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Uber eine neue Methode zur Messung von Relaxationszeiten
und iiber den Spin von Cr®

von K. Halbach (Basel).

(15. V. 54).

Summary. Taking into account the finite magnitude of the modulation fre-
quency, solutions of BrLocHs differential equations are derived. They describe the
signals observed on the recording instrument of a nuclear induction apparatus,
and it is found that, in many cases, significant deviations from the differentiated
,»slow passage* signals appear. From the present solutions there follows a simple
method for the measurement of relaxation times, which is valid even in the pre-
sence of field inhomogeneities. This is illustrated by an example.

The fundamental equation for the experimental determination of the nuclear
spin is likewise modified by the modulation effect. This equation is discussed and
applied in the determination of the spin of Cr?3. The result is I(Cr?3) = 3/2.

1. Einleitung.

Es sollen im folgenden die Auswirkungen und Anwendungsmog-
lichkeiten eines Modulationseffektes diskutiert werden, der bei der
Aufnahme von Kerninduktionssignalen auf einem Registrierinstru-
ment auftreten kann. Die Grundlage der Behandlung dieses Effek-
tes 1st die phanomenologische Theorie von BrocH?), und es ist daher
zweckmassig, zunichst einmal kurz die wesentlichen Ziige dieser
Theorie in Erinnerung zu bringen.

Wird eine Substanz in ein Magnetfeld H gebracht, so bildet sich
nach einer gewissen Zeit auch eine von den Kernen herriihrende
makroskopische magnetische Polarisation aus. Legt man senkrecht
zu dem stationdren Magnetfeld H ein schwaches hochfrequentes
Magnetfeld an, so tritt ein Resonanzphénomen auf, wenn die Kreis-
frequenz w, des Wechselfeldes in der Ndhe der Larmorfrequenz
y-H (y = Betrag des gyromagnetischen Verhiltnisses der betrach-
teten Kerne) der untersuchten Kerne liegt. Brocm hat gezeigt?),
dass sich in vielen Féllen das Verhalten des magnetischen Polarisa-

tionsvektors M der Kerne in einem mit der Kreisfrequenz w, rotie-
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renden Koordinatensystem durch folgendes System von Differen-
tialgleichungen beschreiben lasst:

de M,
+(}/H—a)0) M - T2
dflfy —(y H—oq) M, +y Hy M, = — 3 (1a)
aM, M,—M
dt —yH M, ==

In diesen Gleichungen bedeutet H; die halbe Amplitude des im
ruhenden Koordinatensystem linear polarisierten HF-Feldes. Dieses
Feld lasst sich in zwei zirkular polarisierte Felder aufspalten, und es
1st in Gleichung (1a) nur derjenige Anteil beriicksichtigt, der den
gleichen Umlaufsinn hat, wie er durch die Larmorprazession der Kerne
in dem in die z-Richtung weisenden stationidren Feld H vorgegeben
ist. Diese im rotierenden System ruhende Komponente ist in die
z-Richtung des rotierenden Koordinatensystems gelegt worden. Die
Grossen M,, M, und M, sind die Komponenten des Polarisations-
vektors der Kerne. Da M, und M, im Labor-System mit der Kreis-
frequenz wy rotieren, konnen sie vermoge ihrer Induktionswirkungen
nachgewiesen werden und geben Anlass zu den Resonanzsignalen.
Insbesondere beschreibt die mit Energieabsorption verkniipfte Kom-
ponente M, das Absorptionssignal, die wattlose Komponente M,
das Dispersionssignal. M, ist die Gleichgewichtspolarisation der
Kerne (bei Abwesenheit des HF-Feldes) und ist gegeben durch
My = »H, wo » die Suszeptibilitit der Kerne bedeutet. Die in den
Dampfungsgliedern auf der rechten Seite von (la) auftretenden
Grossen T'y und T, sind die longitudinale bzw. transversale Relaxa-
tionszeit. 1'; wird bewirkt durch die Wechselwirkung der Kerne mit
ihrer Umgebung und gibt die Zeitkonstante an, mit der sich z. B.
beim Anschalten des stationéiren Feldes H der Polarisationsvektor
aufbaut. Bei der transversalen Relaxationszeit kommt zusétzlich
noch die Wechselwirkung der Kerne untereinander ins Spiel, so dass
T, hochstens gleich gross sein kann wie T;. T, ist die Zeitkonstante,
mit der eine freie Prizession der Kerne abklingt, und 1/T, ist direkt
ein Mass fiir die Breite der Resonanzlinien bei kleinen HF-Feldern.

Um ein Resonanzsignal nachzuweisen, wird bei den meisten ex-
perimentellen Anordnungen' die Frequenz des' HF-Feldes konstant
gelassen, und nur das stationare Feld H variiert. Findet dies genii-
gend langsam statt, o kann man in (1a) die zeitlichen Ableitungen
vernachlédssigen und kommt durch Auflésen der dann verbleibenden
gewohnlichen Gleichungen zu den bekannten Brocrschen ,,slow-pas-
sage'’-Signalen. Ein derartiges Signal vom Absorptionstypus, wie
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man es z. B. mit dem Oszillographen aufnehmen kann (sofern die
gemachten Voraussetzungen erfiillt sind), ist schematisch in Ifig. 1
wiedergegeben. Die Aufnahme derartiger Kurven auf dem Oszillo-
graphen ist jedoch nur bei sehr grossen Signalen mdéglich, so dass
man bel schwachen Signalen ein anderes Verfahren anwendet, das

My

Fig. 1.

Schematische Darstellung der HF-Amplitude des Absorptionssignals (slow passage)
und deren Modulation.

\ T L Ywyy; ™, Ty~ 1wy,)

zuerst ausfiihrlich von BroemBErGEN, PurceLL und Pounp?) be-
schrieben wurde (siehe auch Fig. 5). Man tiberlagert dem stationéren
Magnetfeld H ein niederfrequentes (hier ~ 80 Hz) Wechselfeld mit
~ einer Amplitude Hy,, die im allgemeinen klein ist verglichen mit der
Linienbreite (}/y Ty): H = Hy + Hy; - cos wyt. Wie in Fig. 1 schema-
tisch angedeutet ist, wird dadurch das HF-Signal moduliert. Nach
Passieren eines abgestimmten NF-Verstarkers wird die Amplitude
der Grundfrequenz dieser Amplitudenmodulation mit einer festen
Phase demoduliert und dann auf dem Registrierinstrument in Ab-
héngigkeit von H, wiedergegeben. Ist allgemein die Amplitude des
HF-Signals durch F(t) gegeben, so wird daher, je nach Einstellung
des phasenempfindlichen Demodulators, auf dem Registrierinstru-

#®
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ment eine Linearkombination der beiden ersten Fourierkoeffizienten
von F(t),

7w g ajw

[F(t)-cos w,, t-dt; fF(t)~sin wyy b di
—n/'wM —ntfwy,
aufgezeichnet.

Es ist schon von verschiedenen Autoren®-?) ein Modulationseffekt
diskutiert worden, der bei dieser Art der Registrierung von Signalen
auftritt. In diesen Arbeiten wird vorausgesetzt, dass die Ampli-
tude des transversalen HF-Feldes geniigend klein ist gegeniiber
dem Wert, bet dem eine Sattigung der Signalamplitude eintritt. Wir
wollen hier einen anderen Weg der Behandlung des gleichen Pro-
blems einschlagen, der gewisse neue Perspektiven eréffnet und ins-
besondere keine Beschrédnkung der Grésse von H; voraussetzt. Dies
wird uns dann spéater die Messung von Relaxationszeiten in inhomo-
genen Magnetfeldern erméglichen.

