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Une serie divergente en représentation intermédiaire

par A. Petermann.
Institut de Physique de l'Université, Genève (Suisse)*).

(18 VI1953.)

Summary. Using Dyson's intermediate representation which was successfully
applied to the cp3 field theory in order to remove series-divergencies, it is shown

that, for a given normal product, the irreducible graphs of a 04 theory are leading
to a still divergent series.

I. Introduction.

L'élimination des divergences ultraviolettes par les procédés de
renormalisation a distingué, parmi les divers modèles de théories
de champs, trois classes, selon que la constante de couplage
correspondante :

a) possède la dimension de l'inverse d'une longueur;
b) est sans dimension;
c) a les dimensions d'une longueur.
Ces trois classes de théories portent couramment les noms respectifs

de théories superrenormalisables, renormalisables et non-renor-
malisables, ceci en considération du succès que les procédés de
renormalisation ont remportés dans l'élimination des infinités.

Cette distinction semble également devoir jouer un rôle dans la
résolution d'une autre difficulté, plus récemment découverte, celle
de la divergence des séries de la théorie de perturbation. Il y a peu
de temps, en effet, dans des travaux effectués indépendemment,
Hurst1), Thirring2) et l'auteur3) ont mis en évidence cette divergence

pour des modèles du type &3 ou 02cp couplant? des champs
scalaires et appartenant de ce fait à la classe a) définie ci-dessus.
Ces auteurs ont de plus signalé que des conclusions identiques,
quant à la convergence, pouvaient certainement s'étendre à des
modèles du type (P* (classe b)) ou plus généralement encore du

*) Recherche subventionnée par la Commission Suisse d'énergie Atomique.
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type 0n (n > 4, classe c), etc.). A première vue, et sans qu'il soit
possible pour l'instant d'étendre l'investigation à des cas spinoriels,
il semblait donc, qu'indépendemment de la classe, le développement
de la théorie de perturbation conduisait à des séries divergentes.

Or, tout récemment, J. Hamilton4), adoptant la représentation
intermédiaire de Dyson5) *) de préférence à la représentation
d'interaction, parvenait à montrer, pour un modèle <?3, que les opérateurs

de cette représentation pouvaient s'exprimer en terme de
séries convergentes, pour autant que F + 0.

Il devenait intéressant dès lors de voir si ce résultat était générali-
sable à n'importe quel modèle de théorie, et spécialement à ceux de
la classe b) à laquelle appartiennent les théories physiquement
intéressantes.

Le but de ce travail est d'examiner une théorie simple de b) introduite

par Matthews6) et de montrer que la contribution à l'opérateur

de champ @g des diagrammes irréductibles, pour un produit
normal donné, est une série divergente, quelle que soit la valeur
de la constante de couplage.

Au § 2, un bref rappel des notions nécessaires à la compréhension

de la représentation intermédiaire est esquissé.

Le § 3 est alors consacré à l'évaluation d'une classe particulière
de diagrammes irréductibles de la (2n — 2)ie approximation, pour
un certain produit normal figurant dans le développement de
l'opérateur de champ 0g en ses constituants normaux. Tandis que la
contribution individuelle est asymptotiquement :

(Const)"/2""2 • n-11 • F-3 • Tt, (1.2)

(Ti: nombre positif)

leur nombre est 0(n!) et ils fournissent un terme général de série
dont le comportement asymptotique est

(Const)" • nn ¦ X2n. (1.3)

*) Essentiellement, la représentation intermédiaire se distingue de celle d'interaction

par la modification suivante de la densité d'interaction :

h(x', A) -> hg(x', x, A) =hg(x',lg(t-t')) (1.1)

où les conventions de notation suivantes ont été faites: l'index g caractérise la
représentation intermédiaire; A est la constante de couplage, x un point fixe.
g(a) est une fonction de a définie pour a>0, transformée de Laplace d'une fonction
G(r, r'), avec r= constante > 0. La représentation intermédiare adoptée par
Hamilton est caractérisée par le choix G(r, T')= ò(r~ T'). Voir formules
(2.4) et (3.1).
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Les diagrammes irréductibles négligés ont tous une contribution
positive et ne font qu'aggraver cette divergence.

