Zeitschrift: Helvetica Physica Acta

Band: 27 (1954)

Heft:

Artikel: Théorème H et unitarité de S

Autor: Inagaki, M. / Wanders, G. / Piron, C. DOI: https://doi.org/10.5169/seals-112504

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Théorème H et Unitarité de S

par M. Inagaki, G. Wanders*), Genève, et C. Piron, Lausanne.

(23. I. 1954.)

Summary. It is shown that Bolzmann's H-theorem holds for finite, definite and doubly normalised transition probabilities A_{ik} .

M. Stueckelberg a attiré notre attention sur le fait que sa déduction du théorème H de l'unitarité de S^1) n'est pas satisfaisante. D'une part, les matrices A ne forment pas un groupe continu, une variation finie de l'entropie ne peut donc se déduire de la variation infinitésimale. D'autre part, il reste à établir que (A-1) peut toujours être décomposée en une somme de matrices cycliques à coefficients positifs.

Nous proposons ici une démonstration générale du théorème H, basée sur l'unitarité de S, indépendante de celle présentée en I. L'état thermodynamique d'un système à l'instant t est décrit par une distribution de probabilité $w=w_i$ sur les n états qu'un micro-observateur peut distinguer $(i=1,\ldots,n)$. L'état w'' à l'instant t'' est relié à l'état w' à l'instant antérieur t' $(t'' \geqslant t')$ par les probabilités de transition A_{ik} :

$$w_i'' = \sum_k A_{ik} w_k' \quad (w'' = \mathbf{A} w').$$
 (1)

La probabilité de transition A_{ik} se déduit de l'élément S_{ik} de la matrice de transition S:

$$A_{ik} = |S_{ik}|^2 \geqslant 0. (2)$$

L'unitarité de S ($SS^{\dagger} = S^{\dagger}S = 1$) implique une double normalisation de A:

$$\sum_{i} A_{ik} = \sum_{k} A_{ik} = 1. {3}$$

D'autre part, l'entropie S du système à un instant donné est fonctionnelle de la distribution de probabilité w à cet instant: S = S[w].

^{*)} Bénéficiaire de l'aide financière de la Commission Suisse de l'énergie Atomique (C.S.A.).

¹⁾ Stueckelberg, Théorème H et unitarité de S, Helv. Phys. Acta 25, 577 (1952). (Cet article est désigné dans la suite par I.)

L'idée de M. Stueckelberg est que le théorème H de Boltzmann résulte de l'unitarité de S (de la double normalisation de A) si S[w] est une fonctionnelle symétrique en les w_i et si la dérivée fonctionnelle $-g_i = \delta S[w]/\delta w_i$ est «monotone» décroissante. On doit donc avoir, compte tenu de (1) et (3):

$$\Delta S = S[w''] - S[w'] \geqslant 0 \tag{4}$$

si:

$$S[w^*] = S[w] \quad (symétrie) , \tag{5}$$

où w^* se déduit de w par permutation des w_i , et:

$$(g_i - g_k) (w_i - w_k) \geqslant 0 \quad (\text{``monotonie''}).$$
 (6)

Ce théorème a été démontré par l'un de nous (M. I.) dans le cas d'une fonctionnelle symétrique quelconque. La démonstration étant assez longue, nous nous limitons ici au cas:

$$S = \sum_{i} f(w_i); \quad g_i = g(w_i) = -\frac{df}{dw}(w_i).$$
 (7)

Soient W et w les suites obtenues à partir des suites w'' et w' en réordonnant leurs termes en ordre décroissant:

$$W_i \geqslant W_{i+1}; \quad w_i \geqslant w_{i+1}.$$
 (8)

