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Über die Linienform monochromatischer 7-Strahlungen
im Szintillationsspektrographen

von D. Maeder, R. Müller (ETH., Zürich) und
V. Wintersteiger (Phys. Inst., Belgrad).

(12. X. 1953.)

Summary. After a brief outline of the various effects governing the "line shape"
(photopeak+continuum) in a scintillation spectrometer at energies of the order
1 MeV (§ 1), the general equations for computing the energy distribution of scintillations

produced by monochromatic incident y-rays are established (§ 2). A
compilation of numerical data on the primary absorption and scattering in Nal (Tl)
is given in § 3; extrapolation of measured photo fractions to zero crystal size seems
to indicate that at 1 MeV the photoabsorption cross section might be appreciably
smaller than predicted by Hulme et al.

In the evaluation of the theoretical Compton distribution for an infinitely large
crystal (§4), perpendicular incidence of the primary quanta is assumed; secondary
and tertiary absorption and scattering have been calculated rigorously and higher
order effects taken into account by an approximate procedure. To simplify
calculations for finite cylindrical crystals (§5), we start with the assumption that
y-rays enter the crystal only along the cylinder axis, but in § 6 corrections for the
case of bad collimation are developed. Curves show the modified Compton
distribution and photo fraction for Nal crystals with L R 0,5 cm, 1 cm, 2 cm,
4 cm, co at different energies from 0,255 to 1,28 MeV. In § 7 we discuss the
corrections caused by y-rays scattered from outside into the crystal, by pair creation
(which proves negligible, as far as the apparent photo fraction is concerned, up to
2 MeV), and by Bremsstrahlung and range losses. The latter, as well as the hard
component of the collimator scattering, become appreciable above 1 MeV, whereas
the soft component produced by the collimator may be eliminated by characteristic
absorbers.

Experimental applications (§8) include the verification of the calculated photo
fraction as a function of energy and crystal size, absolute y-ray intensity measurements

and analysis of complex line spectra such as those produced by Ga67, In114
and Au198.

§ 1. Einleitung.

Die Entdeckung der hohen Lichtausbeute von mit Thallium
aktivierten Nal-Kristallen1) unter der Wirkung von y- Strahlen hat in
den letzten Jahren, im Verein mit der Entwicklung verbesserter
Photoröhren mit Elektronenvervielfachung, eine eigentliche
Umwälzung der Messtechnik für y-Quanten eingeleitet2). Während die
Geiger-Müller-Zählrohre grössenordnungsmässig jedes hundertste
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einfallende Quant zu registrieren vermögen, lassen sich mit Szintil-
lationszählern leicht Ansprechwahrscheinlichkeiten von 50% oder
mehr erreichen. Noch wertvoller ist aber in vielen Fällen die
Eigenschaft, dass aus den Amplituden der Szintillationsimpulse die Energie

der y-Strahlung unmittelbar abgelesen werden kann. Dabei wird
die Energieauflösung durch das Szintillationsmaterial, die optische
Anordnung und die Eigenschaften der Photoröhre bestimmt (siehe
§ 3d). Soweit die Szintillationsimpulse durch Absorption einheitlicher

Energiebeträge erzeugt werden, sind ihre Amplituden nach
einer Gaussschen Glockenkurve verteilt. Es liegt aber in der Natur
der Wechselwirkung der y- Quanten mit der Materie des Szintilla-
tionskristalls, dass ausser der eigentlichen „Photolinie" meistens
auch noch Impulse mit allen möglichen kleineren Amplituden in
merklicher Anzahl vorkommen. Um mit einem Szintillationsspektro-
graphen komplexe Spektren quantitativ zerlegen zu können, müssen
Intensität und Form des Kontinuums für jede y-Energie bekannt
sein. Da beide in komplizierter Weise nicht nur von der Energie,
sondern auch von der Kristallgrösse und -form sowie von der
Geometrie des y-Strahlenbündels abhängen, erschien es uns nützlich,
diese Zusammenhänge in dem für die Spektroskopie der radioaktiven

Isotope wichtigen Energiebereich 0,1 1,3 MeV systematisch
zu untersuchen3).

Wir geben zunächst eine allgemeine Übersicht über die von uns
verwendete Berechnungsmethode (§ 2) und eine Zusammenstellung
der theoretischen Formeln und numerischen Daten für den Primäreffekt

in Nal (§3). In § 4 wird die Absorption sekundärer und
tertiärer Streuquanten im <x> grossen Kristall berechnet. Zur Erfassung
der Sekundäreffekte in endlichen Kristallen (§ 5) setzen wir
zunächst ideal scharfe Bündelung der einfallenden y-Strahlen voraus.
Der effektive Raumwinkel eines Kollimators und die durch
unvollkommene Kollimation verursachte Korrektur der berechneten
Sekundäreffekte im Kristall werden in § 6 behandelt.

Wir haben uns auf den obgenannten Energiebereich beschränkt,
um folgende zusätzliche Effekte entweder vernachlässigen oder als

kleine Korrekturen behandeln zu können (§ 7) :

a) Die bei niedriger Energie auftretende Satellitenlinie*) wurde
stets zur Photolinie gezählt. Ihre Intensität beträgt, nach
Rechnungen von Novey5)*), z.B. bei 50 keV 17%, bei 100 keV aber nur
noch 4% der Hauptlinie. Bei Energien > 150 keV geht zudem die

Energiedifferenz von 29 keV im Auflösungsvermögen des Szintilla-
tionsspektrographen unter.

*) Vgl. hierzu auch A. H. Wapstba, Physica 19, 669 (1953).
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b) Die Beiträge der Bückstreuung aus der Quelle und aus dem
Lichtleiter lassen sich verhältnismässig einfach abschätzen6).

c) Bei hohen Energien ergeben sich Komplikationen infolge der
Absorption von y- Quanten durch Paarerzeugung. Bei 1,3 MeV ist
letztere aber erst mit 0,5% an der Gesamtzahl der Szintillationen
beteiligt.

d) Die Berechnung der Streustrahlung aus dem Kollimator ist
äusserst umständlich. Da in Pb die Strahlenschwächung bis 500 keV
vorwiegend durch Photoeffekt erfolgt, macht sich die Compton-
Streuung aber erst oberhalb dieser Energie störend bemerkbar.

e) Bremsstrahlungs- und Beichweitekorrekturen spielen bei extrem
hohen Energien eine wesentliche Rolle7) ; in unserem Bereich bleibt
deren Einfluss auf das scheinbare Photo : Compton-Verhältnis
jedoch auf die Grössenordnung 10% beschränkt.

Wegen ihrer Kompliziertheit haben wir die Korrekturen d) und e)

im allgemeinen vernachlässigt, geben aber in § 7 für ein spezielles
Beispiel eine numerische Abschätzung. Durch diese Effekte lassen
sich die Abweichungen unserer empirisch (für Kristallgrösse -> 0)

angepassten Photoquerschnitte gegenüber den von Hulme et al.8)
berechneten theoretischen Werten (§ 3) nur teilweise erklären. Diese
Diskrepanz wird zur Zeit noch weiter untersucht9).

Experimentelle Linienformen wurden mit monochromatischen y-
Strahlen von 0,28 bis 1,1 MeV mittels eines Impulsspektrographen
nach dem früher beschriebenen Prinzip10) aufgenommen, nach
welchem sich die gesuchte Amplitudenverteilung jeweils photographisch
aufzeichnet. Kristallgrösse und Kollimation wurden in weiten Grenzen

variiert und gute Übereinstimmung der experimentellen mit den
berechneten Impulsverteilungen gefunden (§ 8).

§ 2. Absorption und Streuung von y-Strahlen im Szintillationskörper.

a) Bezeichnungen.

Der lineare Schwächungskoeffizient der Leuchtsubstanz sei

M Mc + Mp- Mpp
Streukoeffizient + Photokoeffizient + Paarkoeffizient.

Während sich pic mit grosser Genauigkeit berechnen lässt (vgl.
§ 3 b), existiert für die Photoabsorption keine völlig befriedigende
Theorie. Die numerischen Werte von piP werden daher in § 3b unter
Berücksichtigung neuer experimenteller Daten festgelegt. Unterhalb

1,3 MeV ist piPP zu vernachlässigen.
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Mit pi' Li'c + pip, pi" pì'c + pip, bezeichnen wir die zu (1)
analogen Koeffizienten für ein- bzw. mehrfach gestreute Quanten.
Ferner definieren wir

Po Mp'iM primärer Photoanteil (2)

(bzw pn, p"0, für Streuquanten).
Alle Energien werden in Elektronenmasse-Einheiten ausgedrückt :

y hv/mc2 Primärstrahlung.
y' hv'/mc2 Streuquant 1. Ordnung.
e' y —y' Rückstosselektron 1. Ordnung.
y "... ; e"... usw.

Führt man an Stelle der Streuwinkel & zur Abkürzung die Variable u
(0 < u < 2) gemäss

u l— cos#, u' 1 — cos &', u" - - - (3)
ein, so gilt

y' Arhy-' e' y~y' u-y.y' (4)

analog für Streuprozesse höherer Ordnung:

y(«= V e«)_y(*-l)_y(*)=tt(*-l).y(*-l),y(*)< (4a)
l + (u + u'-\ hu^-^y'

b) Energieverteilung der Szintillationen.

Je nachdem, ob das letzte Streuquant (k 1, 2, im Kristall
absorbiert wird oder entweicht, beträgt die insgesamt umgesetzte
Elektronenenergie :

e* e'+e" + --- + e<*> + y<*> s y (5)
bzw.

jw)., ..«•)_ («+*'+• ••+«(A" 1})r2

l + («+«'+-- +tt(J;-1,)y

Als obere Grenze von (6) erhält man e* < 2 ky2/(l + 2 ky).
Über die Umwandlung der Szintillationen in elektrische Impulse

wird vorausgesetzt, dass die Impulsamplitude proportional e* und
die Anzahl gleich derjenigen der entsprechenden Streu- und
Absorptionsprozesse ist ; diese bezeichnen wir nach folgendem Schema*) :

no nA + nE Anzahl einfallender Primärquanten (k 0) (hiervon nj, im
Kristall absorbiert oder gestreut, nF ohne Wechselwirkung
entweichend).

*) Von den in den vorläufigen Mitteilungen3)6) verwendeten Bezeichnungen
teilweise abweichend.
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ôn'c ôn'^ + ôn'E inRichtungit bis u+ ou emittierte Sekundärquanten (k l).
ö2nr 62nA + ö2nE Tertiärquanten (k 2) in Richtung u' bis u'+ôu', welche

von den ònc' Sekundärquanten (u, ou) abstammen, u' wird
von der Richtung des Sekundärquants aus gemessen.