Es 1st leicht einzusehen, dass auch bei kleinen Modulationsampli-
tuden Hy, schon Modulationseffekte auftreten kénnen: Gehen wir zu-
néchst, fiir gentigend kleine 7'y, von den ,,slow-passage’‘- Losungen der
Brocuschen Differentialgleichungen (1a) aus (ausgezogene Kurve in
Fig. 1), so ist die Amplitude des HF-Signals eine eindeutige Funk-
tion des Magnetfeldes: F(t) = M(H, + Hy-cos wyt). Damit ver-
schwindet aber das zweite der obigen Integrale, und somit ist das mit
dem Spektrometer aufgenommene Signal in Phase mit dem dem Ma-
gnetfeld H, tiberlagerten Feld H,, - cos wy,t. Weiterhin ersieht man aus
Fig. 1 oder durch Entwicklung des ersten Integrals nach Hy,, dass fiir
gentigend kleine H), das Signal gegeben ist durch Hy,-dM (H,)/dH,;
man erhélt also ein differenziertes ,,slow-passage‘‘-Signal. Ist je-
doch die Relaxationszeit T, von der gleichen Grossenordnung
wie 1/wy, so ist wegen des ,,Erinnerungsvermogens des Kernsy-
stems eine Beschreibung der HF-Amplitude des Signals durch eine
eindeutige Funktion des Magnetfeldes nicht mehr mdglich, es tritt
eine Hysterese auf (punktierte Kurve in Fig. 1). Damit ist aber kein
Grund mehr dafiir vorhanden, dass das zweite der obigen Integrale
verschwindet ; es tritt also eine um 90° gegeniiber dem Modulations-
feld verschobene Signalkomponente auf. Da die Existenz dieser
Komponente durch die endliche Grisse von wj verursacht wird,
kénnen wir bel threm Auftreten von einem Modulationseffekt spre-
chen, der offensichtlich auch noch bei beliebig kleiner Modulations-
amplitude H,, vorhanden ist. In Abschnitt 2 werden wir zunéchst
die Bocruschen Differentialgleichungen integrieren, um dann in den
Abschnitten 3—5 die mit dem Auftreten des Modulationseffektes
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verbundenen Erscheinungen quantitativ diskutieren und anwenden
zu konnen.

2. Integration der BLOCHschen Differentialgleichungen.

Zunichst beriicksichtigen wir, wie schon angedeutet, das nieder-
frequente, modulierende Magnetfeld, in dem wir in (1a) H ersetzen
durch Hy + Hy; e cos wyt. Weiterhin erhalten wir fiir das Folgende
eine zweckméssige Normierung, wenn wir das System (la) mit
T'o/ My multiplizieren. Die Dispersions-, Absorptions- und z-Kompo-
nenten U, V, W des Polarisationsvektors werden dann in Einheiten
der Gleichgewichtspolarisation M, gemessen, die Zeiten werden in
Einheiten T,, und alle Magnetfelder werden in Einheiten der Linien-
breite AH = 1/yT, gemessen. Mit den so normierten Grossen:

U= M,M, V=M,/M, W = M,/M,
h = H,/AH k = Hy/24H D = (Hy — wy/y)/4H
T = Zeit in sec/T, a=Ty/T, w = wy T,
wird aus (1a):
dUjdr + U + (D + 2 k cos wt)-V =0
dVidt + V — (D + 2k cos wr):U+ hW =10 (1b)
dW/dv + aW —hV =a.

Die fiir das Auftreten des Modulationseffektes wesentliche Grosse w
lasst sich noch 1n etwas anderer Weise darstellen:

wyly  AHy
AH — AH -
Diese Schreibweise ist zweckmissig, da man in der Praxis Linien-
breiten meist in Gauss angibt. Um einen Begriff von der Grossen-
ordnung von AH,, zu geben, sei weiterhin noch bemerkt, dass bei
der hier verwendeten Modulationsfrequenz von a 80 Iz bei Deute-
rium AHy = 0,12 Gauss, bei Kalium AH,, = 0,4 Gauss betragt.
Bei der Integration der Differentialgleichungen (1b) nehmen wir
D als konstant an. Das bedeutet praktisch, dass man in einer Zeit
durch das Resonanzsignal gehen muss, die gross ist gegentiber T'.
Da T, jedoch nur in wenigen Fillen von der Gréssenordnung meh-
rerer Sekunden ist, bedeutet diese Voraussetzung meistens keine
wesentliche Einschrinkung.
Um die Gleichungen (1b) zu l8sen, entwickeln wir U, V, W 1n
Fourierreithen:

U:fUn.e-—inwt; V:an,e—inwt; W=§Wn_e~inwr_
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Indem wir diese Ausdriicke in (1b) einsetzen und darin auch die
trigonometrischen Funktionen durch Exponentialfunktionen aus-

driicken, erhalten wir als Gleichungssystem fir die Fourierkoeffi-
zienten U, V,, W,:

U,1—1mw)+DV, + kV,_1+EkEV,iy =0 2a)
V,1—inew)—DU,—kU,_—kU, . +hW,=0 w0
W, (a—in o) —hV, =0

Uy, +DVy +EV_ +EkV] =0

Vo —DU—EkEU_1—EkEU;+hW;=0 (2b)

W, a —hV, =0

In diesem Gleichungssystem interessieren uns in erster Linie U,
und V,, da das die Grossen sind, die auf dem Registrierinstrument
aufgenommen werden. Insbesondere sind Re{ U, } und Re{ V,} die
Signale, die bei mit der Magnetfeldmodulation phasenglelcher NF-
Demodulation erhalten werden und die fiir @ - 0 und k¥ <€ 1 in die
differenzierten ,,slow-passage‘-Signale tibergehen miissen. Analog
sindJ{ U, }und J{ V, } die bei90° phasenverschobener Demodulation
zu erwartenden Signale, die fiir o - 0 verschwinden miissen.

Die Gleichungen (2) sind untereinander so gekoppelt, dass es wohl
unmdéglich sein diirfte, sie mit einfachen Mitteln aufzulosen. Jedoch
erlauben sie, einige allgemeine Symmetrieeigenschaften der Koeffi-
zienten U, V,, W, beziiglich der Variablen h, k, D abzuleiten. Die
Schlussweise ist in allen Fallen die gleiche: Aus der dritten der Glei-
chungen (2b) schliesst man auf die Symmetrie von W, und V, bez.
h,k,D, geht dann, damit sukzessive neue Symmetrien erschliessend,in
die tibrigen Gleichungen (2b) und dann weiter in (2a). Man findet so:

W, (—h) = W, (0 (32)
Un(—k) = (—=1)"U,(k); Va(—=k) = (=1)"V,(k);

| Wa(—k) = (=1)"Wu(k)  (3D)
Un(=D) = (=1)"*1U.(D); Vu(—D)=(—1)"V,(D);
W, (— D) = (—1)"W, (D). (8c)

Ausserdem sind selbstverstandlich beztiglich o alle Realteile der
Koeffizienten gerade, die Imaginérteile ungerade.

Die Gleichungen (3¢) stehen fiir D = 0 in engem Zusammenhang
mit Symmetrieeigenschaften, die JacoBsorn und Wanasness®) auf
génzlich andere Weise hergeleitet haben. Wir interessieren uns hier
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in der Hauptsache fiir U; und V;; aus (3¢) geht hervor, dass die
auf dem Registrierinstrument aufgenommenen Dispersionssignale
immer symmetrisch zur Resonanzstelle (D = 0), die Absorptions-
signale antisymmetrisch dazu verlaufen.

Um das Gleichungssystem (2) weiter auflosen zu kénnen, entwik-
keln wir die Fourierkoetfizienten U,, V,, W, nach Potenzen von k:

UnEZOUn’v-k"’; VanVﬂ,v-k”; Wn=2;(')Wn,,,-k”.
V= y=u yv=
Wir werden uns spéter mit der Berechnung der Koeffizienten U, j,
V)1 begniigen, was bedeutet, dass wir uns auf , kleine** Modulations-
amplituden Hj, beschranken; es wird in wichtigen Spezialfillen
dann noch diskutiert werden, was in diesem Zusammenhang ,,klein*
bedeutet. Der Zwang zu dieser Kinschrinkung ist nicht ganz uner-
wartet, wenn man daran denkt, dass schon ohne Beriicksichtigung
von Modulationseffekten diese Voraussetzung notwendig ist, wenn
man zu einfachen Resultaten kommen will.

Durch Elimination der nicht sonderlich interessierenden Grossen
W, aus (2a), (2b) und Einsetzen der Potenzreihen erhélt man als

Gleichungssystem fiir die Koeffizienten U, ,, V, ,:
Uso +DVyo= 0 } (4a)
Voor(1+h%a)—DUy ,=—h
Uﬂ,v' (l—qlnw) +DVn,wZ_Vn—ul,wl*VnH,v—l } (4b)
Vn, »’ (1—"’an+h2/(a—'b'na))) —DUﬂ,vz U'n—l, r—1 T Un+1, ry—1°* ('V> 0)

Da es trivial ist, dass die Koeffizienten U, o, V, o (n + 0) verschwin-
den, sind die diesbeziiglichen Gleichungen nicht angegeben. Aus den
Symmetriebeziehungen (3b) sowie dem Bau der Gleichungen (4b)
entnimmt man weiterhin ohne Schwierigkeit, dass alle Koeffizienten

U, ..V, , tir » <|n| verschwinden, d.h., die Fourierkoeffizienten
U,, V., haben die Gestalt:

U,= k‘”*z; U meog” B2 V. = k'”'Z;Vn’ PR P ()
= n=

Abgesehen davon, dass diese Beziehungen an sich nicht ganz un-
interessant sind, sind sie oft bequem bei der Berechnung héherer
Néherungen.

Durch Auflosung von (44) erhilt man erwartungsgemaissdie ,,slow-
passage‘‘-Losungen von BrocH:

Uo,o(D) =h D(D*+1+h%a); ¥, (D) = —h[(D*+1+h%a). (6)
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Indem man diese Grossen in die Gleichungen (4b) fir n =» =1
einsetzt, bekommt man die die registrierten Signale in erster Néahe-
rung beschreibenden Funktionen:

B % 1-iw+h?(a—iw)— D?
(D) = D2+1+h%a D*+(1-iw) (I—iw+h¥(a—iw)) (Ta)

h D-2-iw)
DEy1+h%a DP+(1—iw)-(1—itw+h(a—iw)) "

V) = (7h)

3. Diskussion der Signale ohne Beriicksichtigung der Feldinhomogenitiit.

3a. Absorptionssignale.

Die beiden durch V; ; gegebenen Signale (Re{V, ,} bei 0°-Demo-
dulation, J{V] ;} bei 900- Demodulation) beschreiben wir kurz und
nur der Vollstdndigkeit halber. Die Diskussion ist nicht nur mit
mehr Schwierigkeiten verkniipft als im Falle der Dispersionssignale,
sie zeigen auch ein sehr viel komplizierteres Verhalten als die beiden

1G.

900 0°
Fig. 2.

Absorptionssignale von K, H, = 0,22G; H,, = 0,03G.

durch U, , gegebenen Signale. So zeigt z. B. eine entsprechende
Rechnung, dass die Sattigungseigenschaften vonV; ; wesentlich von @
beeinflusst werden, was bei den Dlsper31on351gnalen nicht der Fall ist.

Das allgemeine Ausschen des durch Re{V, ;} beschriebenen Si-
gnals (Fig. 2) 1st nicht wesentlich verschieden von dem des entspre-

chenden differenzierten ,,slow-passage-Signals. Jedoch zeigt eine
tir kleine HF-Amplituden durchgefithrte Rechnung (k2 < a), dass
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das durch den Modulationseffekt modifizierte Signal erheblich brei-
ter sein kann als bel @ = 0. Man erhélt ndmlich fiir den Ort der
Extremwerte:

3D2=2]/(1+w2)2—~w2+w2m1 ~ 1+ w2 (3—1/(1 + w?).

Man wiirde also in dem durchaus nicht seltenen Fall w =1 ohne
Berticksichtigung des Modulationseffektes aus der Breite des Ab-
sorptionssignals eine fast um den Faktor 2 zu grosse Linienbreite
AH = 1/yT, und damit auch um den gleichen Faktor zu kleine
Relaxationszeit Ty messen.

Bei dem durch J{V, ,} beschriebenen Signal (Fig. 2) ist bemer-
kenswert, dass es, ausser dem trivialen Schnittpunkt im Zentrum,
die Nullinie nochmals schneidet. Der Abstand dieser Sehmttpunkte
von der Resonanzmitte (D = 0) ist gegeben durch:

D2 =38+ w2 —h? (0 + 2 — a)/(a® + o).

Die beiden Schnittpunkte riicken mit wachsendem » monoton zur
‘Mitte der Resonanzkurve und existieren fiir

, h? > (84 w?) (a2 + 0?)/(w?+ 2—a)
nicht mehr.

3b. Duspersionssignale.

Als erstes wollen wir als den einfachsten und zugleich wohl wich-
tigsten Fall U; ; im Zentrum der Resonanzkurve betrachten. Aus
(7a) erhalten wir direkt -
1 b l+io  h
U11{0) = l—tw 1+h%a  1+w? 1+h%a’ (8)

Daraus konnen wir ein sehr einfaches Messverfahren fiir o und da-
mit Ty entnehmen: Ist ) das Verhiltnis der im Zentrum der Reso-
nanzkurve gemessenen Signalamplituden bei 90% und 0°-Demodu-
lation, so wird bei vollkommen homogenem H,-Feld

Q= o. (9)

Weiterhin ist bemerkenswert, dass, abgesehen von den konstanten
Faktoren 1/(1 + 2 bzw. o/(1 + ©?), dieAnderung der Signalampli-
tuden mit der normierten HF-Amplitude h unabhéngig von o er-
folgt; die Sattigungseigenschaften sind damit gleich wie ohne Be-
riicksichtigung des Modulationseffektes.

