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The Measurement of Nuclear Moments of Excited States

by Angular Correlation Methods. I
by Kurt Alder

C.E.R.N., European Council for Nuclear Research, Theoretical Study Group at the
Institut for Theoretical Physics, University of Copenhagen,

H. Albers-Sehénberg, Ernst Heer and T.B. Novey¥)
Swiss Federal Institute of Technology, Ziirich.

(14. VIIT. 1953.)

Summary. It is shown that angular correlation measurements arc well suited
for the determination of the magnetic moment and the electric quadrupole coupling
in short lived excited states. Formulae and graphs are given for various experi-
mental arrangements and spin values between 1 and 7/2. The influence of finite
resolving time and delayed coincidence measurements is discussed. Sample calcula-
tions are made for the well known case of Cd1.

Introduction.

For the study of nuclear structure and to aid in decision between
different nuclear models it is of importance to obtain information
about the different nuclear moments. These — the angular momen-
tum, the magnetic moment and the electric quadrupole moment —
can be obtained for stable nuclei by well known methods such as
optical spectroscopy and nuclear resonance. These methods are
applicable with limitations for long lived isomers but are inadequate
for short lived excited states. The spin of such excited levels can be
determined by the methods of nuclear spectroscopy (nuclear reac-
tions, B and y spectroscopy). Angular correlation measurement is
an especially helpful tool provided that it is not influenced by extra
nuclear fields. The investigation of such an influence gives on the
other hand information concerning the nuclear moments. DEuTscu!?)
first pointed out that the magnetic moment of an excited state can
be determined by measuring the angular correlation as a function

*) U.S.A. National Science Foundation postdoctoral fellow, on leave from

Argonne National Laboratory.
P
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of an external magnetic field. This experiment has been carried out
by the Ziirich group?)®) in the case of the first excited state of
Cd11l, Recently the same group has shown?)%)13) that the electric
quadrupole interaction can be investigated by analogous experi-
ments. By embedding the active atoms in crystals they measured
the quadrupole coupling for the same level of Cd1.

The theoretical base of the experiments was given in an earlier
paper®). The there used formalism is very general and an explicite
formula is given only for one special case. Therefore it was considered
to be worth while to collect the formulae for various experimental
arrangements for the determination of magnetic and electric nuclear
moments. The sensitivity of different proposed methods will be
especially discussed.

When the angular correlation is measured between two nuclear
radiations which are emitted successively, the correlation function

w (ﬁl, ILc;) 15 defined as the relative probability for the emission of
the first radiation in the direction k,; and the second radiation in the

direction k,. Any undisturbed correlation function can be expressed
as a serles in even Legendre polynomials:

W(0) = 3 Ay, Py(cos O) (1)

where @ is the angle between k; and k,. The coefficients 4, depend
on the type of the two radiations and on the spins (and parities) of
the three levels involved. They are tabulated for nearly all interest-
Ing cases?)12)15)16)_

In this paper we will restrict ourselves to the important case of
unpolarized y—y correlation. In the last section some other possible
correlation experiments will be discussed. While no other restric-
tions are made on the formulae, numerical tables will be given for
cases involving no higher multipole orders than quadrupole.

Formula (1) for the correlation function may be completely
changed if extra nuclear fields act during the lifetime 7 of the inter-
mediate state. To have a measurable influence the interaction
energy AK must be of the order %/t. The available field strengths
restrict the measurement to cases where 7 1s longer than about
10-? sec. In the next section we will derive a general formula for
the influenced correlation function. This influence depends on the
geometry of the experimental arrangement and on attenuation
factors G which describe the mechanism of the interaction. We will
restrict ourselves to fields with axial symmetry. The magnetic
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moment may be determined from its interaction with any magnetic
field. The simplest experimental procedure is to apply an external
magnetic field and to measure the correlation as a function of the
field strength. For an analogous measurement of the electric qua-
drupole moment no sufficient field gradients are available. One may
however use the highly inhomogeneous fields in crystals. According
to the previously mentioned restriction our theory will be applicable
only for crystals with axial symmetry*).

General Theory.

For the base of the theory we refer to an earlier paper by one of

s%). The here used notation is in general the same. By I, I, I, we
denote the spins of the three levels involved and by L;, L," and
Ly, L," the multipole orders of the (in general mixed) first and
second radiation.

For the correlation function, i.e. the relative probability for

emission of the two quanta in the direction 1—;1, E; we write:

= 2 (Alfﬂlle B, IHz]Op) llHIIB er(t IH2|O (2)

lpmm’

Because of the finite lifetime 7 of the intermediate state we write
for the wavefunction B,,(Z, ?):

Bo(@, 1) = Bp() diomte=t27; Im gy (3)

Introducing this expression in the preceding formula, we get:

—

W(ky, oy §) = 3 (Ai] Hy| By) (B | Hy|Cy) (4| Hy| By (B | Hy | C,)*

lpmm’

¥ g-Llr—i(op—om)]t (4)

W(la, . t) is then the correlation between the radiations when
only particles with a fixed delay ¢ between the first and the second

*) Axial symmetry of the field in this connection means that the tensor ellipsoid
of 02V [0x; 0x;, is rotational symmetric.
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particle are detected. By integrating over ¢ from 0 to oo we get
GoertzEL’s formulal?):

—  —

W (ky o) fW iy, oy, 1) dit

= 2, (4,|Hy|B,) (B m]Hzl(Jp 4,|Hy| B,,)* (B, |Hs| Cy)*
D mm 1
o (5)

1-#w,—w, )T

In practise one may cut off quanta with too short or too long a
delay. We can describe this cut off by a function {(f) which gives
the probability for the detection of the two particles with a delay t.
We write the integral :

o0
[ ——

fc(t) et d
0

The function H (x,,,) is calculated in a later section of this paper
for a number of interesting cases. By introducing the abbreviation
Ly, mr = (Wm— W) T we have the generalized formula of GOERTZEL
in the following form:

Wk, ko) = Y (Ay|Hy| By) (B [Hy| Cy) (4 |Hy| B,,)* (B, [Hs| C,)*

Ipmm’

_ Hil[{wy— on) 7]
T l—i(w,—w,) T (6)

x Hilowm) (M)

g £
Lif e

The method of the Racam algebra can now be applied. For an
unpolarized arbitrary correlation we get then:
W (ky, boy) = X7 It IT% [T T L Y () - Y8 (k). (8
(oo = X it ety V) Y- @)
u
The abbreviations I, I1, II1T have the same meaning as in reference?):

IM = Y2k +1 ) oy aq (—1)"T W(I 1y ky Ly [ Ly 1)

L LY

X Z{CL M L/ — Fiﬂ}i (0) (_I)LI_M} ’

=12k +1 )] By, B, (1) T W(I I ky Ly /Ly I)

L, Ly

* 208w FEY, (O (1,573,
CIm CIm
III’;"“*: ] 2I+1 gkli@:Z Imkyp Imkz# H( mm) (9)

Vabriyoltl 4 & 1-ia,
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We introduce the coefficients:

Tk TR 1 10'
A= 101 V2 Iy +1 )2 kgt 1 « {10

and we write the prm(nple formula neglecting the constant factor
g2i-d,

W (ky Fey) — b L YE(ky) Yt . (1
(Fey Feo) %;Aklkzgy Vsl y2h 41 i (1) i (Feg) (11)
1 .
For a general arrangement, illustrated in fig. 1a, we rewrite formula
(11) by introducing the angles ¢, ¢, ©. By a simple calculation we

get from the spherical triangles in fig. 1b the following relations:

I (Cky) =« COs @ = cO0S ¥ COS @

X (Cky) =B ~ cos B = cos & cos (O—g)

— > End @— 24 \
X (6% (cEe) =u  cosyp = = :co:in ;Dsﬁ . (12)

—
n

—
[+

Fig. 1a.
General arrangement for the case of an axial symmetric field (in the direction —g).
k, and k, are the directions of the first and the second ray, » the normal to the
plane defined by k,; and k,.

For axial symmetric tields we get:

W(d, ¢, ©) = Re { (2) ) 4y x, Gl¥e Ntk Phi(cos & cos )

kvky p

x P (cosz‘} cos(O—g)) ei+?
+ 81(2 eo(1) ) Ay, GFF NEF Pl (cos & cos @)

Eikap
x Pl (cos & cos (0 —p)) e""'“"’} (13)
o _ | /=) (s = )} ”
Nﬁ ka i~ e M

(kg )1 (kg p2) ! °

Nk 33 the normalization factor of the Legendre polynomials and
&,(k) 1s the sensitivity of the counter ¢ for the radiation k.
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We can simplify formula (13) if we make the two following re-
strictions:

1. We assume & (1) - &,(2) = &(2) - &(1) (this means in practise
that the counters are equally sensitive) —or—we assume the inter-
action to be pure electric.

2. We assume the interaction to be pure (electric or magnetic)
—or— we take for one of the angles # and ¢ only the special values
0 and 7/2.

If these two conditions are fulfilled only the real part G of the
attenuation factors & enters in the formula and we get:

W(ﬁ‘g @, @) = Z Akx kgGﬁl ke Nﬁlkzpﬁl (COS ) CcOos (p)

ki ks

x P (cos 9 cos (O—q)) cos uy (14)

For the evaluation of (14) one has to sum over u (taking the terms
where u + 0 twice) and over both k; and k,. Furthermore one has
Gkk = ¢ . whereas all the other attenuation factors are given in
a later section.

Fig. 1b.
The spherical triangle from which the relations (15) are derived.

Since formula (14) is rather complicated to be used for comparison
with experiments we give here explicite formulae for two special
cases for @, namely W(& ¢n) and W(&¢n/2). The anisotropy

e=Wen)/W(den/2)—1

may be obtained from these functions.
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For y-radiation with no higher multipole order than quadrupole
we have then:
W@ pn) = ay + a, cos2 P cos? ¢ + a, cos* & cost ¢
+ ag cos® P cos® o + ag cos® P cosB e ' (15)

W (% ¢ 7/2) = by + by cos?2 & + by cost & + bg cost P cos2 g sin? @
+ byp cos® P cos? @ sin? @ + by cos® & cost psint ¢ (16)
where the coefficients a, and b, are tabulated in table 1 and table 2.
These formulae will be used in the next section to discuss some

special arrangements.
Table 1.

W(d pn) = ay+ a, cos? & cos? g+ a, cos? # cos? @
+ ag cos® & cos® g+ ag cos® ¥ cos® @

22 (1/4+3/4G37) + (Ap+ Ay,) (—1/8-Y15) G5°

ao = 1 + A
+ A4, (9/64+5/16 G3* +35/64 G*)
A

ay = o (—3/2+3G3-3/2 G37) + (Ay+Ay) (—9/2)/5/6 G5 +9/8 /15 G3')
+ A4, (—45/16+45/8 G —5 G5 +35/8 G3* —35/16 G3*)

ay = Ay (9/4—3 G2 +3/4G3) + (Ap+ Ay (+30/2)/5/6 G2 —15/8 /15 G3*)
+ Ay, (555/32—255/8 G5* +195/8 Ga* —105/8 G4 +105/32 G*)

ag = (Ag+Aygs) (—21/2)/5/6 G2 +17/8 /15 G3)
+ A4, (—525/16+455/8 G3* - 35 G4* +105/8 G5' —35/16 G,*)

ag= A, (1225/64—245/8 G3* +245/16 G,* —35/8 G;* +35/64 G}")

Table 2.

W (8 pn/2) = by+ b, cos®P+ b, cos?d+ by cos@ cos?e sinZep
+ b, cos®d coslp sinZp+ b, cos®P cose sinte

by =1+ Ay (1/4—3/4G5°) + (Ags+ Ay0) 1/8 /15 G5
+ Ay (9/64—5/16G5" +35/64 G3)

by=  Agy (—3/4+3/4G37) + (Agt+Ay) { —9/16)/15 G5}
+ Ay (—45/32+5/2G5" —35/32 G%)

b, = (Agat+ Ag) /16 15 G3* + A, (105/64—35/16 G3* + 35/64 G*)

by = Ay (9/4-3 G2 +3/4G37) + (Agu+ Ayg) (+9/2V/5/8 G —1/8 /15 G3*)
+ Ay (+345/32-45/8Gy* — 15 G&* +105/8 G —105/32 G4*)

by — (Agg+ Agy) (—21/41/5[6 G2* +7/16 /15 %)

+ A,y (—525/32+105/8 Gy* +105/8 G;* —105/8 G3' +105/32 G)
big= Aq (1225/64—245/8G1* +245/16 G2' —35/8 G +35/64 G,°)
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Besides the case illustrated in figure 1 where the ¢ axis has the
same direction for all the atoms, the case where the field axes are
statistically distributed is also of importance. We get then the
correlation as the average over all ¢, 9:

~

W(0)= | W(8¢0)dQ. (17)

o

Physically this corresponds to the case of a crystalline powder. It
can easily be proved that the result of the integration is:

Nﬁl’“ﬁ/P;{_‘l [cos @ cos @] Py [cos & cos (@ — )] cos py d2

1
= 5551 Ok Prlcos 6). (18)

We can therefore write in this case the perturbed correlation simply
in terms of attenuation factors G**

W(@) =% Z Akk Gkk Pk(COS @)
k

where
’ 1 k
Gkk — Sy [1 n 2’;1' Gﬁk} g (19)

For vanishing interaction the attenuation factors GE% are just
O, 1,» 50 that the unperturbed correlation is of the well known form:

W(0) = 3 Ay Py(cos 0). (20)

For our case we are only interested in y—y correlation. Then we
can get the 4, ; easily from the tables of BiEpENHARN and Rosk?).
For pure multipoles we write:

Aklkz = Fk1(L1I1I) sz (Lz Iz I)- (21)

If one of the two radiations is a mixture of two multipole orders L,
and L," with the intensity ratio 62 we get the 4, , from the table
of BiepENHARN and Rosk:

Aklkz - [Fkl(Ll Il I) + 52Fk1 (Ll, 11 I)
—286Y@2I+1) 2L +1) 2L/ +1) G, (Ly Ly 1, I)]
X B, (Ly I, 1) (22)

and similar if the other y ray or both are mixed*).

*) Note that 2 is the intensity ratio in the notation of Lina and FALKOFF!?)
and different from ?).
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Experimental Arrangements.

Formula (14) of the last section gives the angular correlation for
the case in which external axial symmetric fields are present. The
correlation depends strongly on the orientation of the symmetry
axis with respect to the counter geometry. In this section we will
specialize the formula for several experimentally realizable arrange-
ments. The attenuation factors G which involve the mechanism and
the strength of interaction will be given in the next section. The
formulae of this section are valid for correlations involving no higher
multipole order than quadrupole and for axially symmetric electric
and magnetic and combined fields. If the interaction is not pure
electric, then the sensitivities of the counters are assumed to be the

same (£,(1) + £5(2) = £,(2) - £,(1)).

—
n
|

h.\

=

o
Fig. 2.

Diagram of arrangement 1 where the field axis ¢ lies in the plane (El, n).

Arrangement 1. In this arrangement (fig. 2) the field axis ¢ Les

in the plane (k; ). The formula for this case can be obtained from
(15) and (16) for ¢ = 0. One obtains:

_ W@)-W(r/2) Xd,cos" & '
- W{n/2) T Ze, cos" B (23)

where the coefficients d,, and ¢, are tabulated in table 3.

Arrangement 2 (fig. 3). Here the ¢ axis lies in the plane (y Ka).
The formula for this case can be obtained from (15) and (16) for
# = 0. One obtains:

 W(m)— W(n/2) 2 f, cos™ @ (24)

W(n/2) ~ Xg, cos" g

where the coefficients f, and g, are tabulated in table 4.
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Table 3.
Arrangement 1. W(x)/W(n/2)—1 = X d, cos"}/X e, cos"}

dy= Ay (3/2G5%) + (Apy+ Ayp) (—1/4Y/15 G5*) + Ay (5/8 G3)
dy = Ay (—3/4+3G3% —9/4G27) + (dyy+ Ayy) (—9/21/5/6 G7* +27/16}/15 G3)

+ Ay (—45/32+45/8 Gy* —15/2 G* +35/8 G3* —35/32 ")
dy = Ay (9/4—3 G} +3/4 G37) + (Agu+ Ay (30/2/5/6 G3* —27/16)/15 G3°)

+ Ay (+1005/64— 255/8 Gy +425/16 G3* —105/8 G5 +175/64 G3)
ds=  (Ay+4s) (—21/2)/5/6 G2 +7/8)15 G2*)

+ Ay (—525/16+455/8 Gt —35 G, +105/8 G* —35/16 G3)
dg = Aqq (1225/64—245/8 G7* +245/16 G5 —35/8 ' +35/64 G*)

eg =1+ 4y, (1/4—3/4(}22) + (Ayg+445) 1/8 ]/E oy
+ Ay (9/64—5/16 G +35/64 G3)

ep =  Ag (—3/4+3/4G7) + (Ayy+ Ay) {-9/16)/15 G}
+ Ay (—45/32+5/2 G5 - 35/32 G%)
€y = (Apat+Aygy) T16 V15 G2* + 44, (105/64—35/16 G5 +35/64 G*)
Table 4.

Arrangement 2. W(n)/W(n/2)-1 = X f, cos™p/2 g, cos™¢p

fo = Ay (3/4+3/4G5%) + (Ayy+4,,) (—1/8 )15 G5
+ Aqq (—15/64+5/16 G5 +35/64 G4*)

fo = Ay (—15/4+6 G3*—9/4 G3°) + (Apy+ Ay) (—15/4)/5/6 G7* +13/16 /15 G3*)
+ Ay (45/16—15/8 G7* —25/8 Gt 1 35/8 G4* —35/16 G3)

fo = Ay (9/2—6 G5 +3/2 G2%) + (Ayy+ Ay,) (57/4)/5/6 G7* —25/16 /15 G3*)
+ Ay (—475/64+50/8 G +115/16 Gy —70/8 G3* +175/64 G1)

fo =  (Agg+Ay,) (—42/41/5/6 G +14/16 /15 G3)
+ Ay (+175/32-35/8 G7* —35/8 G3* +35/8 G5 —35/32 GY)

o =1-1/2 4,,+3/8 44

o= Ay (9/4—3 G7 +3/4 G37) + (Ay+ Agy) (- 3/4)/5/6 G3* +5/16 /15 G3*)
+ Ay (—45/8+15/2G" —5/8 G5Y)

s = Agy (—9/4+3 G —3/4G3%) + (Ayy+ A4y,) (3/4)/5/6 G3* —5/16)/15 G3*)
+ Ay, (1585/64—305/8 G7* +275/16 G5* —35/8 G5 +35/64 GF)

gs = Ay (—1225/32+245/4 G3* — 245/8 G* +35/4 G4 —35/32 GY)

gs = Ay (1225/64 - 245/8 G5 +245/16 G4* —35/8 G5 +35/64 G*)
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Arrangement 3. In this arrangement the ¢ axis is parallel to the
normal to the plane of the two counters (¢ = =/2). For this case
we give not only the anisotropy but the whole correlation func-
tion. We write it in the form:

W(0) =1+ B,cos 26 + B, cos 40 (25)
where
By =411 A2:+9/64 g {84 G5 Ay + 5/16 G3' Ay
— V/15/8 G&* (Ayy + A42)}
By =417 A2:+ gei . 50/64 Gt Aus. (26)

—
n
[

Fig. 3.
Diagram of arrangement 2 where the field axis ¢ lies in the plane of the
two radiations (k,, k).

Arrangement 4. In this arrangement we measure only coincidences
between quanta emitted in opposite directions (@ =m). For the
coincidence rate W,(#) one gets an expecially simple expression
depending on the angle &:

Wa(9) = 3 a, cos™ & (27)
where the coefficients a, are tabulated in table 1.

Arrangement 5. Here we treat the case where the orientations of
the ¢ axis in the source are statistically distributed. As an example
we mention angular correlation measurements in crystalline powder.
If the unperturbed correlation is given by

W(0) = > Ay Pr(cos O) (28)

one obtains the influenced correlation by multiplying each term
with an attenuation factor:

W(6) = 3 Ay G¥* Py (cos ). (29)



772 Kurt Alder, H. Albers-Schonberg, Ernst Heer and T. B. Novey.

Attenuation Factors.

The formulae of the last section were given in terms of the
attenuation factors G. These factors depend on the type of inter-
action, the strength of the interaction, the spin of the excitet state
and on the coincidence measurement method. The attenuation fac-
tors are defined by formula (9) and (19).

kiky Ll?: V2k1+1|/2k2+1, ngkﬂu -{Z’::kzﬂ §
Ghki = Re Gh e %‘ e it (L) (9)
Ykk k ’
G”*_M;l [1+2 E'Gk} (19)

For magnetic and electric fields with axial symmetry the hyperfine
splitting (hfs) is given by

e Q 0E, 3m:—I(I+1)
A = — 5 S o T+ gmIH,. (30)

The m are magnetic quantum numbers. We introduce x and y which
are quantities measuring the strength of interaction and are defined
mn the following way:

o % %TF;‘ZN m_?"i)l e for quadrupole
B = ;—% %{jz— ®I-TT Iﬁl) 77 Thalf integer e 1)
Yy = ﬂ;;__{f T for magnetic interaction
Q: electric quadrupole moment of the excited level,

gl = u: magnetic moment of the excited level,

0F [0z: electric field gradient with respect to the symmetry axis,
H: magnetic field,

;2 mean life of the excited state.

We can write the attenuation factors in the following general
manner:

ks kak, 1
Gkk 228 mp [1+ (mx+py)? H(mw+ﬂy’§’n)
1
T i ma—py)? H(ma:_py,f,n)]. (32)
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For negligible interaction the following relation holds:
Gﬁlkz :l aklk2.

Formula (32) is valid for ¢z = ¢, i.e. the axis of the magnetic field
1s parallel to the symmetry axis of the crystal. For the special case
that only one interaction (H or @) is present one gets the attenuation
tactors simply by setting x = 0 or y = 0.

For pure magnetic interaction formula (32) simplifies to:

o H(py, & n)
Gf; k2 — 6151 k, ——Wr i (32&)

For powder sources (arrangement 5) when only a magnetic or an
electric field 1s present*), the attenuation factors G** are given by:

= X Si oy H(ma, &, ). (33)

(For magnetic interaction replace z by y).

The coefficients S are sums over Clebsch-Gordan coefficients (9)
and are tabulated for the spin values 1, 3/2, 2, 5/2, 8 and 7/2 and
all interesting cases in table 5.

The function H defined by formula (6) describes the influence of
the coincidence measurement method and depends on the finite
resolving time 7, of the coincidence circuit, on the delay 7, and
on the nuclear lifetime 7 of the intermediate state. As variables we
chose the ratios

E=1y/t and n=1y7.
For the most important cases the function H is given as follows:

A. Without delay and with infinite resolving time.

n=0, &=0

H=1 (34)

*) The attenuation factors for powder sources where in addition an axial
magnetic field is present is not given in this paper. This experiment which allows

the determination of u and @ in one experiment without creating a single crystal
is of certain importance and will be treated and published later.
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. ek ke
Table 5: Sm# and S
The attenuation factors Gf; k2 ana G*¥ for magnetic and electric interaction may be obtained from

this table by introducing the here given coefficients Sfr::fz and Sg’ in formulae (32) and (33).

N 0 1 2 3 4 5 6 7 8 9
1 1
% 1
2 1 6
822 ¥ 7
L &8 EE
2 7 7
3 2 15 25
42 a2 42
K 5 16 21
2 42 2 42
1 1
3 1
2
9 3 4
7 7
SQ?
m2 | 5 9 5
2 14 14
3 6 10 5
21 21 21
7 20 15 7
2 42 42 42
6 1
2 S e
7 7
5 5 2
44 2 7 2
Sn1
3 18 a2 2
77 7 77
7 27 15 35
2 77 77 77
4 3
2 4 3
7 7
5 5 9
44 2 14 14
S m2 20
3 20 3 5
77 77 77
r 48 R 105
2 154 154 154
2 1
a3 1
44 2
m3
3 # L3
11 11
7 4 7
2 11 11
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Table 5 continued.

N 0 1 2 3 4 5 6 7 8 9
1
1
5 6
11 11
15 7
22 22
_VE Ve
5 5
_ V16| V1o
7
-1./5 -4./5 5./5
7rn 7]/’1—1 7]/ﬁ
7 ~31/10(~4/10| 7 /10
2 14V11|1aVi1|1a¥1a
-2 2
2 = Sl
7 V3 7 V3
5 = 8
9 ﬁl/ﬁ ﬂVEv
-2./10 -1./5 3 /5
7 V11 FLAT! 7 V1
/5 -1.,/5 8 /5
14 ]/ﬁ - |1a V1 ) fﬂ/ﬁ
3 2
5 5
1 4
5 5
13| 2 2z | 8
35 35 35 35
7 13 10 5
35 35 35 35
33 2 15 20 25 10
1056 1056 105 105 105 105
42 50 | 32 72 14
'210 210 | 210 210 | 210
20 | 12 16 | 6
63 63 63 63
7| 1| 18 | 23
63 63 63 63
187 30 92 6 60 192 | 126
693 693 693 693 693 693 | 693
77 102 | 135 | 127 105 | 147
693 693 693 693 693 693
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B. Without delay and with finite resolving time.
g=0, EF%0

H - 1—e_f(cosz£:;zsinz§) (35)
1-e

C. With delay and with finite resolving time. (The sensitivities
of the counters are assumed to bee the same).

a) n<§

2— e EF (cos 2(E4 ) -z sin 2(E+n))—€ E (cos z (E-n)-zsinz (E-n)) .
H = 9_E+n) _ ~CE-m) 58)

b) n=§

H— (cosz(n—§&)—zsinz (n— «5))1— .ejjl:f(cos z(n+&—zsinz (n+é)) (37)
—e

D. With delay and a very short resolving time.

§<L1, &<y
H=(1+2%coszy (38)

In the formulae (34) to (38) the varable z stands for (mx -+ uy) or
(mz— py).

Discussion of experimental methods.

In the previous sections it was shown that angular correlation
measurement 1s able to give information about nuclear moments
of short lived excited states. From the measurement we get the
product of the interaction energy and the nuclear lifetime. As in
the region in question (109 sec to 10~3 sec) lifetimes can be measured
with good accuracy, the interaction energy can be calculated. From
this we get the moment when the interacting field strength is known.
For the magnetic case magnetic fields can be measured accurately
and it 1s therefore possible to obtain the g factor and therefore the
magnetic moment with an error of only a few percent. As will be
deduced in the appendix the measurement of the sign of the ma-
gnetic moment can also be carried out very easily. The electric case
1s much more difficult. The field strength that enters into the inter-
action energy is the gradient of the electric crystalline field which
in general can be calculated only with great difficulty. It would
therefore be interesting to measure the quadrupole coupling not in
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crystals but in atoms or molecules for which rather good calculations
are avallable. The quadrupole moment may however be obtained
by comparison of the measured quadrupole coupling which that of
a stable nucleus, the latter being obtained from a nuclear induction
experiment. Any calculation or measurement of the electric field
gradient will in general be complicated by the fact that the inter-
action is measured in a state following a radioactive decay. The

L e &)

4
(%)

-02 4

-01 4

x=16
x=18
x= 20

.
n

—
S

> S

o Y T
Fig. 4.
This figure illustrates the arrangement 1 in the case of Cd!t. The region of = has
been chosen so that the curves may be compared with the recently reported ex-

perimental results 4)€). The curves are corrected for finite resolving time (¢ = 2,84)
but not for finite solid angle.

recoll energy may remove the active atom from a lattice position
and radiations may disturb the electronic shell and may cause
additional effects.

The applicability of the described method is limited in several
directions. In principle the investigated state need not be the inter-
mediate state of a y—y cascade. The theory may be expanded to
B—v, a—y and e~—y correlation e.g., although the experiments are
much more difficult. Furthermore the method may be applied to
measurements of angular distributions in nuclear reactions.
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Another restriction is that the lifetime of the intermediate state
must lie between 10~® sec and 10-5 sec. The lower limit is given by
available field strengths whereas the upper limit will be determined
by small disturbing effects present in any source.

For any accurate determination of the moments the source must
fulfill some additional conditions. For the measurement of the
magnetic moment there should be no quadrupole coupling present.
As it was pointed out in a previous article®) cubic crystalline sources,

y L )
w(%)

~-02 4
x=10
x=12
x=14
x=16
x=18
X=20

-0.1

o T ' > y)
4] 'Il’/q 1/2

Fig. 5.

Same as fig. 4 but for arrangement 2.

solutions*) and melts are in general suited for this purpose. For the
measurement of the electric quadrupole coupling one best uses a
very pure single crystal of axial symmetry. The radioactive atoms
must sit in regular lattice positions. For both cases diamagnetic
compounds should be used to avoid disturbance by the (IJ) coupling.

We have then three methods for the determination of = (and y):
1. We keep the field, delay and resolving time constant and vary

*) See also: A.ABraGaM and R.V.Pouxp, to be. publ. and H. ALBERS-
ScEOENBERG, E.HEER, F.GiMMr und T.B.Novey, Helv. Phys. Acta, 26, 599
(1953). ;
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the angles & and ¢. 2. We keep the field and the angles &, ¢ con-
stant and vary the delay or the resolving time; and 3. we keep &, ¢
and the delay and resolving time constant and vary the field. For
the determination of the magnetic moment possibilities 2. and 8. with
the field axis perpendicular to the two gammas are best suited.
Since the electric field gradient can not be varied easily one must
vary ¢ and ¢ for the measurement of the quadrupole coupling. In

4 8. 2
-0. ’ -
magnelic electric
inlerschion Jnferachion
0057
0 S "‘l—';
Fig. 6.

Hlustration of arrangement 3 where the symmetry axis of the field is perpendicular
to the plane of the two counters in the case of Cd!11, The disturbed a.c. is written
as W(0) == 1+ B, cos 20, The field may either be pure electric or magnetic.

any case it 18 preferable to measure the attenuation as a function
of one variable and to compare with the theory by the method of
least square fit. In this way one can make sure that no other disturb-
ing interaction is present.

With regard to the coincidence measurement method, the case
is simplest without delay and with a finite resolving time. If the
interaction is small it is however preferable to employ a delay of the
order of the lifetime. One measures then only the nuclei that have
been exposed to the disturbing field for a long time and the effects
are larger (see fig. 8).

To complete this section we will illustrate some of the results of

this paper for the well known case of Cd!!. The y—y cascade is a
7 /2—1};]—{—;* 5/23 1/2 transition. The mixing ratio 6 has been deter-
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8
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0 v T — )
oor 0.1 10 100

Fig. 7.

Same as fig. 6 but for combined parallel magnetic and electric field for several
values of the electric interaction z. B, is given as a function of the magnetic
interaction .

-05 A

01 10

Fig. 8.
Attenuation factor G22 for polycrystalline powder sources for I = 5/2 as a function
of the strength of interaction x. The curves 4, B, ¢ and D show the influence of

finite resolving time and delay. The values used are: A:§=o00, n=20;
B:Szl,n:(); C!n‘;‘-:l,’qr_l; D;E<1’n:1_
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mined by angular correlation methods?!) to be about —0-096. From
the table of BiepENHARN and Rose one gets for the coefficients
Agp = —0-1429, A4,, = —0-1650, A,, = A,y = 01if we neglect terms
in §2.

In figure 4 and 5 we have illustrated experimental arrangement
1 and 2. The recently published experimental results of the Ziirich
group?)?) are in good agreement with these curves. Figure 6 and 7
show the important case where the symmetry axis is perpendicular
to the two rays for pure magnetic, pure electric and combined
magnetic and electric interaction. The rise of the anisotropy for
small H (fig. 7) 1s characteristic for quadrupole interaction. This
figure illustrates the possibility for a determination of u and ¢ in
one experiment?). Figures 4 to 7 are corrected for the finite resolving
time (§ = 2,84). In figure 8 the influence of the coincidence measure-
ment method is illustrated. The attenuation factor @ for a crystalline
powder source is given as a function of z.

These curves show the sensitivity of the various methods of de-
tecting and measuring the quadrupole interaction and allow one
to select the best procedure to be used in any particular case.

We are grateful to Prof. ScaerrER for his continued encourage-
ment and support of our work. We also thank O. Braun for help
with many laborious calculations.

APPENDIX,
Some special theoretical problems.

1. Symmetry behaviowr.

In the preceding sections the correlation function was partly
written as a series of Legendre polynominals and partly as a series
in cos 2 n6@. The form was chosen according to the symmetry of
the problem. When the correlation function depends only on the
angle @ between the two counters and not on their orientation in
space then the representation in Legendre polynominals is well
suited. If on the other hand the correlation function is invariant on
rotation of the counting system around a symmetry axis the
adequate representation is that in cos 2 n@. If there i1s no symmetry
behaviour at all, the correlation function is very complicated and
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1s best expressed in spherical harmonies. For practical purpose it is
then better not to calculate the whole correlation function but only
the value for a fixed angle @ (@ =z or O = 7/2).

2. Vector model.

For magnetic interaction the formula for the influenced corre-
lation can be obtained easily by semiclassical procedure. An applied
magnetic field H is equivalent to a Larmor precession w; = g u, H/A

‘of the magnetic moment of the nucleus around the field axis. By
transforming to the rotating system we get

W = f W (0, @1, 09, gs+ wi) C(E) e~ di

if W(9; ¢, ?o9,) 1s the undisturbed correlation. For quadrupole inter-
action 1t 1s more complicated since we have not only one but a
whole spectrum of precession frequencies. For I = 5/2 e.g. we have
the frequencies 4+ o, 4+ 2 0w, + 8 w.

3. Swgn of the moment.

The formulae of this paper are valid for equally sensitive coun-
ters. If the sensitivities of the two counters for the two y-rays are
not equal, the formulae for the magnetic interaction are more com-
plicated. The attenuation factors are then given by the complex
expression :

LQ"“"'2= 5 l:_ 1 - £1(1) £5(2) — £ (2) £,(1) vy ]
“ Bika | 14 (uy)? e (1) 65 (2)+£,(2) &,(1) 1+ (y)?

where ¢;(k) 1s the sensitivity of the counter 1 for the radiation k.

Then the correlation W (K, l_c;) and W (k,, —752) are not the same
and from their difference the sign of the magnetic moment can be
obtained3).

In the case of the quadrupole interaction the attenuation factors
are independent of the sensitivity of the counters and always real.
Therefore the determination of the sign of the quadrupole inter-
action is not possible in the same way.
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4. Angular correlation in fields without symmetry axis

This case includes crystals without symmetry axis, axial magnetic
and axial electric fields which are not parallel and crystalline powder
plus magnetic axial field. The angular correlation can even in this
case be written in terms of attenuation factors G%* :

Wi(k1ks) g Ay r, Gk Yi(ky) Yio(ks) -
i
To calculate the attenuation factors one must know the hfs and the
admixture of different magnetic quantum numbers. We hope that
In a next paper more quantitative results can be discussed.

5. (IJ) coupling.

The interaction between the nucleus and the electronic shell of
the active atom may in principle be electric or magnetic. For the
attenuation factors G** one gets:

rk 2F+1)(2F'+1)[W({I J kEF|F'I)]?
GHF = 2 1+ (wppr 1)*

if the disturbed correlation is:

O) = 3 Ay G** Py(cos 0).
%
In the magnetic case the hfs wgp is given by
pp = 5 A [F(F+1) — F'(F'+1)]

where 4, 1s a constant depending on the electron configuration and
1s tabulated e.g. in KorrErmaNN14), In the electric case the his wpp
is given by
1
T2
P

6

—F'(F'+1)}

W ppr

x{FF+1)+F'(F +1)—2I(I+1)—2J(J +1) +1}].

It both interactions are present wgp 1s simply the sum of the two
expressions.
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A work of similar nature which comprises a natural complement
to this paper and which treats especially the effect of Brownian
motion in liquid sources has been completed by ABracam and
Pounp, to be published in the near future. We thank Prof. Pounp
for communicating this work to us.
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