassigbar,

und
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Entsprechend wird fir die Streuungen

o2 (2 (1) = P2t — v A1) o (A (A0) At (13)
e o2 (u(t)) = TP (t— vA1) 62 (A(A1)) A2 (14)
Approximieren wir die Summen durch Integrale*), so erhalten wir
o2 (2(f)) = 02 (A4 (A1)) Atf‘fm(&) dé (15)

und
o2 (u(t)) = o%(4 (A1) 4 tft';[”(f) dé . (16)

Die erhaltenen Ausdriicke kénnen wir nun zur Beschreibung der
Brownschen Bewegung verwenden; wir haben dabei lediglich zu be-
riicksichtigen, dass fiir die Geschwindigkeit des betrachteten Teil-
chens im thermischen Gleichgewicht, das heisst also fiir grosse t,
gelten muss

lim % (t) = 0*%) (17)
t— 0

und
lim w2 (f) = <5 (18)
t— o0

und daraus wegen der allgemein giiltigen Beziehung

a? = a? + o%(a) (19)
auch
lim o2 (u () = £ (20)

Die Formel (20) gestattet uns, aus Gleichung (16) das in seinem Zah-
lenwert noch unbekannte o2[ 4(A4¢)] auszurechnen. Durch Einsetzen
dieses Wertes in (15) erhalten wir dann

t
JEEGLS ‘
o (a(t)) = L2 ) (21)
[ ds

u

*) Vgl. Fussnote vorstehende Seite.
**) Ks muss also gelten @’(f) — 0 fiir ¢t — oo.
o0
**%) Wir setzen die Konvergenz von f Y'2(E) d& voraus.
0
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und daraus schliesslich einen Ausdruck fiir den experimentell beob-
achteten quadratischen Mittelwert der Verschiebung des Teilchens
n seiner zeitlichen Entwicklung

t
JE&GLS
kT %

m f :
[ de

0

% (t) = @%(t) + (22)

3. Behandlung zweier Fiille, in denen die formale Losung der Langevin~
Gleichung die Gestalt eines Faltungsintegrals hat.

a) Fir den Fall einer linear von % und x abhéngigen systemati-
schen Kraft

f=—Bu—yz (23)
lautet die verallgemeinerte Langevin-Gleichung®)
mu=—PBu—yx-+ A) (24)
oder auch
me=—pBxz—yr+ A(l); (25)
daraus wird
r=8*4+R, (26)
wobel
SO =L (srzmrgrsy) ™) (27)
. ms2+ fs+y)
und
R(t)=(maxy+ B x) S(t) +mayS'(t); (28)
aus (26) erhilt man weiter
u(t) =2 =8S"*4+ R'. (29)
Schliesslich wird aus (27) nach kurzer Rechnung
‘00 2 | 1 :
[s1@ae -5 (30
und
[ ’ 1 _
-

e

*) Dieses Beispiel ist schon — allerdings mit mehr Rechenaufwand — von anderen
Autoren behandelt worden, siehe zum Beispiel die Darstellung bei 8. CHAN-
DRASEKHAR, 1. c. o0 _
- #¥) [-1 bedeutet Umkehrung der Laplace-Operation L; L(F) = f e St () dt.

0
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Durch Einsetzen von (30) und (31) in (22) erhalten wir als asymptoti-
schen Mittelwert der quadratischen Verschiebung des Teilchens

22 = R*(t) + . (32)

{—> 00 t—> o0

Interessiert man sich auch fiir die zeitliche Entwicklung dieses
Mittelwerts, so hat man aus (27)

t

fsz(s)ds

0

zu bilden und diesen Wert, sowie (31) in (22) einzusetzen. Man er-
halt so

wz(t):Rz(t)—l— KT kT -2 (utv) (e—zut+ e 27t 2 e_,(ud,-w)t) , (33)

mp m (u— v)> 2u 2y utv
wo
_ P _ 7 (34
VEpu=--, V= )

(v und g sind der Emnfachheit halber als reell und verschieden ange-
nommen). Durch eine Reithe von Umformungen wird daraus

muy  muy

x[2(”+”fﬁnh2(“glﬂ-+(”+z)anh«ﬂ-ﬂt)+1]. (35)

n—v

In dieser Form ist der Ausdruck identisch mit der Formel (214), die
CHANDRASEKHAR am angefithrten Ort als Losung desselben Pro-
blems gibt.

Entscheidend ist nun, dass die eben gegebene Behandlungsweise
in keiner Weise gerade auf Gleichung (24) beschrinkt ist. Es lassen
sich eine ganze Reihe von Verallgemeinerungen der Langevin-Glei-
chung angeben, deren formale Losung die Gestalt eines Faltungs-
integrals hat und die dementsprechend nach den Angaben in Ab-
schnitt 2 behandelt werden konnen. Fin spezielles Beispiel, das
physikalisches Interesse besitzt, soll im folgenden als Fall b) be-
sprochen werden.
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b) Wir nehmen an, dass die systematische Kraft selbst ein Fal-
tungsintegral ist aus einer Funktion K und der Geschwindigkeit u
des Teilchens, namlich

f=—K=u. (36)
Die dazugehorige Langevin-Gleichung lautet dann

mu=—K*u+ A4 (87)
bzw. +
mi—=—K#sx+ 4. . (88)

Diese Gleichung, die wegen des Vorkommens einer beliebigen Funk-
tion K natiirlich sehr viel allgemeiner ist als zum Beispiel (24),
scheint in diesem Zusammenhang noch nicht behandelt worden zu
sein. Man erhélt aus (38)

r=Q*A4+ P, (39)

wobel
_ 1
QW) =L sz (40)
und '
r_1{msxytmEy+ LK) x4\
P(f) = L7} (2B o) (41)

aus (89) erhélt man weiter fiir %
u=x=0Q *A4A+ P (42)

Um explizite Formeln zu erhalten, wollen wir fiir das Folgende K
spezialisieren zu

K(£) =ee—¥ (43)

(tir v > 0, 7e > B erhilt man daraus den allereinfachsten, klassi-
schen Fall der Brownschen Bewegung zuriick). Aus (48) wird dann
zunichst

LR)=—*— (44)
S+?

und damit aus (40)

(45)
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Man verifiziert, dass fir ¢ dann gilt

mY{d) = 0 (QG' o) gt cf((;f"c’) e+ Q_L;? (6)
und fir Q'
mQ'(t) = — Q‘_’G e ¢4 e—f;e*“t (47)
mit
0to=7, o——. (48)
Aus (47) folgt weiter
me f@ras= (%74 L) (9)
0

Fiir das entsprechende Integral iiber (2 tiberlegt man sich, dass der
Integrand ebenso wie Q(t) selbst aus Exponentialtermen und einer
Konstanten besteht. Durch Integration erhalten wir daraus Expo-
nentialterme, Konstanten und einen in ¢ linearen Term, ndmlich

(Q+o)2't. | (50)

00

Somit erhalten wir die asymptotische Formel: .

.1 r . o+o\2
mlfos-binf @

Durch Einsetzen von (49) und (51) in (22) erhalten wir schliesslich
tir den quadratischen Mittelwert der Verschiebung pro Zeiteinheit
fir grosse ¢

_ 9 '9+6)2 ‘ .
. 2(t kP (
lim xt() = EH_GQJ ) (52)

oo T p+o

*) Unter der Voraussetzung, dass P2(¢)/t — 0 fiir { = oo .
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oder auch wegen (48)

. aE(l)  2kT 1
fim £ _ 25 ( . ) (53)

t— 0 l+er—
m

4. Diskussion :der erhaltenen Formeln.

Wir haben am Anfang der Arbeit Gleichung (1) eingefiihrt als Be-
schreibung der (translatorischen) Brownschen Bewegung eines Teil-
chens in einem viskosen Medium. Dementsprechend beschreiben die
Verallgemeinerungen a) bzw. die Gleichungen (24), (32) und (33) die
Bewegung eines harmonisch gebundenen Teilchens in einem visko-
sen Medium. Die Verallgemeinerung b) [ Gleichungen (37) und (53) ]
beschreibt die Bewegung unter der Wirkung einer Riickstellkraft,

deren Grosse zur Zeit t von der Vorgeschichte der Bewegung des
Teilchens abhéngt.

Von grosserem Interesse ist es jedoch wohl, die Formeln aufzu-
fassen als Beschreibung einer rotatorischen Brownschen Bewegung;
als solche konnen wir sie zu Experimenten in Beziehung setzen.

Wenn wir = als Winkel der Ablenkung aus der Ruhelage, m als
Trégheitsmoment auffassen, so gibt (32) bzw. (33) die rotatorische
. Brownsche Bewegung zum Beispiel emes Galvanometerspiegels wie-
der, unter der gleichzeitigen Wirkung eines elastischen Drehmoments
(—yx), erzeugt durch die Torsion des Authéangedrahtes, und eines
Reibungsmoments (—pgzx), hervorgerufen durch die umgebende
Luft (vgl. E. KarpLERS)).

Gleichung (58) 1st entsprechend aufzufassen als Beschreibung der
Brownschen Bewegung eines solchen Spiegels unter der Wirkung
eines Drehmoments M = K + u, das heisst bei Vorliegen von elas-
tischer Nachwirkung im Draht mit der Nachwirkungsfunktion K
bzw. der speziellen, besonders einfachen Nachwirkungsfunktion
K =¢ e, (Die dussere Reibung wurde hier der Einfachheit halber
vernachléssigt, sie ldsst sich ohne weiteres auch beriicksichtigen.)

Da wir 1im Prinzip stets mit elastischer Nachwirkung zu rechnen
haben und eine rein elastische Rickstellkraft nur eine Idealisierung
darstellt, besitzt Formel (53) ein gewisses Interesse.

Der eine von uns (K.-F. M.) dankt dem Schweizerischen National-
fonds fiir ein Stipendium.
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