Die geometriebedingte Aufteilung in absorbierte oder gestreute
(Index Ä) und entweichende (Index E) Quanten wird in § 4 und 5

näher untersucht. Die entweichenden Anteile liefern (ausser für
k 0) Szintillationen, jedoch mit reduzierter Energie gemäss (6) ;

von den nicht entweichenden Quanten führt jeweils der Bruchteil
p0, bzw. p'6, p"0, zu voller Energieumsetzung nach (5). Die
gesuchte „Linienform" besteht also aus:

Photospitze:

n*p=PonA+ fv'0àriA+ j fplô2n"A+'

Anzahl Impulse der vollen Energie, e* y

Compton-Kontinuum :

dn* ldnE\ r I dn"E\ r r Idn".

(7)

de* ~'~de' I "r J "XTe^! + j j 0\~dlß~) +'" (8)

Anzahl Impulse pro Energieintervall an der Stelle e*<y. >

Die Integrale in (7) erstrecken sich jeweils über alle möglichen
e', e", ...-Werte (nämlich 0 <e(i+1> <2 (y(i))2/(l + 2y<«>)), diejenigen

in (8) nur über solche, die mit dem Parameterwert e* und der
Bedingung (6) verträglich sind; insbesondere verschwinden die k
ersten Terme in (8), sobald e* > 2 ky2/(2 ky + 1).

Für die numerische Auswertung bricht man die Ausdrücke (7), (8)
nach (k + 1) Gliedern ab und berücksichtigt die Beiträge der
Streuungen höherer als k-ter Ordnung angenähert dadurch, dass man in
(7) p(k) durch einen effektiven Photoanteil p*a-) und in (8) den ganzen
(fe + l)-ten Term durch

//.
~ fik Ak)

/•••/(1-P*W)-^T (9)

e' e" eft) max

ersetzt, wobei die Integrationsgrenzen für e(k) aus den Bedingungen

M0^*-!^! <£'+£',+---£W<Min(£*'_|Tr) (10)

zu bestimmen sind. Zum Beispiel lauten die Näherungsausdrücke
für k 1, wobei also einfache Streuungen exakt, mehrfache
näherungsweise berücksichtigt sind :
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Photospitze:r 2yV(2y+l)
n*P^ip0nA + J'p*' òn'A (7a)

Compton-Kontinuum:
£*, bzw. 2y!/(2y + l) /

(l-pn^^-TT-- (8a)de* ~ \de' /,, ' J \* r I ly y
e'-O, bzw. e*-2y's/(2y'-i-l)

Von dem hier einzusetzenden p*' ist zunächst nur bekannt, dass

Po(/)<p*'<1
gilt. Anderseits können wir ohne grossen Fehler*) dieses p*' mit dem
Verhältnis

* *

p*(y)s__= __ (11)

jedoch für y' (anstatt y) als Primärenergie berechnet, identifizieren.
Hierauf gründet sich das folgende Schrankenverfahren3) :

Durch Einsetzen der Extremwerte p^'iu p0 (y') bzw. p^'ax 1 in
das Restglied von (7 a) wird die Absorption der Streuquanten höherer

als fc-ter Ordnung vernachlässigt, bzw. überschätzt. Für eine
Reihe von primären y-Energien berechnet man auf diese Weise eine
untere bzw. obere Schranke für n*p und erhält mittels (11) zwei
Schranken p*, p* als Funktionen der y-Energie. Diese setzt man
nun, jeweils für y' interpoliert, an Stelle der ursprünglichen Schranken

in das Restglied von (8 a) ein und wiederholt das Verfahren, bis
das zur Berechnung von (7 a) und (8 a) notwendige p*' hinreichend
eng eingegrenzt ist.

c) Totale Ansprechwahrscheinlichkeit.

Die Gesamtzahl der Wechselwirkungen der einfallenden y-Strahlen
mit dem Leuchtkörper

nA np + nc nP+ J (j^-j de*

lässt sich, unter Extrapolation der gemessenen Stosszahlen bis zur
Energie 0, experimentell bestimmen. Daher stellt das Verhältnis

*) Infolge ungleicher geometrischer Verhältnisse wird p* für einfallende Quanten

der Energie y' im allgemeinen von dem für Streuquanten derselben Energie
massgebenden p*' etwas abweichen. Entsprechende Korrekturen werden in §4c
und S 5a behandelt.
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nA/n0 die maximal erreichbare Ansprechwahrscheinlichkeit des Szin-
tillationszählers dar; der theoretische Wert beträgt

nA =i e-ßL
n„

(12)

wobei L die Schichtdicke der Leuchtsubstanz in der Einfallsrichtung
bedeutet.

Für Nal(Tl) haben wir die so berechneten Ansprechwahrscheinlichkeiten

in Fig. 1 aufgetragen.

X
100 fn-Jmnl % T1Ì

\\\N*^w L=10cm

\\\ x^\\ ^\ -

50
__5__\ ~~-\^ 4

40

\^ —1§_

__2__

20 \, —i§_\\
1

10

—azi_

—a§_
0 0/1 06 1.2 1.6 2

«- y - Energie (MeV)

Fig. 1.
Anzahl primärer Wechselwirkungen der auf eine Schicht Nal(Tl) von der Dicke L

senkrecht auftreffenden y- Quanten.

§ 3. Der Primäreffekt in Nal(Tl).

a) Experimentelle Bestimmung des primären Photoanteils.

Für monochromatische Primärstrahlen lässt sich ein experimentelles

Szintillationsspektrum graphisch in Photo- und Compton-
Anteil nP, nc zerlegen. Letzterer muss jeweils noch um denjenigen
Teil Anc vergrössert werden, welcher unterhalb der Schwelle der
Zählvorrichtung liegt. Ist die Schwellenenergie bekannt, so gestaltet
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sich diese Extrapolation mit Hilfe der theoretischen Compton-Verteilungen

(Fig. 6 und 7) sehr einfach. Ferner sind die Korrekturen nL
und allenfalls nQ (Streustrahlung aus dem Lichtleiter, bzw. aus der
Quelle) aus Fig. 12 und 14 zu entnehmen und von der Compton-
Verteilung abzuziehen. Das korrigierte Stosszahlenverhältnis

p npj(np + nc + Anc — nL — nQ) experiment. Photoanteil (13)

entspricht dem durch (11) definierten theoretischen Wert p*; es
ist von der Kristallgeometrie abhängig und nähert sich bei
abnehmender Kristallgrösse dem durch (2) definierten Grenzwert p0. Aus
Messungen mit verschieden grossen Kristallen einheitlicher Form
(Länge L aa Radius B) haben wir versucht, den primären Photoanteil

p0 zu extrapolieren. Die Ergebnisse sind in Tabelle 1 zusammen-
gefasst. Um den Einfluss der Kollimation möglichst auszuschalten,
haben wir den Radius r des y-Strahlenbündels proportional zur
jeweiligen Kristallgrösse gewählt (r _ -J ]/LB). Die angegebenen mittleren

Fehler rühren zur Hauptsache von der Unsicherheit der graphische

n Zerlegung sowie der oben erwähnten Korrekturen her.

Tabelle 1.

Extrapolation des primären Photoanteils aus experimentellen p-Werten (ohne
Korrektur der Kollimator-Streustrahlung und der Reichweite- und

BremsstrahlungsVerluste).

Anordnung Messung mit Kristall Nr.
13 3

Grenzfall

Kristallänge L (mm)
Kristallradius R (mm)
Bündelradius r (mm)

22
18

10

12,4
15,6

7

10,5

9,5 ± 2*)
5

5,2

5,0
2,6

YLR^O

r -^0
y-Strahlung p in Po in %

Hg203, y 0,546
Au198, y 0,805
Cs137, y 1,29
Zn6

81,0 ±2 73,0 ±1
59,5 ± 1,5 50,0 ± 1

y 2,18.
36,5 ± 2

21,0 ± 2
29,5 ± 1,5

16,0 ± 1,5

67,0 ± 2

45,5 ± 1,5

24,5 ± 1

12,8 ± 1

57,2 ± 1

37,0 + 1

17,0 ± 0,5
7,5 ± 0,3

44 ±2
24,5 ±1,5
9,0 ±1
2,8 + 0,7

b) Numerische Werte der Streu- und Absorptionskoeffizienten.
Die Dichte der Moleküle haben wir für Nal, unabhängig von der

Tl-Beimischung, N 1,470 • 1022 cm-3 gesetzt und angenommen,
dass 0,3% der Na-Atome durch Tl ersetzt sind. Dann gilt

pic _ Na (0,997 xmZ+ ZT + 0,003 ZT1) (14a)

pip N (0,997 TKa + tt + 0,003 tt1) (14b)

*) Querschnitt rechteckig.
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Der totale Compton-Wirkungsquerschnitt a ergibt sich aus der
Integration der Formel von Klein-Nishina11) und findet sich in
zahlreichen Arbeiten12-14) tabelliert. Allerdings sind die Elektronen im
Nal nicht völlig frei, was bei niedriger Energie eine Verminderung
des Compton- Querschnittes und das Auftreten kohärenter Streuung
zur Folge hat. Aus den von Debye und von Heisenberg
angegebenen, von Bewilogua15) tabellierten Funktionen 02(X, ê, Z) und
S(X, &, Z) erhält man durch Integration über alle Streurichtungen :

Primärenergie (keV) 51 102 204

kohärent' Klein-Nishina • '

inkohärent'^Klein-Nishina '

1,81

0,82

0,69

0,91

0,24

0,96

Da die kohärente Streuung keine Energie an den Kristall
überträgt, haben wir sie in (14) nicht aufgenommen. Die Korrektur der
inkohärenten Streuung ist wegen des starken Überwiegens der
Photoabsorption bei niedriger Energie bedeutungslos und wird bei höheren
Energien durch die indirekten Beiträge der kohärenten Streuung
annähernd kompensiert*), so dass der totale Streuquerschnitt für
unsere Zwecke hinreichend genau durch die unkorrigierte Klein-
Nishina-Formel ersetzt werden darf. Für einige y-Energien sind die
nach (14 a) für Nal(Tl) berechneten pic-Werte in Tabelle 2 angegeben.

Die verschiedenen theoretischen Ansätze für die Berechnung der
atomaren Photoquerschnitte r sind kürzlich in zwei zusammenfassenden

Berichten13)14) ausführlich diskutiert worden. Für unsere
Anwendung sind vor allem die von Hulme, McDougall, Buckingham
und Fowler8) durch numerische Lösung der Diracschen Gleichung
erhaltenen Ergebnisse von Bedeutung. Da jene Rechnungen auf
wenige Energiewerte (y 0,69 und 2,21) und Kernladungen (Z
26, 50 und 84) beschränkt waren, haben sowohl Davisson und
Evans13) als auch White14) versucht, mit möglichst glattem Übergang

in die Formeln von Sauter-Stobbe (y <^ 1) bzw. jene von
Hall (y ^> 1), zahlreiche Zwischenwerte zu interpolieren. Dass die
Interpolationen mit beträchtlicher Unsicherheit behaftet sind, zeigt
die Gegenüberstellung der aus 13) und 14) für Nal(Tl) nach (14b)
berechneten piP-Werte in Tabelle 2.

