
Zeitschrift: Helvetica Physica Acta

Band: 27 (1954)

Heft: III

Artikel: Über eine neue Methode zur Messung von Relaxationszeiten und über
den Spin von Cr^53

Autor: Halbach, K.

DOI: https://doi.org/10.5169/seals-112515

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-112515
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


259

Über eine neue Methode zur Messung von Relaxationszeiten
und über den Spin von Cr53

von K. Halbach (Basel).

(15. V. 54).

Summary. Taking into account the finite magnitude of the modulation
frequency, solutions of Blochs differential equations are derived. They describe the
signals observed on the recording instrument of a nuclear induction apparatus,
and it is found that, in many cases, significant deviations from the differentiated
„slow passage" signals appear. From the present solutions there follows a simple
method for the measurement of relaxation times, which is valid even in the
presence of field inhomogeneities. This is illustrated by an example.

The fundamental equation for the experimental determination of the nuclear
spin is likewise modified by the modulation effect. This equation is discussed and
applied in the determination of the spin of Cr53. The result is I(Cr53) 3/2.

1. Einleitung.

Es sollen im folgenden die Auswirkungen und Anwendungsmöglichkeiten

eines Modulationseffektes diskutiert werden, der bei der
Aufnahme von Kerninduktionssignalen auf einem Registrierinstrument

auftreten kann. Die Grundlage der Behandlung dieses Effektes

ist die phänomenologische Theorie von Bloch1), und es ist daher
zweckmässig, zunächst einmal kurz die wesentlichen Züge dieser
Theorie in Erinnerung zu bringen.

Wird eine Substanz in ein Magnetfeld H gebracht, so bildet sich
nach einer gewissen Zeit auch eine von den Kernen herrührende
makroskopische magnetische Polarisation aus. Legt man senkrecht
zu dem stationären Magnetfeld H ein schwaches hochfrequentes
Magnetfeld an, so tritt ein Resonanzphänomen auf, wenn die
Kreisfrequenz co0 des Wechselfeldes in der Nähe der Larmorfrequenz
y-H (y Betrag des gyromagnetischen Verhältnisses der betrachteten

Kerne) der untersuchten Kerne liegt. Bloch hat gezeigt1),
dass sich in vielen Fällen das Verhalten des magnetischen
Polarisationsvektors M der Kerne in einem mit der Kreisfrequenz co0 rotie-
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renden Koordinatensystem durch folgendes System von
Differentialgleichungen beschreiben lässt:

^§L + (yH-co0)-My =-i
-^-(yH-co0)-Mx + yH1Mz —^-
dM> „HM- Mz-M0

(la)

In diesen Gleichungen bedeutet Hx die halbe Amplitude des im
ruhenden Koordinatensystem linear polarisierten HF-Feldes. Dieses
Feld lässt sich in zwei zirkulär polarisierte Felder aufspalten, und es
ist in Gleichung (la) nur derjenige Anteil berücksichtigt, der den
gleichen Umlaufsinn hat, wie er durch die Larmorpräzession der Kerne
in dem in die 2-Richtung weisenden stationären Feld H vorgegeben
ist. Diese im rotierenden System ruhende Komponente ist in die
a>Richtung des rotierenden Koordinatensystems gelegt worden. Die
Grössen Mx, My und Mz sind die Komponenten des Polarisationsvektors

der Kerne. Da Mx und My im Labor-System mit der
Kreisfrequenz co0 rotieren, können sie vermöge ihrer Induktionswirkungen
nachgewiesen werden und geben Anlass zu den Resonanzsignalen.
Insbesondere beschreibt die mit Energieabsorption verknüpfte
Komponente My das Absorptionssignal, die wattlose Komponente M,
das Dispersionssignal. M0 ist die Gleichgewichtspolarisation der
Kerne (bei Abwesenheit des HF-Feldes) und ist gegeben durch
M0 xH, wo % die Suszeptibilität der Kerne bedeutet. Die in den
Dämpfungsgliedern auf der rechten Seite von (la) auftretenden
Grössen Tx und T2 sind die longitudinale bzw. transversale
Relaxationszeit. Tx wird bewirkt durch die Wechselwirkung der Kerne mit
ihrer Umgebung und gibt die Zeitkonstante an, mit der sich z. B.
beim Anschalten des stationären Feldes H der Polarisationsvektor
aufbaut. Bei der transversalen Relaxationszeit kommt zusätzlich
noch die Wechselwirkung der Kerne untereinander ins Spiel, so dass
T2 höchstens gleich gross sein kann wie Tx. T2 ist die Zeitkonstante,
mit der eine freie Präzession der Kerne abklingt, und 1/T2 ist direkt
ein Mass für die Breite der Resonanzlinien bei kleinen HF-Feldern.

Um ein Resonanzsignal nachzuweisen, wird bei den meisten
experimentellen Anordnungen] die Frequenz des'HF-Feldes konstant
gelassen, und nur das stationäre Feld H variiert. Findet dies genügend

langsam statt, so kann man in (1 a) die zeitlichen Ableitungen
vernachlässigen und kommt durch Auflösen der dann verbleibenden
gewöhnlichen Gleichungen zu den bekannten BLOCHSchen
„slow-passage"-Signalen. Ein derartiges Signal vom Absorptionstypus, wie
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man es z. B. mit dem Oszillographen aufnehmen kann (sofern die
gemachten Voraussetzungen erfüllt sind), ist schematisch in Fig. 1

wiedergegeben. Die Aufnahme derartiger Kurven auf dem
Oszillographen ist jedoch nur bei sehr grossen Signalen möglich, so dass

man bei schwachen Signalen ein anderes Verfahren anwendet, das

Mv

"W

Eig. 1.

Schematische Darstellung der HF-Amplitude des Absorptionssignals (slow
und deren Modulation.

(\T2<^l/cou; \T2^l/coM)

zuerst ausführlich von Bloembergen, Purcell und Pound2)
beschrieben wurde (siehe auch Fig. 5). Man überlagert dem stationären
Magnetfeld H ein niederfrequentes (hier eu 80 Hz) Wechselfeld mit
einer Amplitude HM, die im allgemeinen klein ist verglichen mit der
Linienbreite (}fy T2) : H H0+ HM-cos coMt. Wie in Fig. 1 schematisch

angedeutet ist, wird dadurch das HF-Signal moduliert. Nach
Passieren eines abgestimmten NF-Verstärkers wird die Amplitude
der Grundfrequenz dieser Amplitudenmodulation mit einer festen
Phase demoduliert und dann auf dem Registrierinstrument in
Abhängigkeit von H0 wiedergegeben. Ist allgemein die Amplitude des

HF-Signals durch F(t) gegeben, so wird daher, je nach Einstellung
des phasenempfindlichen Demodulators, auf dem Registrierinstru-
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ment eine Linearkombination der beiden ersten Fourierkoeffizienten
von F(t),

n\coM jt/coM

/ F(t) ¦ cos coM t • dt ; F(t) • sin coMt-dt

-nhu -nlœu

aufgezeichnet.
Es ist schon von verschiedenen Autoren3-5) ein Modulationseffekt

diskutiert worden, der bei dieser Art der Registrierung von Signalen
auftritt. In diesen Arbeiten wird vorausgesetzt, dass die Amplitude

des transversalen HF-Feldes genügend klein ist gegenüber
dem Wert, bei dem eine Sättigung der Signalamplitude eintritt. Wir
wollen hier einen anderen Weg der Behandlung des gleichen
Problems einschlagen, der gewisse neue Perspektiven eröffnet und
insbesondere keine Beschränkung der Grösse von Hx voraussetzt. Dies
wird uns dann später die Messung von Relaxationszeiten in inhomogenen

Magnetfeldern ermöglichen.
Es ist leicht einzusehen, dass auch bei kleinen Modulationsamplituden

HM schon Modulationseffekte auftreten können : Gehen wir
zunächst, für genügend kleine T2, von den „slow-passage"-Lösungen der
BLOCHsehen Differentialgleichungen (1 a) aus (ausgezogene Kurve in
Fig. 1), so ist die Amplitude des HF-Signals eine eindeutige Funktion

des Magnetfeldes: F(t) M(H0 + HM-cos coMt). Damit
verschwindet aber das zweite der obigen Integrale, und somit ist das mit
dem Spektrometer aufgenommene Signal in Phase mit dem dem
Magnetfeld H0 überlagerten Feld HM-cos coMt. Weiterhin ersieht man aus
Fig. 1 oder durch Entwicklung des ersten Integrals nach HM, dass für
genügend kleine HM das Signal gegeben ist durch HM-dM (H0)/dH0;
man erhält also ein differenziertes ,,slow-passage"-Signal. Ist
jedoch die Relaxationszeit T2 von der gleichen Grössenordnung
wie l/coM, so ist wegen des „Erinnerungsvermögens" des Kernsystems

eine Beschreibung der HF-Amplitude des Signals durch eine
eindeutige Funktion des Magnetfeldes nicht mehr möglich, es tritt
eine Hysterese auf (punktierte Kurve in Fig. 1). Damit ist aber kein
Grund mehr dafür vorhanden, dass das zweite der obigen Integrale
verschwindet; es tritt also eine um 90° gegenüber dem Modulationsfeld

verschobene Signalkomponente auf. Da die Existenz dieser
Komponente durch die endliche Grösse von coM verursacht wird,
können wir bei ihrem Auftreten von einem Modulationseffekt
sprechen, der offensichtlich auch noch bei beliebig kleiner Modulationsamplitude

HM vorhanden ist. In Abschnitt 2 werden wir zunächst
die BLOCHsehen Differentialgleichungen integrieren, um dann in den
Abschnitten 3—5 die mit dem Auftreten des Modulationseffektes
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verbundenen Erscheinungen quantitativ diskutieren und anwenden
zu können.

2. Integration der BLOCHsehen Differentialgleichungen.

Zunächst berücksichtigen wir, wie schon angedeutet, das
niederfrequente, modulierende Magnetfeld, in dem wir in (1 a) H ersetzen
durch H0 + HM • cos coM t. Weiterhin erhalten wir für das Folgende
eine zweckmässige Normierung, wenn wir das System (la) mit
T2/M0 multiplizieren. Die Dispersions-, Absorptions- und ^-Kompo-
nenten U, V, W des Polarisationsvektors werden dann in Einheiten
der Gleichgewichtspolarisation M0 gemessen, die Zeiten werden in
Einheiten T2, und alle Magnetfelder werden in Einheiten der Linienbreite

AH ljyT2 gemessen. Mit den so normierten Grössen:

W Mz/M0
D (H0-coJy)/AH

u - Mx/M0 V Mv/M0
h - HJAH k HM/2AH
x -

wir

Zeit in sec/T2

d aus (1 a) :

a T2/Tx

dU/dr + F + (D + 2 k cos cot

dV/dx + V — (D + 2k cos cox

dW/dr + aW

co coM- T,

¦V =0
¦E+hW=0

-hV =a.
(lb)

Die für das Auftreten des Modulationseffektes wesentliche Grösse co

lässt sich noch in etwas anderer Weise darstellen :

coMly _ AHM
W AH - AH ¦

Diese Schreibweise ist zweckmässig, da man in der Praxis
Linienbreiten meist in Gauss angibt. Um einen Begriff von der Grössen-
ordnung von AHM zu geben, sei weiterhin noch bemerkt, dass bei
der hier verwendeten Modulationsfrequenz von pu 80 Hz bei Deuterium

AHU 0,12 Gauss, bei Kalium AHM 0,4 Gauss beträgt.
Bei der Integration der Differentialgleichungen (1 b) nehmen wir

D als konstant an. Das bedeutet praktisch, dass man in einer Zeit
durch das Resonanzsignal gehen muss, die gross ist gegenüber Tx.
Da Tx jedoch nur in wenigen Fällen von der Grössenordnung mehrerer

Sekunden ist, bedeutet diese Voraussetzung meistens keine
wesentliche Einschränkung.

Um die Gleichungen (lb) zu lösen, entwickeln wir U, V, W in
Fourierreihen :

OO OO 00

U=2JUn-e-inmr; V 2JVn-e~inmT; W=£Wn-e-inmr.
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Indem wir diese Ausdrücke in (lb) einsetzen und darin auch die
trigonometrischen Funktionen durch Exponentialfunktionen
ausdrücken, erhalten wir als Gleichungssystem für die Fourierkoeffi-
zienten U„,V„, W„:

un(i--inco) +DVn + kVn_x+kVn+x 0
(2a)

n + 0vn(i-
Wn(a-

-in co) —DUn — k Un_x — k Un+X + hWn

-in co) —hVn

0

0

U0 + DV0 +kV_x + kVx =0
V0 -DU0-kü_x-kUx + hW0 0 (2b)

W0 -a —hV0=a
In diesem Gleichungssystem interessieren uns in erster Linie Ux

und Vx, da das die Grössen sind, die auf dem Registrierinstrument
aufgenommen werden. Insbesondere sind RelUi} und RelT^} die
Signale, die bei mit der Magnetfeldmodulation phasengleicher NF-
Demodulation erhalten werden und die für co -> 0 und k <^ 1 in die
differenzierten ,,slow-passage"-Signale übergehen müssen. Analog
sind J{ (Jjjund J{ Vx) die bei 90° phasenverschobener Demodulation
zu erwartenden Signale, die für co -> 0 verschwinden müssen.

Die Gleichungen (2) sind untereinander so gekoppelt, dass es wohl
unmöglich sein dürfte, sie mit einfachen Mitteln aufzulösen. Jedoch
erlauben sie, einige allgemeine Symmetrieeigenschaften der
Koeffizienten Fn, Vn, Wn bezüglich der Variablen h, k, D abzuleiten. Die
Schlussweise ist in allen Fällen die gleiche : Aus der dritten der
Gleichungen (2 b) schliesst man auf die Symmetrie von W0 und V0 bez.
h, k, D, geht dann, damit sukzessive neue Symmetrien erschliessend, in
die übrigen Gleichungen (2 b) und dann weiter in (2 a). Man findet so :

Un(-h)=-Fn(h); Vn(-h)=-Vn(h);
Wn(-h)=Wn(h) (3 a)

Vn(-k) (-irUn(k); Vn(-k) (-irVn(k);
Wn(-k) (-iyWn(k) (3 b)

Un (- D) (- If + * Fn(D) ; Vn(-D) (- 1) nVn (D) ;

Wn(-D) (-iyWJD). (3 c)

Ausserdem sind selbstverständlich bezüglich co alle Realteile der
Koeffizienten gerade, die Imaginärteile ungerade.

Die Gleichungen (3 c) stehen für D 0 in engem Zusammenhang
mit Symmetrieeigenschaften, die Jacobsohn und Wangsness6) auf
gänzlich andere Weise hergeleitet haben. Wir interessieren uns hier
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in der Hauptsache für Ux und Vx; aus (3c) geht hervor, dass die
auf dem Registrierinstrument aufgenommenen Dispersionssignale
immer symmetrisch zur Resonanzstelle (D 0), die Absorptionssignale

antisymmetrisch dazu verlaufen.
Um das Gleichungssystem (2) weiter auflösen zu können, entwik-

keln wir die Fourierkoeffizienten Un, Vn, W„ nach Potenzen von k:
oo oo oo

Un=ZUn,v-k*; Vn=£VnyF; Wn £Wnyk*.

Wir werden uns später mit der Berechnung der Koeffizienten Ux>1,

Vx,x begnügen, was bedeutet, dass wir uns auf „kleine" Modulationsamplituden

HM beschränken; es wird in wichtigen Spezialfällen
dann noch diskutiert werden, was in diesem Zusammenhang „klein"
bedeutet. Der Zwang zu dieser Einschränkung ist nicht ganz
unerwartet, wenn man daran denkt, dass schon ohne Berücksichtigung
von Modulationseffekten diese Voraussetzung notwendig ist, wenn
man zu einfachen Resultaten kommen will.

Durch Elimination der nicht sonderlich interessierenden Grössen
Wn aus (2 a), (2 b) und Einsetzen der Potenzreihen erhält man als
Gleichungssystem für die Koeffizienten Un v, Vn< v :

U0,o +DVQ,= 0
(4 a)

Voy(l + h2/a)-DV0tO -h
Un>r-(l-inœ) +DVnr -Vn_XtV_x-Vn+x>v_x j (4b)

Vn!V-(l--inco + h2l(a-inco))-DUn^Un_hv_x + Un+Uv_x. I (v> 0)

Da es trivial ist, dass die Koeffizienten Un 0, Vn 0 (n +- 0) verschwinden,

sind die diesbezüglichen Gleichungen nicht angegeben. Aus den
Symmetriebeziehungen (3 b) sowie dem Bau der Gleichungen (4 b)
entnimmt man weiterhin ohne Schwierigkeit, dass alle Koeffizienten
C7B] „, Vn^ „ für v < | n | verschwinden, d. h., die Fourierkoeffizienten
Un, Vn haben die Gestalt:

oo oo

TT fc1"1 VU ¦¥-»• V =kM W •fr2'' (5)

Abgesehen davon, dass diese Beziehungen an sich nicht ganz
uninteressant sind, sind sie oft bequem bei der Berechnung höherer
Näherungen.

DurchAuflösung von (4 a) erhält man erwartungsgemäss die „slow-
passage"-Lösungen von Bloch:

U00(D)=hDI(D2 + l+h2/a); V0 0(D) =-h/(D2+ l + h2/a) (6)
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Indem man diese Grössen in die Gleichungen (4 b) für n v 1

einsetzt, bekommt man die die registrierten Signale in erster Näherung

beschreibenden Funktionen :

Ui,i(D)

VUD)

h l-ico + h2l(a-ico)-D2
D2 + l + h2ja "~D2+(l-ico)-(l-ia> + h2/(a-ico))

h D-(2-ico)
D2+l + h2/a D2+(l-ico) ¦ (l-ico + h2l(a-ico))

(7a)

(7b)

3. Diskussion der Signale ohne Berücksichtigung der Feldinhomogenität.

3a. Absorptionssignale.

Die beiden durch Vxx gegebenen Signale (Re{F1;1}bei 0°-Demo-
dulation, J{Vxx]bex 90°-Demodulation) beschreiben wir kurz und
nur der Vollständigkeit halber. Die Diskussion ist nicht nur mit
mehr Schwierigkeiten verknüpft als im Falle der Dispersionssignale,
sie zeigen auch ein sehr viel komplizierteres Verhalten als die beiden

1 G.

Fig. 2.

Absorptionssignale von K, Hx 0,220; HM 0,03 0.

durch Ux x gegebenen Signale. So zeigt z. B. eine entsprechende
Rechnung, dass die Sättigungseigenschaften vonT^ x wesentlich von co

beeinflusst werden, was bei den Dispersionssignalen nicht der Fall ist.
Das allgemeine Aussehen des durch Re{T^fl} beschriebenen

Signals (Fig. 2) ist nicht wesentlich verschieden von dem des
entsprechenden differenzierten „slow-passage"-Signals. Jedoch zeigt eine
für kleine HF-Amplituden durchgeführte Rechnung (h2 <^ a), dass
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das durch den Modulationseffekt modifizierte Signal erheblich breiter

sein kann als bei co 0. Man erhält nämlich für den Ort der
Extremwerte :

3D2 \-]JyA + co2)2-032+ co2-l «si + co3(3 —1/(1 + co2)).

Man würde also in dem durchaus nicht seltenen Fall co 1 ohne
Berücksichtigung des Modulationseffektes aus der Breite des

Absorptionssignals eine fast um den Faktor 2 zu grosse Linienbreite
AH ljyT2 und damit auch um den gleichen Faktor zu kleine
Relaxationszeit T2 messen.

Bei dem durch J{VXX] beschriebenen Signal (Fig. 2) ist
bemerkenswert, dass es, ausser dem trivialen Schnittpunkt im Zentrum,
die Nullinie nochmals schneidet. Der Abstand dieser Schnittpunkte
von der Resonanzmitte (D 0) ist gegeben durch:

D2 3 + co2 - h2 (co2 + 2 - a)/(a2 + co2).

Die beiden Schnittpunkte rücken mit wachsendem h monoton zur
Mitte der Resonanzkurve und existieren für

h2 > (3 + oo2) (a2 + co2)/(co2 + 2-a)
nicht mehr.

3 b. Dispersionssignale.

Als erstes wollen wir als den einfachsten und zugleich wohl
wichtigsten Fall TJ1X im Zentrum der Resonanzkurve betrachten. Aus
(7 a) erhalten wir direkt

rj (r\\
1 \\__ 1 + ico h /q\ul,iW x_ico

¦ i + ÄS/a
"

1 + to2
' l + h2ja ' K '

Daraus können wir ein sehr einfaches Messverfahren für co und
damit T2 entnehmen : Ist Q das Verhältnis der im Zentrum der
Resonanzkurve gemessenen Signalamplituden bei 90°- und 0°-Demodu-
lation, so wird bei vollkommen homogenem H0-Feld

Q co. (9)

Weiterhin ist bemerkenswert, dass, abgesehen von den konstanten
Faktoren 1/(1 + co2) bzw. co/(l + co2), dieÄnderung der Signalamplituden

mit der normierten HF-Amplitude h unabhängig von co

erfolgt; die Sättigungseigenschaften sind damit gleich wie ohne
Berücksichtigung des Modulationseffektes.

