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Sur la forme des courbes de résonance paramagnétique

par Roger Lacroix.
(12 TV 1954.)

Résumé. Cette étude a pour but ’examen 4 la fois mathématique et expérimental
des formes des courbes d’absorption et de dispersion rencontrées dans la résonance
paramagnétique électronique.

Le calcul, qui est conduit pour des résonances présentant la forme de LORENTZ
ou de Gauss, met en évidence le fait que les courbes se comportent essentiellement;
différemment, selon qu’elles sont décrites en fonetion de la fréquence ou du champ
magnétique statique. Cette différence est particulierement grande pour des courbes
larges.

Une méthode de mesure des deux composantes de la susceptibilité paramagné-
tique complexe est décrite et un accord satisfaisant est trouvé entre 'expérience
et les points essentiels de la théorie.

I. Introduction.

Lorsqu’un corps paramagnétique, placé dans un champ magné-
tique statique H,, est soumis a un champ magnétique oscillant
H, ¢/27*t de fréquence » perpendiculaire au premier, il s’y induit une
almantation de méme fréquence qui, dans un corps isotrope, est
parallele & H; et vaut M, e/27*¢,

On définit la susceptibilité complexe de haute fréquence par la
relation: 1

3 M
“—"’-—- ”:
X=X —1X H, -

x tend vers la valeur réelle y, lorsque » s’annule. " et " sont
tonction non seulement de la fréquence v, mais encore du champ
statique H,.

Il est important de noter que les valeurs que prennent 3" et x”
en fonction de » ne sont pas indépendantes, mais sont liées par les
formules de Kramers-Kronia?)

oo
N

0 :_%v.p.filﬂldv' (1)

,V’Z_,y2

0
" 2 001; Yy ,
2" (v) :—QV-P-/TE%,)?CM g (2)
]
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v.p. signifiant la valeur principale au sens de Cavcuy de 'intégrale
divergente, c’est-a-dire:

F o) 2. o | T 20y
V.p.oj.mdv—llﬂlf yn ’uzd +/ :|.

0 v+ &

L’absorption d’énergie aux dépens du champ de haute fréquence?)
est proportionnelle, par période, & x”, qui s’exprime en fonction
de » par la forme: y

2 =)

S1 on considére que x'(v = 0) vaut y,, la susceptibilité statique, on
obtient comme cas particulier de 1’équation (1) la relation:

B2 dv= [ ) av=F 1. (3)
0

(0

Les expressions que nous avons pour représenter les courbes de
résonance sont des fonctions de la fréquence », le champ H, étant
supposé constant, alors que les observations portent en général sur
des courbes mesurées & champ variable et fréquence constante.

Le but de notre travail sera donc d’étudier I'incidence du choix
de f(v) sur la forme de x" et 4" en fonction de H, qui, nous le verrons,
est différente de celle en fonction de ».

Il sera intéressant de mettre en évidence les propriétés qui ne
dépendent pas de ce choix; en particulier le changement d’allure
des courbes d’absorption et de dispersion lorsque les raies devien-
nent larges.

D’autre part, nous étudierons le comportement des courbes pour
les fonctions f(») choisies et le comparerons avec des résultats
expérimentaux.

II. Expression mathématique des formes de eourbe.

Lors des expériences de résonance paramagnétique électronique,
on observe dans de nombreux cas une courbe d’absorption présen-
tant une rale unique pour la fréquence v, = gpuoH,/h*). Clest
essentiellement pour les expériences se présentant sous cet aspect,
que nous calculerons en détail les formes de courbe.

La théorie ne permet pas, dans I’état actuel, de déterminer
rigoureusement la fonction f(») donnant la forme des courbes.

*) g est le facteur spectroscopique, § = 0,9273-10-2% Am? le magnéton de
BoHR et u, = 1,257-107% Vs/Am la perméabilité du vide. La constante de PLaNck
h est exprimée en joule. sec et H, en A/m.
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Cependant Brorr3) a montré qu’il était théoriquement possible
d’obtenir la valeur des intégrales

oo

[ $(») 2" dn.

J
0

Van ViLEck?) a calculé pratiquement les trois premiéres et en a tiré
les moyennes ( 4v2% et (Av%), 1l résulte de ses calculs que, si 'in-
teraction d’échange entre spins est faible, le rapport ( 4»2)2/( Ap%)
est en accord avec celul qu’on attendrait d’une courbe de Gauss.
Des courbes de ce type ont effectivement été observées par Kumacai®)
et ses collaborateurs.

Nous choisirons donc pour premiére hypothése de travail la
forme

F(v) = A e,

Cependant, lorsque l'interaction d’échange est forte, le rapport
des moyennes ne peut étre satisfait que par une courbe plus effilée
que celle de Gauss?). ANDrrsoN et WErss®) ont montré que la raie
présente alors l'allure d’une courbe de LorENTZ, mais décroit
beaucoup plus rapidement si on s’éloigne assez de la résonance.
Lexpérience a également confirmé ce fait?).