*) Ein Quant, welches ohne Energieverlust aus dem primären Strahlenbündel
abgelenkt wurde, ist für die weitere Erzeugung von Szintillationen wie ein Primärquant

zu betrachten. Ob seine Absorptionswahrscheinlichkeit längs des Gesamtweges

im Kristall von derjenigen eines durch keine kohärente Streuung abgelenkten
Primärquants im Mittel merklich abweicht, hängt von der Kristallgeometrie ab.
Für L R und /xL < 1 ergibt sich eine kleine Zunahme der mittleren
Absorptionswahrscheinlichkeit.



Tabelle 2.

Streu- und Absorptionskoeffizienten für Nal(Tl). Ohne Berücksichtigung des Tl-Gehaltes (0,3 Mol%) würden die Photo¬

koeffizienten fiP um etwa 1,5% (200 keV) bis 2% (1,5 MeV) kleiner.

Streukoeffizient Photoabsorptionskoeffizient Primärer
Energie

y (mc2)

Klein-
Nishina11)
Pc (cm-1)

Davisson-
EVANS13)

White14)
VlCTOREEN12)

Gleichung (15)

Experimenteller
Wert*)

Gleichung (16)

Mittel aus 12)

und 14)

ixp (cm"1)

Photoanteil
Gleichung (2)

Vo

0,2 0,462 6,27 5,07 5,52 — 5,30 92,0%

0,4 0,382 0,806 0,706 0,741 — 0,72 65,5%

0,546 Hg203 0,341 0,336 0,295 0,297 0,27 ± 0,02 0,296 46,4%

0,805 Au198 0,295 0,113 0,101 0,0941 0,096 ±0,008 0,098 24,7%

1,0 0,271 0,063 0,0551 0,0494 — 0,052 16,3%

1,295 Cs13' 0,241 0,034 0,0300 0,0228 0,024 ±0,003 0,0264 9,9%

1,5 0,225 0,0246 0,0214 0,0147 — 0,0181 7,4%

2,0 0,197 0,0136 0,0121 0,0063 — 0,0092 4,4%

2,18 Zn65 0,188 0,0117 0,0111 0,0048 0,0054 ± 0,0014 0,0079 4,0%

2,5 0,175 0,0092 0,0083 0,0032 — 0,0058 3,2%

9=

k

c
s
CL

*) Ohne Korrektur der Kollimator-Streustrahlung und der Reichweite- und Bremsstrahlungsverluste.
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Um bei diesem Vergleich keine zusätzlichen Interpolationsfehler
zu begehen, haben wir den Ansatz r ~ Zay-" mit kontinuierlicher
Anpassung der Exponenten verwendet (für Z — 53 ist a œ A; b en

2,85 1,65). Wesentlich einfacher würde sich die Interpolation bei
Verwendung der empirischen Formel von Victoreen12) gestalten;
diese liefert für Nal(Tl) den geschlossenen Ausdruck

pip 0,0506 cm"1 __;__ (15)

welcher für y < 0,8 gut mit den Daten von White14) übereinstimmt,
bei höheren Energien aber zu rasch abfällt (siehe Tabelle 2).

Nach dem Vorangehenden ist pic wesentlich genauer bekannt als

pip. Wir haben daher die in Tabelle 1 angegebenen extrapolierten p0
zur Bestimmung von

Vr=T%VMc (16)

benützt und die Ergebnisse in Tabelle 2 aufgenommen. Diese
experimentellen Werte sprechen bei den höheren Energien eher
zugunsten der Formel von Victoreen ; allerdings ist zu beachten, dass
die Vernachlässigung der in § 1 erwähnten Korrekturen (d) und (e)
eine scheinbare Verkleinerung der experimentellen piP bis zu etwa
30% erklären kann (siehe § 8). Um bessere Übereinstimmung mit
den experimentellen Ergebnissen zu erhalten, legen wir unseren
weiteren Berechnungen das arithmetische Mittel aus den Formeln
von Victoreen und White zugrunde (ebenfalls in Tabelle 2

eingetragen). Die mit dem mittleren piP berechneten p0-Werte sind in
Fig. 8 als Grenzkurve (L B -> 0) eingezeichnet.

c) Energieverteilung des Primäreffekts.

Bei senkrechtem Einfall von n0 Primärquanten auf eine Schicht
der Dicke L finden

nP P0nA p0n0(l-e-"L) (17)

Photoabsorptionen statt; mit Hilfe von Fig. 1 und Tabelle 2 lässt
sich somit die Intensität der primären Photolinie unmittelbar
angeben.

Die Formel von Klein-Nishina11) gibt den differentiellen
Streuquerschnitt zunächst als Funktion des Streuwinkels ê und lautet,
umgeformt nach der in § 2 a eingeführten Schreibweise :

wobei ^ ao0(u,y)/(l+uy)2 1

0 l+uy + (l+ uy)-1 -u(2-u); a0 2,495• 10~25cm2
(18)
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Durch Auflösen von (4) nach u ergibt sich

tt «7y(y-e'j; du de/(y-e')2. (19)

Setzt man dies in (18) ein, so erhält man den Wirkungsquerschnitt
pro Energieintervall als Funktion der Elektronenenergie:

s'(y + l)2-y(e'2 + 2y)] „^ ^ 2 y2da g0 in
de' y2

' °<°<-2T+T- (2°)
y2(y— e')2

Um die graphische Interpolation für beliebige Primärenergie zu
erleichtern, wurde in Fig. 2 nicht da/de' als Funktion von e', sondern
y (da/de') gegen e'/y aufgetragen*).

*10-24cm2

0.4

_ PRIMARENERGIEd6
mc-

ELEKTRONENENERGIE
d£'

*-0,5

1
mc

0,8

/ 3

0.6 r-,10

///
4tf0.4
77

0.2

0 0,2 0.4 0.6 0,8 1 —*¦

Primärer Compton-Effekt : Energieverteilung der Rückstosselektronen.

*) In der entsprechenden Fig. 1 der vorläufigen Mitteilung6) sollten die
Ordinären mit 0,52 (MeV/mc2) multipliziert werden. Ferner ist die fehlerhaft eingezeichnete

Formel gemäss Gleichung (20) zu korrigieren.
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Die v0n n0 einfallenden Quanten erzeugte Anzahl primärer
Compton-Streuungen pro Energieintervall

lässt sich nun mit Hilfe von Fig. 1 (Werte von 1 — e-^), Tabelle 2

(fi fic + pip) und Fig. 2 [y(da/de')] leicht berechnen; NZ beträgt
0,944 • 1024 cm-3 für Nal(Tl).

d) Einfluss der Energieauflösung auf die Amplitudenverteilung.

Die für das Auflösungsvermögen massgebenden Daten, wie
Lichtausbeute des Szintillationskörpers, Wirkungsgrad des Lichtleiters,
Elektronenausbeute der Photokathode, Absaugwirkungsgrad und
statistische Schwankungen der Elektronenvervielfachung lassen
sich — sofern die gesammelte Lichtmenge nicht vom Ort der
Energieumsetzung abhängt — in einen wenig energieabhängigen
Parameter*) zusammenfassen :

Anzahl Photoelektronen
mc2 umgesetzter Quantenenergie

Eine Photolinie der Energie y wird zu der Glockenkurve

dnP
de fee_<7"£>^7 (22)

auseinandergezogen, mit einer vollen Halbwertsbreite von

Zlei„=2,35j/X (23)=1/2"

Bei gegebener Gesamtzahl der Photostösse (nP nach (17), oder nP
nach (7), bzw. Fig. 6 und 7) ist daher die Maximalhöhe der
experimentell zu erwartenden Verteilung zu berechnen aus

(^äx0,399 np H"=°'940 ^t ¦ (22a)

Mit ausgesuchten Photoröhren erreicht man Halbwertsbreiten17)22),
die nach (23) einer Ausbeute der Grössenordnung a 1000/mc2
entsprechen.

Wird die Compton-Verteilung mit einer entsprechenden Gauss-
schen Funktion, deren Breite hier proportional x/F variiert, ver-

*) Eine detaillierte Diskussion der verschiedenen Beiträge an die Streuung der
Impulsamplituden findet man in 16).
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breitert, so ändert sich der Verlauf links vom Maximum nicht
wesentlich, wie aus dem in Fig. 3 eingetragenen Beispiel (y 1)
ersichtlich ist. Die theoretische Verteilung (gestrichelt; aus Fig. 2

entnommen) geht für a 232, bzw. Aet 0,155 in die ausgezogene
Kurve über. Für beliebiges a innerhalb 100/y < a < 2000 kann
man aus den Nomogrammen Lage und Höhe des verbreiterten
Maximums ablesen und die Tangente an der Stelle e'x 2 y2/(2 y+1)
(theoretische Kante) konstruieren.

Maxlmateneng» der Compton

elektrorwn, £ie2f*/(2y+1j
t

Relative

Ordinalen
y-Entrflw

wo%
Spillo der unvtrbreiterten

Verteilung 100 SS

0.2 - 50 %

0,4 -\ 02

9H 4 e
05-

e-E,

13

'T-1
<a oi

Fig. 3.

Verbreiterte Compton-Verteilung in der Umgebung der theoretischen Kante.

Damit ist die „primäre Linienform" vollständig bestimmt; sie
ist als Grenzfall (L B -> 0) in Fig. 6 und 7 eingezeichnet und
stellt für nicht zu grosse Kristalle eine brauchbare Näherung dar,
falls man die Flächenverhältnisse nP:nc jeweils den unter
Berücksichtigung der Sekundäreffekte berechneten p*-Werten (§ 5) an-
passt. In diesem Sinne genügt zu einer summarischen Charakterisierung

der wahren Linienformen auch schon die blosse Angabe des

effektiven Photoanteils p* (Fig. 8).
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§ 4. Liiiienform für unendlich' grossen Kristall.

a) Primärer Anteil.

Bei sehr grosser Kristalldicke (d.h. piL ^> 1) ist nA n0, nE 0,
und der Primärbeitrag an (7) wird nP p0 n0. Falls die n0
Primärquanten senkrecht zur Kristalloberfläche einfallen, so werden aus
der Schicht x x + dx (x 0 auf der Oberfläche,-^ 0 im Innern)

dônr nnce **xdx ," ' ou.0 u (l+uy)2
(24)

Sekundärquanten in Richtung u ...u + au emittiert (vgl. (18)),
wobei c a0 NZ 0,2355 cm-1 für Nal(Tl). Hiervon entweicht der
Teil

dôn'E=rje "-1 dòric, mit »? {
x

^
2 <" <2 •

Nach Einsetzen von (24) liefert die Integration über x 0,

(25)

dn' _n0_ yi»-\ XXz> duE ° p /x' + fx(u-l) (l + uy)2

oder, unter Berücksichtigung von (19),

dn'E
nn

tjß(u — l) ®(u,y)
0

/x /x' + /x(u-l)

an der Stelle e' e* uy*
l + uy ' 0<m<2

(26)

(27)

womit das Primärglied in (8) als Funktion von u dargestellt ist.

b) Sekundärer Anteil.

Der nicht entweichende Teil von dôn'c wird ebenfalls übera;
integriert; man erhält

ònA n0 1--rjß(u-l)
ix' + [x(u — 1)

&(u,y)
(l+uy)2

(26a)

Nach Multiplikation mit p'0 liefert eine numerische Integration über
u 0 2 den sekundären Photobeitrag (2. Glied in (7)) ; pi' und
PÓ sind aus Tabelle 2 für y' y/(l + uy) zu interpolieren. Der Rest
der ôn'A Streuquanten erfährt sekundäre Compton-Streuungen; dabei

erzeugen sie in der Schicht x' x'+ dx' (siehe Fig. 4)

j S9 « c2 e fx dx
dò2nr n0—-—;—~-0 U ft'+fl(U-l) l+(rj-l)e

ß + li(u—X)
00'ôuôu'

Cl + (u + u')y)2
(28)

Tertiärquanten, deren Ablenkungswinkel dem Bereichu'... u'+ òu'
entsprechen. Über x wurde hier, je nachdem u ^ 1, von 0 x'
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bzw. von x'... oo integriert; ferner ist zur Abkürzung 0(u,y) 0,
0(u', y') 0' gesetzt.

Zur weiteren Unterteilung in ò2n"A und ò2n"E ist zunächst die
azimutale Verteilung der Tertiäremission18) zu berücksichtigen:

"cA^+^— -W'{2^^s2v} (29)dò3nn dò2n

» \

arc cos

arc cosQ-Ù)

Fig. 4.

Berechnung der Absorption der Sekundär- und Tertiärstrahlungen.

wobei f 0 einer Emission in der durch y und y' gelegten Ebene
entspricht (Fig. 4). Je nach dem Azimut yi beträgt der von einem
Tertiärquant im Kristall zu durchlaufende Weg:

oo, für

__
1

]/u(2-u)u'(2-u') cos y-cos Vi

¦ ipx<^f^2n— fx

Wx < W < + Vi

mit (l-u)(l-u')
wx arc cos ,— -—— -.rl yu(2-u) u (2 — u

(30)

(31)

Von den dò2n"c Tertiärquanten entweicht daher der Teil

Vi

dò2n"E= \db2nc f [l + X2@X X2ZX cos 2 J e-""l"^'^dV.
o

Nach Einsetzen von (28) liefert die Integration über x' 0 oo

n0c2 fx'W(ipx, a, &)+(!-?;) /x(u-l) W(ip1?a, b') u(2-u)u'(2-u') ou ou'
pp. p,' + /x(u-l) (l + (u+u')y)2

(32)



Über die Linienform monochromatischer y- Strahlungen,

wobei zur Abkürzung
_i ® ®'

_ i \a~ 2 \ u(2-u)u'(2-u') }

19

i(2-u)u'(2-u')
m//

jx \/u (2 — u) u'(2 — u')
Vi

V
li'

W(y,x,a,b) =- / (a+cos2 y>)
cos ^ — cos v

cos Vi — cos v - 6-dy

gesetzt ist (n bzw. ^ siehe (25), (31)).
Integration über ip ergibt

W ^- (1+2 a+2 b (b - cos y>x)) -

2 6 a +(6—cos Vi)2
In

sin Vi
n

b

(2 b — cos tpx) +

b cos Vi + sin Vi [sin yx+ \/l — (b — cos Vi)2] ' (33)
71 [/1-(6-cos vi)2

Bei gegebener Primärenergie y ist (33) eindeutig durch u und w'
festgelegt. Wir haben für eine grosse Zahl von u, u'-Wertepaaren
den folgenden Ausdruck :

X(u,u',y)

fV«(2-«)«'(2-tt') pnP(yx, a,b) + (l-r))fi (u-ViW^a.V)
p' "• '• ' fi'+ fx(u-l)

numerisch ausgewertet, womit sich (32) abkürzt zu

»,e! t., du Su'
ò2nvB '

fx

lg
auch

--v — u,

X (u, u', y) [l + (u + u')y]2

Unter Berücksichtigung der Nebenbedingung s" e*
sich mit Hilfe von

mit vy*
1 + vy

(34)

(35)

welche

(36)

schreiben lässt, wird (34) eine Funktion von u allein (mit e* bzw. v
als Parameter). Ersetzt man du' durch

ôu' (l + (u+u')y)2oe"/y2

(vgl. (4a) und (19)) und integriert über alle w-Werte, welche sowohl
mit 0 < u < 2 als auch mit (36) und 0 < u' < 2 verträglich sind,
so erhält man das Sekundärglied in (8) :

dn
n, ' V MV Ide* ° V MV

an der Stelle e'+e

Min (2; v)

X (u,v — u, y) du
Max(0; v-2)

.*_ «zX
l + vy 0<»<4.

(37)
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c) Anteile dritter und höherer Ordnung.

Der nicht entweichende Anteil von db2n"c lautet, integriert über
x' 0 oo:

ò2n"A

n„c2 f p'+(l -rj)/x(u-1) a a, jx' v/ >| ou ou'
MM XX, ir ee'-?-X(u,u', y) "*""

12 (32a)/x+/x(u-l) p v J [l + (u + u)y]2 v '

oder weiter abgekürzt :

„o » «oc2 T-/ / \ du du' ,nrò2nA -°- - 1 (u,u ,y) -=¦. (35a)A ^2 \ ' ' /j [i + (u + u)y]2 v '

Nach Multiplikation mit

Pu=PolT+^+M7)y)

und Integration über m, „ ergäbe sich nun der 3. Term in (7) ; da
wir die Rechnung aber mit diesem Gliede abbrechen, so ist hier das
in § 2b erläuterte Schrankenverfahren anzuschliessen. Man erhält
folgende Eingrenzung (ôn'Ajôu siehe (26a)):

2 2
c2 i" C n Y du duClin X du du *

X.' J P°{]l + X^urfrì2<'P°°~'Po'
2

a '
1 f '(ônA\j „ c2 f f Ydudu' ,QO,

H V Po (-ST) dU<l^JJ JV+(u + u')y)2 ¦ (38)
o oo

Aus den in Tabelle 3 angegebenen numerischen Ergebnissen bei
einmaliger Durchführung des Verfahrens lassen sich die wahren
Werte des effektiven Photoanteils zunächst auf etwa 10% genau
extrapolieren. Mit diesen provisorischen Werten p^, genommen an
den Stellen y" y/[l + (u + u') y], wird (35a) multipliziert und
wieder über u, u' integriert; man erhält einen verbesserten Wert
von w*, a

und hieraus den definitiven Photoanteil p^, an der Stelle y.
Bei dem in Tabelle 3 eingetragenen gewogenen Mittelwert ist noch
folgende Korrektur berücksichtigt : Da die meisten Primärstreuungen

innerhalb einer Kristallschicht 0 < x < 1/pt, stattfinden, sind
die geometrischen Verhältnisse für seitwärts bzw. rückwärts
gestreute Quanten (u 1, bzw. 2) jenen in einem endlichen Kristall
vom Radius B œ 2/'pi,, bzw. einem solchen der Länge L on 1/pi
vergleichbar. Zur Berechnung des Restgliedes in (7) setzt man daher
nicht durchwegs die für oo grossen Kristall gültigen plo(y"),
sondern die aus Fig. 8 für B L 2/piu abzulesenden p*R(y") ein (vgl.
(39), (40)).
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Tabelle 3.

p* np jna relative Anzahl der Impulse in der Photospitze, für unendlich

grossen Kristall; Schranken berechnet nach (38) für Nal(Tl).

0,5 1 2

Primärer Photoanteil p0 (%)¦ ¦ ¦ 51,8 16,3 4,4

Untere Schranke
Obere Schranke 1 fürp* (%)
Gewogenes Mittel '

95

99

97

75

97

92

56

94
83

Damit ist der Anteil an Tertiärquanten, welcher (unter
Berücksichtigung der Absorption von Streuquanten höherer Ordnung) An-
lass zu Impulsen der Photospitze gibt, hinreichend genau festgelegt.
Die übrigen Tertiärquanten, also

liefern Energiebeiträge, die annähernd gleichmässig zwischen

0<_ <e" =XX_ _^^ ^ max l + 2y" [l + (u + u')y][l + (u + u' + 2)y]
verteilt sind (vgl. § 2, Ansatz (9)). Integration über alle u, M'-Werte3
die sowohl mit 0 < u < 2, 0 < u' < 2 als auch mit der
Nebenbedingung

w > u + u' > w — 2, mit e* ™y
l + wy

verträglich sind, ergibt nun das Restglied in (8) :

de*
Min(2; w) Min(2; w-u)

%o (jvf fdu f (y"+t) t1 - v*-2^ ww&, u'> v)du'
Max(0; w-i)

ander Stelle «' + e" + e'" e* -^— 0<w<6.
Max(0; w-u-2)

-e" + e'" e- l + wy '

(39)

d) Zusammenfassung.

Mit Hilfe der in Fig. 8 dargestellten effektiven Photoanteile p*R (y)
erhält man ein in sich geschlossenes Rechenschema, sowohl für die
Photospitze:

np,oo n0Po(Y)+n0jj p0(y') r/Li(u — l) ] 0(u,y)
p' +p(u-l)\ (l + uy)

o(~fJ7_;-„/„«(/) c^X+^yàudu'

du

2 2

0 0

(40)
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als auch für die Compton-Verteilung:

(27)-
dnc.™

de*

(37)+ (39), für£*/y(y-e*) 0. ..2
(37)+ (39), 2. .4

(39), 4. .6
(41)

in welchem Streuungen höherer als 3. Ordnung näherungsweise
berücksichtigt sind. In die Ausdrücke (27), (37), (39) ist jeweils
e*/y(y — e*) für u bzw. v bzw. w einzusetzen; 0, v, Y gemäss (18),
(25), (35a), c a0NZ.

Die anfangs nur roh abgeschätzten p*-Werte (vgl. (38)) treten
bloss in den relativ kleinen Gliedern 3. Ordnung auf und
verursachen daher bei der nochmaligen Durchrechnung mittels (40)
keinen merklichen Fehler mehr. Die numerischen Ergebnisse sind in
Fig. 6, 7 und 8 eingetragen.

§ 5. Linienform für zylindrische Kristalle bei idealer Kolli ination.

a) Formelsystem.

In Anbetracht der ausführlichen Darstellung des analogen
Rechnungsganges in § 4 beschränken wir uns hier auf die Wiedergabe
der Endformeln ; wegen der bei endlicher Kristallgrösse komplizierteren

Berechnung der Entweich- und Absorptionswahrscheinlichkeiten
brechen wir die Entwicklungen im vorliegenden Fall schon

nach 2 Gliedern ab und erhalten

2

»_=Po (1 - e"X + ^ffp*'H(u, y) -®l%-du
o

* (Ç(7f)\ Min (2, v)
dnC n0c \^rUV~r( 2) f I 1\ *,ntt^ j^=;y! + (y' + Y)(l-p*')H0dude "V (0 (fällst 2) M4<L-2)

an der Stelle £* vy2/(l + vy), 0<*u<4.

(42)

(43)

Die geometrieabhängigen Faktoren G und _ sind proportional
den über die Kristallänge gemittelten Entweich- und
Absorptionswahrscheinlichkeiten für die Sekundärquanten. Bei scharfer Kolli-
mation, d.h. Einstrahlung nur auf der Achse eines zylindrischen
Kristalls vom Radius B und der Länge L, betragen sie

G0(u,y,L,B)

„—ti'A
1 — e 'h ; fur 0 < u < 1

JX +jx(u-l)
M'e-^-^ + M(u-Ve^ _ ,_„

p + fi(u-l)

(44)
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H0 (u, y,L,B) l- e-"L- G0 (u, y, L, B)

wobei zur Abkürzung die stetige Variable

L/(l — u) fürO<M<% l-
Bj-i/u(2-u), «.,<m<2 — ux

L/(u-l) 2-ux<u<2
eingeführt wurde.

Der in (42), (43) einzusetzende, bei der Absorption der Sekundärquanten

wirksame Photoanteil p*' ist kleiner als der für
Primärstrahlen bei der Energie y' unter idealer Kollimation geltende Photoanteil.

Die Abweichung ist am grössten bei u 1, während bei

23

(45)

(46)

MeV

2b

£3
<L> "O

tfl ^ C

Sglu« o>

m i C

I k-2ac- y cIII« »

* EU
8 8

_£_.
02 0,4 0.6 MeV

?¦ Elektronenenergie

Fig. 5.
Sukzessive Schranken bei der Berechnung der theoretischen Amplitudenverteilung

für y-Strahlen von 511 keV. L R 2 cm, ideale Kollimation.

u -> 0 oder 2 ähnliche geometrische Bedingungen wie für die
Primärstrahlen herrschen. Für Sekundärstrahlen mit u 1, die an
der Kristalloberfläche emittiert werden, wird die
Tertiär-Absorptionswahrscheinlichkeit nur rund die Hälfte des nach (44), (45) (für
y/(l + y) an Stelle von y, u' an Stelle von u) erhältlichen Wertes
erreichen. Mittelung über u' und über alle Kristallschichten ergibt
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einen zusätzlichen Faktor von etwa 1/4 für die bei p*' anzubringende

Korrektur. Wir haben daher

p" :PoVX u(2-u) [PoV)-Po(/)] (47)

in (42), (43) eingesetzt; der Index 0 bringt zum Ausdruck, dass —
bei fester Kristallgrösse — die p* für ideale Kollimation (d.h. r ->0,
vgl. § 6) konsistent sein sollen : die gemäss (47) in den Integranden
von (42) eingesetzten p* (y') müssen für y'-^-y stetig in den nach
der Integration mittels (11), (12) erhältlichen Wert p* (y) übergehen.

A /

-y>

i 1.5-

J"Q5
KURVE KRISTALL EINFÄLL COMPTON PHOTO

GROSSE OUANTEN STÖSSE STÖSSE

L=R n. ne "»
-?0 oo 93

0,5 cm 481 48
1 cm 250 30 STETS

2 cm 149 16 100

4 cm 113 7

—^ 00 102 2

y0.75
_^n,.100

oo 2S6

1278 142

558 92
270 52

154 26

105 5

r^200

n. n.
A oo 514

B 2493 273

C 1002 177

0 414 98
E 203 47
F 109 9

300r 400
MPULS AMPLITUDE

Fig. 6.

Theoretische Compton-Verteilungen für zylindrische NaI-Kristalle der Standard¬
form (L R). y-Energien 255, 383, 511 keV.

b) Ergebnisse für Kristalle mit L B.

Wir haben L B als Standardform gewählt und diesen Fall für
verschiedene Kristallgrössen (L 0,5; 1; 2; 4 cm) durchgerechnet.
Zunächst sind für y 0,25 die p*' von vornherein ziemlich genau
bekannt (> 90%), so dass man aus (42) sogleich p* (0,25) erhält.
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Für y 0,5 und anschliessend für immer höhere Energien bis y 2,5
haben wir jeweils das Schrankenverfahren durchgeführt, um die
effektiven Photoanteile zu bestimmen. Als Beispiel zeigt Fig. 5 die
nacheinander erhaltenen Amplitudenverteilungen im Falle y 1,

-. A

KURVE KRBTALL- EINFALL. COMPTON PHOTO

GRÖSSE QUANTEN STÖSSE STÖSS!

L-R n« r»t "»
A —- 0 oo 1263

B 0,5 cm 6010 588
C 1 cm 2103 354 STETS

'
1000 2 cm 736 189

E 4 cm 306 90
F —•- oo 117 17

100^"t

2190

10110

3340 522

1090 268

404

^»,¦«1
fZ£

3110

14680 1190

4640 669
1430 335

156500

1000

IMPULSAMPUTUOE

Fig. 7.

Theoretische Comptonverteilungen für zylindrische NaI-Kristalle der Standard¬
form (L R). 0,766, 1,022, 1,28 MeV.

L B 2 cm, unter Berücksichtigung einer experimentellen
Verbreiterung mit a 250/mc2 (vgl. § 3d). Ausgehend von den
gestrichelten Kurven:

la Primäreffekt (p0 16,3%, Sekundäreffekt vernachlässigt),
lb reine Photolinie (p0 100%, Sekundäreffekt überschätzt),

erhält man als neue Schranken die punktiert eingezeichneten Kurven :

2a minimale Sekundärbeiträge (p*' Po(y')> Tertiäreffekt
vernachlässigt),

2b maximale Sekundärbeiträge (p*'= 100%, Tertiäreffekt
überschätzt).
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Die beim nächsten Schritt erhältlichen Verteilungen :

3 a, b minimale bzw. maximale Tertiärbeitrage
unterscheiden sich hinsichtlich der Photospitzen nur noch um 10 %
voneinander; wir haben darum der Übersichtlichkeit halber nur
ihren Mittelwert eingezeichnet (Kurve 3).

%
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>». ^N.
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—- y -Energie (MeV)

Fig. 8.

Effektiver Photoanteil für zylindrische Kristalle der Standardform (L R).
Ideale Kollimation. Schlechte Kollimation.

Für 6 verschiedene y-Energien sind die Ergebnisse in den Fig. 6

und 7 mit der Kristallgrösse als Parameter dargestellt. Die hier
gewählte Verschmierungsbreite entspricht <x 500/mc2; falls das

experimentelle Auflösungsvermögen hiervon abweicht, so lässt sich
die relative Änderung der Kurvenform in der Nähe der Compton-
Kante mit Hilfe von Fig. 3 abschätzen (quantitativ gilt Fig. 3 nur
für den Primäreffekt). An Stelle der verbreiterten Photospitze haben
wir in Fig. 6 und 7 jeweils eine scharfe Linie eingezeichnet und da-
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für die Gesamtzahl der Photostösse angegeben (stets n*P 100), so
dass man bei bekannter Linienbreite die Maximalhöhe aus (22 a)
erhält.

Zur Erleichterung der Interpolation für andere y-Energien und
Kristallgrössen sind in Fig. 8 sämtliche berechneten p*-Werte zu-
sammengefasst (ausgezogene Kurven).

c) Kristalle verschiedener Formen.

Falls L Ar B, so kann man einen scheinbaren Kristallradius Betl
bestimmen, der beim Einsetzen in Fig. 8 den richtigen p*-Wert
liefert; z.B. wäre ~\]LB2 zu wählen, falls gleiches Volumen zweier
Kristalle dasselbe p* ergäbe. Numerische Rechnungen, bei welchen
wir (L/B) von 1 2 und L von 1 8 cm variierten, haben jedoch
gezeigt, dass

-Keff ^ y LH
geringere Fehler ergibt (< 5% in bezug auf p*), wenigstens bei der
Energie y 1, auf welche diese Untersuchung beschränkt war.

Kristalle der Form L 2 B, welche mit einer axialen Bohrung
von der Stirnseite bis zum Zentrum versehen sind (so dass in der
ersten Hälfte des Kristalls keine Primärquanten absorbiert oder
gestreut werden), liefern nach unseren Rechnungen bei y 1 keine
wesentliche Verbesserung des effektiven Photoanteils gegenüber
gleich grossen Kristallen ohne Bohrung.

§ 6. Kollimationskorrekturen.

Der Radius des y-Strahlenbündels in der Mittelebene des Kristalls
sei mit r bezeichnet. Bei praktischen Anwendungen lässt sich die in
§ 5 geforderte Voraussetzung r <^,B nur näherungsweise realisieren.
Exzentrischer Einfall der Primärstrahlung erhöht aber die mittlere
Entweichwahrscheinlichkeit der Streuquanten; die hierdurch
verursachte Verminderung des effektiven Photoanteils wird im
vorliegenden Abschnitt rechnerisch untersucht.

a) Effektiver Photoanteil bei schlechter Kollimation (r B).
Die ganze Stirnfläche des Kristalls wird gleichmässig von

achsenparallel einfallenden Primärquanten getroffen. Der Einfluss der
Exzentrizität ist für rechtwinklige Streuungen am grössten; für solche
Streuquanten (u 1), welche im Achsenabstand q erzeugt wurden,
beträgt die Entweichwahrscheinlichkeit (vgl. (44))

Ge(l,y,L,R) e~"'R[7°<**'e) + 27F7l^'e)] ' Mr Q<B
1-e~"L ]^-[l + I0(2/x'R)-L0(2/x'R)], lixTS R
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wobei I0, Ix modifizierte Bessel-Funktionen19) und L0 die modifizierte

Lommel-Webersche Funktion militer Ordnung20) bedeuten.
Eine bequeme Interpolationsformel, welche beide Extremfälle
befriedigend wiedergibt, lautet

1-e-ßL 2 L J v '

Mittelung über q 0 B und Einsetzen in (45) liefert

HR(l,y,L,B)^H,(l,y,L,B)[l-^{-^-^^)].
Da die Korrektur für u -> 0 oder 2 verschwindet, haben wir

HR(u,y,L,B)^H0(u,y,L,B) [l-^i?=_.(_L -—[—)] (49)
l 2 \,« _ß e^ ¦" —1 '1

an Stelle von iî0 in (42) eingesetzt, um den effektiven Photoanteil
ohne Kollimation zu berechnen. In diesem Falle wird, im Gegensatz

zu (47),
p*' pR(y')

gesetzt, was mit dem nach der Integration erhältlichen Wert pR(y)
konsistent sein muss, da sich beide auf gleichmässige Bestrahlung
(d.h. r B) beziehen. Die numerischen Ergebnisse sind punktiert
in Fig. 8 eingetragen.

b) Photoanteil-Korrektur als Funktion des Kollimationsradius.

Wird (48) nur von 0 r < B) gemittelt, so erhält man in grober

Näherung eine zu r2 proportionale Korrektur. Wir setzen daher

Pr^P*- (i)2(Po*-P„ (50)

um zwischen den aus Fig. 8 zu entnehmenden Grenzfällen r -> 0

und r -> B zu interpolieren.

c) Wirksamkeit zylindrischer Kollimatoren.

Für die in Fig. 9 skizzierte Anordnung berechnet man unter
Berücksichtigung der Durchlässigkeit des Kollimatormaterials den für
eine Strahlung mit dem Absorptionskoeffizienten piK wirksamen
Raumwinkel wie folgt:

arctg RHl-AI) t n ^
-PKQm=Q0+2n / Sina.-e *Vcosa sina/^;

arctg rjl
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wobei Q0 den geometrischen Raumwinkel bedeutet. Entwicklung
nach sin a und gliedweise Integration liefert, falls r0 < 0,3 l,

JX(ftTX(i + l(}f)x
x[Fx(y)~A2F2(y)+A3Fz(y)

mit den Integrationsgrenzen

(51)

y0=MKV!l2 + rt; yx fiK^i(l + Al)2 + B2

und den Abkürzungen

F„(y) y-2ney(y2n-x+l y2n~2+2\ y2n~ ¦(2n-iy)-Ei(y)
A2 (iiKr0) l)/24
As (MkUY^Mk 02- 5 A<** + 3)/2880

Absorber (Ja* Sn-»Messing) Al-Behätter

Kuhlgerass

Quelle^ \ \ \Pb-Kanal \
^?i —

ücht- Elektronen-

»ervielfacher

•Nai;

vmshaFÄ--r. _ Verstärker

Fig. 9.

Kollimator- und Kristallanordnung.

Für y < 15 wird Êï(y) den Tafeln von Jahnkb-Emde19) entnommen;

für grössere y gilt hinreichend genau

„ N (2m)! ,L 2» + l /.. 2m + 2 n ,\1
^n (2/) « ~2W «* [1 + —~ (1 + "y" (1 + j

Der Ausdruck (51) ist in Fig. 10 als Funktion der reduzierten
7? 7

Kanallänge piK l mit dem Parameter — • -jttäj aufgetragen ; er

hängt nur wenig von der Öffnung ab (ausgezogene Kurven für
r0/l <0,1, gestrichelte für r0/l 0,3). Die Genauigkeit der
Raumwinkelberechnung nach (51) wird im wesentlichen dadurch
begrenzt, dass — besonders bei höherer y-Energie — ein Teil der im
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Kollimator entstehenden Streustrahlung ebenfalls zum Detektor
gelangt (vgl. § 7d). Unterhalb 1 MeV ermöglichen die Kurven der
Fig. 10 sehr genaue absolute Intensitätsbestimmungen; ferner lässt
sich der in (50) einzusetzende effektive Bündelradius

daraus entnehmen.

l+Al]ßht
'°—r-y-a-

3\M0
Kurvenparameter

Kristatlradius -1.3

geomern Bundelradius

_ R I
U-JH

r. »4

t

5 10 15 20 25
•- ju l

Fig. 10.

Effektiver Raumwinkel zylindrischer Kollimatoren.

§ 7. Strahlungskorrekturen.

Selbst wenn das als Quelle verwendete Isotop nur y-Strahlen
einheitlicher Energie emittiert, so empfängt der Detektor praktisch
stets auch gewisse Quanten anderer Energie. Die Verwendung des

Kollimatorsystems (Fig. 9) ermöglicht eine einfache Berechnung der
Streustrahlung aus Quelle und Lichtleiter, da Streustrahlung aus der
seitlichen Umgebung des Detektors vermieden wird. Weitere
Korrekturen ähnlicher Art (vgl. § le, d, e) werden anschliessend kurz
abgeschätzt.

a) Streustrahlung aus der Quelle.

Bei dünnen Quellen, die sich zur Ausmessung von /8-Spektren
eignen, ist die elektromagnetische Streustrahlung im allgemeinen
zu vernachlässigen. In den Fällen, wo wir aus Intensitätsgründen
zur Verwendung dicker Quellen gezwungen waren, haben wir das
radioaktive Material in einen zylindrischen Hohlraum am Ende
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eines Kunstharzstabes eingefüllt. Um bei Positronenstrahlern das

ß+ :y-Verhältnis auswerten zu können, haben wir jeweils die Wandstärke

des Quellenträgers allseitig mindestens gleich der Positronenreichweite

gewählt.
Zur Abschätzung der bei dieser Anordnung entstehenden

Streustrahlung denken wir uns di« Quelle zunächst in einen Punkt auf
der Achse konzentriert (Fig. 11). Die Anzahl Streuquanten der Ener-

Blei

in t/t<( fr itet/t/rr-r'//"""""'"""" "X"

2r, ^-^/"^-/^-''V-/^-»-
¦r

-—tf zum
Detektor

7777;/////7T7y7T7ry /111/11111/11//////11/111/1
Blei

Fig. 11.

Berechnung der Streustrahlung aus dem Quellenhalter.

gie y'...y'+dy', welche aus dem ganzen Stab in Richtung des

Detektors (Raumwinkel ü'<^ 1) emittiert werden, ergibt sich aus
(3), (4), (18) an der Stelle y'= y/(l + uy) zu:

wobei
-^o|^^U-<XX (62)

ßx= Mx + m'x(u~1)

ld/(l-u), für 0 <u<ux l-d/\/rl+d2
{ r0 /]/u(2- u), ux < u < 2

n0 ist die Anzahl Primärquanten, welche in derselben Zeit den
Detektor (Raumwinkel ü) erreichen; cx, ux, pix entsprechen den für
Nal mit e, pi, pi bezeichneten Koeffizienten. Für einen Quellenhalter

aus Plexiglas (cx 0,096 cm-1) von r 4 mm Radius haben
wir den Ausdruck (52), abgesehen von dem von der Kollimatorlänge
abhängigen Faktor Q'/Q, in Fig. 12 graphisch dargestellt.

Ist die axiale Ausdehnung der Quelle nicht zu vernachlässigen,
so zerlegt man sie in mehrere Schichten (d Abstand von der
Austrittsfläche) und superponiert die zu den verschiedenen d-Werten
gehörigen Teilspektren. Für d -> 0, d.h. für dünne Quelle auf dickem
Träger, reduziert sich der Effekt auf eine „Rückstreulinie" ähnlich
der in § 7b beschriebenen Art (schraffierte Flächen in Fig. 12).
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b) Streustrahlung aus dem Lichtleiter (Koeffizienten c2, pi2, pi2).

Zählt man die Koordinate x in Richtung des Primärstrahls von
der Grenzfläche Kristall-Lichtleiter aus (Fig. 13), so werden von
der Schicht x x + dx

n0c2e~flL-'''x- 0{u'y)
(l + uy)2

dxdu

Streuquanten in das Raumwinkelelement 2n du emittiert. Für
x < B(u — 1)/(/m (2 — u) und u > 1 treffen diese Streuquanten,
geschwächt um den Faktor e~//2'a:/(M~1>, den Kristall und erzeugen darin

Me\r ÌT=0,5Cmc*l

^N.o-\\\¦oro

-iE
0.3 MeV«Tö

r=i-l
B mm

0.6 MeV

r=2
0,12

0 2 4 6 8 mm
0.0E-

0.04-

I I I I

0,4 0,8 1,2 MeV

—?- Energie der Streuquanten.

Fig. 12.

Streustrahlungsspektren für verschiedene Schichten (d) einer in Plexiglas
(Radius 4 mm) eingebetteten dicken Quelle.

mit der Wahrscheinlichkeit 1 — e-^1' Szintillationen (V hängt von
x, u, L, B ab). Die Gesamtzahl der von Streuquanten der Energie
y'... y' + dy' erzeugten Szintillationen ergibt sich, unter Beachtung
von y2 du — (1 + uy)2 dy', zu

~ 4^ w° J2e~"L-y-H2 (u> y> Geometrie) (53)

wobei

H2 pi2j e-& */("-1) (1 - e-"r) dx

ß2 pi2 (u - 1) + ß2.

(54)
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Insbesondere gilt für sehr langen Lichtleiter

„ r „/.-/3,ij/7«<2-"ü)
H2 œ (u -1) -£- 1 - e-«*> + FF - (1 _ eow>A2)

ft L Pi M

33

mit A2

'
R/]/u(2-u), für 1< m<«2 1+L/)/L2 + R2

,L/(u-l), u2<u<2.

(54a)

Das Streustrahlungsspektrum (53) umfasst den Bereich y/(l + 2 y)
<y' <y/(l + y), hat aber ein derart ausgeprägtes Maximum an

t//AUH///* 1/ ^**\ / A\
/ /\-^( / T
; /" X ¦"Y/1" > j' yk^ 2R

/ /
'r H- '. /*.' /', A
/ Nal Ï Plexiglas
////SS/////.

' i

• X ¦

Fig. 13.

Berechnung der Streustrahlung aus dem Lichtleiter.

der unteren Grenze, dass die ganze Verteilung praktisch durch eine
Linie der Energie

7 (55)yf 1+1,87

ersetzt werden kann. Die dieser „Rückstreulinie" zugeordnete
gesamte Stosszahl

n, n0-^eMi
-liL @(u,y)

(1 + üy)2
H0 ^du

ist in Fig. 14 als Bruchteil der von der Primärstrahlung direkt
ausgelösten Gesamtstosszahl

,~liL\nA »„(!¦

aufgetragen. Zur Interpolation zwischen den verschiedenen
Kristallgeometrien (Fig. 14a, b) beachte man, dass der Ordinatenmass-
stab proportional B/L variiert. Bei endlicher Länge des Lichtleiters
wird nL/nA etwas kleiner (z. B. je nach Primärenergie um 10... 25 %,
falls Lichtleiterlänge Kristallänge L(= B)).

Um zu einer experimentell bestimmten Photolinie von n*P Stös-
sen die von der experimentellen Compton-Verteilung abzuziehende
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Lichtleiterkorrektur nL mit Hilfe von Fig. 14 zu berechnen, hat
man n*P - nL/nA durch den für die jeweilige Kristallgeometrie geltenden

effektiven Photoanteil p* (Fig. 8) zu dividieren*). Bei der
Aufteilung von nL in Compton-Kontinuum und Photospitze ist letztere
wegen der niedrigen Energie (55) stets bevorzugt.

_

_

05

a /¦ L R _

\.^" V

cm

b
ST"^——-

L R

L ^~-- 2 1

2

OS^""~
1 / ^ 8

cm
4

cm

OS 1

— hv
1,5 MeV

Fig. 14.

Streustrahlung aus oo langem Lichtleiter bei idealer Kollimation der
Primärstrahlen. Kristallformen: a) L R; b) L 2R.

c) Paarerzeugung.
Je nach Kristallgrösse gehen vorzugsweise 1,02 oder 0,51 oder

0 MeV an Quantenenergie verloren. Bei gleichmässiger Verteilung
der Positronen längs der Kristallachse beträgt die mittlere
Entweichwahrscheinlichkeit für ein Annihilationsquant:

i i
WE= I e-"3;'dM + X_|X_ fri-ujCl+pi^e-to^du] (56)

M-0
' '

u'-O

wobei u3 Schwächungskoeffizient des Szintillationskristalls für
y l ' L/(l-u), für 0<u <u3~l-L/\/L2+R2

Rj (/tt(2-tt), w3 < u < 1.

*) In der vorläufigen Mitteilung6) haben wir direkt nL/np graphisch dargestellt,
wobei aber die Variation von p* mit dem Kollimationsradius nicht berücksichtigt

ist.
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Für Kristalle der Standardform (L B) gilt auf 2% genau, auch
in bezug auf (1 — WE) :

_ f (1+0,05z2)e-°.'5z, für z=p3L<l,SWvm\ w (öl)h I 0,495/(z-0,2), z>l,8 J
v '

Die Wahrscheinlichkeiten für Energieabgabe von keinem, nur einem
oder beiden Annihilationsquanten betragen :

W0 W2; WX 2WE(1-WE); W2 (1 -WE)2.

Die Paarerzeugung liefert somit folgende Beiträge an das Szintilla-
tionsspektrum :

Bei der Energie die relative Stosszahl

e* y (Photolinie) (1 - WE)2 p*2 (58a)

y - 1 <e* < y-0,33a) (1 - wj)2 2 p* (1 - p*) (58b)

y -2 <e* < y-0,67») (1 4- WE)2 (1 - p*)2 (58c)
e* y - 1 (1. Nebenlinie) 2 (1 - WE) WE p* (58d)

y - 2 < e* < y - l,33a) 2 (1 - WE) WE (1 - p*) (58e)
e* y - 2 (2. Nebenlinie) TF^

_
(58 f)

a) Annähernd gleichmässig verteilt. Summe — 1

b) Maximum bei y - 1,33.

Die Energieverteilung (58) hängt nur von der Kristallgeometrie
ab und ist in Fig. 15 für verschiedene Kristallradien (B L,
Primärstrahl kollimiert) dargestellt; p* haben wir jeweils aus Fig. 8

(für y 1, ohne Kollimation) entnommen. Campbell und Boylb7)
fanden kürzlich nach einer anderen Berechnungsmethode Kurven
von ähnlichem Verlauf. Um die entsprechenden Stosszahlen als
Bruchteile der Gesamtzahl nA im Kristall absorbierter oder gestreuter

Primärquanten zu berechnen, hat man die Ordinaten von Fig. 15
mit dem Verhältnis nPP/nA ßPPj(ptP + fiç. + ptFP) zu multiplizieren,

welches für Nal z.B. bei

y 2,5 3 4 5 6 (mc2)
nPP/nA=0,A 1,6 5,7 11 17%

beträgt. Unterhalb 1,5 MeV ist daher die Erhöhung des effektiven
Photoanteils durch den Beitrag (58 a) unmessbar klein. Für die
2,76-MeV-Strahlung von Na24 kommen jedoch die Linien bei y,y — 1,

y — 2 in den von Hofstadter21) (YrL <=» 1 cm), und von Borkow-
ski und Clark22) (YbL 2,2 und 5,4 cm) gemessenen Stossver-
teilungen deutlich zum Vorschein, und die Intensitätsverhältnisse
entsprechen recht genau den theoretischen Erwartungen nach
Fig. 15. Als effektive Photoanteile (Linie bei y 5,4) findet man
aus den experimentellen Kurven21)22) etwa 0,08, 0,12 und 0,28,
wovon nach (58a) nur die relativ kleinen Beiträge < 10-3, bzw.
1 • 10~3 bzw. 0,018 von der Paarerzeugung herrühren. Der Rest



36 D. Maeder, R. Müller und V. Wintersteiger.

stimmt annähernd mit den nach § 5 ohne Berücksichtigung der
Paarerzeugung abgeschätzten p*-Werten für die 3 Kristallgrössen
1 cm, 2 cm und 5 cm überein, wenn man p0 bei y 5,4 zu 2%
annimmt.

0.4

0.3

0.2

0.1

0

1 dnpp
np, d£*

0.4

il

a
0,622 o.™ 0|005

- L R -

- 1 cm f A -

- \ -

-

J v. -

b
0,395 0.216 0,030

- 2 cm f~\ -

- \ -

-

1 X " \ -

C
0.113 0,310 0213

- -

- 5 cm

^_^ -

- r\ \ -

-

J \j v -

r? r- ' r— e"
Fig. 15.

Beitrag der Paarerzeugung an das Szintülationsspektrum. Die Linien sind ohne

experimentelle Verbreiterung eingezeichnet; an Stelle ihrer Höhe ist der in jeder
Komponente enthaltene Anteil von nPP angeschrieben.

d) Streustrahlung aus dem Kollimator.

1. Bei niedriger Energie absorbiert eine dünne Schicht an der
Oberfläche des Kollimators praktisch die gesamte auftreffende
Primärstrahlung. Die anschliessend emittierten Röntgenstrahlen
erreichen unter Umständen zu einem merklichen Teil den Detektor.
Durch Auskleiden des Kollimators mit aufeinanderfolgenden Schichten

von z. B. „ TO ^0,1 mm Ta (pi 149 cm-1 für Pb—K^)
+ 0,2 mm Sn (p 52 cm"1 für Ta—K«)
+ 0,1 mm Messing (p 148 cm"1 für Sn—Kx)

lässt sich diese weiche Sekundärstrahlung aber leicht eliminieren.
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2. Bei hoher Primärenergie enthält das vom Kollimator herrührende

Streuspektrum auch harte Komponenten. Da dieser Effekt
in komplizierter Weise von der gesamten geometrischen Anordnung
abhängt, haben wir die Anzahl dnK der als Folge einfacher Compton-
Prozesse den Detektor erreichenden Streuquanten der Energie y'...
y'+ dy' nur für einen einzelnen Spezialfall numerisch abgeschätzt:
Zn65 (y 2,18), l 70 mm, AI 12 mm, r rs B L 5 mm, 6
verschiedene y'-Werte zwischen 0,9 2,1. Dem in Fig. 16a dargestellten

Ergebnis messen wir wegen der in der Berechnung gemachten

J_ dnm.,K

n. dy-'

na d£'

_1_ _dr£
n« de*

(1,00)

Kollimator
Lichtleiter

Quelle

1 dno.L.i

Flache* 0 16 0,005

?-E

Flache »0.92

-»-E*

Fig. 16.

Streustrahlung bei einer Messung von Zn65 (1,11 MeV-Komponente). a) Zahl der
einfallenden Streuquanten (n0 Anzahl einfallender Primärquanten), b) Vom
Streuspektrum erzeugte Szintillationen. c) Von der Primärstrahlung erzeugte Szin¬

tillationen (nA Anzahl absorbierter oder gestreuter Primärquanten).

Vereinfachungen nur grössenordnungsmässige Bedeutung bei. In
dieselbe Figur sind auch die für die verwendete dicke Quelle (d
2 8 mm) und für den Lichtleiter berechneten Streuspektren
eingetragen. Bei der Umrechnung auf die Amplitudenverteilung (Fig.
16b) geht die im Kollimatorspektrum bei y' «* 2,0 vorhandene
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Spitze wegen des starken Überwiegens der Compton-Verteilungen
verloren.

Um die praktische Auswirkung dieser Korrekturen zu
veranschaulichen, ist im gleichen Maßstab in Fig. 16 c die für monochromatische

1,11-MeV-Strahlung berechnete Amplitudenverteilung
aufgetragen. In dem hier gewählten Beispiel treten die Streueffekte
besonders deutlich hervor, weil eine dicke Quelle, ein Kollimator
verhältnismässig grosser Öffnung und ein ziemlich kleiner Kristall
benützt wurden.

e) Bremsstrahlungs- und Beichiveitekorrekturen.

Bei grosser Primärenergie ist unsere Voraussetzung, dass die Szin-
tillationsamplituden proportional e* seien (§ 2 b), nicht mehr
erfüllt. Einerseits verliert ein schnelles Elektron gelegentlich grosse
Energiebeträge durch Bremsstrahlung, anderseits werden sich die
in einer Randzone ausgelösten Elektronen nicht innerhalb des
Kristalls totlaufen. In beiden Fällen ist nur ein Bruchteil von e* zur
Lumineszenzerregung verfügbar.

Für das in § 7d behandelte Beispiel sind, wegen der kleinen
Kristallabmessungen, auch diese Korrekturen besonders gross ; eine
numerische Allschätzung zeigt, dass von 100 Elektronen mit 1,11 MeV
Anfangsenergie etwa

4 Bremsstrahlungsverluste > 100 keV
13 Reichweiteverluste > 100 keV

erleiden. Somit würden 17% der primären Photoelektronen
Szintillationen erzeugen, welche experimentell in die Compton-Verteilung

fallen. Wegen der Beiträge von Sekundärelektronen geringerer
Energie an die scheinbare Photolinie würde sich der effektive Photoanteil

p* aber nur um etwa 11% verkleinern.

§ 8. Experimenteller Teil.

a) Messmethode.

In die in Fig. 9 dargestellte Messanordnung wurden NaI(Tl)-Kri-
stalle verschiedener Grösse und Form eingesetzt. Die am Ausgang
einer Photoröhre des Typs 5819 entstehenden Impulse wurden etwa
104fach nachverstärkt und auf die Speicherschaltung eines kürzlich
fertiggestellten photographischen Impulsspektrographen23) geleitet.
In der neuen Apparatur ist der früher verwendete optische
Graukeil10) durch eine exponentielle Zeitablenkung ersetzt, so dass man
eine im wesentlichen lineare Intensitätsskala erhält24). Die Inten-



Über die Linienform monochromatischer y- Strahlungen. 39

sitäten werden überdies bei jeder Aufnahme noch in 3 Bereichen
des Spektrums durch Zählwerke mit 64fachen Untersetzern
mitregistriert. Durch Kombination der photographischen Kurve mit
den Zählwerkangaben können die absoluten Stosszahlen an jeder
Stelle des Spektrums auf etwa 5% genau interpoliert werden. Die
einer einzelnen Photolinie zugeordnete Stosszahl lässt sich aber noch

genauer bestimmen, wenn man die Verstärkung so wählt, dass einer
der Zählwerkkanäle gerade die gesuchte Linie umfasst, wobei aus
der photographischen Verteilungskurve nur die kleinen Beiträge
der seitlichen Ausläufer interpoliert werden müssen. 2 Aufnahmen

1248 433 43(1 298 429

Eich-
marken

Stosszahlen in
den Zählkanälen

Fig. 17.

Impulsspektrogramme der 662-keV-Strahlung von Cs137 (dünne Quelle, Kolli-
mationsradius r 4,5 mm). NaI-Kristalle der Grösse : a) R L 0,5 cm;

b) R (sa L sa 2 cm.

dieser Art sind in Fig. 17 in der Gradation der Originalplatten
(d.h. weich kopiert) wiedergegeben; hier sind auch die durch künstliche

Impulse genau messbarer Amplitude erzeugten, nach unten
versetzten Eichmarken zu erkennen, welche die Grenzen der
Zählwerkkanäle angeben.

Die Auswertung besteht aus folgenden Schritten :

1. Die Kurve konstanter Standardschwärzung (d.h. auf einer
harten Kopie die Schwarz-Weiss-Kontur) wird mit Hilfe einer festen
Eichkurvenschar so entzerrt, dass die Flächen in den 3 Zählkanälen
genau proportional den registrierten Stosszahlen werden.

2. Abzug des Nulleffektes.
3. Abzug der Streustrahlungen nach § 7a, b.

4. Extrapolation der Compton-Fläche bis zur Energie 0.

5. Graphische Zerlegung in Photospitze und Compton-Verteilung ;

Bestimmung von p* als Fiächenverhältnis.
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b) Ergebnisse: Form der Compton-Verteilung.
Die Spektren von Fig. 17 sind mit den theoretischen Kurven

(Fig. 6 und 7, zu interpolieren zwischen y 1 und y 1,5) zu
vergleichen. Nach Abzug des Nulleffektes und der Streustrahlung aus
dem Lichtleiter stimmen die experimentellen mit den theoretischen
Verteilungen gut überein, falls man die zusätzliche Verbreiterung
infolge der geringeren Elektronenausbeute unserer Photoröhren
(oc 300/mc2, anstatt 500/mc2) berücksichtigt. Die experimentellen
Spektren enthalten im allgemeinen etwas mehr Stösse (bis zu 3%
der gesamten Compton-Fläche) oberhalb der theoretischen Compton-
Kante, was sich wohl durch die sehr summarische Behandlung der
Tertiärquanten in den Berechnungen von § 5 erklärt.

c) Effektiver Photoanteil.

Für eine Reihe von y-Energien und Kristallgrössen sind
experimentell bestimmte p*-Werte bereits in Tabelle 1 zusammengestellt.
In diesen Fällen war der wirksame Bündelradius r f=m B/2, so dass
die experimentellen Punkte jeweils zwischen den entsprechenden
ausgezogenen und punktierten Kurven in Fig. 8 liegen sollten. Da
die theoretischen Kurven nicht für alle experimentellen B-Werte
berechnet sind, benützen wir für genauere Vergleiche eine Darstellung,

wie sie z.B. für den Fall y 1,3 in Fig. 18 gegeben wird: Im
rechten Feld sind die theoretischen pl (ideale Kollimation) und pR
(keine Kollimation) als Funktion des Kristallradius B aufgetragen.
Zu jeder experimentell untersuchten Kristallgrösse haben wir im
linken Feld die Kurve für p* nach (50) konstruiert und die bei
verschieden starker Kollimation gemessenen p*-Werte eingetragen.
Man erkennt, dass die Berücksichtigung der r-Abhängigkeit nach
dem Ansatz (50) die Variation der experimentellen Punkte einiger-

massen vernünftig wiedergibt. Man kann daher die Messergebnisse
recht genau auf den Fall idealer Kollimation extrapolieren und mit
den theoretischen p*-Werten vergleichen. Dabei zeigt sich, dass
— besonders für y 2,2 — die experimentellen Daten im allgemeinen

tiefer liegen (vgl. § 8e).
Weitere p*-Werte haben wir aus den von Engelkemeir

(unveröffentlicht, zitiert in 5)) sowie von anderen Autoren*)22) gemessenen
Amplitudenverteilungen entnommen und ebenfalls in Fig. 18

eingetragen. Die Übereinstimmung mit unseren theoretischen Kurven
ist im allgemeinen besser als man angesichts der teilweise stark
abweichenden Kollimator- und Kristallformen a priori erwarten darf.

*) Wir danken insbesondere den Herren Drs. G. Hinb (Mass. Inst. Technol.),
I. R. Prescott (Oxford), A. H. Wapstea (Amsterdam) und P. R. Bell (Oak Ridge)
für die freundliche Zusendung unveröffentlichter Messresultate.
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d) Ansprechwahrscheinlichkeiten.

1. Zwei dünne Quellen von Au198 und Cs137 wurden im Rahmen
einer separaten Arbeit25) mittels Zählrohrmethoden absolut geeicht.
Anderseits haben wir aus Szintillationsmessungen (bis zur Energie 0

extrapolierte Gesamtstosszahl, Abzug 1% für die harten Komponenten

beim Au198) mit Kristallen der Schichtdicken L 12,4 und

137Cso Kristall Nr. ® 661 kev
Theoretische Photoanteile
für zylindrische Nal-Knstalle

Po (ideale Kollimation)

p 5 (schlechte Kollimation)
r BORKOWSKI um CLARK; -|
IBELL &atx25AmnU

» ENGEL.KEMEIRC3tfx12.7him)

* WAPSTRA(15xT7.5x13mm'j

BOA C 120mm eBELL

BORKOWSKI und CLARK
(76 «x 76mm)

BORKOWSKI »CLARK

BELL

u ENGELKEMER' /

n
WAPSTRA

©© ®

114 02 0 1 2 3 4

/LR
'

(cm)

Pig. 18.

Experimentelle und theoretische Photoanteile für y 1,295, unter
Berücksichtigung der Kollimationskorrektur.

22 mm bei sehr verschiedenen Kollimatoreinstellungen jeweils die
absolute Anzahl der emittierten y-Quanten rechnerisch mit Hilfe
von Fig. 1 und 10 ermittelt. Die Ergebnisse entsprechen, innerhalb
der Eich- und Messfehler von zusammen 10%, den nach den
Zerfallsschemata26) zu erwartenden Bruchteilen von 95% (Au198) bzw.
87%, (Cs137) der Anzahl ß-Zeriälle. Damit ist gezeigt, dass man bei



4.2 D. Maeder, R. Müller und V. Wintersteiger.

Verwendung geeigneter Kollimatoren mit dem Szintillationsspek-
trographen Absolutmessungen ohne Zuhilfenahme geeichter
Präparate auf 10% genau durchführen kann.

2. Die Verhältnisse der Ansprechwahrscheinlichkeiten bei 0,51
MeV und gewissen anderen y-Energien haben wir durch Messungen
mit Positronenstrahlern geprüft. Nimmt man die aus Fig. 1

entnommenen theoretischen Werte an, so ergibt die graphische
Zerlegung der gemessenen Spektren für

Xa22*): N0;51:N1]28MeV=l,77 ±0,10
Zn65 : A'0i51 : NXM MeV 0,064 ± 0,010
Cd107: JV0'B1:^0'85MeV=l,32 ±0,10.

Im Falle des Na22 ist die Übereinstimmung mit dem nach dem
neuen Zerfallsschema27) zu erwartenden Verhältnis 1,82 ausgezeichnet.

Für Zn65 und Cd107 sind die aus den Literaturangaben 26)

berechneten Werte 0,11 bzw. 1,5 wahrscheinlich zu gross.
3. Wir haben einige komplexe Spektren auf Grund der berechneten

Linienformen quantitativ zerlegt, wobei es sich als nützlich
erwies, die meist stark überwiegenden weichen Komponenten mittels

Pb-Absorber (±Ta± Sn± Messing) abzuschwächen. Der effektive

Schwächungskoeffizient wurde

Metf=M~ -nCm

gesetzt, wobei c 0,67 cm-1 für Pb, co Raumwinkel des Absorbers

(sowohl von der Quelle als auch vom Kristall aus gesehen). In
Zusammenarbeit mit A. Mtjkherjee und P. Preiswerk28) (Ga67)
und IL Albers-Sciioexberc-**) (In114) erhielten wir bei

Ga67:

In114:

Au198:

-^90+92 :Xsu _0Ü: -"300 : -^390keV — 100:55 :39:5
^0.55 :^(>,72 :^l,27MeV 100:80 : 4

^0,41 :X,68 : A 1,09 MeV 100: 1,3: 0,25

Die Literaturwerte26) dieser Verhältnisse streuen stark. Unsere
Ergebnisse für Ga67 bzw. In114 sind am ehesten mit denjenigen von
Meyerhof et al.29), bzw. Mei et al.30) verträglich, wobei wir die
Unsicherheit unserer Zerlegungen auf ±15% schätzen. Für Au198
stimmen unsere Resultate gut mit den von Cavanagii et al.31) und
von Hubert32) gefundenen überein.

*) Herrn Prof. Dr. C. J. Barker (Amsterdam) danken wir herzlich für die
Herstellung dieser Quelle.

**) Unveröffentlicht.



Über die Linienform monochromatischer y- Strahlungen. 43

e) Primäre Photoabsorption in Nal(Tl) bei 1,1 MeV.

Die Extrapolation auf den primären Photoanteil (p* -> p0 für
B -> 0) erfolgt am zuverlässigsten mit Hilfe des berechneten
Verlaufes p*0 (B) oder pR(B), welche beide z.B. für y 1,3 in Fig. 18

dargestellt sind. Für y 2,2 liegen aber die experimentellen p*-Werte
allgemein merklich tiefer als die berechneten Kurven, was darauf
hinzudeuten scheint, dass p0 bei dieser Energie noch kleiner als der
in Tabelle 2 eingeführte Mittelwert aus 12) und 14) wäre. Da die
Extrapolation besonders empfindlich von den Messpunkten mit
B -> 0 abhängt, aber gerade bei sehr kleinen Kristallen einige
normalerweise nicht berücksichtigte Korrekturen wesentlich werden,
haben wir diese in § 7d, e für einen speziellen Fall theoretisch
abgeschätzt. Eine Messung von insgesamt 123000 Stössen ergab nP
7450 ± 200 Stösse in der 1,11-MeV-Photolinie. Nach den üblichen
Korrekturen (+ Anc — nQ — nL) ist noch der Beitrag der
Annihilationsstrahlung (11000 ± 3000 Stösse) abzuziehen, so dass die der
1,11-MeV-Komponente zugeordnete Gesamtstosszahl nA 114000
± 4000 und der effektive Photoanteil p* n*P : nx (6,5 ± 0,3) %
betragen würde. Berücksichtigung der zusätzlichen Korrekturen
nach § 7d, e würde p* auf

PeV, korrig. (LI MeV, B L 5 mm, r 4,7 mm) (8,1 ± 0,5)%

erhöhen, was nun praktisch mit dem entsprechenden berechneten
Wert pR 8,2% (vgl. Fig. 8) zusammenfällt. Bei Berücksichtigung
der zuletzt erwähnten Korrekturen scheinen daher die wahren p0-
Werte recht gut mit dem für Tabelle 2 gemachten Ansatz
übereinzustimmen. Um die Diskrepanz gegenüber den theoretischen
Photoquerschnitten nach Hulme et al.8) abzuklären, wäre vor allem eine
wesentlich genauere Untersuchung der Kollimatorstreuung
erforderlich.

Herrn Prof. Dr. P. Scherrer möchten wir für die Unterstützung
dieser Arbeit unseren herzlichen Dank aussprechen. Dr. H. Mähly
hat uns nützliche Anregungen für die numerische Auswertung der
Integrale in § 4 gegeben; ferner sind wir Herrn W. Beusch für die
Ausführung vieler Kontrollrechnungen zu grossem Dank
verpflichtet.
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