La discussion de ce résultat occupe le § 4. Elle fait ressortir le rôle
privilégié que jouent, en représentation intermédiaire, les théories
superrenormalisables qui sont les seules à donner des résultats
convergents. Par contre, la divergence de série semble plus intimement
liée aux théories renormalisables, pour lesquelles la représentation
intermédiaire donne des résultats aussi divergents que celle d'interaction.

2. La représentation intermédiaire.

Introduite par Dyson, la représentation intermédiaire se propose
le calcul d'opérateurs 0g(p) donnés par

0g(p) (2 n)-4- f.0g(x) e-i(vx) dx (2.1)

0g(x) se déduisant de l'opérateur correspondant 0(x) de la
représentation d'interaction au moyen de

0a(x) S-\t) 0(x) S(t) (2.2)
ou

S(t) 2J(i)n (ni)"1 I dxx... j dxn P(hg(x, xx),hg(x, x2)... hg(x, xn)).
n-° X X (2.3)

La densité d'interaction hg(x, x'), fonction des deux points x et x'
est obtenue généralement de la densité h(x') de la représentation
d'interaction en adjoignant en cofacteur de la constante de
couplage À la fonction g(t — t') définie pour a > 0 par :

g(a) f G(r') e~ir'a dF' (2.4)
o

avec les conditions :

g (0) 1 ; g (a) -> 0 si- a -> oo

De plus, G(r) ne peut avoir de singularités plus fortes que celles
d'une fonction ô pour un spectre discret de valeurs de r. Ainsi, par
exemple, à la densité d'interaction:

h(x') À 0*(x') (2.5)
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de la représentation d'interaction, correspond, en représentation
intermédiaire :

hg(x, x') =Xg(t- t') 0\x'). (2.6)

De (2.1), (2.2) et (2.3), le calcul de 0g(p) se ramène donc à celui de:

4- -o -j oo — oc
oo '„ „ „

0g(p) (2 tî)-4 27 (i)n (ni)-1 I e-i{vx) dx j dxx... / dxn Sg, (2.7)
""u —oo —oo —oo

Sg 27 ö(x — xx) °(xi — x2) 9(xn_x — xn) ¦

Perm

[hg(x, xn), [... [hg(x, xx), 0(xj\...]}, (2.8)

£ étant étendue aux ni permutations des points xx xn. Dans
Perm

l'exemple (2.6) que nous retenons pour fixer les idées, chacun des 2n

produits du multiple commutateur de (2.8) comporte en particulier
un produit LJg de n fonctions g. Au moyen de la représentation
(2.4), on obtient:

00 oo

ng f G(rx) drx,... j G(rn) drne[A<*-*>+••¦+/»<*-*„)] (2.9)
Ü ù

où chaque Ff provenant de (2.4) est considéré comme un quadri-
vecteur à direction temporelle:

rt (o, o, o, r,).
0g(p) est tout d'abord développé en constituants normaux M-N[0]
selon les règles de Wick généralisées par Dyson pour les commutateurs

multiples. Ces constituants normaux peuvent être énumérés
au moyen de diagrammes de Feynman G àn+1 points : xx,..., xn, x.
Ve coefficient M du produit normal N[0] est une somme sur tous
les graphes dont les lignes extérieures sont adéquates au produit N.

Les règles pratiques de calcul pour la contribution M(G) de G à M
ont été établies en détail7) et ne seront ici que résumées:

1° On considère tout d'abord l'expression (2.7) où Sg de (2.8) est
simplement remplacé par

P(h(xx),...,h(xn),0(x)), (2.10)

produit chronologique habituel.



Une série divergente en représentation intermédiaire. 735

2° Partant du point x dans le diagramme G, on double un trajet
connecté et simplement connecté (sans boucle fermée) en définissant
ainsi un sens positif sur ce trajet double, à savoir celui que l'on suit
en s'éloignant de x. Indépendemment du doublage, chaque ligne
du diagramme possède une direction inhérente spécifiée par une
flèche. On peut alors définir pour chaque ligne double un index r/ égal
à 4-1 selon que la flèche est dirigée dans le sens négatif ou non.