En conséquence, nous adopterons comme seconde hypothése
sur f(») la courbe de LorENTZ

A
10 = rrae

en sachant bien qu’elle ne peut étre valable que dans un voisinage
plus ou moins étendu du sommet. '

Cette décroissance rapide en dehors de la région centrale nous
permet d’attendre un comportement de Gauss pour une fréquence
élevée, ¢’est-a-dire pour un champ magnétique faible si on observe
a fréquence constante et champ H, variable. C’est pourquol nous
calculerons y' (Hy) et dy’'/d H, pour Hy = 0 en posant pour f(»)

A o—tret (v

f(») = Trg g Ve Feg 1

ou la fonction de Gauss e #*¢*¢~*%)* ggsure la décroissance rapide
loin de la résonance. Nous vérifierons du reste que les résultats
alnsi obtenus sont en bon accord avec I'expérience.
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1. Courbes d’absorption.

Pour simplifier I’écriture, nous avons normalisé les fréquences au
moyen des notations suivantes:

09 B uH,

a=pv b=y, = 3

x=pv variable d’intégration.

a) Courbe de LoreNTZ.
Selon la notation qui vient d’étre définie, nous aurons pour
I’absorption:
a

2 (6, 0) = A(0) e

La relation de normalisation (3) devient:

r dz m
AD) [ e =5
0
d’otu A(b) — Xo

2
1+;arc tg b

¥ (a,b) = ; = .
(1 +% arc tg b) (1+ (a—b)?) (4)

Pour un champ H, nul, on retombe sur la courbe de DEBYE:

o @
x!f(a., O) = 1}:_“2 F

D’autre part, lorsque la résonance a lieu pour a ou b grand, on
retrouve la courbe bien connue:

! g S0 1
2 e, b) = = e

b) Courbe de Gauss.
L’absorption prend la forme:

y" (a, b) = A (b) ae=b"

eo]

A) [ e da =2y,
0

__Vay
A0 =536
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ol @(x) est I'intégrale d’erreur

D (x) :%f e~V dit

—(a—b)*

()

En général, on observe les courbes de résonance en maintenant
la fréquence » constante et en faisant varier le champ magnétique H,.
Ce qui nous intéressera sera donc 'allure de la courbe en fonction
de b pour une valeur fixe de a. Si @ est grand, la courbe présente
la méme forme que f(¥); par contre, elle n’a plus de maximum

y _ Vageae
A O P10

14

n

Z
%,

72
f . /N
08 / e

K \
/ \ N

" 5 \
‘o
o4 N T <
02‘\\\\ < [P, \\\\\
4 ) J, \ T
0 e
7 2 3 ¥ 5

Fig. 1.

lorsque a est assez petit. Cette particularité apparait pour ¢ < 0,354
dans le cas de LorENTZ et pour a < 0,564 dans le cas de Gauss.
Cela revient donc a dire que le maximum n’est plus observable en
fonction de H, lorsque la fréquence & laguelle on fait la mesure est trop
inférieure a la largewr de courbe. De plus, pour des courbes trés
larges, méme lorsque le maximum existe, il ne coincide pas avec
la résonance.

Nous avons tracé sur la figure 1 %" (a, b) en fonction de b dans le
cas de LoreNTz pour quelques valeurs du parameétre a.

2. Courbes de dispersion.

Nous allons calculer " & partir de " au moyen de la formule (1).
Au préalable, nous transformerons en une intégrale convergente
cette relation qui, sous la forme de la valeur principale d’une
intégrale divergente, rend le calcul malaisé.



288 Roger Lacroix. H.P.A.

@ (V') dv'

1)’2—’1/’2

Pour calculer g
v.p f

i
1l est commode de poser:

p(v) = @(y) + (' —») ¢ (+)

)d )d
vp/ﬁﬁ%i—vp/wvv+fﬁww

. V. / hm{ In |22 ”_e—{- In| ¥ =" }oo }:
P o | v+ o 2 N || P
= _—lim [1,, 2v*¢| _
zvsﬁo{ln 2v—s}ﬁ0'

En conséquence, on peut écrire:

- f@(v ) dv’ _ftp(v')ﬂw(v) A"
P | o e

ou le second membre de I’équation est une intégrale convergente
@(v") étant évidemment supposée bornée sur tout l'intervalle
d’intégration.

Faisant usage de cette relation, nous donnerons aux formules de
Kramers-Kronie la forme suivante:

, 2 / vy ('.v v)dv, (6)
” 2 (@)= (v ' =
7' () =—-;§if—{,—i;§é—ldv . (7)

0
S1 nous utilisons les notations du paragraphe precedent I’équation

(6) s’écrira: .
%' (a, b) =—i~f 7y (@b —ag(@b) g0 (8)

x2—qn2
0
a) Courbe de LorENTzZ.

Nous calculerons y'(a, b) en introduisant dans 1’équation (8) x
donné par 'équation (4)

4

o0

' 2 %o dx x? a?
X (a7 b) = e 2_ 2 z SFAY
7 (1+E arctgb) ! xi—a [1+(x—b) 1+ (a—b) ]
_ %o oo__(___ b2 da 2ab :cda: ]
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Les fonctions & intégrer possédant une primitive élémentaire,
I'intégration s’effectue aisément.

@b 1 a (a—b) (a+b) o
w13 [1+(u—b)2 + 1+(a+b)2]
B a2b(21n a—In (1+52) ©)

(%4- arc tg b) (1+(a—5)%) (1+(a+0b)?) .

Comme nous I'avons déja remarqué pour I’absorption, si b = 0, on
retrouve la courbe de DEBYE

X
Z,(a’ O) e 1+(;2 .

D’autre part, lorsque @ ou b est trés grand, on remarque la forme
classique de la courbe de dispersion:

’ " Ko a—b
(@) = — S

b) Courbe de Gauss.
Il nous faut, cette fois-ci, substituer I’équation (5) dans I’équa-
tion (8)

3 dw 12 g—(@=D _ 42 p—(a—b)*
0

on peut transformer

d (e o
xz_ﬂ;z [mze (=0 _ 42 g—(a— b)]

0\8

iy v —@—br_ —(a—b)
= [tz par [ - do =V (B(b)+1) +a2I
0

J z2—qa? 2
0

en posant

> 8—(m Bt —(a—by
I= dax
/ :
—a
dot ’
ou

 9arT
: _ __2ar1 ) 10
% (@) x"{H Va (1+¢<b))} 10

19
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Le calcul de I, que nous donnons en appendice, nous conduit
aux deux formes suivantes pour y'(a, b)

x(a.b) _ L
o =1 T 1+ @(b) 7
-
X le"(b‘“)2 fe(-”’ TN D(y) +1)dy — 211/ Ei(a?) — eazF(a)} -
i 4
-0

b
. e*(b%(l)e fe(y+(¢)2(®(y) + ]) dy _72 ]1/ m(az) + QQZF(Q)] (11)
i . JT
L0 7
x’(aa b) — d
e 1t irem *
rb-a |
xie0 | [¢(@ +a)+1)de— 1= Bi(—ay)| -
9 Ve )

—w‘“”e/é%@@—ﬂw+Udz—5%:Ei&%ﬁ>l (12)

Lo

ot If4(x) et Ki(—x) sont les fonctions exponentielles intégrales®)
et

Fa)—e @ [ dt
0

une fonction dont une table a été calculée par MiLLER et GorDON7).
Lorsque b est supérieur & 3, 'expression (12) se réduit a

208 a[F(b—a)—F(b+ a)]

Xo

avec une erreur absolue inférieure a 10-3,
On a b > 3 pour des courbes relativement étroites, pour les-
quelles

Enfin lorsque la courbe est trés étroite, on a b>1 et dans la
région de la résonance b—a/a <€ 1. Il en résulte:

ALLOPY

o
avec une erreur relative de ’ordre de 1/b.

*) cf. Tables JAHNKE et EMDES),
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Ce dernier résultat a été obtenu directement par PAkE et Pur-
CELL®), qui ont étudié le cas particulier des courbes trés étroites
(résonance nucléaire).

On peut faire au sujet des courbes de dispersion des deux types
une remarque analogue & celle que nous avons faite pour les courbes

’ 20
20 /\
15 \\\_\
\
10 ;

\

A\vdl

0& i ‘\3/
05 |

g 7 2 3 ¥ 5 ) 7 8 9 10

Fig. 2.

d’absorption. Lorsque a, qu’on suppose maintenu constant, est trop
petit, la courbe en fonction de b perd son allure de courbe de
dispersion, car son minimum disparait. Cette disparition a lieu

%

0

— %
Fig. 3.

pour @ < 1 dans le cas de LorenTz et pour a < 1,337 dans le cas
de GAuss. Par contre, si on laisse b constant, la courbe en fonction
de a conserve ses deux extremums quel que soit b.

Nous avons tracé sur la figure 2 y'(a, b) en fonction de b dans
le cas de LorENTz pour quelques valeurs du parameétre a.
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Nous avons d’autre part comparé sur la figure 3 une courbe de
Gauss et une courbe de LoreNTZ correspondant & la méme largeur
de rale.
c¢) Courbe muxte.

Dans ce cas la fonction f(») prend la forme:

Ao terr-)
Fi) = L+0%(v—v,)*

avec 12<1.

Le calcul de %' (a, b) a partir de

AB)ae M@ "

2@ b) = =

(13)
apparaissant d’ une extréme complexité, nous nous sommes contenté

de calculer %'(b = 0) en fonction de a.
Utilisant la relation de normalisation (3) qui devient

ot by .
AW [ {2 =5
0

on a

d’ou en calculant I'intégrale:

e,tzxa T 32
0

on trouve:

g2
4(0) = 1 Q) (t)

et
— tz az

" 0 € 1 ge
z"(a,0) = {2 () 1+a ° (14)
Introduisant (14) dans (8) on obtient:

2 xpe =it ate U dz
2(@,0) =+~ 0N [1+x2 T ita? |zi—a?

Cette intégrale se rameéne aisément &4 d’autres, calculées dans les
pages qui précédent. Il en résulte:

%'(a,0) =

1+a2

[l—ﬁ—i%aﬁ’(at)}. (15)
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Il est intéressant de noter que pour une valeur trés faible de ¢,
%' (a, 0) peut étre fortement modifié, alors que la courbe d’absorption
peut ne voir son allure que peu changée. Ainsi, pour ¢{ = 0,1 et
a =2, ¥(2,0) est diminué de 50%, alors que x"(2,0) ne 'est que
de 49%,.

Nous avons également calculé la dérivée dy'/db (b = 0). A I'issue
d’'un calcul assez ardu, nous avons obtenu:

d ’ 2 - 2 = —a?t?
% (a’ O) — T n [1;{_0_6@“” (1-30;2)2 [1+ (l‘l" az) tz] E”’(az tz) € o
,,tz
— Bi(—) et’m% e 1te F(at)}. (16)

III. Dispositif expérimental.

Le sel paramagnétique & étudier étant placé dans une cavité, il
convient tout d’abord de calculer I'influence de la susceptibilité
x sur les parameétres caractéristiques de la cavité, c¢’est-a-dire sur
la surtension () et la fréquence propre w,.

