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Sur la forme des courbes de résonance paramagnétique

par Roger Lacroix.

(12 IV 1954.)

Résumé. Cette étude a pour but l'examen à la fois mathématique et expérimental
des formes des courbes d'absorption et de dispersion rencontrées dans la résonance
paramagnétique électronique.

Le calcul, qui est conduit pour des résonances présentant la forme de Lorentz
ou de Gauss, met en évidence le fait que les courbes se comportent essentiellement
différemment, selon qu'elles sont décrites en fonction de la fréquence ou du champ
magnétique statique. Cette différence est particulièrement grande pour des courbes
larges.

Une méthode de mesure des deux composantes de la susceptibilité paramagnétique

complexe est décrite et un accord satisfaisant est trouvé entre l'expérience
et les points essentiels de la théorie.

I. Introduction.

Lorsqu'un corps paramagnétique, placé dans un champ magnétique

statique H0, est soumis à un champ magnétique oscillant
Hx e'2nPt de fréquence v perpendiculaire au premier, il s'y induit une
aimantation de même fréquence qui, dans un corps isotrope, est

parallèle à Hx et vaut Mx é2nvt.
On définit la susceptibilité complexe de haute fréquence par la

relation : M
1 1-1% =aj--

% tend vers la valeur réelle Xo lorsque v s'annule, x' e^ l" sont
fonction non seulement de la fréquence v, mais encore du champ
statique H0.

Il est important de noter que les valeurs que prennent x e^ l"
en fonction de v ne sont pas indépendantes, mais sont liées par les
formules de Kramers-Kronig1)

OU

^x4v.p./-xx>d1/ (d
u

oo

x"(v)=-^-V-f-i%^dv', (2)
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v.p. signifiant la valeur principale au sens de Catjchy de l'intégrale
divergente, c'est-à-dire:

v'P'/^id/ lim
o

V — V f V — V

L'absorption d'énergie aux dépens du champ de haute fréquence2)
est proportionnelle, par période, à x"> qui s'exprime en fonction
de v par la forme : „

X =vf(v)
Si on considère que %'(v 0) vaut Xo, la susceptibilité statique, on

obtient comme cas particulier de l'équation (1) la relation:
OO OO

f^dv=ff(v)dv A}lo- (3)
0 0

Les expressions que nous avons pour représenter les courbes de
résonance sont des fonctions de la fréquence v, le champ H0 étant
supposé constant, alors que les observations portent en général sur
des courbes mesurées à champ variable et fréquence constante.

Le but de notre travail sera donc d'étudier l'incidence du choix
de f(v) sur la forme de %' et x" en fonction de H0 qui, nous le verrons,
est différente de celle en fonction de v.

Il sera intéressant de mettre en évidence les propriétés qui ne
dépendent pas de ce choix; en particulier le changement d'allure
des courbes d'absorption et de dispersion lorsque les raies deviennent

larges.
D'autre part, nous étudierons le comportement des courbes pour

les fonctions f(v) choisies et le comparerons avec des résultats
expérimentaux.

II. Expression mathématique des formes de courbe.

Lors des expériences de résonance paramagnétique électronique,
on observe dans de nombreux cas une courbe d'absorption présentant

une raie unique pour la fréquence v0 gßpt0H0/h*). C'est
essentiellement pour les expériences se présentant sous cet aspect,
que nous calculerons en détail les formes de courbe.

La théorie ne permet pas, dans l'état actuel, de déterminer
rigoureusement la fonction f(v) donnant la forme des courbes.

*) g est le facteur spectroscopique, ß 0,9273-IO-23 Am2 le magneton de
Bohr et fi0 1,257-IO-6 Vs/Am la perméabilité du vide. La constante de Planck
h est exprimée en joule, sec et H0 en A/m.
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Cependant Broer3) a montré qu'il était théoriquement possible
d'obtenir la valeur des intégrales

f f(v)v2ndv.
u

Van Vleck4) a calculé pratiquement les trois premières et en a tiré
les moyennes 2Av2} et (Av*}. Il résulte de ses calculs que, si
l'interaction d'échange entre spins est faible, le rapport <[Av2y2j/Aviy
est en accord avec celui qu'on attendrait d'une courbe de Gauss.
Des courbes de ce type ont effectivement été observées par Kumagai5)
et ses collaborateurs.

Nous choisirons donc pour première hypothèse de travail la
forme

f(v)=Ae-e*(v-'°ï'.

Cependant, lorsque l'interaction d'échange est forte, le rapport
des moyennes ne peut être satisfait que par une courbe plus effilée

que celle de Gauss4). Anderson et Weiss6) ont montré que la raie
présente alors l'allure d'une courbe de Lorentz, mais décroît
beaucoup plus rapidement si on s'éloigne assez de la résonance.
L'expérience a également confirmé ce fait5).

En conséquence, nous adopterons comme seconde hypothèse
sur f(v) la courbe de Lorentz

{(v) én} l + r,2(v-V0)2

en sachant bien qu'elle ne peut être valable que dans un voisinage
plus ou moins étendu du sommet.

Cette décroissance rapide en dehors de la région centrale nous
permet d'attendre un comportement de Gauss pour une fréquence
élevée, c'est-à-dire pour un champ magnétique faible si on observe
à fréquence constante et champ H0 variable. C'est pourquoi nous
calculerons %'(_0) e* dx'/dH0 pour H0 0 en posant pour f(v)

/W=TTî! \T avec«2<l

où la fonction de Gauss e-^eV»-^)' assure la décroissance rapide
loin de la résonance. Nous vérifierons du reste que les résultats
ainsi obtenus sont en bon accord avec l'expérience.
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1. Courbes d'absorption.

