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Théorème H et Unitarité de S
par M. Inagaki, G. Wanders*), Genève, et C. Piron, Lausanne.

(23.1.1954.)

Summary. It is shown that Bolzmann's //-theorem holds for finite, definite
and doubly normalised transition probabilities Aik.

M. Stueckelberg a attiré notre attention sur le fait que sa
déduction du théorème H de l'unitarité de S1) n'est pas satisfaisante.
D'une part, les matrices A ne forment pas un groupe continu, une
variation finie de l'entropie ne peut donc se déduire de la variation
infinitésimale. D'autre part, il reste à établir que (.4 — 1) peut
toujours être décomposée en une somme de matrices cycliques à coefficients

positifs.
Nous proposons ici une démonstration générale du théorème H,

basée sur l'unitarité de S, indépendante de celle présentée en I.
V'état thermodynamique d'un système à l'instant t est décrit par une
distribution de probabilité w wt sur les n états qu'un micro-observateur

peut distinguer (i 1, n). L'état w" k l'instant t" est
relié à l'état w' à l'instant antérieur t' (t" > t') par les probabilités
de transition Aik:

w- 2J Aik w'k (w" =Aw'). (1)
k

La probabilité de transition Aik se déduit de l'élément Sik de la
matrice de transition S :

Aik=\Sik\2>0. (2)

L'unitarité de S (SS^= S^S 1) implique une double normalisation

de A :

£ Aik JTAik l. (3)
i k

D'autre part, l'entropie S du système à un instant donné est
fonctionnelle de la distribution de probabilité w à cet instant : S S[w].

*) Bénéficiaire de l'aide financière de la Commission Suisse de l'énergie
Atomique (C.S.A.).

x) Stueckelberg, Théorème H et unitarité de S, Helv. Phys. Acta 25, 577
(1952). (Cet article est désigné dans la suite par I.)
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L'idée de M. Stueckelberg est que le théorème H de Boltzmann
résulte de l'unitarité de S (de la double normalisation de A) si S[w]
est une fonctionnelle symétrique en les wt et si la dérivée fonctionnelle
— gi ôS[w]/ôiVi est k monotone» décroissante. On doit donc avoir,
compte tenu de (1) et (3) :

'¦¦' AS S[w"] - S[w'] > 0 (4)
si:

S[w*] S[w] (symétrie), (5)

où w* se déduit de w par permutation des wi: et :

(Ci — 9k) (Wi — wk) > 0 («monotonie»), (6)

Ce théorème a été démontré par l'un de nous (M. I.) dans le cas
d'une fonctionnelle symétrique quelconque. La démonstration étant
assez longue, nous nous limitons ici au cas :

i
Soient W et w les suites obtenues à partir des suites w" et w' en

réordonnant leurs termes en ordre décroissant :

Wi>Wi+x; w(>wi+x. (8)

IF et w; sont liées par une matrice B :

Wi ]TBikwk (W=Bw) (9)
k

qui satisfait les mêmes conditions (2) et (3) que A. En effet, B se

déduit de A par permutations de lignes et colonnes qui laissent
inchangées les sommes apparaissant dans (3). D'autre part AS
S[W] — S[w], en vertu de la symétrie (5). Ainsi, compte tenu de

(7) et (9), avec Gt g(Wt) et bik (Bik — ôik), on a:

Wi

AS £[f(Wi)~f(wi)] -Z f g(x)dx>-Z£Gibikwk (10)
i i ^ i k

car, par la monotonie (6) :

Wi

— I g(x) dx~> — Gt(Wi — wt)

Va double normalisation de B donne :

i h
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Ces relations permettent d'éliminer dans (10) les (2 n — 1)
éléments bxlc et bix, et l'on obtient:

AS > ~ E E (°x - Gi) K - «>*) x
i > 2. h > 2

i k

— E Ehik E (°i-i — Gt) E X»-i ~~ w™) •

i»_ k^2 1-2 m-2

En inversant l'ordre des sommations:

l>2 m>2
avec

^ > £ fc > m

En vertu de la monotonie de g et de la définition (8) des suites
W et w, le produit de deux différences dans (12) est toujours positif.
Il reste donc à démontrer que ßim < 0. Si l > m, on élimine les

termes diagonaux (négatifs) de 6 à l'aide de la seconde égalité (11) :

bu — F,k b'ik; b'ik bik (1 — ôik). On obtient:

ßtm E Eh'ik-E Eh'ik -E 27&«<o (14)
i>l k>m i>l k i^l k <m—X

car, dans la dernière somme, i 4= fc, et bik Bik > 0. Si l < m, on
utilise frM — Ut b-k :

/x -27 E bik<o- (ix
i <* l—l k ^ m

On ne rencontre aucune difficulté lorsque le nombre des états
devient infiniment grand (n -> °o)*).

Genève, Institut de Physique de l'Université.

*) Si S — Zt wi log wf, la démonstration signalée en I, due à M. Pauli, et
valable pour des transitions infinitésimales, peut être étendue au cas des transitions
finies envisagé ici. En effet :

wk'lwi"
tv/' I dt log t wk'(log wk - log w{") + w/' - wk > 0

i
C'est-à-dire :

-wk' log w'' >-wk' log wk'-wk' + wt".
Donc:

AS Sk wk log wA- Er w'' log w/
Zk Wk log Wk' - Ei Ek A k K log Wi"

> Ek wk' log wk'-Zi Zk Aik wk' log wk'-Zi Sk Aik(wk'~ w") 0 ¦

Le deuxième membre s'annulle en vertu de la double normalisation de A et
de la relation (1) entre w" et wk.
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