3° Pour chaque ligne doublée un quadrivecteur A est défini, qui
est la somme des r correspondant à tous les points xt du trajet
doublé qui sont situés en avant d'elle dans le sens positif.

4° M(G) étant analytiquement représenté par une intégrale du
type:

M(G) A / dkn+x... dkb- F(kn+X ...kb), (2.11)
— oo

chaque ligne non doublée du diagramme contribue à F par un
facteur :

(kl+x2)-1; a n + l,...b, (2.12)

chaque ligne doublée par :

[(vA-qi-Uj + iA^ + x2]-1; j l,...n.*) (2.13)

Le calcul des intégrales auxquelles on est conduit par ces règles peut
se faire au sens de Feynman, en considérant les quantités (iA3)
comme des nombres réels et x plus grand que toute combinaison
des moments externes et des (ir). Ve résultat est alors une fonction
analytique de x et des Ft. En maintenant x grand, les rt sont ensuite
variés continûment de leurs valeurs imaginaires pures à des valeurs
réelles; puis x est amené à sa valeur physique. Ce prolongement
analytique sert à définir M(G).

*) 4 st eT[xt xt) r,
u3 Et eT(Xj x,) tt

Il Za [M** xa") - 6t(x3 xa)ì ka •

xA, xa" sont les deux points extrémités de la ligne portant le moment ha, la flèche
de direction pointant de xa" vers xa'.

si xx x2 ou si xx est situé plus avant que xï sur le trajet doublé ;
1 autrement.

f i
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3. Evaluation d'intégrales de la (2 n — 2)'" approximation.

Partant d'une densité d'interaction

hg(x, x') À g(t - t') 0*(x') X e-r^-l,)04(x'), (3.1)

nous nous proposons maintenant d'évaluer toute une classe d'intégrales.

Elles proviennent de diagrammes irréductibles contribuant
au constituant normal M de l'opérateur 0g, relatif à la collision de
six mésons. Un diagramme de cette classe est illustré par la figure 1.
Les autres diagrammes de la classe envisagée se déduisent de la
figure 1 par permutation des (n — 4) points x2 xn_2 et sont par
conséquent au nombre de (n—4)

-îw-i

Fig. 1.

Diagramme de Feynman doublé fournissant une contribution à M, cofacteur du

produit normal N(&(q) 0(tx) <t>(tx) 3>((2) <P(t2')) dans le développement de 0g(p).

Ve passage d'un diagramme donné à l'intégrale correspondante
de l'espace de Fourier s'effectue au moyen du formalisme de
Feynman-Dyson tel que nous l'avons rappelé dans DP*).
L'expression paramétrique

i
a-n0-i n fxn-1(ax + 6(1 — x))~n-1dx

est utilisée pour rendre compacts les dénominateurs, tandis que les

intégrales sur les variables de base sont effectuées à l'aide de:

f (dk) in2
(ak2 + L)n a2(n-l)(n-2)Ln~2

*) DP. désignera par la suite la référence 3) de la bibliographie.
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Dès lors, au diagramme de la figure 1 correspondra l'expression:
i i

Ji,2...n-2=Kn-1(Any-3"[l2+>(2]-1J'dxx...fdxn x
(I u111 111x /dv2... /dvn^2 jdw2... /dwn_2 fdzx...Jdzn_2-k,xi...n_2, (3.2)

0 Ô I) U 0 Ü

avec :

^l,2--n-2 X2 X'i- • • Xn ^2 "
• --Vn-9. U)

n-2
Gl,2...„-2 i7(1~ü™W;™(1-a(™-2)mm))"2i7(1-^(1-a(*-l)M))"

m 2

¦E,

n—2 „,.2 „n-2 „ n
n—2w2 ' ' 'n—2 1 ' * -"n—2 ,J1,2- • -n—2 j

k-1

A,2..-n-2'

^1,2-¦-n-2 ^11 a(M-3)l,l^ (^1 + tx Q(n-3)n-l,n-l +

+ (<2 + i2')2 a(B_3)B;„ + 2 (^ + t/)) b\n_z) !,„_! + •••

+ (i T)2 (2 n - 3)2 a;_s)rr + • • ¦ + 2 (g(i J)) x

x(2n-3)ò;B_3)lir+^]"1;
oc A2(4^)-1.