Pour simplifier l'écriture, nous avons normalisé les fréquences au
moyen des notations suivantes:

a Qv b ov0= g£gi__

x qv' variable d'intégration

a) Courbe de Lorentz.
Selon la notation qui vient d'être définie, nous aurons pour

l'absorption:

x"(a,b)=A(b)-1-T^:b)2-.

Va relation de normalisation (3) devient:

d'où

A(b) j dx
J 1 + (x-
0

-b)2
n

'"2 lo

A (b) Xo
2

1-1 arc
n

tgb

,,''(aX Xo «
1

(1H arc tg b \ (1 + (a--b)2)
(4)

Pour un champ H0 nul, on retombe sur la courbe de Debye:

l"(a,o)=^.
D'autre part, lorsque la résonance a lieu pour a ou b grand, on

retrouve la courbe bien connue:

y" (a b) - ^°- -

b) Courbe de Gauss.
L'absorption prend la forme:

x"(a,b) A(b)ae-{"-b)'
OQ

A(b) l'e-^*dx ^Xo
b
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où 0(x) est l'intégrale d'erreur

<P( ildt

X"(a, b) Inxocre -(a-b)>
(5)

1 + <Z>(6)

En général, on observe les courbes de résonance en maintenant
la fréquence v constante et en faisant varier le champ magnétique H0.
Ce qui nous intéressera sera donc l'allure de la courbe en fonction
de b pour une valeur fixe de a. Si a est grand, la courbe présente
la même forme que f(v); par contre, elle n'a plus de maximum

1,0

i,°

0,2

0,6

0,1

0,2

^ X%>

^c
-2i_

' i :

Fig. 1.

lorsque a est assez petit. Cette particularité apparaît pour a < 0,354
dans le cas de Lorentz et pour a < 0,564 dans le cas de Gauss.
Cela revient donc à dire que le maximum n'est plus observable en
fonction de H0 lorsque la fréquence à laquelle on fait la mesure est trop
inférieure à la largeur de courbe. De plus, pour des courbes très
larges, même lorsque le maximum existe, il ne coïncide pas avec
la résonance.

Nous avons tracé sur la figure 1 x" (a, b) en fonction de b dans le
cas de Lorentz pour quelques valeurs du paramètre a.

2. Courbes de dispersion.

Nous allons calculer x à partir de x" au moyen de la formule (1).
Au préalable, nous transformerons en une intégrale convergente
cette relation qui, sous la forme de la valeur principale d'une
intégrale divergente, rend le calcul malaisé.
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Pour calculer
v.p.

ce (A) -dv'

il est commode de poser:
cp (v') cp(v) + (v'—v) cpx (v')

oo oo oo

f (p(v')dv' f <p(v)dv' f cpx(v')dv'
V-P- / ,/2_„2 V-P- v +v

or
v.p.

0

dv'
v'2—v2 2v

e 0

In
V + V

In
V + V

2L,Tlim fin IX^Xo.
En conséquence, on peut écrire:

00 00

(p(v')dv' f (p(v')-(p(v) jm,
y' 2 — y2 f v' 2 —

0

v.p. ¦dv'

où le second membre de l'équation est une intégrale convergente
cp (v) étant évidemment supposée bornée sur tout l'intervalle
d'intégration.

Faisant usage de cette relation, nous donnerons aux formules de

Kramers-Kronig la forme suivante:

'/ \ 2 f v'x"(v')-vx"<v)
X (v) =— / * \i—é-^-dv

Tl J V '—V
0

ni \ 2v Ç y'(v') — y'(v) -,x"(v) / * \{ V dv'
71 J V ' — V*

O

(6)

(7)

Si nous utilisons les notations du paragraphe précédent, l'équation
(6) s'écrira: 00

X\a,b)=^j^"^bj-a/{a'b)dx. (8)
0

a) Courbe de Lorentz.
Nous calculerons x'(a> b) en introduisant dans l'équation (8) %"

donné par l'équation (4)

ï(a,b) Xo dx r x

IH arc tg 6
TC

Xo

(|-+ arc tg &)(! + («-6)2)

\ / x2-
)'°

(l + b2)dx 0ì—;—-==— 2ab

r x2 a2
\_l + (x-b)2 l + (a—b)2 \

l + (x-b)2
: da

(x+a)(l + (x-b)2)
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Les fonctions à intégrer possédant une primitive élémentaire,
l'intégration s'effectue aisément.

X'(a,b) _ -, a \ (a-b) t
(a + b)

Xo 2 L l + (a-b)2 l + (a + b)2

a2b(2lxxa-hi(l + b2))

(y + arc tgô) (1 + (a-b)2) (1 + (a + b)2)

(9)

Comme nous l'avons déjà remarqué pour l'absorption, si b 0, on
retrouve la courbe de Debye

l(a'°)=-XTa^-

D'autre part, lorsque a ou b est très grand, on remarque la forme
classique de la courbe de dispersion:

'/ l\ Xoa a — b

X(a,b)^-^1 + (a_b)2.

b) Courbe de Gauss.
Il nous faut, cette fois-ci, substituer l'équation (5) dans l'équation

(8)
CO

X' (a, b)=^=r n
*° f 4*-A I*2 e~(x~W- «2 e-(a-"y]

' 0

on peut transformer

^[x2e-^-^-a2e-^-b)i]

-(*-»)_ „-(a-*)ä Vn
/ e-(*-b)°dx + a2 A fJL dx =AA-(0(b) +1) +a2I

o o

en posant

t f .-(x-b)' .-(.a-b)' je e d x1 J
0

x2 — a2

'(a,b) h i
2aU 1

Xo\ |^(1 + *(6))J"

d'où

(10)

19
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Le calcul de I, que nous donnons en appendice, nous conduit
aux deux formes suivantes pour x'(a, b)

X__ 1 i
a y

Xo ^l + 0(b)

x {e-(b-a)' e(y «)'( 0(y) + l)dy -Ë i (a2) - e"1 F (a)
2 yn

(b-a)' [éy+a)\0(y)+l)dy 1—Ei(a2)+ea'F(a)
J "' 2 Vn
i, i

(H)

X'(a,b)
Xo l+4>(b)

x e

— e

-(b a)'

(b+a)>

b a

/> 0 (z + a) +1) dz X E i (- a2)
J 2 Vn
0

6+a
ezS (0(z - a) +1) dz 1— E i (- a2)

2 y 71

(12)

où Ei(x) et Ei(—x) sont les fonctions exponentielles intégrales*)
et

F(x) e x' fé'dt
u

une fonction dont une table a été calculée par Miller et Gordon7).
Lorsque b est supérieur à 3, l'expression (12) se réduit à

X (a, b)

Xo
l+a[F(b-a)-F(b + a)]

avec une erreur absolue inférieure à 10-3.
On a b > 3 pour des courbes relativement étroites, pour

lesquelles

Xi < 0,56.
"o

Enfin lorsque la courbe est très étroite, on a b ^> 1 et dans la
région de la résonance b—a/a <^ 1. Il en résulte:

x'(a>b)
Xo

,aF(b — a)

avec une erreur relative de l'ordre de I/o.

*) cf. Tables Jahnkb et Emdb8).
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Ce dernier résultat a été obtenu directement par Pake et Pur-
cell9), qui ont étudié le cas particulier des courbes très étroites
(résonance nucléaire).

On peut faire au sujet des courbes de dispersion des deux types
une remarque analogue à celle que nous avons faite pour les courbes

Xi 2A
à0

15

10

05

-05' O

^fy\ y
y v/

0 5 6

Fig. 2.

9 10

¦*¦ b

d'absorption. Lorsque a, qu'on suppose maintenu constant, est trop
petit, la courbe en fonction de b perd son allure de courbe de

dispersion, car son minimum disparaît. Cette disparition a lieu

/-X
o

/ \**

/X^X

0

X. f j
XX

Fig. 3.

pour a < 1 dans le cas de Lorentz et pour a < 1,337 dans le cas
de Gauss. Par contre, si on laisse b constant, la courbe en fonction
de a conserve ses deux extremums quel que soit Ò.

Nous avons tracé sur la figure 2 %' (a, b) en fonction de b dans
le cas de Lorentz pour quelques valeurs du paramètre a.
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Nous avons d'autre part comparé sur la figure 3 une courbe de
Gauss et une courbe de Lorentz correspondant à la même largeur
de raie.

c) Courbe mixte.
Dans ce cas la fonction f(v) prend la forme:

Ae-t'<!'(v r,)'
m avec t2 <^ 1l + {?2("-"o)

Le calcul de %' (a, b) à partir de

A(b)ae-l'{a b)

X"(a,b) l + (a-b)2
(13)

apparaissant d'une extrême complexité, nous nous sommes contenté
de calculer x' (b 0) en fonction de a.

Utilisant la relation de normalisation (3) qui devient

A(b) / -r;—; r=-dx -r-v 'J l + (x-b)2 2 lo

on a

A(0) /7
T+x2"ax _

Xo

d'où en calculant l'intégrale:

on trouve :

et

l + x-
dx ^et%(l-0(t))

A(0) Xoe

l-0(t)

%"(a,0)
Xoe-1' ae^'a'
l-0(t) 1 + a2

Introduisant (14) dans (8) on obtient:

(14)

X'(a,0) ni- <P(t) j l + x2 1 + a2

dx

Cette intégrale se ramène aisément à d'autres, calculées dans les

pages qui précèdent. Il en résulte:

x'KOX^ î
Vn !-*(<) aF(at) (15)



Vol. 27, 1954. Forme des courbes de résonance paramagnétique. 293

Il est intéressant de noter que pour une valeur très faible de t,
x' (a, 0) peut être fortement modifié, alors que la courbe d'absorption
peut ne voir son allure que peu changée. Ainsi, pour t 0,1 et
a 2, #'(2,0) est diminué de 50%, alors que #"(2,0) ne l'est que
de 4%.

Nous avons également calculé la dérivée dx'/db (b 0). A l'issue
d'un calcul assez ardu, nous avons obtenu:

%(a,0) --| ^fj(t)] {1fa2)2 {[1+ (1+ a2) t2]Ëi(a2t2) «-"-
-Ei(-i>--X_X__tXF(ai)}. (iß)

III. Dispositif expérimental.

Le sel paramagnétique à étudier étant placé dans une cavité, il
convient tout d'abord de calculer l'influence de la susceptibilité
X sur les paramètres caractéristiques de la cavité, c'est-à-dire sur
la surtension Q et la fréquence propre co0.

L'admittance normalisée de la cavité s'exprime par la relation:

où Y0 est l'admittance caractéristique du guide d'onde d'arrivée,
Q0, le Q sans charge, et Qx, le Q extérieur.