L’admittance normalisée de la cavité s’exprime par la relation:

Y @ . (w coo)
Y Yo QO + ] Ql w, w
ou Y, est I'admittance caractéristique du guide d’onde d’arrivée,
Qo> le @ sans charge, et @, le () extérieur.

Pour la commodité du calcul, nous écrirons Y sous la forme
d’'une admittance équivalente exprimée en termes de circuit
résonnant. _ 1
Y=G+ ] w C + Tk
ce qui nous donne:

1
zo o del =Yl

Nous pourrons ainsi exprimer I’énergie magnétique contenue dans
la cavité au moyen de la self équivalente et d’un courant équivalent.

1 1 1 1
1= é—fuﬂdezE—fyOHZdV+?fuo(l+x) H2dV
V vy v

ou Vet V'sont respectivement le volume total de la cavité et le
volume occupé par le sel paramagnétique.
Il est commode de décomposer la self en deux termes:

L=L1+L2(1+Z):L0+L2x
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en posant:
Ly=1,+ L,
d’ou
[ H2dv [H2aV
L _vw L, 7
Ly [Eeav Ly~ [meav
Vv v

Sty était nulle, on aurait

1
VIO tg =

Pour ¥ + 0, 'admittance equwalente s’écrit, en tenant compte du
fait que |y| <€1:

v, s 1 _zL
Y=G+jol+ o 1 (1 L)

Comme 3 = %" — 7%, on a:

r Ly
T TO)
La pulsation propre devient:
L1 1 1, Ly Y
wy+dw= i~ VLo (1 5 X 'j;:) = (1 =¥ Z;—)

et, en se rappelant que w ~ w, dans la région de résonance et que
GwyLy, <1, on a pour la surtension sans charge:

—Q—UM(E):G%L{)H"TZ

0

Il vient done:

L _Ef_)_“ x1L2 l B Z” L2
do=—-73 L, A(Q)ﬁ L, -
Ce qui peut s’écrire: jH?dV
1 w " . :

Comme nous allons le voir, 4(1/Q)) et 4w peuvent se mesurer par
I'observation a 'oscillographe d’une courbe de résonance de cavité.
Cette observation est possible au moyen du montage décrit par
la fig. 4, que nous modifierons légérement selon que nous voudrons
mesurer l'une ou 'autre grandeur.

Considérons en deux plans symétriques par rapport au plan
meédian du Té magique les impédances Z, et Z, terminant les bras
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1 et 2 du Té, amnst que les coefficients de réflexion correspondants
B, et R,. On définit le coefficient de rétlexion par

b= Z+Z, 1+y

ol y est 'admittance normalisée.

Les propriétés bien connues du Té magique nous permettent de
savolr que, si 'amplitude de 'onde arrivant par le bras 3 est Fj,
celle de 'onde passant dans le bras 4 vaut E = E; | R, — R,| /2.

piston—=
., i emaiear Crestal
Hlystron Alenuaien étalonné detectoun
T magigu ¢
Ondemeire T - Ampl;,
a sewsr/
: variable
travcalear
de Y
purssance -
Balayage _ | A enmiaitud
50 ¢/s | Efatonné
Oscrtlographe
Fig. 4. N

Le bras 1 est terminé par une cavité dont I’admittance, rapportée
a un plan convenable, vaut

Y1="0" ﬂ@l (—-— - ).

Ainsi, lorsqu’on est 10111 de la résonance (w =+ w,), comme
@1/Qo ~1 et ;> 1, on a en premieére approximation

Yr=276h (—— - ?)
et B >~ —
Le piston du bras 2 étant parfaitement réflechissant, on peut
choisir sa position de maniére & avoir R, = —1, d’ou il résulte:
:7E011_y1 = E, 18
B 2 |1+p + 1+ ]~ ( )
En particulier:
B 7.2

14+Q,/Qp °Q,

a la résonance et ' =~ 0 loin de la résonance.
La tension de balayage de ’oscillographe étant proportionnelle
a la variation de tension appliquée au réflecteur du klystron, c’est-
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a-dire & sa dérive en fréquence, on observe sur ’écran la courbe
de résonance de la cavité.

La mesure de 4(1/¢) a nécessité la modification de schéma
indiqué par la figure 5.

Dans ce montage, les deux cavités terminant les bras du Té sont
réglées sur des fréquences propres différant de quelques mégacycles,
s1 bien que chacune d’entre elles se comporte pratiquement comme

Alfenualear E gk,
Cavité de _—7
compararson - Hlystrom <— — (r75la/
. Cavile de
/(IYSffaﬂ —— —Cristal ,e)fﬁe”(e \ F’
Flectro- . Cavite Fleclro- Cavite
armanl de mesure . /S ade mesure
e aman i

\\

Fig. 5. Fig. 6.

un court-circuit a la fréquence pour laquelle I'autre résonne et on
observe ainsi codte a coOte sur l'écran de l'oscillographe les deux
courbes de résonance, ce qui en permet la comparaison.

La cavité de mesure est rectangulaire et résonne selon le mode
THip,. Le sel paramagnétique est déposé sur le piston qui la clot.