Les coefficients o(), 6(), o^, fy'), sont des expressions algébriques en
les paramètres de Feynman xit v{, w{, zt qui se construisent par
récurrence de la façon suivante :

a(i))mm xn-m+l - • • xn \1 xn—m+1 - - - xn)

xn—k+X - ¦ ¦ xn \1 xn — l+l • • • xn) > K ^- l ¦

y xn-l+X- • • xn \1 xn—k + l • • • xn) l K ^ l

®(k)mm Ulk+i 1 Vk+l(l a(k-l)mm) ~
wk+l(l-vk+l (1 - 6'(t-l) m,k + l)Y
l-vJc+1wk+x (1-a\k_xyk+ltk+x)

°(k)lm wk+l yl — Vk+X (1 O^-Dim)

__
wk+lO--Vk+l(i-b\k-l)l,k+l))(1-vk+l(1-b'(k-l)m,k+l))

(3.3a)

a(k)mm ~ Zk+X (k) mm

l-vk+iWk+x (l-a\k_i-)k+i:k+x)
zk+lb\k)m,k+l

°<k)li) *k+l

1_z*+l (1-a(*)*+l,ifc+l)
zk+i b,

h ~ic+xAk)m,k+X0(k)l,k+l
W"» l-«jt+1(l-«Wt+i>jfc+i)J
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(0)rr ~ l(2 n — l)xx... xn_x + (2 n- 3) x%... xn_x + ¦¦¦ +
\*5Xn_x + X Xn (X + Xn_x + Xn_x Xn_2 I - - - + Xn_x. .XXJ J

(0) rt ~7j" [I* xn—l- • -xn—i+l + xn—l- • -xn—i + %n—X- • -Xn—i-lT'"
"T ^n—1 ¦ • -xl) xn- • -xn—i+1 (1 I Xn—1 "T ^n—1 xn—2 "T* ' * '

£K-l ...a;

ö(«rr

-'(kir i

a(k)rr ~ zk+i

"tk)n — zk+i

-. /1 /re+fc-l\2 / \

w*+i (*-vk+i (^('"t^XlHi.r)'
t-^A+l «-'yfc+1 (1 — œ'cifc—l)*+X,*+l)

-,
/-. n+lc-1 ,/ \

i—vk+lyi —7]c o(k_x)ri)

wk+x(1-vk+i{t-nr]l'k'1b'ik-i)r,k+x))(1-Vk+l(1-b'(k-i)l,k+l))
1-Vk+lWk + X 0--a\k-X)k+l,k+ x)

zk+ibîr,k+i

W fc+i

(k)rr x-zk+l (1_"a(i)* + l,*+ l)

zi+l 6(i)r,i-+ l hk)l,k+ l
~zk+X (1-a(k)k+ l,k+i

(3.3b)

On va dès maintenant rechercher une borne inférieure pour la partie
imaginaire de Jx 2.. .n-2 ¦

Ecrivant EX2...n-2 de (3.2) sous la forme:

F1<2...n-2 [B-iJ]-1 (B + iJ)(B2+J2)-1,
avec

a) B q2a{n_.ì)ÌX+(tx + tx')2ain_.i)n_hH_x+--- + (2n-S)2 x
x(iF)2aln_.i)rr+x2;

b) j 2 (2 n - 8) r(3l &;_3),
_ r + (i, + tx% ò;_3) „^ r -f-

+ (^2 + ^2 J4 ^(tt-3)n,r'

(3.4)

(3.5)

on remarque que :

1° B2+ J2 > 0 en tous points des chemins d'intégration.
2° J > 0 pour g2, (tx + t^)^, (t2 + t2')i tous positifs. En effet, les

coefficients b',n_i)r }- sont tous positifs comme le montre l'argument
suivant: au lieu d'écrire que Fx= F; Fx+F2 2T; Fx+... +Fm

mF, on conserve la notation Fm jusqu'à l'expression finale de

X2...K-2 -De phis, on assimile pour un instant les (iTm) à des quadri-
vecteurs dont les composantes sont des nombres réels, soit, à des

moments extérieurs supplémentaires; dans ces conditions, les
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coefficients a('„-3)^,rm, K-s)rm,i apparaissant dans E1>2...»-.2 sont
positifs. En effet, il ne doit pas exister de processus réels tant que

- (I Moments)2 < x2, (3.6)

condition pour laquelle il est nécessaire que les a,n_3) r<m r etc.,
soient positifs. Alors en restituant à (iFm) la valeur (imF), on voit
que l'on a par exemple:

2n-3
b\n-Snr Zb\n-i)riy>0. (3.7)

Une démonstration directe de la positivité des a'()r__ et b'l)r... peut
du reste être fournie en utilisant le schéma de l'appendice I de DP.

Dans ces conditions, l'intégrand est positif sur tous les chemins
d'intégration, les af), a't) figurant dans G12...„-2 étant bornés par
0<ao<l.

On emploie alors une formule de la moyenne du type :

b

I f(x) dx > (b — a) [Minimum de f(x) sur l'intervalle a -> 6],
0 b > a; f(x) > 0 pour a < x < b,

qui fournit pour (3.2) :

r,n— X
_

.y(J1>2..nX>(4^[^+^2]-1(l/n2-l/n3)4«-«[Minimum |

deC/(kl2_ n_2) sur les intervalles de 1 — 1/n2 ->-1 — 1/n3]. j

Laissant à une discussion ultérieure le terme EXi2.,,n_2, on peut
chercher le minimum de k'x 2...re-2 pour lequel EXt2...n_2 serait
provisoirement remplacé par 1.

Le § 3 de DP est en grande partie consacré au calcul de la borne
supérieure des a( )mm. Dans les intervalles (1 — l/w2)->(l—1/n3) pour
chaque variable, cette dernière est trouvée inférieure à 3/n2. En se

reportant à (3.3a), les a() et b,} étant compris entre 0 et 1, on voit
facilement que, par exemple:

et ainsi:

G\,M>{Ç)", (3.10)

ce qui entraîne pour k':

K,2..n-2>n8n~2° 255_2B e~in > (3-11)
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et permet d'écrire, au lieu de (3.8) :

X(J1,2..„_2)>(^R2 + X -4nn-4 [Minimum

7 (Eh.Kll_2) sur les intervalles (1—1/n2) ->(1—1/n3)

pour chaque variable].

(3.12)

Maintenant, en tenant compte de (3.4), (3.5a) et (3.5b):

Min ,7(EX. Min/
:

Max(R2 + J2)
2(2n-3)rTi

~(2n-3)lri4ni (3.13)

où T4 est un nombre positif (2e remarque page 738). La borne
désirée pour (3.2) est alors fournie par

X (Jx, > (4 .t.;
X*2 -iiy4r-3. (3.14)

Les intégrales que l'on déduit des diagrammes construits à partir
de la figure 1 par les (n—4)! permutations des points x2 xn_a,
conduisent à une borne du même type que (3.14) pour leur partie
imaginaire. En effet, rien n'est changé dans l'évaluation du
déterminant: G'Xi *); de plus, le nombre d'intégrations auxiliaires,
les constantes numériques, le signe, subsistent sans modification et
le minimum de ^7(Ea 6...) s'évalue comme en (3.13), avec un résultat

identique.
Ainsi, la contribution au développement des (n—4)! diagrammes

envisagés est asymptotiquement exprimée par:

i\r- (3.15)y(Mn„x) > un_x ^ oc""1 (Const)'

qui est le terme général d'une série divergente.
Il existe encore d'autres diagrammes irréductibles à mêmes lignes

externes que celui de la figure 1 et que nous n'avons pas discutés;
ici encore, on peut montrer que leur partie imaginaire est de signe
constant, à savoir le même que pour les intégrales évaluées au cours
de ce paragraphe. On peut donc trouver, pour tous les diagrammes
irréductibles de l'effet étudié, une minorante qui donne lieu à une
série divergente.

*) Le théorème: b',n_3^r m> 1/4 w4 sur les intervalles (1-1/tc2) à (1-1/w3)
utilisé dans l'évaluation de (3.13) n'est pas démontré ici. La preuve en est assez
simple mais comporte un algèbre long et fastidieux. Elle se déduit des lemmes de

l'Appendice I de DP. étendus aux coefficients a' et b' dont les indices peuvent
être T. ° °

**) Démonstration essentiellement due à Hukst et Thirbinq (loc. cit.).
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4. Discussion.

Toutes les théories de la classe b), renormalisables, comportent
de ce fait même une difficulté que ne présentent pas celles de la
classe a) (superrenormalisables) dans le calcul des intégrales: les

divergences ultraviolettes. Alors que dans le cas de deux champs
scalaires en interaction scalaire, un seul type de diagramme (self-
énergie de seconde approximation) conduit à une telle difficulté,
les modèles b) ont à la résoudre en toute approximation; et ceci
non seulement pour les self-énergies, mais pour les «vertex parts»
à trois et même quatre branches. Ce qui implique en particulier la
séparation des divergences d'empiétement et complique
considérablement la discussion quand elle ne la rend pas impossible. Le fait,
par exemple, que les «vertex parts» de la théorie g03 ne sont jamais
divergents a permis à Thirring2) d'adopter une jauge de renormalisation8)

dans laquelle on n'effectue pas de renormalisation de vertex.
Celle des self-énergies est alors aisée à accomplir. Par contre, les
théories b) doivent extraire, par soustraction, une partie finie des

vertex divergents, ce qui détruit, dans les diagrammes réductibles
en terme de vertex, l'unicité de signe et ne permet plus, par là, de
lever l'éventualité d'une convergence conditionnelle. Pour peu
probable que soit cette dernière, elle n'est néanmoins pas exclue et nous
n'avons eu par conséquent, au cours de ce travail, aucune prétention
de prouver la divergence d'une théorie 0* renormalisée, pas plus
que cela n'a été fait dans tout autre cas*). Nous n'avons tenu qu'à
donner un exemple de série divergente en représentation intermédiaire

et, plus spécialement, à mettre en évidence l'inefficacité
complète du procédé F pour la classe b). Les résultats sont éloquents:

En représentation d'interaction et utilisant la même méthode
d'évaluation, la série des termes discutés dans ce travail est
minorée par:

Si > Z (Const)" Â2""2 n"4 x-2 (n-A) (4.1)
n

alors que le module de la même série en représentation intermédiaire
est borné par l'expression:

oo

IXI > 27 (Const)" A2""2«-11 r4 F-3 (n-A) l (4.2)

*) Il est à noter que même pour une théorie &3, la possibilité subsiste de trouver
une jauge telle que la série converge pour toutes valeurs finies des moments
externes. En effet, l'avoir montré pour une jauge particulière (Thirring) n'implique
pas que cela soit vrai pour une autre, étant donnée l'importance que joue l'ordre
des termes dans une série non absolument convergente.
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dont évidemment la forme asymptotique est équivalente à celle
de (4.1).

Comme nous l'annoncions donc, le succès de la représentation
intermédiaire en classe a) est spécifique de cette dernière, et non
généralisable aux théories renormalisables qui, elles seules, ont pourtant

un intérêt physique direct. Il nous semble que la situation
serait même empirée en classe c). Mais ceci sort du cadre que nous
nous sommes fixé dans ces pages.

Pour terminer, nous tenons à remercier M. le Professeur W. Pauli
ainsi que le Dr W. Thirring pour nous avoir signalé le résultat de
J. Hamilton.
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