Pour la commodité du calcul, nous écrirons Y sous la forme
d'une admittance équivalente exprimée en termes de circuit
résonnant. 1

Y=G + icoC + -^-r
1 i cùL

ce qui nous donne:

wu=ic ~Q~o=Gœ°L ^ Yoft)°L-

Nous pourrons ainsi exprimer l'énergie magnétique contenue dans
la cavité au moyen de la self équivalente et d'un courant équivalent.

j\FI2 ±-JpiH2dV=~fpi0H2dV+j\ffi0(l+x)H2dV
V V-V ¥'

où V et V sont respectivement le volume total de la cavité et le
volume occupé par le sel paramagnétique.

Il est commode de décomposer la self en deux termes :

F Fx + L2(l+x)=L0 + F2X
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en posant:
L0 Fx + L3

d'où

Lx
La

fH2dV jH2dV
V-V L2 X'

jH2dV Lo JH2dV
V V

Si x était nulle on aurait

co0 ^et- Gco0L0.

H.P.A.

Pour x * 0, l'admittance équivalente s'écrit, en tenant compte du
fait que |#| <^ 1 :

y=G + jco c + X__ (i-f-M1 )o)L0 \ L0 J

Comme y y' — j y", on a:

Y=G + AÂ^ + jcoC+ .^y-il-y'^-).o)L2 ' /CoL0 \ L0J

Va pulsation propre devient:

/i 1 1 /i 1 / L2 \ l-t 1 L2
¦jq -r -X co —;Wc=yèAA-(1--2x't) 0J°(1-^x't)

et, en se rappelant que co ^ co0 dans la région de résonance et que
Gco0L0 <^ 1, on a pour la surtension sans charge:

l
Qo

+ A( QÌ Gco{ T J_ aA 2
)Llo + l T"Lo

Il vient donc:

A co
O>0

2
XL2
Lo Ai)-':"L2

Lo

Cc qui peut s'écrire:
[H2 dV

J (Ì) -2j A co (l" + )Y) V
fH2 dV

(17)

Comme nous allons le voir, A (1/Q) et A co peuvent se mesurer par
l'observation à l'oscillographe d'une courbe de résonance de cavité.
Cette observation est possible au moyen du montage décrit par
la fig. 4, que nous modifierons légèrement selon que nous voudrons
mesurer l'une ou l'autre grandeur.

Considérons en deux plans symétriques par rapport au plan
médian du Té magique les impédances Zx et Z2 terminant les bras
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1 et 2 du Té, ainsi que les coefficients de réflexion correspondants
Bx et B2. On définit le coefficient de réflexion par

B Z-Zn l-y
1 + 2/Z + Z0

où y est l'admittance normalisée.
Les propriétés bien connues du Té magique nous permettent de

savoir que, si l'amplitude de l'onde arrivant par le bras 3 est E0,
celle de l'onde passant dans le bras 4 vaut E E0 | Bx — B2\ /2.

pisfon

Cr/sra/
K/yst,ra» — étalonné détecteur

/r
Ondemetre /fmpti.

à seuil
variaâte

Cairire

Indicateur
de

puissance

(tâtonne50 c/s

Oscillographe

Fig. 4.

Le bras 1 est terminé par une cavité dont l'admittance, rapportée
à un plan convenable, vaut

Qx
-r I Vi I

co
yx -»•*£

Ainsi, lorsqu'on est loin de la résonance (co 4= co0), comme
Qx/Qo ~ 1 et Qx ^> 1, on a en première approximation

et Bx ^ —1.
Le piston du bras 2 étant parfaitement réfléchissant, on peut

choisir sa position de manière à avoir B2 —1, d'où il résulte:

En particulier:

LI 2

E

1-2/1
1 + Vx

Eo

+ 1
En

l + 2/il

eA

(18)

i+QxIQo °Qx

à la résonance et E ^ 0 loin de la résonance.
La tension de balayage de l'oscillographe étant proportionnelle

à la variation de tension appliquée au réflecteur du klystron, c'est-
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à-dire à sa dérive en fréquence, on observe sur l'écran la courbe
de résonance de la cavité.

La mesure de à'IfQ) a nécessité la modification de schéma
indiqué par la figure 5.

Dans ce montage, les deux cavités terminant les bras du Té sont
réglées sur des fréquences propres différant de quelques mégacycles,
si bien que chacune d'entre elles se comporte pratiquement comme

Atténuateur

Cavité de

comparaison

à

Klystron-*— Crista/

Cavitéc/ecrro-
oimant de mesure

ï
Fig. 5

Cr/stat

Jpiston

Klystron

Cav/te de
référence X
e/ecrro-

o/mant

\
Cav/fé
démesure

Fig. 6.

un court-circuit à la fréquence pour laquelle l'autre résonne et on
observe ainsi côte à côte sur l'écran de l'oscillographe les deux
courbes de résonance, ce qui en permet la comparaison.

La cavité de mesure est rectangulaire et résonne selon le mode
TE101. Ve sel paramagnétique est déposé sur le piston qui la clôt.

La cavité de comparaison est une cavité cylindrique résonnant
dans le mode TE0XX. Elle est couplée à un tube-guide fermé par un
piston et contenant un atténuateur. Lorsqu'un déplacement du
piston amène le tube-guide au voisinage d'une longueur résonnante,
il réagit sur la cavité dont il diminue la surtension dans un rapport
considérable sans en faire varier notablement la fréquence propre.
On peut ainsi ramener à la même amplitude les deux signaux de
résonance apparaissant sur l'écran de l'oscillographe.

Les énergies reçues par le cristal détecteur sont trop élevées pour
qu'on puisse faire l'hypothèse qu'il fonctionne selon une loi
quadratique. Nous poserons donc que la tension appliquée à l'entrée
de l'amplificateur, proportionnelle au courant dans le cristal, est
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exprimée par la relation V f(E). En particulier, à la fréquence
de résonance de la cavité de mesure, on aura Vm f(Em) avec
Em E0Q/QX. Si la surtension varie, la variation correspondante
de Vm sera donnée par le développement :

AVm -EJ'(Em) [QA (±)]+{Emf'(EJ + A\Eif>(Em)}{QA Qf.
Dans ces mesures, A (1/Q) est proportionnel à y " et directement
fonction du volume occupé par l'échantillon, ainsi qu'il ressort de

l'équation (17). Ces deux grandeurs sont assez petites pour qu'on
puisse négliger les termes en [Qd(l/Q)]2 sans commettre une erreur
supérieure à 1%.

AVm étant ainsi proportionnel à #", l'observation à l'oscillographe

de la variation de hauteur de la courbe de résonance de la
cavité de mesure donne immédiatement la valeur relative de #".
Cette variation se lit par comparaison avec la courbe de résonance
invariable de la cavité de référence. Comme elle est faible, on la
rend mesurable en ne conservant, grâce à l'amplificateur à seuil
variable, que les sommets du signal convenablement amplifié.

La variation de fréquence propre A co de la cavité de mesure a
été observée au moyen du montage représenté sur la fig. 6, dans
lequel cette cavité est directement couplée à une cavité de référence.
Comme dans le cas précédent, ces cavités sont respectivement
rectangulaire TE10X et cylindrique TE011.

Afin de simplifier les calculs, nous considérerons la cavité rectangulaire

comme un tube guide court-circuité, ce qu'elle est
effectivement.

L'admittance relative du système, vue de l'entrée, vaut:

y
Qx X<M~-^)+t-cotnW

où QP, Qx, Q2 sont respectivement le Q sans charge et les Q extérieurs
d'entrée et de sortie de la cavité cylindrique, cox sa pulsation propre
et y x + j ß la constante complexe de propagation dans le tube
guide. I est la longueur équivalente du tube guide entre la sortie
de la cavité et le piston de court-circuit.

Séparant partie réelle et partie imaginaire, on obtient:
Qx Qx thccl(l + tg2ßl) ,r0 /w cox\ Qx tgßl(l-th2*i)x

y GjX Q2 th2ocl + tg2ßl 'tJ[Vl\co1 co) Q2 th2txl+tg2ßl J*

Développons cette expression dans le cas où la pulsation co de
l'onde incidente et la pulsation propre co2 de la cavité rectangulaire
sont voisines de cox. Soient ß et ß2 les constantes de propagation
dans le tube guide pour les fréquences w et co2. Par hypothèse
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ß2l n la cavité rectangulaire résonnant sur le premier mode. Il
en résulte que tg ßl reste petite et peut être développée soùs la
forme

tgßl^(ß-ß2)l ou tg ßl^A(co-co2)
avec A

Posons x co — cox u cox — a>2 d'où tg ß l A (x + u).

Comme, d'autre part, th a? est à peu près constante, nous la
remplacerons par la constante P, en comprenant dans ce terme les

pertes supplémentaires dans le piston et par absorption diélectrique
dans le sel étudié, dont nous n'avons pas tenu compte jusqu'à
maintenant. Cette constante est du reste inversement proportionnelle

à Q0, le Q sans charge de la cavité de mesure

p Au>2

^Wo'

Ces simplifications donnent à l'admittance la forme suivante:

„ _ Qx
|

Qx Z +;n \2x 1 A(x+u) 1 nq,y QB Qi P2+A2(x + u)2 ^'Vl[a,x Q2 P2 + A2(x + uy J * y '

En substituant (19) dans (18), on obtient pour le champ
électrique dans le bras 4 du Té :

E2=- E" .(201
L Qx

|

Qx P \2. („Qix Qx A(x+u) \2 i -

l Q» Q2 P2+A2(x + u)2) +\ cox Q2 P2+A2(x + u)2)

On retrouve ainsi en fonction de x la courbe de résonance à deux
sommets caractéristique des cavités couplées.

La recherche des extremums de E2 conduit à une équation du
cinquième degré, dont trois des solutions sont réelles et correspondent

aux deux maximums et au minimum de la courbe de résonance.
Lorsque cox co2 c'est-à-dire u 0, la courbe est symétrique.

Une des solutions vaut x 0, c'est le minimum. L'équation se

réduit ensuite à une équation bicarrée dont les solutions réelles
valent :

x= ±x0~\/Vl + 2a + 2b — b

en posant:
Si i Oî\ 73 ï, 2 Q2 D2a [^r + + r2AQ2 " \QX QJ coxA

Il est évident, cependant, que si P ou Q2 sont trop grands, ces
deux solutions deviennent imaginaires et la courbe n'a plus qu'un
sommet pour x 0.
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Si u n'est pas nul, le calcul rigoureux des extremums est impossible,

mais la petitesse de u par rapport à x0 permet de développer
les solutions en série de u/x0.

On obtient ainsi en première approximation pour le minimum

_ (l + 2a + b)
X U l + 2a+2b-b2

et pour les maximums:

x ±x0~]/Vl+2a + 2b — b —

1
1 /1+ (l + 2a + 6) y

4|/ï + 2a + 26 \ Vl+2a+2b-b) '

Substituant ces valeurs de x dans l'équation (20) on obtient les

champs Ex et E2 correspondant aux maximums du signal.
On a en particulier:

Ex-E2 b ]/VV+2a+ 2b-b(Vl + 2a+ 26-1) u D ,01.
Ex + E2 Vl + 2a + 2b(a2-b2-26 + 26 )/l + 2a + 26) xo

Ce dernier résultat est une seconde approximation. Il a été obtenu
en négligeant les termes à partir de u3.

On peut se demander si l'absorption ne perturbe pas la mesure
de la dispersion, puisque B dépend de P, c'est-à-dire de Q0. Afin
d'évaluer cette perturbation, nous avons développé B en série selon
Q0d(l/Q) en nous limitant au premier terme. Tenant compte des

valeurs de QP, Qx, Q2 intervenant dans nos expériences, nous avons
vérifié que le facteur de Q0d(l/Q) est inférieur à 1 tant que Q0

reste supérieur à 800, condition qui a toujours été remplie au cours
des mesures. Or, ainsi que nous l'avons vu pour les mesures
d'absorption, on peut négliger Q0 A (1/Q) devant 1 sans commettre une
erreur supérieure à 1%. C'est donc cette valeur de 1% qui limite
la perturbation que peut introduire l'absorption.

Comme x0/2 n vaut environ 2,5 Mc/s dans l'appareillage utilisé,
que u/2ji n'a jamais été supérieur à 50 kc/s, AE Ex — E2 n'a
pas dépassé le 2 % de la somme 2 E Ex + E2, ce qui permet
d'écrire, en introduisant les tensions obtenues à l'oscillographe
V f(E)

AV=2Ef'(E)Bu à 2% près.

Le signal s'observe comme dans le cas de l'absorption au moyen
de l'amplificateur à seuil variable mais on retouche l'amplification
en cours de mesure afin de corriger la variation du signal moyen _
sous l'effet de l'absorption.



300 Roger Lacroix. H.P.A.

A co de l'équation (17) et u ne diffèrent que d'une constante,
dépendant du choix de cox et de l. On connaît donc A co à une
constante additive près. Comme, d'autre part, A co est proportionnel
à x', 1 ost connu à deux constantes près, l'une additive, l'autre
multiplicative.

Comme nous venons de le voir, la cavité de mesure est une cavité
rectangulaire, que nous mesurions l'une et l'autre des composantes
de la susceptibilité. Dans les deux cas, on a disposé la cavité de
manière à ce que la paroi formée par le piston soit horizontale.
C'est sur cette paroi qu'on a placé le cristal à étudier. Son
orientation a été fixée avec une erreur inférieure à 1 degré en déterminant
l'angle d'une de ses arêtes naturelles avec le bord du piston au
moyen d'une équerre mobile.

IV. Confrontation de la théorie et de l'expérience.

Deux points de la théorie apparaissent comme particulièrement
intéressants à comparer avec l'expérience. D'une part l'allure
particulière que prend la courbe d'absorption lorsque la largeur de
courbe AH est trop supérieure au champ de résonance et d'autre
part la forme des courbes de dispersion.

Pour étudier le premier de ces points, nous n'avons pas fait de
mesures nous-même, mais nous sommes rapporté à celles que
Volger a publiées dans sa thèse10). On remarque un assez bon
accord qualitatif avec les courbes qu'il a obtenues pour différents
sels de Mn, Cr, Fe, Gd, bien que ces sels, présentant une séparation
du niveau fondamental de l'ion paramagnétique due au champ
cristallin, n'entrent pas dans le cadre de notre hypothèse d'une
raie unique. Par contre, dans le cas du sulfate de cuivre, CuS04-
5 H20, quoique les mesures aient porté sur une poudre, l'accord
est nettement meilleur. On peut s'en rendre compte sur la figure 7

où nous avons placé les points expérimentaux que Volger a mesurés
à 90° K pour les fréquences de 6,38 Mc/s, 20 Mc/s, 40 Mc/s, et
78 Mc/s, en regard des courbes théoriques du type de Lorentz
calculées pour les mêmes fréquences et pour o 4,75-10~9 sec.
Cette valeur de q correspond à une largeur de courbe AH
140 œrsteds.

Il n'est pas possible de comparer directement cette valeur de AH
obtenue théoriquement avec une valeur expérimentale en
ultrahertzien, l'anisotropie du facteur g provoquant, pour une poudre,
un élargissement supplémentaire qui, négligeable à 78 Mc/s, ne
l'est plus à 104 Mc/s. Pour établir la comparaison, nous avons
considéré les mesures faites par Wiieatley et Halliday11) sur des
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monocristaux de CuS04-5 H20 à 9375 Mc/s. Nous y avons pris la
moyenne de AH sur tous les cas où le champ statique faisait un
angle égal avec les axes tétragonaux des deux ions de la cellule
élémentaire du cristal, car ce sont les seuls cas où les g de ces deux
ions soient égaux. Nous avons obtenu pour cette moyenne 140
œrsteds, ce qui est en excellent accord avec le résultat précédent.

10£ v20Meisv-63SMcfi
on 08

06

02

10 vVOMck v 78Mets

0!

06

0.9

02

5050 100 100 150 200

** Ho (œrsteds)

150 200 0

Fig. 7.

Pour confronter les courbes de dispersion théorique avec l'expérience

nous avons fait des mesures à la fréquence de 9390 Mc/s.
Il convenait de ne pas faire porter notre étude sur des sels présentant

une raie de résonance trop étroite, car on serait alors tombé
dans des cas banaux. Une étude préliminaire portant sur plusieurs.
sels de manganèse nous a montré qu'on avait dans tous les cas des
courbes de Lorentz, si larges fussent-elles. De cette absence de
courbes du type de Gauss, on peut conclure qu'en chacun de ces

cas, l'interaction d'échange était importante.
Nous avons fixé notre choix sur le sel MnCl2-4H20, dont les

largeurs de courbe atteignent 2500 gauss. Il présente par contre
le défaut d'avoir deux ions Mn++ dans la cellule élémentaire du
cristal*). Bien que nous ne connaissions pas exactement la structure

*) Déterminé à l'Institut de Physique de Genève.
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cristalline de ce sel, nous pensons que ces deux ions ne sont
certainement pas équivalents.

MnCl2-4 HaO cristallise en prismes monocliniques12). Nous avons
repéré l'orientation des champs H0 et Hx par rapport au cristal au

moyen de 3 axes orthogonaux xx x2 x3, dont xx est l'axe de symétrie
et x2 la direction des génératrices du prisme.

0.5 06 07 0,S 0,9 1,0

Bf%' -tO'gauss)

Fig. 8.

X et x" étant mesurés à deux constantes près, l'une
multiplicative l'autre additive, nous les avons comparés avec les courbes
théoriques en faisant coïncider les asymptotes pour H0 oo et
cherché le meilleur accord des courbes, sans oublier que, pour deux
courbes correspondant à la même orientation de Hx par rapport
au cristal, #' et y" ont les mêmes valeurs pour H0 0 ou H0 oo
(cf. fig. 8 et 10). Néanmoins, le choix de #' pour H0 0 reste
entaché de doute.

Nous avons tracé sur la figure 8 y et y" en fonction de B ,u0H0

pour l'orientation H01| x2 Hx \\ x3. Les courbes théoriques du type
de Lorentz ont été calculées pour a 2,8, c'est-à-dire q 2,98 •

10~10 sec. L'échelle des ordonnées a pour unité y0 valeur asymp-
totique de la courbe de dispersion. B est exprimé en Vs/m2 (1 Vs/m2

IO4 gauss).
L'accord entre les courbes expérimentales (pointillé) et

théoriques (trait plein) est excellent, à part la divergence, sur laquelle
nous allons revenir, que présente y' lorsque B est petit.
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La coïncidence entre expérience et théorie est loin d'être aussi

parfaite pour toutes les orientations. Cela apparaît clairement pour

20

05

o

0 r 0,1 02 03 OU 0,5 0,6 07 0,8 0,9 1,0

*B(%'-tO«gauss)
Fig. 9.

l'orientation H0\\xx, Hx\\x2 (fig. 9) et pour H0\\ xx, Hx\\ xs (fig. 10).
Dans ces deux cas, on a choisi a 4,5 pour les courbes théoriques,

15

10
"x\

15 A V-N

/ s*-,^~~~

""¦---„
1,0

1 "//
'1 i \

0,5 c/ / \
__^>-° "°" S '

z'
0 X X '!
°A

0 0,1 0,2 03 01 05 06 07 0,8 0,9 1,0

^Sf^-lO'ffauss)
Fig. 10.

soit q 4,8 -10~10 sec. Comme sur la figure 8, les courbes théoriques
sont tracées en trait plein et les expérimentales en pointillé.
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Il apparaît immédiatement que les courbes de dispersion se

comportent comme une courbe de Lorentz dans la zone centrale,
mais présentent la courbure plus accentuée d'une courbe de Gauss
pour de faibles valeurs de B (cf. fig. 3).

Cette courbure accentuée et la faible pente des courbes de

dispersion pour B 0 est un caractère commun aux trois figures 8,
9 et 10. Ce dernier fait pouvait du reste être prévu à partir de

l'équation (16) donnant dx'/db (b 0).
Considérant la décroissance rapide des courbes d'absorption

pour B élevé, nous pouvons, en appliquant l'équation (13), en
évaluer, assez grossièrement il est vrai, le paramètre t. Si on l'introduit

dans (16), on obtient une estimation de dy'jdb (b 0) qu'on
peut comparer avec l'expérience.

Nous avons ainsi obtenu pour la figure 8 t 0,2, ce qui nous a

permis de calculer le rapport B entre la dérivée calculée par (16)
et celle qu'on aurait avec une équation de Lorentz pure. Nous
avons trouvé :

B calculé 0,30 B observé 0,25.

Nous avons procédé de la même manière sur la figure 10. Nous
avons obtenu:

t 0,15 B calculé 0,18 B observé 0,20.

Cet accord est tout à fait acceptable.
Nous n'avons pas pu faire le calcul pour la figure 9, sa courbe

d'absorption s'éloignant par trop d'une courbe de Lorentz.
Il convient d'autre part de remarquer que la forme de courbe

dépend aussi de l'orientation du champ de haute fréquence Hx.
Une explication de cette dépendance paraît plausible. Nous pensons
que les deux ions Mn++ de la maille élémentaire, qui ne sont
sûrement pas équivalents, présentent des probabilités de transition
dépendant différemment de l'angle du champ Hx à cause de l'orientation

différente de leurs champs cristallins. Cette explication rend
également compte de la différence d'environ 100 gauss entre les
sommets des courbes d'absorption des figures 9 et 10, les deux
ions ayant des valeurs du champ de résonance un peu différentes
lorsque H0 est orienté selon xx.

Il est possible que le même phénomène se produise pour d'autres
sels et permette d'examiner de plus près les cas où deux raies
voisines, dues à deux ions non équivalents, sont confondues en
une seule par l'effet d'échange.
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Nous dirons donc en conclusion qu'une étude détaillée des
formes de courbe, en particulier de celle de dispersion, pourra
dans bien des cas nous donner plus de renseignements que la simple
considération de la position et de la largeur de la raie d'absorption.

Institut de Physique de l'Université, Genève.

Appendice.

Nous allons effectuer le calcul de l'intégrale

f e-(x-b)'_e-(a-by
1= / ; dX.

J x^ — a*
0

Si on différentie deux fois l'intégrale I par rapport à b, on obtient
l'équation différentielle suivante:

^ + Ab^ + 2[l+2(b2-a2)]l 2]/n(0(b)+l)
qui a pour solution:

I -2--^ib'aY f e{v a)\0(y) + l)dy~
o

b

-|^X6+a)S fe{y+a)* (0(y) +1) dy + A e-(b-a)° + B e-{b+a)\ (22)

Il reste à déterminer A et B, qui sont des fonctions de a, afin
d'obtenir la solution particulière de l'équation différentielle
correspondant effectivement à l'intégrale I dont nous sommes partis.

Dérivons I par rapport à b :

dI - Vn XX e -(b -a)! f e(v-a)t 0 (y) +1) d y +db
o

b

Posons :

+ Vn _±_e-<6+«.)> />+«)¦ >$>y) + 1) dy _
o

-2 (b-a) A e-{b-a)*-2(b + a)Be-{b+ay

H(a)=l(b 0) (A + B)e-ai 1

G (a) 44 (b 0) 2 a (A - B) e""2.
(23)

db

Pour déterminer A et B, il nous faut donc calculer H (a) et G (a).
oo

H(a) I(b 0) fe'llzl2a dx.
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Si nous dérivons cette intégrale par rapport au paramètre a, nous
obtenons l'équation différentielle:

^- + XX__h __i^.aa a a '

L'équation a pour solution:

-a' * " -a' rH(a)=KAA---]/n-e—- f ev*dy K-X_-J_Ma).v/ a ' a J ° cx a '
o

Il nous faut encore déterminer la constante K. Pour cela, faisons
tendre a vers zéro.

oo

lim H (a) / ——-2 dx — \/n
a 0 5

d'où: K 0 et H(a)=-^A-F(a). (24)

Passons au calcul de G (a)

di 0 f (x-b)e-(*»'-(a-b)e-(a-®' 0 f e^*"»' 0/ ,w2 / -i — — dx 2 ¦ h 2 (a — b) I,do / x2-a2 / x + a v '

G(a) §(b 0)=2fiÇ- + 2aH(a).
b

Posons ; ^
f^=f^dx' G(a) 2f(a)-2YnF(a)

U est aisé de vérifier que f(a) satisfait à l'équation différentielle:

A\L + 2af Vn--da ' ' a

qui a pour solution :

-" f eu-lf(a) Ke-a'-e",Ana + ]/ne-1' fevldy---2-f^- ' du,
o o
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Faisons tendre a vers zéro:

307

K lim (f(a) -fin a);
a 0

f(a)
x + a

-dx ¦¦

x + a
-dx- f dx

J x+a J x+a
o i

dx;

K=lim
a 0

-x' -, r -x'-~~^dx+ ¦?— + ln(l-x+a j x + a x

7 dx- e~'' dx_
1

x 2 ^Ldt + lf.^-dt
d'où: K -îyiny -0,2886...

y constante d'EuLER-MASciiERONi8)

K-lna-Yl^^du=-Yln(ya2)~YJ^-
o o

Ei (x) fonction exponentielle intégrale.

f(a) -/iP(a) -/\e-a*E~i(a2)

d'où (5(a)=-e-a!s7(a2).
Substituant (24) et (25) dans (23), on obtient:

du —-^-Ei(a2)

(25)

A la [Ei(a2)+2]/neaiF(a)]

B=Aa[Ei(a2)-2yne*°F(a)].
Si on introduit ces expressions dans (22), il en résulte

lJ =V^_e-(b-a)
2a

fà „-(b+a

e(y »)*(0(y)+l)dy-
o

r b

+a)'
2 a

e(y+a)t(0(y)+l)dy-

2]/n

1

2)[n

Ei(a2)-ea*F(a)

ËÏ(a2)+ea'F(a) (26)

d'où, en substituant (26) dans (10), on obtient la forme (11) pour
X'(a>b).
Si on pose:

B(a,b)

on a:

Vn
lia

-(b-a)' fév-^'(0(y)+l)dy 1—Ei(a2)-ea'F(
J 2\/n

a)

I B(a,b) + B(—a,b) (27)
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Décomposons :

b a b

I e(v-^(0(y) +1) dy fé-v a)\0(y) +1) dy+fe{"-a)'(0(y) +1) dy
O 0 a

Il est aisé de vérifier que:
b b-a

j\(y-«)'(0(y) +i) dy _ j"é^(0(z + a) +1) dz

a 0

fe(»-a>°dy e«*F(a)

'éy-"?0(y)dy -~—(Ei(a2) -Ei(-a2)).
2 y ti

u

D'où, pour B(a,b), la seconde forme:

• (28)
r b a

B(a,b)=AAre-(»-a)'Ali fez'(0(z + a)+l)dz ~Ei(-a2)' 21/rë

La substitution de (28) dans (27) et (10) nous donne la forme (12)
de y'(a,b).
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