W et w sont liées par une matrice B:

$$W_i = \sum_k B_{ik} w_k \quad (W = \mathbf{B} w) \tag{9}$$

qui satisfait les mêmes conditions (2) et (3) que A. En effet, \mathbf{B} se déduit de \mathbf{A} par permutations de lignes et colonnes qui laissent inchangées les sommes apparaissant dans (3). D'autre part $\Delta S = S[W] - S[w]$, en vertu de la symétrie (5). Ainsi, compte tenu de (7) et (9), avec $G_i = g(W_i)$ et $b_{ik} = (B_{ik} - \delta_{ik})$, on a:

$$\Delta S = \sum_{i} \left[f(W_i) - f(w_i) \right] = -\sum_{i} \int_{w_i}^{W_i} g(x) dx \geqslant -\sum_{i} \sum_{k} G_i b_{ik} w_k \qquad (10)$$

car, par la monotonie (6):

$$-\int_{w_i}^{W_i} g(x) \ dx \geqslant -G_i(W_i - w_i).$$

La double normalisation de **B** donne:

$$\sum_{i} b_{ik} = \sum_{k} b_{ik} = 0. {(11)}$$

Ces relations permettent d'éliminer dans (10) les (2n-1) éléments b_{1k} et b_{i1} , et l'on obtient:

$$\begin{split} \varDelta S \geqslant & -\sum_{i \, \geq \, 2} \, \sum_{k \, \geq \, 2} \, \left(G_1 - G_i \right) \, \left(w_1 - w_k \right) \, b_{ik} = \\ & = -\sum_{i \, \geq \, 2} \, \sum_{k \, \geq \, 2} \, b_{ik} \sum_{l \, = \, 2}^i \, \left(G_{l-1} - G_l \right) \sum_{m \, = \, 2}^k \, \left(w_{m-1} - w_m \right). \end{split}$$

En inversant l'ordre des sommations:

$$\Delta S \geqslant -\sum_{l \geq 2} \sum_{m \geq 2} (G_{l-1} - G_l) (w_{m-1} - w_m) \beta_{lm}$$
 (12)

avec

$$\beta_{lm} = \sum_{i \geqslant l} \sum_{k \geqslant m} b_{ik} \,. \tag{13}$$

En vertu de la monotonie de g et de la définition (8) des suites W et w, le produit de deux différences dans (12) est toujours positif. Il reste donc à démontrer que $\beta_{lm} \leq 0$. Si $l \geq m$, on élimine les termes diagonaux (négatifs) de \boldsymbol{b} à l'aide de la seconde égalité (11): $b_{ii} = -\sum_k b'_{ik}$; $b'_{ik} = b_{ik}$ $(1 - \delta_{ik})$. On obtient:

$$\beta_{lm} = \sum_{i \ge l} \sum_{k \ge m} b'_{ik} - \sum_{i \ge l} \sum_{k} b'_{ik} = -\sum_{i \ge l} \sum_{k \le m-1} b_{ik} \le 0$$
 (14)

car, dans la dernière somme, $i \neq k$, et $b_{ik} = B_{ik} \geqslant 0$. Si $l \leqslant m$, on utilise $b_{kk} = -\sum_i b'_{ik}$:

$$\beta_{lm} = -\sum_{i \leqslant l-1} \sum_{k \geqslant m} b_{ik} \leqslant 0. \tag{14'}$$

On ne rencontre aucune difficulté lorsque le nombre des états devient infiniment grand $(n \to \infty)^*$).

Genève, Institut de Physique de l'Université.

$$w_{i}''\int\limits_{1}^{w_{k}'/w_{i}''}dt\log t=w_{k}'(\log w_{k}'-\log w_{i}'')+w_{i}''-w_{k}'\geqslant 0$$
 .

C'est-à-dire:

$$-w_{k}' \log w_{i}'' \geqslant -w_{k}' \log w_{k}' - w_{k}' + w_{i}''$$
.

Donc:

$$egin{aligned} arDelta S &= arSigma_k w_k' \log w_k' - arSigma_i w_i'' \log w_i'' \ &= arSigma_k w_k' \log w_k' - arSigma_i arSigma_k A_{i\,k} \, w_k' \log w_i'' \ &\geqslant arSigma_k w_k' \log w_k' - arSigma_i \, arSigma_k A_{i\,k} \, w_k' \log w_k' - arSigma_i \, arSigma_k A_{i\,k} \, (w_k' - w_i'') = 0 \;. \end{aligned}$$

Le deuxième membre s'annulle en vertu de la double normalisation de A et de la relation (1) entre w_i " et w_k '.

^{*)} Si $S = -\Sigma_i w_i \log w_i$, la démonstration signalée en I, due à M. Pauli, et valable pour des transitions infinitésimales, peut être étendue au cas des transitions finies envisagé ici. En effet: