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Charge Renormalization and the Identity of Ward

by Gunnar Kéllén,
Department of Mechanics and Mathematical Physics, University of Lund, Sweden.
(12. VIII. 1953.)

Summary. The importance of the identity of Ward for the consistency of the
charge renormalization is pointed out. A proof of the identity is given without aid
of perturbation theory.

Introduetion.

Charge renormalization was introduced in quantum electrodyna-
mics in a paper by ScEHWINGER!), where it was defined in the e
approximation and for the problem of vacuum polarization in an
external, electromagnetic field. It was, however, soon remarked by
Dyson~?) that, actually, one has to deal with two different kinds
of charge renormalization in quantum electrodynamics, in his paper
called “external” and “internal”’ renormalization. Dyson introduced
two ditferent (infinite) constants Z; and Z, to take care of these
renormalizations, but conjectured that they were possibly equal.
Later on, it was proved by Warp?) that Z, 1s actually equal to Z,,
and consequently Gupra?) introduced only one constant in his treat-
ment of the charge renormalization. All these authors use, explicitly
or implicitly, perturbation theory, and each renormalization con-
stant is defined with the aid of a power series in e2, where every
coefficient is infinite®). In the treatment of the renormalization
technique without aid of perturbation theory introduced by the
author®), the Gupra formalism for the charge renormalization was
followed, and only one constant L was introduced to handle this
problem, in other words, the identity of Warp was implicitly as-
sumed to hold. It is the aim of the following note to make a clear

1) J. ScEWINGER, Phys. Rev. 75, 651 (1949). Cf. also V. F. WErisskoprF, Dan. Mat.
Fys. Medd. 14, no. 6 (1936).
2) F. J. Dysow, Phys. Rev. 75, 486, 1736 (1949).
8) J.C. Warp, Phys. Rev. 78, 182 (1950); Proc. Phys. Soc. A 64, 54 (1951).
) S. Gupta, Proc. Phys. Soc. A 64, 426 (1951).
®) Cf. also G.TaxEDA, Prog. Theor. Phys. 7, 359 (1952), where an argument
partly independent of perturbation theory is given.
%) G. KALLEN, Helv. Phys. Acta 25, 417 (1952), here quoted as I; Dan. Mat. Fys.
Medd. 27, no. 12 (1953), here quoted as II.
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756 Gunnar Kallén.

distinction between the two kinds of charge renormalization and to
give a proof of their equivalence without aid of perturbation theory.
The proof, which uses charge conservation for the total system over
finite time intervals, may also be of some methodological interest
itself. In the discussion below, the content of papers I and II is
assumed to be known. The notation of these papers 1s often used
without further explanations.

The External Charge Renormalization.

The definition of the charge renormalization in quantum electro-
dynamiecs was given in I as

O A4, (@) |k = [8,,+ M. 55-] 0] 40@) [ k>, (1)
This was shown to lead to the formula
1 T

= 1 —rVH (0) ‘(2)

which can be understood as an implicit formula for L. The physical
meaning of this somewhat abstract formalism is perhaps better
understood after a discussion of the vacuum expectation value of
the current operator in a system with a very weak external field.
It was shown in the appendix of I that this quantity can be written

<O017,( |0>—~ fdp e irt(p)e(p®) - (3)
where
157 (x x) = @7 f dp 6””7““ ) = the external current (4)
and
&(p?) =1 —I(p?) + I(0) —ime(p) 1 (p?) =

= the “dielectric constant of the vacuum”. (5)

The term JI(0) in (5) is a direct consequence of equation (2) and of
the introduction of the renormalization term

—L(O4,(z) - ‘"‘;;;‘b“x . (6)

in the definition of the current operator. Since the function I1(p?) 1s
equal to zero for —p? < 0, it follows that the dielectric constant
of the vacuum is normalized to one for a light wave as a consequence
of the charge renormalization. This shows the connection with
ScawiNGgeRr’s way of defining the charge renormalization and corre-
sponds to what Dyson calls “‘external” charge renormalization.
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The Internal Charge Renormalization.

A quite different way of defining the charge renormalization in
quantum electrodynamics would be to normalize the expectation
value of the charge operator ()

Q= —i[da () ™

to e for an one-electron state?). This corresponds to the “internal”
charge renormalization of Dysox?). In order to discuss this point
in more detail we note the following formulae in IT (equations (23),
(24) and (53)):

' " oy N-1
Oljla.q>= <0|{|q.0> [s((g+9)2)+2 77 | +
+1e<0[ypP]q> A,(—q';9) <0|w(°’| q> =
_<0|?(0)|q,9'>[8((q+q )+2—— +R ((g+9) 2)}
+5—8((g+4)%) (@ —q) <0[p@[q> <0[p®|g> , (8)

where

(;;_)?’/'L/‘dp dp’ ¢’ Go+ip(ad) 4 (p'. p) = Nzﬂ(x3) 6 (z4) <0 {f(3),
(), f ]}IO>—N29(:U8)6(84) O1[7 (@), {1 (8), F4)}]] 0> —
—21e(N—1) T;jf 0,449 (23) 9 (34), (9)

&¢(p?) 1s the function defined in equation (5), and where the functions
R(p?) and S(p?) are defined with the aid of equation (8) above (or
with the aid of equation (58) in II). From equation (22) in IT we
also conclude

<qli)a>=<qli®l¢> [e(g— %)+ 2-?:%+R((q’—q)2)} +

+ 5w S (@ —9)?) (g, + ) <l 910> <0y ¢> =

= <qli®l¢> [e(lg—a?)+2 15 + B(d—9?) +
+8((¢—q) )]+——S(q~q2)(qy—qv <q|p®]0> x
XV u—vu¥s) 0] 9@ q'>. (10)

In equation (10) both |¢> and |g¢’> are one-electron states. The
state!|¢">iin equation (8) is a one-positron state. If we put u = 4,

) For the definition of particle numbers c¢f. I and G.KALLEN, Physma 19
(1953).
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lg> = |¢’'> and integrate over three-dimensional space, we get from
equation (10)
1

|Qlq>=—i[a*a<q|i|q>[(0) +2 =7 + BO) + 5(0)| =

—e[1+2 {51 +RO)+5(0)]. W1

It now appears that the condition £(0) =1, which followed as a
consequence of the charge renormalization, 1s not in itself sufficient
to ensure the value e for the one-electron expectation value of the
charge operator. To achieve this we must further have

R(0) + S(0) =—23—1. (12)
Equation (12) corresponds in our notations to the identity of Warbp.

One might be inclined to think that equation (12) could be under-
stood as a consequence of a conservation of the charge of the state
|g> from — oo to the time z,. However, such an argument is not
quite convincing. If the limit t - — oo 1s performed in the formalism,
certain formal prescriptions, usually described as an adiabatic
switching off of the charge, have to be used to give the limit a well-
defined meaning?). It appears at least doubtful to use a charge
conservation for infinite time intervals under such circumstances.
It has further been shown by ScrwineeEr®) with the aid of an
explicit calculation that one easily gets contradictions after a care-
less use of charge conservation over infinite time intervals. On the
other hand, the argument given in the next section will prove
equation (12) as a consequence of charge conservation over finite
time intervals. The result of our analysis can then be interpreted as
a conservation of the quantity <q|@|g>/e also during the switching
on process.

Proof of Equation (12).

We start by putting u = 4 and integrating over three-dimensional
%paco in equation (9)

'(z}?ﬁ‘ / / dp dp’e (a0 —=)=ipy (2=25") § (p—p") e # (') A, (p’ ; p) =
— i N20(28) 0(x4) 0| {/(3), [Q, F(4)]}] 0> —
— i N26(z3) 0 34 <0 1[Q,{f®B),7 &4 }]]0>—
— 2 (N—1) ;7 7, 8(34) 8 (2, — ) . (18)

111

8) J. SCHWINGER, Phys. Rev. 76, 790 (1949), appendix.
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As the operator ) is a constant of motion we can write

[Q. 1(8)] = —i [ @ [ju(a), /()] = —e /(3) (14a)

111
xy =,

(@ (4] =ef(4). (14b)

Note that only the time independence of the operator ¢ over the
finite time intervals z, — 2{ and 2, — 2§V is used in the argument.
With the aid of equations (13), (14a) and (14b) we obtain

and

—ie N20(28) 0(x4) <O[{f(8),] \4)}|o>—

— 2o (N—1) — 7,8 (34) 8 (z,— 1) . (15)

Multiplying with e%% and integrating over x,, we get

m

(2:;)4 /dpew(34)+w(;x. A (p Po—Yo; P :NZ/‘dmoeiqoro 6(.’53)9(584) %

x <O[{f(8),F(4)}| 0> —2(N—1)~ 6(34) e | (16)

1 Ly4

From the formula

’/"dmo e §(28) 0 (24) = { 5(q0) + 1[0(34) +

+0(48) ¢t (=" ==")] P ¥} ¢t 3" (17)
1 9o
we obtain
m fA PsPo— qo,p)dpew‘“ﬂNzé(qo /dpe“"s“) X
Xb(P){Z + (iyp +m) Zy(p }—
e o S
e 1;37:6 (2 (7/}/}9 . m Z (p2))_

*21(20 —(Po— ) ) L(Vchzc+’b?’4(ﬁo %)"‘m

% Zy(P2— (Py—40)?) +ime (p—g) (Z1(P2— (Po—0)?) +

+ [i(ykpk + 1y, (po_%)) +m] 2, (162 - @U%QO)z))} o
xP%hz(N 1) = g [dpew<34> (18)
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Equation (18) can be solved directly for A4pP, po— qo; p). The re-
sult 1s

_ F (02— ¥ (p2 +2 _g.2 )
A4(F, po—qo3 p) = — N2 ELEIZ B L2RM 0D, 4 (i 4 )

5. (02 — 5, (02 + 2 gk —
< S Zz(qu Pl )~V422(p2+2*poqo—q3)}“
L

Equation (19) holds in the domain
—pr=(m+p)% —p*—2peq + g5 = (m + p)?.
From our point of view, the interesting quantity is
1e<q[p@]0> A4(g; ) <O[ 9@ 1g> = (RB(0)+5(0)) <q" ¢>. (20)
From equation (19) follows
ie<q|#®]0> A4(g: ) <0 | 9| g> = {N*[2m T} (—m?) +

+ fz(mmz)]-%ii_—%li}mj&“’lq>- (21)

(Note that

<qlp@]0>¢0 <O[ 9| g> = m<q[p@[0> 34 <0 @] g>).
Using the definition of R(p?%) and S(p?) we conclude from I equa-
tion (75)
L

R(0) + S(0) = N2[2m £} (—m?) + Ty (—m?)]| —2(N—1) =5 =

=Pl (22)
Formula (22) 1s identical with (12) and we have now proved the

equivalence of the “‘external” and the “internal’” way of defining
the charge renormalization.
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