Die Messung der Relaxationszeit T, nach (9) ist natiirlich nur
richtig, wenn H,; und damit k so klein ist, dass U; im Zentrum in
guter Naherung gegeben ist durch U; = kU, ;. Im Experiment lasst
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sich das gut kontrollieren, indem man feststellt, ob die gemessenen
Signale proportional mit k wachsen. Trotzdem wollen wir durch
Berticksichtigung des néichsten Gliedes (U, ;) abschétzen, wie gross
k sein darf, ohne einen merklichen Beitrag des Gliedes k3- U, ; zu
erhalten. Um einfache Resultate zu erhalten, die fiir unsere Zwecke
jedoch vollstdndig gentigen, bestimmen wir U, 3 nur im Zentrum
der Resonanzkurve und fithren die Berechnung getrennt durch fiir
grosse und kleine HF-Amplituden. Mit Hilfe des bekannten Wertes
von U, ; und unter Berticksichtigung von (5) erhalt man aus den
Gleichungen (4b) fir D = 0, h¥a < 1:

kh 3 k2 : 6 k?
kUL (0) + k2 Uy yl0) = ror (1—qogar i@ (1 15527))-

Daraus erhalten wir eine Bedingung fiir %, wenn () immer noch im
wesentlichen durch o gegeben sein soll: Fiir [3 k%(1 + 4 0?2 L1

wird Q= (1—8k1 + 4 0?). (10)

Lassen wir fir ¢ eine 69ige Korrektur zu, so bekommen wir als
Bedingungsgleichung fir die Modulationsamplitude :

<V1i+4w¥T bow. H,<V(1jyTy)?+ 4(w,/v)?85

Es 1st bemerkenswert, dass, wenn w? von der Grissenordnung 1 ist,
die zuldssige Modulationsamplitude im wesentlichen durch AHj, —
wy/y und nicht durch AH = 1/9 T, gegeben ist. Eine analoge Rech-

nung gibt fiir D = 0, h23>> V(a2 + 4 02) (1 + 4 w?):

k a
o 14 w2

kUL 0) + KU, 4(0) = %

><[1—|—f1:ou_(£)2 1: ;

- 4o?+a(B3—0?)+2i0(w? +2a—1))]

Fir gentigend kleine k erhilt man daraus:
Q=ow 1+ (2—a)k¥n?. (11)

Lassen wir auch hier wieder eine rund 69%ige Korrektur zu, so er-
halten wir fiir die erlaubte Modulationsamplitude bei a = 1:

k < h/d bzw. Hy < H,/2. (12)

Erwartungsgeméiss sind diese Werte unabhéngig von der Linien-
breite AH = 1/y T,. Ist man gentigend weit oberhalb der Sattigung,
so verliert man durch Vergrosserung von H; nicht mehr an Signal-
amplitude, da man, nach (12), auch gleichzeitig mit H, herauf-
gehen kann.
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Nach dieser Diskussion der Amplituden im Zentrum der Disper-
sionssignale wollen wir uns der Beschreibung der Signalform zu-
wenden. Dies 18t besonders darum notwendig, da das durch Re{ U1,1}
beschriebene Signal stark von dem differenzierten ,,slow-passage®-
Signal abweichen kann und man daher, ohne Kenntnis des Modula-
tionseffektes, annehmen konnte, das Signal konne nicht durch die
Brocmschen Differentialgleichungen beschrieben werden. Zun#chst
spalten wir die beiden durch (7a) gegebenen Signale auf in Real-
und Imagindrteil. Mit den Abkiirzungen

b = h¥(a® + w?) (13a)
N =(D*+1+h¥a)-[(D*4+1—w?+b(a+w?)*+ 02 (2—b(1—a))?] (18D)
wird
Re{U, ,(D)}=h[—D*+D2w?(1—b)+ (1+ ab)*+w?(1—b)?]/N, (14a)
J{U, (D)} = wh[(14 ab)®+ w?(1—b)2—D?(3—b(2—a))]/N. (14b)
Far b = h2/(a? + 0?) <1, h¥*a < 1, lisst sich (14a) vereinfachen,
und man erhélt dann:

1+ w?2— D2
Re{U, (D)}=h- (D2+1_“’w2)2+4w2 : (14c¢)

Re{ U, ,}. Als Mass fiir die Breite dieses bei 0°-Demodulation erhal-
tenen Signals wihlen wir seine Schnittpunkte mit der Nullinie, da
deren Lage leicht aus (14a) berechenbar ist und auch experimentell
genauer bestimmt werden kann als beispielsweise die Stelle eines
Extremwertes. Wie man aus (14a) sieht, existiert genau ein einziger
derartiger Schnittpunkt auf jeder Seite der Resonanzstelle, und die
Lage dieser Punkte ist allgemein gegeben durch:

D:=w2(1—b)2 +Vot(1—b)¥4+ 02 (1—b)2+ (1 +ab)?. (15a)

Daraus erhalten wir fiir b = h?/(a2? + w?) <€ 1, wie es auch direkt
aus (14c¢) folgt: D=1 + o (151)

Daraus folgt, dass bei kleinen HF-Amplituden das Signal durch
die endliche Grosse von wjy merklich verbreitert werden kann. Dis-
kutiert man die durch (15a) gegebene Abhangigkeit der Signalbreite
von der HIF-Amplitude, so erhilt man das bemerkenswerte Resul-
tat, dass sie fir w2 > 1,5 (/1 + 8a/9 — 1) ~ 2a/3 mit zunehmen-
dem h zun#chst abnimmt, um dann schliesslich mit grosser
HF-Amplitude natiirlich wieder zuzunehmen. Wird schliesslich
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b = h?(a? + 2% > 1, so erhalten wir aus (15a) mit der zusédtzlich
vereinfachenden Annahme 1 —a < 1

D2 =b=h(1 + o). (15¢)

Im Grenzfall grosser HF-Amplituden wird daher die Breite des
Resonanzsignals 1im allgemeinen durch den Modulationseffekt ver-
kleinert und nicht, wie bei kleinen Feldstirken, vergrissert.

Der Vollstéandigkeit halber geben wir auch noch den Ort des Mi-
nimums des Resonanzsignals an fir h2 < a, h? < a? + w?:
Die erste Ableitung von (14¢) verschwindet fiir:

D=1+ w?+2)/1 + w?. (16)

Die Amplitude des an dieser Stelle befindlichen Minimums wird, re-
lativ zur Amplitude im Zentrum des Signals:

(RB{LHJ}hﬁm/(Re{IEJ})D:n::(1*‘wzw4(lﬁ'l1*‘w2)'
Dieser Wert ist offensichtlich grosser als das Verhaltnis der beiden
Amplituden ohne Berticksichtigung des Modulationseffektes (= 1/q).

1G.

90° 0°
Fig. 3.
Dispersionssignale von K, H, = 0,022G; H,, = 0,03G.

Ist @2 > 3, so hat auch das negative Vorzeichen der Quadrat-
wurzel in (16) einen Sinn. Man hat also in diesem Fall an der durch
D2=1+ w?—2})1 + w? gegebenen Stelle ein Maximum und so-
mit bel D = 0 ein relatives Minimum. Ein derartiges, von dem ge-
wohnten Verhalten vollstdndig abwelchendes Signal, 1st in Fig. 3
wiedergegeben. Eine Diskussion des Vorzeichens von

[d2(Re{ U, D/(AD)?]p—o = 2-[A(Re{ U })/d(DY]y -

zelgt, dass dieses Minimum fir grosse k2% wieder zum Maximum wird,
die beiden symmetrisch dazu gelegenen Maxima also verschwinden.
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Ebenso folgt aus dieser Betrachtung, dass das Auftreten des Mini-
mums fiir D = 0 auch bei w? < 8 fiir gewisse k% moglich ist; eine
genauere Diskussion fithren wir nicht durch, da dem Auftreten die-
ses Minimums wohl kaum eine messtechnische Bedeutung zukommt,
obgleich die Existenz an sich interessant ist.

J{ U, ,}. Dieses Signal (Fig. 8), das man bei 90°-Demodulation des
Dispersionstyps erhélt, schneidet die Nullinie auf jeder Seite der Re-
sonanzstelle hochstens einmal, und diese Stellen sind gegeben durch:

D? = [w(1 —b)2 + (1 + ab)2]j[8 — b (2 — a)]. (17)

Fir kleine HF-Amplituden geht dieser Ausdruck iiber in D2 =

(1 + »?)/3; die Schnittpunkte liegen also um den Faktor |3 naher
beim Zentrum als das ber dem 0°-Signal der Ifall ist. Ist w? >
(6 a + 2)/(a + 4), so nimmt auch hier die Distanz der Schnittpunkte
vom Zentrum zunichst mit zunehmendem h? ab, um bel grossen
Werten schliesslich wieder zuzunehmen. Bei h? = a2 4+ »? liegen die
Schnittpunkte an der gleichen Stelle wie beim 0°-Signal (D? =1 + a).
Wie man Gleichung (17) entnimmt, gehen die Schnittpunkte fiir
h? = 3 (a? + ®?) /(2 — a) ins Unendliche, d. h. sie verlieren hier ihren
Sinn, und das Signal verlduft fiir diese und grossere HF-Ampli-
tuden ganz oberhalb der Nullinie.

Zum Schluss wollen wir noch das Integral der Dispersionssignale
betrachten. Dies 1st angebracht, da gerade das Verschwinden des
Integrals des 0°-Dispersionssignals (in der geometrischen Interpre-
tation als Fliche) als Kriterium benutzt wurde, um zu entscheiden,
ob das Signal durch die Brocmschen Differentialgleichungen be-
schrieben werden kann. Durch Einfiihren der Abkiirzungen

A=V1+1¥a—iw) A —io)/1+h¥a  (Re{d}>0) (18a)

¢—D1+h¥a (18b)
r=1—1w (18¢)
und Benutzung der Gleichung (7a) erhilt man fiir das Integral F':

A2y —22
V1+h2/a’ [(22+1) zz—i—rzAz)id

F=fU1,1(D)-dD_

Nach Durchfiihrung der Integration, bei der man zweckmaéssig den
Residuensatz anwendet, erhilt man:

h A4-1
an.?ﬁﬁé}g CArel (19)
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Wie es sein muss, wird 4 = 1 fiir w = 0 und damit F' = 0; ebenso
wird, be1 beliebigem w, 4 - 1 fiir h > 0, so dass F fir kleine h
mit h3® anwichst. Durch Entwicklung von A4 erhalten wir fir
h*a < 1:

g Pa —o’2(+e’)+3a@tl)]-io[0? (1+o?) +a(@+1) (@ -2)] (20)
T 2a (1+w?) (a4 w?) (4+w?) )

Daraus geht hervor, dass bei kleinen HF-Amplituden beim 0°-
Dispersionssignal die Fliche unter der Nullinie immer grosser ist
als tiber derselben. Das Integral des 90°-Signals kann, je nach
Grosse von o, ersichtlich beide Vorzeichen haben, ist jedoch fiir
w > 1 immer negativ. Diese Tatsachen kénnen niitzlich sein zur
qualitativen Erklarung des Einflusses von Hy-Inhomogenitaten. Aus
diesem Grunde betrachten wir F auch noch fiir grosse H;-Amplituden.
Fir 2h2> V(a2 +0?) (1+0?) wird 4 =Va/)/(¢a —iw) (1—iw) und
damit:

7= Vaj(a—iw) (1-iw)-1 _ 21
nl/&]/a(l—iw)/(a—iw)—t-l (#1)

Diese Gleichung wird besonders einfach, wenn, was bei vielen Flis-
sigkeiten zutrifft, ¢ = 1 ist. Dann wird ndmlich
n L4 —w2+7:0)
F=g —rer
Da das Integral der Dispersionssignale unabhéngig ist von Inhomo-
genitdten des konstanten Magnetfeldes H,, konnte man daran den-
ken, die letzte Gleichung zur Bestimmung von Relaxationszeiten

zu benutzen. Jedoch diirfte dies wohl einfacher sein mit Hilfe der
in Abschnitt 4¢ durchgefiihrten Betrachtungen.

4. Beriicksichtigung der Feldinhomogenitiit.

4a. Ableitung der Gleichungen zur Beschreibung von Signalen in
wnhomogenen Magnetfeldern.

Es ist selbstverstandlich, dass der grosste Teil der bisher erhalte-
nen Ergebnisse stark gedndert wird, wenn das starke Magnetfeld H,
merklich inhomogen ist. Um die Wirkung dieser Feldinhomogenitét
diskutieren zu konnen, machen wir eine spezielle Annahme iiber
ihre Form: Der Bruchteil der Kerne, bei dem die Abweichung des
Magnetfeldes gegeniiber dem iiber alle Kerne gemittelten Wert
zwischen H und H 4 dH liegt, soll gegeben sein durch:

iN=1. AL

< mramy OH- (222)
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Darin ist der Parameter 4H,direkt ein Mass fiir die Grosse der Feld-
inhomogenitét.

Um in einem Rechnungsgang die modifizierten 0°- und 90°-Signale
des Dispersions- und Absorptions-Typus zu gewinnen, fassen wir
die durch (7) gegebenen Ausdriicke fiir U, ; und V; ; in einer Funk-
tion (f zusammen, die folgendermassen definiert ist:

Gy (D) = U, (D) +iV1+h¥(a—iw) (1—1w)-V, (D). (28a)

Der bei V; ;stehende Faktor ist so gew#hlt, dass der explizite Aus-
druck fiir G, ;(D) moglichst einfach wird. Da beztiglich D die Funk-
tion U, ;(D) gerade, V, ;(D) ungerade ist, lassen sich aus (23a)
U, ,;und ¥, ; in eindeutiger Weise zuriickgewinnen: '

l 2 U],l(D)

G J— =
1,1(D) + Gl,l( D) [ Zil/l+ hz/(a — i,(,o) (1—’1"60) 'V1,1(D) i

(24)

Setzen wir in (23a) wieder die durch (18) eingefiihrten Abkiirzungen
ein, so wird

s = ; h 4 —
Gi1(2) = U, () +idV1+h¥a-V,,(2) = T+h%a (z+;A ) é2+ 1)

(231)

In Angleichung an diese Normierung kénnen wir mit
_ AHJAH _  AD, 25)

— = (9]
T Vi+hYa  Yi+hYa

fiir (22a) schreiben:
AIN=L_2% 4. (22b)

2240l

Indem wir nun den durch (23b) gegebenen Ausdruck entsprechend
(22b) mitteln, bekommen wir fir die Funktion Gy ,(z), welche die
Signale im inhomogenen Magnetfeld beschreibt:

® * . I 1.9/ # 1 r
Gy,1(2) = U1,1+@AV1+h2/a-VL1::EfGl,l(w)-mdx.

Indem man darin den durch (28b) gegebenen Ausdruck fiir G, , ein-
setzt und die Integration durchfiihrt, erhélt man:

N _h i(A—a)—2 a(d—-1)
Gl,l(z) " 1+4%a {[z+i(AT+OC)] [(z4+7a)2+ 1] + (1+r4d) [(z—i)2+oz2]}- (26)

Da die Symmetrieeigenschaften der Dispersions- und Absorptions-
signale beziiglich D bei der Mittelung durch das inhomogene Magnet-

18
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feld erhalten bleiben, gelten fir die Gewinnung von U7, und V3%
aus (26) die gleichen Beziehungen wie die durch (24) gegebenen.

4b. Diskussion der Signale bei kleinen| HI'- Amplituden mit Beriick-
sichtigung der Feldinhomogenitdt.

Wir wollen die aus (26) folgenden Ausdriicke fir U7, und V%
nicht allgemein diskutieren, sondern uns darauf beschrénken, (26)
fiir so kleine normierte HF-Amplituden h zu betrachten, so dass
alle in h quadratischen Glieder fortgelassen werden konnen. In die-
sem Fall, der fiir Spinbestimmungen von Interesse ist, verschwindet
in (26) der zweite Term in der geschweiften Klammer, und es wird

3
D+t (l+a—i0)][D+i(l+a)]"

Gf,l(D) =

Ist weiterhin auch die Modulationsamplitude gentigend klein, so
kénnen wir schreiben:

Gy (D) =U; (D) +4V*(D) ~ kG (D)=
kh 1

O i ]

(27)

Aus der Definition von k, h, D, o, « sowie aus (27) geht hervor, dass
die die Signale in inhomogenen Magnetfeldern beschreibende Glei-
chung (27) aus derjenigen fiir homogenes Feld (« = 0) hervorgeht,
indem man in der letzteren die bei der Definition von k, h, D und w
auftretende Grosse 1/y Ty = AH durch AH* = AH + AH, ersetzt.
Das bedeutet, dass bei gentigend kleiner IIF-Amplitude die Wir-
kung der Feldinhomogenitéat einzig in einer scheinbaren Verkleine-
rung der transversalen Relaxationszeit besteht:

]/T; = 1/T2 + 'V'AH().

Eine Diskussion des Wertebereichs von h, in dem die Naherung (27)
noch gut 1st, zeigt, dass im allgemeinen Abweichungen von (27) bel
um so kleineren Werten der normierten HF-Amplitude b auftreten,
je grosser die Feldinhomogenitét ist. Die Inhomogenitat des Magnet-
feldes bewirkt durch diese zusitzliche Beschrinkung von h eine
Verkleinerung der maximalen Signalamplitude, wenn man, wie bei
Spinbestimmungen, nur den Grenzfall kleiner HF-Amplituden zu
betrachten wiinscht.
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dc. Messung von Relaxationszeiten wn inhomogenen Magnetfeldern.

Es soll im folgenden untersucht werden, durch welche Vorschrift
die zur Messung der Relaxationszeit T, vorgeschlagene Gleichung
(9) zu ersetzen ist, wenn die Feldinhomogenitéat von der gleichen
Grossenordnung (oder grisser) istwie 1/y Ty = AH. Zu diesem Zweck
betrachten wir wieder die Amplituden der Dispersionssignale in der
Mitte der Resonanzkurve. Wegen V* (0) = 0 ergibt sich aus (26),
wenn wir uns wieder auf geniigend kleine Modulationsamplituden
beschranken:

U (0)~ Gy, (0) =

kb 1 1 (21 w)
- 1+h2/a'1+a"1—e:w'(1—[A(l—z'w)+1][A(1—m)+a])' (28)

Be1 gentigend kleiner HF-Amplitude ergibt sich daraus:

* kh 1w
VIO = rzapgrar (11345, (29)
Das Amplitudenverhiltnis @ der 90% und 0°-Dispersionssignale in
der Mitte der Resonanzkurve wird damit

w
(@n—0= 177D, -

Wie es auch schon aus (9) und dem im Anschluss an (27) Gesagten
hervorgeht, ldsst sich daraus lediglich die durch die Feldinhomo-
genitdt verkleinerte Relaxationszeit T3 (1/15=1/T,+y-AH,) er-
mitteln, wenn AH, unbekannt oder zu gross ist. Das Verhalten von
@ in dem Ubergangsgebiet zwischen den Grenzfillen sehr kleiner
und grosser HF-Amplituden betrachten wir nicht eingehend, da es
sehr kompliziert sein kann und keine Kigenschaften zeigt, die sich
messtechnisch verwerten lassen. Es sei nur soviel vermerkt: Mit
wachsendem h kann ¢) sowohl zu- als abnehmen, und es 1st sogar
moglich, dass sowohl Re{ U7 } als auch J{ U} } bei kleinem h negativ
werden. Dies ist leicht zu verstehen, wenn man zur Erklarung
Gleichung (20) heranzieht.

Grosse Bedeutung hat jedoch der Fall, dass die HF-Amplitude
H; und damit h gross 1st. Aus (28) wird, d&hnlich wie bei der Herlei-

tung von (21), firr 2 2>/ (a? + 0?) (1 + 0?)

* k a 1
U =5 i meh "1 ¥
AD 2—1w
% (1— 220 A . (30
( k (l/a(1——z‘w)/(a—?:w)+ADo/h)(1+Va(l—z‘w)/(a—m))) (30)
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Im Grenzfall sehr grosser Amplituden des hochfrequenten transver-
salen Magnetfeldes geht der Klammerausdruck in (30) gegen 1, und
somit erhélt man wieder fir das Amplitudenverhéltnis im Zentrum

(Q)Apl,/héo == L0 4

d. h. man 1st in der Lage, die Relaxationszeit T’y trotz der Inhomo-
genitdt des Magnetfeldes H, zu messen. Dieses Ergebnis ist unab-
hangig von der Form der Inhomogenitét, wie man auch leicht mit
einer qualitativen Uberlegung sicht: Wiahlt man h geniigend gross,
so werden die Signale sehr breit und die Amplituden von J{U, ,}
und Re{ U, ,} sind in der Umgebung des Zentrums der Resonanz-
kurve praktisch konstant und ihr Verhaltnis ist dort w. In dem hier
betrachteten Fall bewirkt die Feldinhomogenitét eine Mittelung der
Amplituden in der Umgebung des Zentrums. Da aber alle zu
diesem Mittelwert beitragenden Werte im wesentlichen konstant
sind, 1st natiirlich auch das Verhéltnis der durch die Feldinhomo-
genitdt gemittelten Amplituden gleich w.

Die Gleichung (30) erfahrt eine wesentliche Vereinfachung, wenn
wir die fiir viele Substanzen zutreffende Annahme @ = 1 machen.
Dann wird namlich:

1] 1 1+iwADy2 h
h " (144 Dyfh)? 1-iew "

Ul =

Die Phase des komplexen Teiles dieses Ausdrucks konnen wir mit
Hilfe des experimentell bestimmbaren Amplitudenverhaltnisses ¢
etwas zweckmassiger beschreiben. Mit den Grdssen

@ = arctg Q; o = arctg
wird nédmlich

tg (¢ — @o) = w-AHy/2 H, (31a)
oder, wenn (w-AHy/2 H,)%3 < 1:
® =@, + o AH,/2 H, . (31D)

Aus (31Db) folgt ein einfaches graphisches Verfahren zur Bestimmung
von : Trégt man die experimentell bestimmten ¢ gegen 1/H; auf,
so muss diese Darstellung fiir gentigend grosse H, in eine Gerade
tibergehen, deren Schnittpunkt mit der ¢-Achse ¢, und damit w
ergibt. Wie man aus (30) ersieht, ist diese Darstellung auch ohne
die Voraussetzung a = 1 giiltig. Die Gleichung (31a) dagegen ist nur
fiir nicht zu sehr von 1 verschiedene a giiltig, dafiir ist, wenn man
einen nicht zu schlechten Niherungswert fiir ¢, einsetzt, die ent-
sprechende graphische Darstellung iiber einen grosseren 1/H,-Bereich
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eine Gerade, da in diesem Fall nicht (w-4Hy2 H,)?/8 << 1 voraus-
gesetzt werden muss.

In Fig. 4 ist die entsprechend (81b) erfolgte Auswertung einer
Relaxationszeitmessung an Protonen in einer 2,3-10~2 molaren ws-
serigen Fe(NOs)s-Losung wiedergegeben. Der Schnittpunkt der Ge-
raden mit der Ordinate gibt w = 1,8, was bei der verwendeten Modu-
lationsfrequenz wy,/2 w = 79 Hz zu einer transversalen Relaxations-
zeit von T, = 2,68-10-3 sec fiihrt. Dieser Wert ist in guter Uber-
einstimmung mit Messungen, die Haun?) mit Hilfe der Spin-Echo-
Methode durchgefiihrt hat. Aus der Neigung der Extrapolations-
geraden sowie aus Messungen bei kleiner HF-Amplitude folgt, dass

be
700-

65° 1
60° 1

35°

s0° , _ : . "
1 2 Wy
Fig. 4.

T,-Bestimmung an Protonen (AbszissenmaBstab willkiirlich).

die Feldinhomogenitdt in diesem Experiment mit AH, ~ 8-10-2
Gauss erheblich grésser war als die Linienbreite AH, die sich aus
der Relaxationszeit zu AH = 1/pT, = 1,43 . 10-% Gauss ergibt.
Damit das oben beschriebene Verfahren zur Bestimmung von w
anwendbar ist, muss im allgemeinen verlangt werden, dass w-AHy/H,
kleiner als 1 gemacht werden kann. Ist @ von der Gréssenordnung 1,
und nimmt man fiir AH, den auch bei grossen Feldern gut erreich-
baren Wert 0,1 Gauss an, so ist diese Bedingung leicht zu erfiillen,
da H, ohne Schwierigkeiten auf ungefiahr 1 Gauss gegracht werden
kann. Man gerit daher erst dann in Schwierigkeiten, wenn 7', s0
gross 1st, dass man experimentell schwierig zu handhabende Modu-
lationsfrequenzen benutzen muss, um o in der Grossenordnung 1

halten zu kénnen. Das bedeutet, dass man ohne grossen Aufwand
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mit dieser Methode transversale Relaxationszeiten bis zu dem re-
lativ hohen Wert von rund 0,1 sec messen kann.

Der Vorteil der hier beschriebenen Methode gegentiber der Spin-
Echo-Methode?) scheint uns darin zu bestehen, dass entsprechend
der beil unserem Verfahren benutzten kleinen Bandbreite sehr viel
schwichere Signale fiir die Messung zugénglich sind. Obgleich die
Messung weit oberhalb der Sattigung durchgefithrt wird, bedeutet
dies keinen wesentlichen Verlust an Signalamplitude, da bel grosser
HF-Amplitude auch die Modulationsamplitude entsprechend ver-
erossert werden kann. Wegen der Mittelungseigenschaft der Feld-
inhomogenitdat wird im allgemeinen nicht ganz der durch (12) ge-
gebene Wert angewandt werden kénnen, jedoch ist die Grossen-
ordnung der nach (12) zuléssigen Amplitude sicher richtig.

Ahnlich wie bei der Spin-Echo-Methode ist auch hier die Bestim-
mung von @ und damit T; mit etwas mehr Schwierigkeiten verbun-
den als die Messung von T',. Die Moglichkeit einer T';-Bestimmung
ist jedoch prinzipiell gegeben, da die Signalamplitude bei kleiner
HF-Amplitude nach (29) von a unabhéngig, bei grosser HF-Ampli-
tude nach (30) proportional zu a ist. Demgemass lasst sich a aus der
Grosse der Signale bei kleinen und grossen HF-Amplituden ermit-
teln. Hs geht aber bei einer derartigen Messung die absolute Grosse
von H, quadratisch ein, und sie wird sich daher nicht mit der Ge-

nauigkeit durchfiihren lassen, wie das bei der T,-Bestimmung mog-
lich ist.

5. Anwendung auf Spinbestimmungen.
ba. Beriicksichtigung des Modulationseffektes ber Spinbestimmungen.

Von Procror®) und anderen Autoren sind Spinbestimmungen
durchgetiihrt worden, die darauf beruhen, dass die Amplitude des
Kerninduktionssignals der Kerne mit dem noch unbekannten Spin
mit der Amplitude des Signals bekannter Bezugskerne verglichen
wird. Wir wollen zun#chst die diesem Messverfahren entsprechende
Gleichung zur Ermittlung des Spins mit Berticksichtigung des Modu-
lationsetfektes angeben und im Zusammenhang damit auch die
bisher benutzten Formeln diskutieren.

Vergleicht man bei gleicher Geometrie und gleicher Frequenz des
transversalen magnetischen Wechselfeldes die Zentralamplituden A4
der 09 Dispersionssignale, so folgt aus der Definition von U; und
der Suszeptibilitat der Kerne (¢ =n-I- (I + 1)-9%3ET):

A, [n-1-(I+1)-y-Re{U,}],
4, [n-I-(I+1)y-Re{U}];
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Darin bezeichnet I den Spin der betreffenden Kerne und n deren
Anzahl pro cm® Werden die Messungen geniigend weit unterhalb
der Sattigung und mit gentigend kleiner Modulationsamplitude
durchgefiihrt, so muss nach (27) der Einfluss der Inhomogenitit
des Magnetfeldes H, nicht explizit beriicksichtigt werden, wenn
tiberall an Stelle der hier nicht interessierenden Relaxationszeit T
die durch 1/T5 = 1/T, + y-4H, gegebene Relaxationszeit T ein-
gesetzt wird. Daher erhalten wir unmittelbar aus (8):

kh H1HM w?
Re{Ul}: 1+w? 2(wM/g/)2 1fw?”

Da darin w = @ ist, erhalten wir fiir das Amplitudenverhaltnis der
beiden Signale:

Ay, I I-(I+1)y*H Hy @Y1+ @Q%)],

Ay I I (T+1) 5 H Hy @A+ @), (82)

Die bisher fiir die Spinbestimmung benutzte Gleichung erhdlt man
aus (32) dadurch, dass man darin (1 + 1/Q2)/y2 durch das Quadrat
der experimentell ermittelten Signalbreite ersetzt. Nach (15b) sind
diese beiden Formulierungen vollstindig d4quivalent, wenn man als
Mass fiir die Signalbreite die Schnittpunkte der Dispersionssignale
mit der Nullinie wahlt. Benutzt man jedoch z. B. die Distanz der
Minima der Dispersionssignale, so kénnen bei Vernachlidssigung des
Modulationseffektes merkliche Fehler auftreten, wenn die Relaxa-
tionszeiten der beiden Kernarten wesentlich verschieden sind. Etwas
verwickelter sind die Verhiltnisse, wenn der Spin aus dem Ampli-
tudenverhéltnis von Absorptionssignalen ermittelt wird. In diesem
Falle lasst sich keine gleich einfache und allgemein giiltige Bezie-
hung wie (28) aufstellen, wir kénnen jedoch einen Korrekturfaktor
K angeben, mit dem in der bisher benutzten Gleichung die jewei-
ligen Signalamplituden versehen werden miissen. K ist in guter
Naherung gegeben durch:

K — V30*+1/1+w?)
1—w?/4 (1+w?)

Da z. B. fiir o = 1 der Korrekturfaktor K = 2,15 wird, sind auch
hier grosse Fehlermoglichkeiten vorhanden, wenn die Relaxations-
zeiten der beiden Kernarten verschieden sind und der Modulations-
effekt nicht berticksichtigt wird.
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5b. Bestimmung des Spins von Cr33.

Das Kerninduktionssignal von Cr®® wurde von ALpEr und HaAr-
BACH®) und, unabhéngig davon, etwas spéter von JEFFRIES und
Soco1?) gefunden. Mit dem Spin I = 8/2 folgt aus den beiden tiber-
einstimmenden Messungen des gyromagnetischen Verhéltnisses fiir
das magnetische Moment von Cr®® p = — 0,47351 4 0,00006. Da
der Spin von Cr®2 nur aus der Hyperfeinstruktur von paramagne-
tischen Resonanzspektren gemessen wurde!!)12), schien es wiin-
schenswert, den Spin noch mit einer anderen Methode zu bestim-
men. Dies wurde mit Hilfe der Kerninduktion und unter Benutzung
von (32) durchgefiihrt.

Fir die Spinbestimmung wurde einerseits das Cr53-Signal in einer
5,18-molaren Na,CrO,-Liosung, andererseits das D-Signal einer 1,08-
molaren wasserigen MnSO ,-Losung mit 24,6 % D,0-Gehalt bentitzt.
Unter Beriicksichtigung der natiirlichen Isotopenhdufigkeit des Cr33
von 9,559,13) folgte aus den Amplituden der beiden Signale fiir den
Spin von Cr33: [ = 1,68 4+ 0,2. Da die néchsten prinzipiell mog-
lichen Werte fiir den Spin (0,5; 2,5) gentigend weit ausserhalb der
Fehlergrenze liegen, fithrt diese Messung zu

I (Cr53) = 8/2.

Dieses Resultat bestétigt die Angabe von BLEANEY und BowERrs!?)??)
und ist damit in Ubereinstimmung mit der aus dem Schalenmodell
der Kerne folgenden Aussage, dass das ungerade 29. Neutron ein
P3je-Neutron 1st.

Die Durchfithrung der Spinbestimmung bereitete insofern gewisse
Schwierigkeiten, als es schwer ist, paramagnetische Zusétze zu finden,
die das Cr-Signal geniigend verbreitern, ohne einen Teil der Substanz
in Dichromat zu tiberfithren. Daher haben wir auf die Beiftigung para-
magnetischer Zusétze verzichtet und uns den Umstand zunutze ge-
macht, dass die Signale mit zunehmender Konzentration breiter wer-
den. Bei der etwas iiberséttigten, jedoch noch sehr stabilen 5,18-mo-
laren Losung war die Linienbreite 1/y T ~0,2 Gauss. Wir waren auf
eine so breite Linie angewiesen, da das Cr-Signal an sich schon ziem-
lich klein 1st und die Signalamplitude nach (29) bei schmalen Linien
infolge des starken Modulationseffektes (AHy; = wy/y &~ 0,33 Gauss)
und der Wirkung der Feldinhomogenitéit zusétzlich stark reduziert
wird.

6. Apparatur.

Die Messungen wurden in dem Feld eines wassergekiihlten Elek-

tromagneten mit einem Poldurchmesser von 25 e¢m und einer Pol-
distanz von 4 cm durchgefiihrt. Die Feldinhomogenitat betragt bei
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einem maximalen Feld von 12000 Gauss und einem Probenvolumen
von 4 cm?® rund 0,1 Gauss. Der Magnetstrom ist elektronisch stabi-
lisiert und die relative Stabilisierung betréigt, zusammen mit der
eingebauten Kompensation, ungefahr 104 Der Hochfrequenzteil der
Apparatur ist vom Brocmschen Typus. Die gesamte Anordnung
unterscheidet sich, wenn man von unwesentlichen Details absieht,
nur in einem Punkt von gleichartigen Anordnungen?)8): Mit Hilfe
zweier zusétzlicher Phasenschieber kann dem Steuersignal fiir den
phasenempfindlichen Demodulator wahlweise eine zusétzliche Pha-
senverschiebung von 90° oder 180° erteilt werden (Fig. 5). Fiir die
Messung wird nur ein Phasendrehglied benutzt, das zweite Glied
dient zur Kontrolle, ob das benutzte Glied auch tatséchlich eine
Phasenverschiebung von genau 90° macht. Dieser Test wird zweck-
massig folgendermassen durchgefiihrt: Unmittelbar nach der HF-
Demodulation gibt man die Speisespannung der Modulationsspulen

[AF | HE Abgest] __[Ppasen Reg.
m—r: Ver. st

Demod, NFerst iy 4 by Instr.
J
Osz. .EQ :
- ‘
‘ NFE Voriabler] 00° 90°
End'st. Tasen- Schiebers | Schieter]
soHz.
Osz,
Fig. 5.

Blockschema der Apparatur.

auf den NF-Verstirker und stellt dann fest, ob bei gleichzeitigem
Ein- und Ausschalten der beiden Phasenschieber der Ausschlag auf
dem Registrierinstrument bei gleicher absoluter Grosse sein Vor-
zeichen kehrt. Ist dies der Fall, so verursachen die beiden Phasen-
schieber zusammen eine Drehung um 180°. Sodann kontrolliert man
bel nacheinander erfolgendem Einschalten je eines der beiden Glie-
der, ob der Ausschlag auf dem Instrument konstant bleibt. Trifft
auch das zu, so macht jedes Glied die gleiche Phasendrehung und
damit genau 90°. Praktisch fiihrt man diese Kontrolle am besten so
durch, dass man vor jedem der beiden Schritte mit Hilfe des konti-
nuierlich variablen Phasenschiebers auf dem Instrument den Aus-
schlag Null einstellt, der sich dann durch das jeweilige Umschalten
nicht dndern darf. Auf diese Weise ist es moglich, mit grossem Test-
signal zu arbeiten und daher eine entsprechende Genauigkeit (& 207)
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zu erzielen. Ausserdem gewinnt man damit bei dem zweiten Kontroll-
schritt automatisch die richtige Einstellung des kontinuierlich regel-
baren Phasenschiebers fiir die Messung der Kerninduktionssignale.
Voraussetzung fiir die Richtigkeit dieser Einstellung ist, dass Modu-
lations-Spannung und -Feld praktisch in Phase sind sowie gentigende
Kleinheit der Gruppenlaufzeit des HI-Teiles. Dies lasst sich z. B.
leicht nachpriifen durch Aufnahme eines extrem breiten Protonen-
signals mit einem @ von der Grossenordnung 1/500. Nimmt man ein
derartiges Signal mit 90%-Demodulation auf, so sollte es verschwin-
dend klein sein verglichen mit dem 0°-Signal. Bei der hier beniitzten
Apparatur traf das nicht ganz zu; aus dem Amplitudenverhaltnis
von 0% und 90°Signal folgte ein Fehler der Phase von 5,5% eine
Korrektur, die dann spéter an den Messungen entsprechend ange-
bracht wurde.

Abschliessend mochte ich Herrn Dr. F. Auper, mit dem ich ge-
meinsam die Apparatur aufgebaut habe, sowie Herrn Prof. Dr.
E. BALDINGER, der besonders am Bau der Magnetstabilisierung be-
teiligt war, fiir thre Hilfe danken. Die Pline fiir den Elektromagne-
ten wurden freundlicherweise von Herrn Prof. Dr. H. Staus zur
Verfigung gestellt. Herr Prof. Dr. H. ErLeEnMEYER und seine Mit-
arbeiter, Herr Dr. S. Farras und Herr Dr. T. WEeiL, haben mich
wesentlich durch Diskussionen im Zusammenhang mit chemischen
Fragen unterstiitzt. Ganz besonders mochte ich meinem Lehrer,
Herrn Prof. Dr. P. HuBer, danken, unter dessen Leitung diese
Untersuchung entstand.
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