La cavité de comparaison est une cavité cylindrique résonnant
dans le mode TH,,. Elle est couplée a un tube-guide fermé par un
piston et contenant un atténuateur. Lorsquun déplacement du
piston ameéne le tube-guide au voisinage dune longueur résonnante,
1l réagit sur la cavité dont il diminue la surtension dans un rapport
considérable sans en faire varier notablement la fréquence propre.
On peut ainsi ramener & la méme amplitude les deux signaux de
résonance apparaissant sur I’écran de l'oscillographe.

Les énergies recues par le cristal détecteur sont trop élevées pour
qu’on puisse faire I’hypothése qu’il fonctionne selon une loi qua-
dratique. Nous poserons donc que la tension appliquée a l’entrée
de 'amplificateur, proportionnelle au courant dans le cristal, est
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exprimée par la relation V = f(E). En particulier, a la fréquence
de résonance de la cavité de mesure, on aura V, = f(E,) avec
E. = EyQ/Q:. 81 la surtension varie, la variation correspondante
de V,, sera donnée par le développement:

AV, =—B,f(E,) [04(g)]| +{B.r ) + 3 B2 B [04 (5)]

Dans ces mesures, 4(1/Q) est proportionnel & x” et directement
fonction du volume occupé par 1’échantillon, ainsi qu’il ressort de
I'équation (17). Ces deux grandeurs sont assez petites pour qu’on
puisse négliger les termes en [Q 4(1/Q)]? sans commettre une erreur
supérieure a 19,.

AV, étant ainsi proportionnel & x”, l'observation & I’oscillo-
graphe de la variation de hauteur de la courbe de résonance de la
cavité de mesure donne immédiatement la valeur relative de x”.
Cette variation se lit par comparaison avec la courbe de résonance
invariable de la cavité de référence. Comme elle est faible, on la
rend mesurable en ne conservant, grdce & l'amplificateur a seuil
variable, que les sommets du signal convenablement amplifié.

La variation de fréquence propre 4w de la cavité de mesure a
été observée au moyen du montage représenté sur la fig. 6, dans
lequel cette cavité est directement couplée & une cavité de référence.
Comme dans le cas précédent, ces cavités sont respectivement
rectangulaire THy; et cylindrique T'Egy,.

Afin de simplifier les calculs, nous considérerons la cavité rectan-
gulaire comme un tube guide court-circuité, ce qu’elle est effec-
tivement.

L’admittance relative du systéme, vue de l’entrée, vaut:

y =%+7Q1 (%—%) +-%:—cothyl
ou ) ,, @, @, sont respectivement le ¢ sans charge et les @) extérieurs
d’entrée et de sortie de la cavité cylindrique, w, sa pulsation propre
et y = a + j8 la constante complexe de propagation dans le tube
guide. ! est la longueur équivalente du tube guide entre la sortie
de la cavité et le piston de court-circuit.

Séparant partie réelle et partie imaginaire, on obtient:

Q @, thal(l1+tg2pl « 5 ) tg fl(1—th2al)
yzQ_:,J“Qi‘ th2oc(l+tggzgl) * [QI ("_“—L)"g—: ilﬁalﬂg?ﬁl ]

Développons cette expression dans le cas ou la pulsation w de
’onde incidente et la pulsation propre w, de la cavité rectangulaire
sont voisines de w,. Soient f et f, les constantes de propagation
dans le tube guide pour les fréquences w et w,. Par hypothése
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B2l = 7 la cavité rectangulaire résonnant sur le premier mode. Il
en résulte que tg Bl reste petite et peut étre développée sous la
forme

tgBl=(f—B:)1 ou tgBl=Ad(w—w,)

avec I e, T

Posons z=w—w;, u=0,—w, dou tgfl=A(x+u).

Comme, d’autre part, th al est & peu prés constante, nous la rem-
placerons par la constante P, en comprenant dans ce terme les
pertes supplémentaires dans le piston et par absorption diélectrique
dans le sel étudié, dont nous n’avons pas tenu compte jusqu’a
maintenant. Cette constante est du reste inversément proportion-
nelle & @, le @) sans charge de la cavité de mesure

Aw
pP==2
Ces simplifications donnent a I'admittance la forme suivante:
& & P : 1 A (x+u) (
Y=, +_Q_2 P24+ A% (x+u)? +76s [Tu'fﬁ@ P2+ A2 (z+u)* ] - (19)

En substituant (19) dans (18), on obtient pour le champ élec-
trique dans le bras 4 du Té:

i T . (20)
2= (1+ @ 3 ¢ P ) + (2 @r @ A(x+u) ; )2 (20)

Q, @ PP+A(z+u)? w, @ P:+A(x+u

On retrouve ainsi en fonction de x la courbe de résonance a deux
sommets caractéristique des cavités couplées.

La recherche des extremums de E? conduit & une équation du
cinquieme degré, dont trois des solutions sont réelles et correspon-
dent aux deux maximums et au minimum de la courbe de résonance.

Lorsque w; = w, c’est-a-dire « = 0, la courbe est symétrique.
Une des solutions vaut x = 0, c¢’est le minimum. L’équation se
réduit ensuite & une équation bicarrée dont les solutions réelles
valent: R

T =+ :130]/1 1+2a+2b—b
en posant:
w Q Q 26,
%:]/_ﬂl@z “= (Qi +@_2) P b=
Il est évident, cependant, que s1 P ou @, sont trop grands, ces
deux solutions deviennent imaginaires et la courbe n’a plus qu’'un
sommet pour x = 0,
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Si % n’est pas nul, le calcul rigoureux des extremums est impos-
sible, mais la petitesse de u par rapport & x, permet de développer
les solutions en série de u/x,.

On obtient ainsi en premiére approximation pour le minimum

_ (1+2a+0b)
= 1+2a+25—0°
et pour les maximums:
=+, )/V1+2a+2b—b—
—u[l— _;(1+ L4 Ba4h) )]
4)/1+2a+20b Y1+2a+2b-0

Substituant ces valeurs de z dans I’équation (20) on obtient les
champs E; et Fj; correspondant aux maximums du signal.
On a en particulier:

E,~B, _ b)Y1+2a+2b-b(/1+2a+2b-1) U _By. @1
E\+E;  Y152a+2b(a®—02—2b+2b)1+2a+2b) % )

Ce dernier résultat est une seconde approximation. Il a été obtenu
en négligeant les termes & partir de u3.

On peut se demander si ’absorption ne perturbe pas la mesure
de la dispersion, puisque B dépend de P, c’est-a-dire de ¢)y. Afin
d’évaluer cette perturbation, nous avons développé B en série selon
od(1/Q)) en nous limitant au premier terme. Tenant compte des
valeurs de @),, ¢, @, intervenant dans nos expériences, nous avons
vérifié que le facteur de Q,d(1/Q) est inférieur & 1 tant que @,
reste supérieur & 800, condition qui a toujours été remplie au cours
des mesures. Or, ainsi que nous I’avons vu pour les mesures d’ab-
sorption, on peut négliger ¢, 4(1/¢)) devant 1 sans commettre une
erreur supérieure a 19,. C’est donc cette valeur de 19, qui limite
la perturbation que peut introduire ’absorption.

Comme z,/2 %z vaut environ 2,5 Mc/s dans 'appareillage utilisé,
que %/2 7 n’a jamais été supérieur a 50 kefs, 4K = K, — E, n’a
pas dépassé le 29, de la somme 2 K = E; + I, ce qui permet
d’écrire, en introduisant les tensions obtenues a l'oscillographe
vV —f(E)

AV=2KEf(E)Bu a 29, prés.

Le signal s’observe comme dans le cas de 'absorption au moyen
de 'amplificateur & seuil variable mais on retouche ’amplification
en cours de mesure afin de corriger la variation du signal moyen K
sous l'effet de ’absorption.
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Aw de I'équation (17) et w ne different que d'une constante,
dépendant du choix de w; et de I. On connait donc 4w & une
constante additive prés. Comme, d’autre part, 4 w est proportionnel
a y', ¢ est connu a deux constantes prés, I'une additive, 'autre
multiplicative.

Comme nous venons de le voir, la cavité de mesure est une cavité
rectangulaire, que nous mesurions I'une et ’autre des composantes
de la susceptibilité. Dans les deux cas, on a disposé la cavité de
maniére & ce que la parol formée par le piston soit horizontale.
C’est sur cette parol qu’on a placé le cristal & étudier. Son orien-
tation a été fixée avec une erreur inférieure a 1 degré en déterminant
Iangle d'une de ses arétes naturelles avec le bord du piston au
moyen d’une équerre mobile.

IV. Confrontation de la théorie et de ’expérience.

Deux points de la théorie apparaissent comme particulierement
intéressants a comparer avec l'expérience. D’une part Dallure
particuliére que prend la courbe d’absorption lorsque la largeur de
courbe 4 H est trop supérieure au champ de résonance et d’autre
part la forme des courbes de dispersion.

Pour é¢tudier le premier de ces points, nous n’avons pas fait de
mesures nous-méme, mais nous sommes rapporté a celles que
VoLeER a publiées dans sa thése'®). On remarque un assez bon
accord qualitatif avee les courbes qu’il a obtenues pour différents
sels de Mn, Cr, Fe, Gd, bien que ces sels, présentant une séparation
du niveau fondamental de l'lon paramagnétique due au champ
cristallin, n’entrent pas dans le cadre de notre hypothé¢se dune
raie unique. Par contre, dans le cas du sulfate de cuivre, CuSO,-
5 H,0, quoique les mesures aient porté sur une poudre, 'accord
est nettement meilleur. On peut s’en rendre compte sur la figure 7
ou nous avons placé les points expérimentaux que VOLGER a mesurés
a 90% K pour les fréquences de 6,38 Me/s, 20 Mc/s, 40 Mc/s, et
78 Mc/s, en regard des courbes théoriques du type de LorENTZ
calculées pour les mémes fréquences et pour o = 4,75-10-9 sec.
Cette valeur de ¢ correspond & une largeur de courbe AH =
140 cersteds. _

Il n’est pas possible de comparer directement cette valeur de 4 H
obtenue théoriquement avec une valeur expérimentale en ultra-
hertzien, I’anisotropie du facteur g provoquant, pour une poudre,
un élargissement supplémentaire qui, négligeable a 78 Mc/s, ne
Iest plus a 104 Mc/s. Pour établir la comparaison, nous avons
considéré les mesures faites par WHEATLEY et Hanrnipay!?!) sur des
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monocristaux de CuSO,-5 H,0 a 9375 Mc/s. Nous y avons pris la
moyenne de 4H sur tous les cas ou le champ statique faisait un
angle égal avec les axes tétragonaux des deux ions de la cellule
élémentaire du cristal, car ce sont les seuls cas ou les ¢ de ces deux
ions soient égaux. Nous avons obtenu pour cette moyenne 140
cersteds, ce qui est en excellent accord avec le résultat précédent.

y 10 v =6 38 Mcs v=20Mcys
o2, \ ' =
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Fig. 7.