Die Messung der Relaxationszeit T2 nach (9) ist natürlich nur
richtig, wenn HM und damit fr so klein ist, dass Vx im Zentrum in
guter Näherung gegeben ist durch Ux kUx x. Im Experiment lässt
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sich das gut kontrollieren, indem man feststellt, ob die gemessenen
Signale proportional mit k wachsen. Trotzdem wollen wir durch
Berücksichtigung des nächsten Gliedes (U13) abschätzen, wie gross
fc sein darf, ohne einen merklichen Beitrag des Gliedes fc3-Ulj3 zu
erhalten. Um einfache Resultate zu erhalten, die für unsere Zwecke
jedoch vollständig genügen, bestimmen wir Vx 3 nur im Zentrum
der Resonanzkurve und führen die Berechnung getrennt durch für
grosse und kleine HF-Amplituden. Mit Hilfe des bekannten Wertes
von üj x und unter Berücksichtigung von (5) erhält man aus den
Gleichungen (4b) für D 0, h2/a < 1 :

^1,](o) + fc3uM(0)=XX.(1__^ + ,w(1_Tl|X)).
Daraus erhalten wir eine Bedingung für fc, wenn Q immer noch im
wesentlichen durch co gegeben sein soll: Für [3 fc2/(l + 4 a»2)]2 <^ 1

wird
Q co-(l-3k2/(l +Aoj2)). (10)

Lassen wir für Q eine 6%ige Korrektur zu, so bekommen wir als

Bedingungsgleichung für die Modulationsamplitude :

fc < VT+ A co2/7 bzw. HM< \/(l/y T2)2 + 4(œM/r)2/3,5.

Es ist bemerkenswert, dass, wenn co2 von der Grössenordnung 1 ist,
die zulässige Modulationsamplitude im wesentlichen durch AHU
coMjy und nicht durch AH ljyT2 gegeben ist. Eine analoge Rechnung

gibt für D 0, h2 > \/(a2 + A co2) (1 + A co2) :

kUxl(0) + k3U "" k a
^A^> ~ h i + _

*

xll + ico- (y)2 • X_- (4 w2 + a (3 - co2) + 2 i co (co2 + 2 a — 1))].

Für genügend kleine fc erhält man daraus :

Q co-(l + (2 - a) k2/h2). (11)

Lassen wir auch hier wieder eine rund 6%ige Korrektur zu, so
erhalten wir für die erlaubte Modulationsamplitude bei a 1 :

k < h/A bzw. HM < Hx/2 (12)

Erwartungsgemäss sind diese Werte unabhängig von der Linienbreite

AH 1/y T2. Ist man genügend weit oberhalb der Sättigung,
so verliert man durch Vergrösserung von Hx nicht mehr an
Signalamplitude, da man, nach (12), auch gleichzeitig mit Hu heraufgehen

kann.



h2/(a2 + CO2) (13 a)

~co2+b(a+ CO2))2'•+CU,2(2--b(l -a))2] (13b)

2co2(l-b) + (l+<%by'•+co''!(1-•Ò)2]/2V, (14 a)
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Nach dieser Diskussion der Amplituden im Zentrum der
Dispersionssignale wollen wir uns der Beschreibung der Signalform
zuwenden. Dies ist besonders darum notwendig, da das durch Re{ Uxx]
beschriebene Signal stark von dem differenzierten „slow-passage"-
Signal abweichen kann und man daher, ohne Kenntnis des
Modulationseffektes, annehmen könnte, das Signal könne nicht durch die
BLOCHsehen Differentialgleichungen beschrieben werden. Zunächst
spalten wir die beiden durch (7a) gegebenen Signale auf in Real-
und Imaginärteil. Mit den Abkürzungen

b

N (D2+l + h2/a)-[(D2+V

wird

Be{Vxx(D)} h[-Di + D2

J{Fxx(D)} coh[(l + ab)2+aj2(l-b)2-D2(d-b(2-a))]/N.(lAh)
Für b h2/(a2 + co2) <^ 1, h2/a <^. 1, lässt sich (14a) vereinfachen,
und man erhält dann:

Be{ Uji}. Als Mass für die Breite dieses bei 0°-Demodulation erhaltenen

Signals wählen wir seine Schnittpunkte mit der Nullinie, da
deren Lage leicht aus (14a) berechenbar ist und auch experimentell
genauer bestimmt werden kann als beispielsweise die Stelle eines
Extremwertes. Wie man aus (14a) sieht, existiert genau ein einziger
derartiger Schnittpunkt auf jeder Seite der Resonanzstelle, und die
Lage dieser Punkte ist allgemein gegeben durch:

D2 co2 (1 - b)/2 + l/cX(T- b)2/A + co2 (1 -b)2+(l + a bj2. (15 a)

Daraus erhalten wir für b h2/(a2 + co2) <^ 1, wie es auch direkt
aus (14c) folgt: „„ „ /-,~inv ' & D2 1 + co2. (lob)

Daraus folgt, dass bei kleinen HF-Amplituden das Signal durch
die endliche Grösse von coM merklich verbreitert werden kann.
Diskutiert man die durch (15 a) gegebene Abhängigkeit der Signalbreite
von der HF-Amplitude, so erhält man das bemerkenswerte Resultat,

dass sie für co2 > 1,5 (|/l + 8a/9 — 1) «* 2a/3 mit zunehmendem

h zunächst abnimmt, um dann schliesslich mit grosser
HF-Amplitude natürlich wieder zuzunehmen. Wird schliesslich
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b h2/(a2 + co2) ^> 1, so erhalten wir aus (15 a) mit der zusätzlich
vereinfachenden Annahme 1 — a <^ 1

D2 b h2/(l - (15c)

Im Grenzfall grosser HF-Amplituden wird daher die Breite des

Resonanzsignals im allgemeinen durch den Modulationseffekt
verkleinert und nicht, wie bei kleinen Feldstärken, vergrössert.

Der Vollständigkeit halber geben wir auch noch den Ort des
Minimums des Resonanzsignals an für h2 <^ a, h2 <^ a2 + co2:

Die erste Ableitung von (14c) verschwindet für:

D2 l 2J/Ï + co' (16)

Die Amplitude des an dieser Stelle befindlichen Minimums wird,
relativ zur Amplitude im Zentrum des Signals :

(^{ülil})Mln./(^{«Jlil})J) 0 (l + co2)/4(l + l_X^).
Dieser Wert ist offensichtlich grösser als das Verhältnis der beiden
Amplituden ohne Berücksichtigung des Modulationseffektes 78).

1 G.

Fig. 3.

Dispersionssignale von K, Hx 0,022 0; HM 0,03 67.

Ist co2 > 3, so hat auch das negative Vorzeichen der Quadratwurzel

in (16) einen Sinn. Man hat also in diesem Fall an der durch
D2 l + co2 — 2 j/1 + cu2 gegebenen Stelle ein Maximum und
somit bei D 0 ein relatives Minimum. Ein derartiges, von dem
gewohnten Verhalten vollständig abweichendes Signal, ist in Fig. 3

wiedergegeben. Eine Diskussion des Vorzeichens von

[d2(Re{ Uhx})/(dD)2]D=0 2 • [d(Ve{ UXA})/d(D2)iD

zeigt, dass dieses Minimum für grosse h2 wieder zum Maximum wird,
die beiden symmetrisch dazu gelegenen Maxima also verschwinden.



Eine neue Methode zur Messung von Relaxationszeiten. 271

Ebenso folgt aus dieser Betrachtung, dass das Auftreten des
Minimums für D 0 auch bei co2 < 3 für gewisse h2 möglich ist; eine

genauere Diskussion führen wir nicht durch, da dem Auftreten dieses

Minimums wohl kaum eine messtechnische Bedeutung zukommt,
obgleich die Existenz an sich interessant ist.

J{ Uli}. Dieses Signal (Fig. 3), das man bei 90°-Demodulation des

Dispersionstyps erhält, schneidet die Nullinie auf jeder Seite der
Resonanzstelle höchstens einmal, und diese Stellen sind gegeben durch :

D2 [co2(l ~b)2 + (l + aò)2]/[3 - b (2 - o)]. (17)

Für kleine HF-Amplituden geht dieser Ausdruck über in D2

(1 + co2)/3; die Schnittpunkte liegen also um den Faktor /3 näher
beim Zentrum als das bei dem 0°-Signal der Fall ist. Ist co2 >
(5 a + 2)1(a + 4), so nimmt auch hier die Distanz der Schnittpunkte
vom Zentrum zunächst mit zunehmendem h2 ab, um bei grossen
Werten schliesslich wieder zuzunehmen. Bei h2 a2 + co2 liegen die
Schnittpunkte an der gleichen Stelle wie beim 0°-Signal (D2 1 +a).
Wie man Gleichung (17) entnimmt, gehen die Schnittpunkte für
h2 3 (a2 + co2) 1(2 — a) ins Unendliche, d. h. sie verlieren hier ihren
Sinn, und das Signal verläuft für diese und grössere HF-Amplituden

ganz oberhalb der Nullinie.
Zum Sehluss wollen wir noch das Integral der Dispersionssignale

betrachten. Dies ist angebracht, da gerade das Verschwinden des

Integrals des O0-Dispersionssignals (in der geometrischen Interpretation

als Fläche) als Kriterium benutzt wurde, um zu entscheiden,
ob das Signal durch die BLOCHsehen Differentialgleichungen
beschrieben werden kann. Durch Einführen der Abkürzungen

A yï+h2/(a-ico) (1 -iœ)/\/i + h2/a (Be{A} > 0) (18a)

z D/]/l + h2/a (18 b)

r l — ico (18c)

und Benutzung der Gleichung (7 a) erhält man für das Integral F :

oo oo

F =[\Jxx(D)-dD -=)=¦ /VsXttcti^^-J 1,1V l/l + Äa/o J (z2 + l)(z2 + r2A2)[
— oo ' —oo

Nach Durchführung der Integration, bei der man zweckmässig den
Residuensatz anwendet, erhält man :

p ît.^U~. (19)
)/l + h2la Ar+ 1
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Wie es sein muss, wird A 1 für co 0 und damit F 0; ebenso
wird, bei beliebigem co, A -> 1 für h -> 0, so dass F für kleine h
mit h3 anwächst. Durch Entwicklung von A erhalten wir für
h2\a < 1 :

¦p=r\z7L. -o)2[2 (l + co2) + 3a (a+l)]-im[m2 (l + io2) + a (a+1) (w2-2)] ,„„,
2a (1 + co2) (a2 + co2) (4 +co2)

'" " *> '

Daraus geht hervor, dass bei kleinen HF-Amplituden beim 0°-
Dispersionssignal die Fläche unter der Nullinie immer grösser ist
als über derselben. Das Integral des 90°-Signals kann, je nach
Grösse von co, ersichtlich beide Vorzeichen haben, ist jedoch für
co > 1 immer negativ. Diese Tatsachen können nützlich sein zur
qualitativen Erklärung des Einflusses von i?0-Inhomogenitäten. Aus
diesem Grunde betrachten wirF auch noch für grosse ^-Amplituden.
Für 2/i2>l/(a2+co2)(l + co2) wird A J_/|/(a — i co) (1 - i co) und
damit :

F M,/^g/(a-»_£____. (21)
v \/a(l-ico)l(a-ico) + l

Diese Gleichung wird besonders einfach, wenn, was bei vielen
Flüssigkeiten zutrifft, a 1 ist. Dann wird nämlich

p _ n —ca2 + ia>
1 + co2

"

Da das Integral der Dispersionssignale unabhängig ist von
Inhomogenitäten des konstanten Magnetfeldes H0, könnte man daran denken,

die letzte Gleichung zur Bestimmung von Relaxationszeiten
zu benutzen. Jedoch dürfte dies wohl einfacher sein mit Hilfe der
in Abschnitt 4c durchgeführten Betrachtungen.

4. Berücksichtigung der Feldinhomogenität.

4a. Ableitung der Gleichungen zur Beschreibung von Signalen in
inhomogenen Magnetfeldern.

Es ist selbstverständlich, dass der grösste Teil der bisher erhaltenen

Ergebnisse stark geändert wird, wenn das starke Magnetfeld H0
merklich inhomogen ist. Um die Wirkung dieser Feldinhomogenität
diskutieren zu können, machen wir eine spezielle Annahme über
ihre Form: Der Bruchteil der Kerne, bei dem die Abweichung des

Magnetfeldes gegenüber dem über alle Kerne gemittelten Wert
zwischen H und H + dH liegt, soll gegeben sein durch:
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Darin ist der Parameter AH0 direkt ein Mass für die Grösse der
Feldinhomogenität.

Um in einem Rechnungsgang die modifizierten 0°- und 90°-Signale
des Dispersions- und Absorptions-Typus zu gewinnen, fassen wir
die durch (7) gegebenen Ausdrücke für Uxl und Vxx in einer Funktion

G zusammen, die folgendermassen definiert ist :

GhX(D) Uxx(D) + i]/l + h2l(a-ico)(l-ico)-VhX(D). (23a)

Der bei Umstehende Faktor ist so gewählt, dass der explizite
Ausdruck für GXjl(D) möglichst einfach wird. Da bezüglich D die Funktion

UXX(D) gerade, VXX(D) ungerade ist, lassen sich aus (23 a)

Uj und Vxx in eindeutiger Weise zurückgewinnen:

\2UXX(D)
Gx x(D) ±GXX(-D)= \ X_ (24)

\2i\/l + h2j(a-ico)(l-ico)-Vhx(D).
Setzen wir in (23 a) wieder die durch (18) eingeführten Abkürzungen
ein, so wird

Gxx(z) Uxx(z)+iAVl + h2/a-Vlx(z)
h iA — z

l + h2ja (z+iAr)(z2 + l) '

(23 b)

In Angleichung an diese Normierung können wir mit

__ AHJAH _ AD0

(/T+Ä2/a \fl + h2la

für (22 a) schreiben :

(25)

dJV=„^ï_ d*- (22b)
71 Z*+rt*

Indem wir nun den durch (23 b) gegebenen Ausdruck entsprechend
(22b) mittein, bekommen wir für die Funktion G\*x(z), welche die
Signale im inhomogenen Magnetfeld beschreibt:

ou

Gï» Ulx + iAVÏ+l^a.VXA==A\lGhX(x)- (x-z)2 + <x-
dx.

Indem man darin den durch (23 b) gegebenen Ausdruck für Gxx
einsetzt und die Integration durchführt, erhält man :

P* h { i(A-a)-z a(A-l) \ ,„fi^MW l + h2ja \[z + i(Ar + «.)][(z + i<x)2+l]
"*" (l + rA)[(z-i)2 + <x2] f " V '

Da die Symmetrieeigenschaften der Dispersions- und Absorptionssignale

bezüglich D bei der Mittelung durch das inhomogene Magnet-
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fold erhalten bleiben, gelten für die Gewinnung von Uxl und Vxx
aus (26) die gleichen Beziehungen wie die durch (24) gegebenen.

4b. Diskussion der Signale bei kleinen\ HF-Amplituden mit Berück¬

sichtigung der Feldinhomogenität.

Wir wollen die aus (26) folgenden Ausdrücke für Uxx und Vxx
nicht allgemein diskutieren, sondern uns darauf beschränken, (26)
für so kleine normierte HF-Amplituden h zu betrachten, so dass
alle in h quadratischen Glieder fortgelassen werden können. In
diesem Fall, der für Spinbestimmungen von Interesse ist, verschwindet
in (26) der zweite Term in der geschweiften Klammer, und es wird

Gii(F)- [D+i(l + a.-im)][D+i(l + ct)}

Ist weiterhin auch die Modulationsamplitude genügend klein, so
können wir schreiben :

G*x (D) U*x (D) + iV*{D)f*k GXX(D)

kh
(l + a)2 \ D im W\ D\ D ./, ico \[tToX^-tt^) l + a

(27)

Aus der Definition von fc, h, D, co, a sowie aus (27) geht hervor, dass
die die Signale in inhomogenen Magnetfeldern beschreibende
Gleichung (27) aus derjenigen für homogenes Feld (oc 0) hervorgeht,
indem man in der letzteren die bei der Definition von fc, h, D und co

auftretende Grösse 1/y T2 AH durch AH* AH + AH0 ersetzt.
Das bedeutet, dass bei genügend kleiner HF-Amplitude die
Wirkung der Feldinhomogenität einzig in einer scheinbaren Verkleinerung

der transversalen Relaxationszeit besteht:

l/Tt l/T2+y-AH0.

Eine Diskussion des Wertebereichs von h, in dem die Näherung (27)
noch gut ist, zeigt, dass im allgemeinen Abweichungen von (27) bei
um so kleineren Werten der normierten HF-Amplitude h auftreten,
je grösser die Feldinhomogenität ist. Die Inhomogenität des Magnetfeldes

bewirkt durch diese zusätzliche Beschränkung von h eine
Verkleinerung der maximalen Signalamplitude, wenn man, wie bei
Spinbestimmungen, nur den Grenzfall kleiner HF-Amplituden zu
betrachten wünscht.
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4c. Messung von Belaxationszeiten in inhomogenen Magnetfeldern.

Es soll im folgenden untersucht werden, durch welche Vorschrift
die zur Messung der Relaxationszeit T2 vorgeschlagene Gleichung
(9) zu ersetzen ist, wenn die Feldinhomogenität von der gleichen
Grössenordnung (oder grösser) ist wie ljyT9 AH. Zu diesem Zweck
betrachten wir wieder die Amplituden der Dispersionssignale in der
Mitte der Resonanzkurve. Wegen Vx*x(0) 0 ergibt sich aus (26),
wenn wir uns wieder auf genügend kleine Modulationsamplituden
beschränken :

U*(0)«öfcG*1(0)

_ Ich 1 1 /i a (2 —ito)1- fît)- <28>l + h2/a 1 + a 1-ico \ [A (1 -ico) + l][A (l-ia>)-
Bei genügend kleiner HF-Amplitude ergibt sich daraus :

^-¦ffïaîè»«?-(»+_*)• <29>

Das Amplitudenverhältnis Q der 90°- und 0°-Dispersionssignale in
der Mitte der Resonanzkurve wird damit

(Q)^o l + AD,

Wie es auch schon aus (9) und dem im Anschluss an (27) Gesagten
hervorgeht, lässt sich daraus lediglich die durch die Feldinhomogenität

verkleinerte Relaxationszeit T2 (l/T2=l/l12 + y-A H0)
ermitteln, wenn AH0 unbekannt oder zu gross ist. Das Verhalten von
Q in dem Übergangsgebiet zwischen den Grenzfällen sehr kleiner
und grosser HF-Amplituden betrachten wir nicht eingehend, da es
sehr kompliziert sein kann und keine Eigenschaften zeigt, die sich
messtechnisch verwerten lassen. Es sei nur soviel vermerkt: Mit
wachsendem h kann Q sowohl zu- als abnehmen, und es ist sogar
möglich, dass sowohl Re{ U*} als auch J{ U*} bei kleinem h negativ
werden. Dies ist leicht zu verstehen, wenn man zur Erklärung
Gleichung (20) heranzieht.

Grosse Bedeutung hat jedoch der Fall, dass die HF-Amplitude
Hx und damit h gross ist. Aus (28) wird, ähnlich wie bei der Herleitung

von (21), für 2 h2>\/(a2+ co2) (1 + m2)

TT* _ k a 1

1 ~ ¥ ' I+ AD^d/h
"

1-ico X

X 1 — ° _ (30)
1 h (\/a(l-ia>)j(F-iio) + AD0lh)(l + \/a(l-iw)/(a-ico)) ,''
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Im Grenzfall sehr grosser Amplituden des hochfrequenten transversalen

Magnetfeldes geht der Klammerausdruck in (30) gegen 1, und
somit erhält man wieder für das Amplitudenverhältnis im Zentrum

l/WJh^O co,

d. h. man ist in der Lage, die Relaxationszeit T2 trotz der Inhomogenität

des Magnetfeldes H0 zu messen. Dieses Ergebnis ist
unabhängig von der Form der Inhomogenität, wie man auch leicht mit
einer qualitativen Überlegung sieht : Wählt man h genügend gross,
so werden die Signale sehr breit und die Amplituden von J{UXX}
und Re{ U1X} sind in der Umgebung des Zentrums der Resonanzkurve

praktisch konstant und ihr Verhältnis ist dort co. In dem hier
betrachteten Fall bewirkt die Feldinhomogenität eine Mittelung der
Amplituden in der Umgebung des Zentrums. Da aber alle zu
diesem Mittelwert beitragenden Werte im wesentlichen konstant
sind, ist natürlich auch das Verhältnis der durch die Feldinhomogenität

gemittelton Amplituden gleich co.

Die Gleichung (30) erfährt eine wesentliche Vereinfachung, wenn
wir die für viele Substanzen zutreffende Annahme a 1 machen.
Dann wird nämlich:

jj* _ k 1 1 + imAD0/2 h
1 ~ ¥ '

1T+ADJhf _Tcö •

Die Phase des komplexen Teiles dieses Ausdrucks können wir mit
Hilfe des experimentell bestimmbaren Amplitudenverhältnisses Q

etwas zweckmässiger beschreiben. Mit den Grössen

cp arctg Q; cp0 arctg co

wird nämlich
tg (<p-cp0) co-AHJ2H, (31a)

oder, wenn (co-AH0/2 _,)2/3 < 1 :

cp cp0 + co-AH0/2Hx. (31b)

Aus (31 b) folgt ein einfaches graphisches Verfahren zur Bestimmung
von cd : Trägt man die experimentell bestimmten cp gegen 1/HX auf,
so muss diese Darstellung für genügend grosse Hx in eine Gerade
übergehen, deren Schnittpunkt mit der 99-Achse cp0 und damit co

ergibt. Wie man aus (30) ersieht, ist diese Darstellung auch ohne
die Voraussetzung a 1 gültig. Die Gleichung (31 a) dagegen ist nur
für nicht zu sehr von 1 verschiedene a gültig, dafür ist, wenn man
einen nicht zu schlechten Näherungswert für cp0 einsetzt, die
entsprechende graphische Darstellung über einen grösseren l/i^-Bereich
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eine Gerade, da in diesem Fall nicht (co-AH0/2 Hx)2ß <^ 1 vorausgesetzt

werden muss.
In Fig. 4 ist die entsprechend (31 b) erfolgte Auswertung einer

Relaxationszeitmessung an Protonen in einer 2,3 • 10~2 molaren
wässerigen Fe(N03)3-Lösung wiedergegeben. Der Schnittpunkt der
Geraden mit der Ordinate gibt co 1,3, was bei der verwendeten
Modulationsfrequenz coM/2 n 79 Hz zu einer transversalen Relaxationszeit

von T2 2,63-10-3 sec führt. Dieser Wert ist in guter
Übereinstimmung mit Messungen, die Hahn7) mit Hilfe der Spin-Echo-
Methode durchgeführt hat. Aus der Neigung der Extrapolationsgeraden

sowie aus Messungen bei kleiner HF-Amplitude folgt, dass

TO'

'M,t
Fig. 4.

^-Bestimmung an Protonen (Abszissenmaßstab willkürlich).

die Feldinhomogenität in diesem Experiment mit AH0 «* 8-10-2
Gauss erheblich grösser war als die Linienbreite AH, die sich aus
der Relaxationszeit zu AH l/yT2 1,43- 10~2 Gauss ergibt.

Damit das oben beschriebene Verfahren zur Bestimmung von co

anwendbar ist, muss im allgemeinen verlangt werden, dass co-AH0/Hx
kleiner als 1 gemacht werden kann. Ist co von der Grössenordnung 1,
und nimmt man für AH0 den auch bei grossen Feldern gut erreichbaren

Wert 0,1 Gauss an, so ist diese Bedingung leicht zu erfüllen,
da Hx ohne Schwierigkeiten auf ungefähr 1 Gauss gegracht werden
kann. Man gerät daher erst dann in Schwierigkeiten, wenn T2 so

gross ist, dass man experimentell schwierig zu handhabende
Modulationsfrequenzen benutzen muss, um co in der Grössenordnung 1

halten zu können. Das bedeutet, dass man ohne grossen Aufwand
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mit dieser Methode transversale Relaxationszeiten bis zu dem
relativ hohen Wert von rund 0,1 sec messen kann.

Der Vorteil der hier beschriebenen Methode gegenüber der Spin-
Echo-Methode7) scheint uns darin zu bestehen, dass entsprechend
der bei unserem Verfahren benutzten kleinen Bandbreite sehr viel
schwächere Signale für die Messung zugänglich sind. Obgleich die
Messung weit oberhalb der Sättigung durchgeführt wird, bedeutet
dies keinen wesentlichen Verlust an Signalamplitude, da bei grosser
HF-Amplitude auch die Modulationsamplitude entsprechend
vergrössert werden kann. Wegen der Mittelungseigenschaft der
Feldinhomogenität wird im allgemeinen nicht ganz der durch (12)
gegebene Wert angewandt werden können, jedoch ist die Grössenordnung

der nach (12) zulässigen Amplitude sicher richtig.
Ähnlich wie bei der Spin-Echo-Methode ist auch hier die Bestimmung

von a und damit Tx mit etwas mehr Schwierigkeiten verbunden

als die Messung von T2. Die Möglichkeit einer ^-Bestimmung
ist jedoch prinzipiell gegeben, da die Signalamplitude bei kleiner
HF-Amplitude nach (29) von a unabhängig, bei grosser HF-Amplitude

nach (30) proportional zu a ist. Demgemäss lässt sich a aus der
Grösse der Signale bei kleinen und grossen HF-Amplituden ermitteln.

Es geht aber bei einer derartigen Messung die absolute Grösse

von Hx quadratisch ein, und sie wird sich daher nicht mit der
Genauigkeit durchführen lassen, wie das bei der T2-Bestimmung möglich

ist.

5. Anwendung auf Spinbestimmungen.

5 a. Berücksichtigung des Modulationseffektes bei Spinbestimmungen.

Von Proctor8) und anderen Autoren sind Spinbestimmungen
durchgeführt worden, die darauf beruhen, dass die Amplitude des

Kerninduktionssignals der Kerne mit dem noch unbekannten Spin
mit der Amplitude des Signals bekannter Bezugskerne verglichen
wird. Wir wollen zunächst die diesem Messverfahren entsprechende
Gleichung zur Ermittlung des Spins mit Berücksichtigung des
Modulationseffektes angeben und im Zusammenhang damit auch die
bisher benutzten Formeln diskutieren.

Vergleicht man bei gleicher Geometrie und gleicher Frequenz des

transversalen magnetischen Wechselfeldes die Zentralamplituden A
der 0°-Dispersionssignale, so folgt aus der Definition von Vx und
der Suszeptibilität der Kerne (x n-1- (I + l)-y2/3fcT) :

A2 _ [n-I-(I+l)-y-Re{Ux}\
Ax \n-I-(I+l)-y-Re{Ux}ix
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Darin bezeichnet I den Spin der betreffenden Kerne und n deren
Anzahl pro cm3. Werden die Messungen genügend weit unterhalb
der Sättigung und mit genügend kleiner Modulationsamplitude
durchgeführt, so muss nach (27) der Einfluss der Inhomogenität
des Magnetfeldes _0 nicht explizit berücksichtigt werden, wenn
überall an Stelle der hier nicht interessierenden Relaxationszeit T2
die durch 1/T2 1/T2 + yAH0 gegebene Relaxationszeit T2
eingesetzt wird. Daher erbalten wir unmittelbar aus (8) :

7? ,,/77 I _ jj\ ~
Hl Hm «>2

ne{Ux} 1 + a)i - 2(a>MJy)2' 1 + co2'

Da darin co Q ist, erhalten wir für das Amplitudenverhältnis der
beiden Signale:

A^ [n-I-(I+l)-yZ-HxHMQ2l(l + Q2)]2

Ax [n-I-(I+l)-y*-HxHMQ2l(l + Q2)lx ' ^ }

Die bisher für die Spinbestimmung benutzte Gleichung erhält man
aus (32) dadurch, dass man darin (1 + l/Q2)/y2 durch das Quadrat
der experimentell ermittelten Signalbreite ersetzt. Nach (15 b) sind
diese beiden Formulierungen vollständig äquivalent, wenn man als
Mass für die Signalbreite die Schnittpunkte der Dispersionssignale
mit der Nullinie wählt. Benutzt man jedoch z. B. die Distanz der
Minima der Dispersionssignale, so können bei Vernachlässigung des
Modulationseffektes merkliche Fehler auftreten, wenn die
Relaxationszeiten der beiden Kernarten wesentlich verschieden sind. Etwas
verwickelter sind die Verhältnisse, wenn der Spin aus dem
Amplitudenverhältnis von Absorptionssignalen ermittelt wird. In diesem
Falle lässt sich keine gleich einfache und allgemein gültige Beziehung

wie (28) aufstellen, wir können jedoch einen Korrekturfaktor
_ angeben, mit dem in der bisher benutzten Gleichung die jeweiligen

Signalamplituden versehen werden müssen. K ist in guter
Näherung gegeben durch :

7j= \/WcF2Fil(i+co2)
l-cu2/4(l + cu2)

Da z. B. für co 1 der Korrekturfaktor K 2,15 wird, sind auch
hier grosse Fehlermöglichkeiten vorhanden, wenn die Relaxationszeiten

der beiden Kernarten verschieden sind und der Modulationseffekt

nicht berücksichtigt wird.
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5b. Bestimmung des Spins von Cr53.

Das Kerninduktionssignal von Cr53 wurde von Alder und
Halbach9) und, unabhängig davon, etwas später von Jeffries und
Sogo10) gefunden. Mit dem Spin I 3/2 folgt aus den beiden
übereinstimmenden Messungen des gyromagnetischen Verhältnisses für
das magnetische Moment von CrS3 pi — 0,47351 ± 0,00006. Da
der Spin von Cr53 nur aus der Hyperfeinstruktur von paramagnetischen

Resonanzspektren gemessen wurde11)12), schien es
wünschenswert, den Spin noch mit einer anderen Methode zu bestimmen.

Dies wurde mit Hilfe der Kerninduktion und unter Benutzung
von (32) durchgeführt.

Für die Spinbestimmung wurde einerseits das Cr53-Signal in einer
5,18-molarenNa2Cr04-Lösung, andererseits das D-Signal einer 1,08-
molaren wässerigen MnS04-Lösung mit 24,6% D20-Gehalt benützt.
Unter Berücksichtigung der natürlichen Isotopenhäufigkeit des Cr53

von 9,55 %13) folgte aus den Amplituden der beiden Signale für den
Spin von Cr53: I 1,63 Az 0,2. Da die nächsten prinzipiell
möglichen Werte für den Spin (0,5; 2,5) genügend weit ausserhalb der
Fehlergrenze liegen, führt diese Messung zu

I (Cr53) 3/2.

Dieses Resultat bestätigt die Angabe vonBLEANEY und Bowers11)12)
und ist damit in Übereinstimmung mit der aus dem Schalenmodell
der Kerne folgenden Aussage, dass das ungerade 29. Neutron ein
p3/2-Neutron ist.

Die Durchführung der Spinbestimmung bereitete insofern gewisse
Schwierigkeiten, als es schwer ist, paramagnetische Zusätze zu finden,
die das Cr-Signal genügend verbreitern, ohne einen Teil der Substanz
in Dichromat zu überführen. Daher haben wir auf die Beifügung
paramagnetischer Zusätze verzichtet und uns den Umstand zunutze
gemacht, dass die Signale mit zunehmender Konzentration breiter werden.

Bei der etwas übersättigten, jedoch noch sehr stabilen 5,18-mo-
laren Lösung war die Linienbreite l/yT2?&0,2Gauss. Wir waren auf
eine so breite Linie angewiesen, da das Cr- Signal an sich schon ziemlich

klein ist und die Signalamplitude nach (29) bei schmalen Linien
infolge des starken Modulationseffektes (AHM= coMjy äs 0,33 Gauss)
und der Wirkung der Feldinhomogenität zusätzlich stark reduziert
wird.

6. Apparatur.
Die Messungen wurden in dem Feld eines wassergekühlten

Elektromagneten mit einem Poldurchmesser von 25 cm und einer
Poldistanz von 4 cm durchgeführt. Die Feldinhomogenität beträgt bei
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einem maximalen Feld von 12000 Gauss und einem Probenvolumen
von 4 cm3 rund 0,1 Gauss. Der Magnetstrom ist elektronisch
stabilisiert und die relative Stabilisierung beträgt, zusammen mit der
eingebauten Kompensation, ungefähr 104. Der Hochfrequenzteil der
Apparatur ist vom BLOCHsehen Typus. Die gesamte Anordnung
unterscheidet sich, wenn man von unwesentlichen Details absieht,
nur in einem Punkt von gleichartigen Anordnungen2)8): Mit Hilfe
zweier zusätzlicher Phasenschieber kann dem Steuersignal für den
phasenempfindlichen Demodulator wahlweise eine zusätzliche
Phasenverschiebung von 90° oder 180° erteilt werden (Fig. 5). Für die
Messung wird nur ein Phasendrehglied benutzt, das zweite Glied
dient zur Kontrolle, ob das benutzte Glied auch tatsächlich eine
Phasenverschiebung von genau 90° macht. Dieser Test wird
zweckmässig folgendermassen durchgeführt : Unmittelbar nach der HF-
Demodulation gibt man die Speisespannung der Modulationsspulen

rt/r
Osz. ISL

hf.
Verst.

tir.
DemocL

\Magnet\

Abgest.
MVerst.

Nf.
Endst.

Variabler

Phasenschieber

SO'
ScfiieberV*

Heg.
Instr.

90'
Schieber

eoHz.
Osz.

Fig. 5.

Blockschema der Apparatur.

auf den NF-Verstärker und stellt dann fest, ob bei gleichzeitigem
Ein- und Ausschalten der beiden Phasenschieber der Ausschlag auf
dem Registrierinstrument bei gleicher absoluter Grösse sein
Vorzeichen kehrt. Ist dies der Fall, so verursachen die beiden
Phasenschieber zusammen eine Drehung um 180°. Sodann kontrolliert man
bei nacheinander erfolgendem Einschalten je eines der beiden Glieder,

ob der Ausschlag auf dem Instrument konstant bleibt. Trifft
auch das zu, so macht jedes Glied die gleiche Phasendrehung und
damit genau 90°. Praktisch führt man diese Kontrolle am besten so
durch, dass man vor jedem der beiden Schritte mit Hilfe des
kontinuierlich variablen Phasenschiebers auf dem Instrument den
Ausschlag Null einstellt, der sich dann durch das jeweilige Umschalten
nicht ändern darf. Auf diese Weise ist es möglich, mit grossem
Testsignal zu arbeiten und daher eine entsprechende Genauigkeit oa 20')
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zu erzielen. Ausserdem gewinnt man damit bei dem zweiten Kontrollschritt

automatisch die richtige Einstellung des kontinuierlich
regelbaren Phasenschiebers für die Messung der Kerninduktionssignale.
Voraussetzung für die Richtigkeit dieser Einstellung ist, dass
Modulations-Spannung und-Feld praktisch in Phase sind sowie genügende
Kleinheit der Gruppenlaufzeit des HF-Teiles. Dies lässt sich z. B.
leicht nachprüfen durch Aufnahme eines extrem breiten Protonensignals

mit einem co von der Grössenordnung 1/500. Nimmt man ein
derartiges Signal mit 90°-Demodulation auf, so sollte es verschwindend

klein sein verglichen mit dem 0°-Signal. Bei der hier benützten
Apparatur traf das nicht ganz zu ; aus dem Amplitudenverhältnis
von 0°- und 90°-Signal folgte ein Fehler der Phase von 5,5°, eine
Korrektur, die dann später an den Messungen entsprechend
angebracht wurde.

Abschliessend möchte ich Herrn Dr. F. Alder, mit dem ich
gemeinsam die Apparatur aufgebaut habe, sowie Herrn Prof. Dr.
E. Baldinger, der besonders am Bau der Magnetstabilisierung
beteiligt war, für ihre Hilfe danken. Die Pläne für den Elektromagneten

wurden freundlicherweise von Herrn Prof. Dr. H. Staub zur
Verfügung gestellt. Herr Prof. Dr. H. Erlenmeyer und seine
Mitarbeiter, Herr Dr. S. Fallab und Herr Dr. T. Weil, haben mich
wesentlich durch Diskussionen im Zusammenhang mit chemischen
Fragen unterstützt. Ganz besonders möchte ich meinem Lehrer,
Herrn Prof. Dr. P. Huber, danken, unter dessen Leitung diese

Untersuchung entstand.
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