Pour confronter les courbes de dispersion théorique avec I'expé-
rience nous avons fait des mesures a la fréquence de 9390 Mc/s.
Il convenait de ne pas faire porter notre étude sur des sels présen-
tant une raie de résonance trop étroite, car on serait alors tombé
dans des cas banaux. Une étude préliminaire portant sur plusieurs.
sels de manganése nous a montré qu’on avait dans tous les cas des
courbes de LoreNTtz, si larges fussent-elles. De cette absence de
courbes du type de Gauss, on peut conclure qu'en chacun de ces
cas, l'interaction d’échange était importante.

Nous avons fixé notre choix sur le sel MnCly-4 H,O, dont les
largeurs de courbe atteignent 2500 gauss. Il présente par contre
le défaut d’avoir deux ions Mnt+ dans la cellule élémentaire du
cristal®). Bien que nous ne connaissions pas exactement la structure

*) Déterminé a I'Institut de Physique de Genéve.
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cristalline de ce sel, nous pensons que ces deux ions ne sont certai-
nement pas équivalents.

MnCl,-4 H,0O cristallise en prismes monocliniques!2). Nous avons
repéré 'orientation des champs H, et H, par rapport au cristal au
moyen de 3 axes orthogonaux x; z, x5, dont x; est 'axe de symétrie
et z, la direction des génératrices du prisme.

" i Paant
4 ( \ N\"x
1 >
4 Tl
/ .\x
/x \ Ty — |
10 / j
o/ /'/
a5 R
’ 4 /
»j I
/
3 e
0 == 4m ’/ B et P —om o _

0o 91 92 g3 g4 g5 96 97 48 g9 10
——> 8( %2 = /0%gauss)

Fig. 8.

¥ et x" étant mesurés & deux constantes pres, l'une multi-
plicative 'autre additive, nous les avons comparés avec les courbes
théoriques en faisant coincider les asymptotes pour H; = co et
cherché le meilleur accord des courbes, sans oublier que, pour deux
courbes correspondant & la méme orientation de H; par rapport
au cristal, " et x” ont les mémes valeurs pour H, = 0 ou Hy, = oo
(cf. fig. 8 et 10). Néanmoins, le choix de y' pour H, = 0 reste
entaché de doute.

Nous avons tracé sur la figure 8 ¥’ et 4" en fonction de B = uyH,
pour lorientation H, |z, H,| z;. Les courbes théoriques du type
de LoreENTZ ont été calculées pour a = 2,8, c’est-a-dire p = 2,98 -
10-19 gec. L’échelle des ordonnées a pour unité y, valeur asymp-
totique de la courbe de dispersion. B est exprimé en Vs/m?2 (1 Vs/m?
= 104 gauss).

L’accord entre les courbes expérimentales (pointillé) et théo-
riques (trait plein) est excellent, & part la divergence, sur laquelle
nous allons revenir, que présente x' lorsque B est petit.
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La coincidence entre expérience et théorie est loin d’étre aussi
parfaite pour toutes les orientations. Cela apparait clairement pour
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Fig. 9.
Porientation Ho| @y, Hyl ay (fig. 9) et pour Hy| 1, Hy| 25 (fig. 10).
Dans ces deux cas, on a choisi @ = 4,5 pour les courbes théoriques,
25
2'0 zpz\
/ .:\““
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97 ¢
Fig. 10.
soit o = 4,8:10-19 sec. Comme sur la figure 8, les courbes théoriques
sont tracées en trait plein et les expérimentales en pointillé.
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Il apparait immédiatement que les courbes de dispersion se
comportent comme une courbe de LorENTZ dans la zone centrale,
mais présentent la courbure plus accentuée d’une courbe de Gauss
pour de faibles valeurs de B (cf. fig. 3).

Cette courbure accentuée et la faible pente des courbes de
dispersion pour B = 0 est un caractére commun aux trois figures 8,
9 et 10. Ce dernier fait pouvait du reste étre prévu & partir de
I’équation (16) donnant dy’/db (b = 0).

Considérant la décroissance rapide des courbes d’absorption
pour B élevé, nous pouvons, en appliquant l’équation (13), en
évaluer, assez grossiérement il est vrai, le parameétre £. Si on 'intro-
duit dans (16), on obtient une estimation de dy’/db (b = 0) qu’on
peut comparer avec 'expérience.

Nous avons ainsi obtenu pour la figure 8 ¢ = 0,2, ce qui nous a
permis de calculer le rapport R entre la dérivée calculée par (16)
et celle qu'on aurait avec une équation de LoreNTz pure. Nous
avons trouvé:

R calculé = 0,30 R observé = 0,25.

Nous avons procédé de la méme maniére sur la figure 10. Nous
avons obtenu:

t=0,15 R calculé = 0,18 R observé = 0,20.

Cet accord est tout a fait acceptable.

Nous n’avons pas pu faire le caleul pour la figure 9, sa courbe
d’absorption s’éloignant par trop d’une courbe de LorexTz.

Il convient d’autre part de remarquer que la forme de courbe
dépend aussi de l'orientation du champ de haute fréquence Hj.
Une explication de cette dépendance parait plausible. Nous pensons
que les deux ions Mn** de la maille élémentaire, qui ne sont stre-
ment pas équivalents, présentent des probabilités de transition
dépendant différemment de I'angle du champ H; & cause de ’orien-
tation différente de leurs champs cristallins. Cette explication rend
également compte de la différence d’environ 100 gauss entre les
sommets des courbes d’absorption des figures 9 et 10, les deux
tlons ayant des valeurs du champ de résonance un peu différentes
lorsque H, est orienté selon ;.

Il est possible que le méme phénoméne se produise pour d’autres
sels et permette d’examiner de plus prés les cas ot deux raies
voisines, dues & deux lons non équivalents, sont confondues en
une seule par D'effet d’échange.
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Nous dirons donc en conclusion qu'une étude détaillée des
formes de courbe, en particulier de celle de dispersion, pourra
dans bien des cas nous donner plus de renseignements que la simple
considération de la position et de la largeur de la raie d’absorption.

Institut de Physique de I’Université, Geneéve.

Appendice.

Nous allons effectuer le calcul de 'intégrale

” (@B, (a- by
I— f ot im.
0

Si on différentie deux fois I'intégrale I par rapport & b, on obtient
Péquation différentielle sulvante:

a1

dbz+4b +2[1+2(bz—a ) I=2Ym (D(b)+1)
qul a pour solution:

/a b
viA —(b—a)? ~q)? .

I=re @ [dr (@) +1)dy—

0

b
_Ja porar Jer (@) 1 1) dy + Ae @ P4 Be 0", (22)
0
Il reste a déterminer 4 et B, qui sont des fonctions de a, afin
d’obtenir la solution particuliére de I’équation différentielle corres-
pondant effectivement a I'intégrale I dont nous sommes partis.
Dérivons I par rapport a b:

L SV (b—“) o (b-ar

b @w7”TQNy5+1)dy**

\nw

b
+ya b+“ o+ a)2]e(y+a>2 y) +1) dy—
0

—2(b—a)de ®9 _2 (b4 a) Be ®+0*,
Posons:
H(a)=1(b=0)=(4+ B)e"
I > (23)
G(a)z—ég(me) 20(4A—DB)e™".

Pour déterminer A4 et B, il nous faut donc calculer H(a) et G(a).

o0

) — It — 0y — | £ g,

2 —q?
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S1 nous dérivons cette intégrale par rapport au parameétre a, nous
obtenons I'équation différentielle:

dH . (1+2a?) He—1ya.

1
da a a

I’équation a pour solution:

H(a) =K = *ea/ ‘dy = K= a'/;_’iF(a)

0

Il nous faut encore déterminer la constante K. Pour cela, faisons
tendre a vers zéro.

hmH [(e —l)da‘— /7

d’otr: K=0 et H(a)= —?F(a) : (24)

Passons au calcul de G (a)

ar r (z=b)e @' _(g—p)e @V . (e
52/ s da;.‘Zf—H +2(a—b)1,
0 0

G(a) = L 2[ (a).

Posons:;

flo)= [ dn,  Glo)=2f(a)— 2)7F (a)

Il est aisé de vénfier que f(a) satisfait & I’équation différentielle:

df ~+2af = ]/J'E———

qui a pour solution:

a

fla)=Ke*—eIn a+l/ﬁe—a’feﬂ”dy— o f ienl. du .
0

0
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Faisons tendre a vers zéro:
K =Ilim (f(a) + In a);

oo 1

a=0
= [Lgda= 45
Kmliglflea:

1
_fe“
0

dou: g _ _% Iny =—0,2886...

r+a -

(1+a);=

y = constante d’EurLer-Mascueront®)

1 ?‘2 U __ 1 1 az’uf_]_ =
K—lna—y (42 du=—?ln(ya,2)—-7'/e - du = — ~Fi(a?)

v

0 0

E1 (z) = fonction exponentielle intégrale.
a) = /= F(a) m—;— e " Ei(a?)

d’ou G(a) =—e " Ei(a?). (25)
Substituant (24) et (25) dans (28), on obtient:

A=— [Fi(a?)+Ym e Fa)]
_ % [Ei(a?) — 2)/n e F(a)] .

Si on introduit ces expressions dans (22), il en résulte:
— b —

g 21/; o~ (- fe(y‘”( (y )+1)dy__ml/__E@( a?) — e Fla) | —

—r g oo | [ (@y) 1) = Hila?) + " Fla) | (26)

) ]
d’ou, en substituant (26) dans (10), on obtient la forme (11) pour
% (@,b).

Si on poqe

Ria,b) = wmwzwﬂf %4my~—7J%M)“eFH]

on a: I=R(a,b)+ R(—a,b). 27)
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Décomposons:

a

Q b
Je (@) +1) dy=fe(y- (D (y)+1) dy+f8”‘“)2(@(y> +1) dy .

0
Il est aisé de vérifier que:

Q b—ua

[ (@(y) +1) dy = [ (Dl + ) +1) de
'(t (0]
[ @ dy = e Fla)

0

/ D (y)dy - _2_1/”5? (Ei(a?) — Ei(—a?).

D’ou, pour E(a,b), la seconde forme:

b-a

R(a,b) = l/ﬁe(” ’”[/e (¢+a)+1)de—

]1/5 Ei(—a?|. (28)

La substitution de (28) dans (27) et (10) nous donne la forme (12)
de y'(a,b).
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