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Une serie divergente en représentation intermediaire

par A. Petermann.
Institut de Physique de I’Université, Genéve (Suisse)*).

(18 VI 1953.)

Summary. Using Dyson’s intermediate representation which was successfully
applied to the @2 field theory in order to remove series-divergencies, it is shown
that, for a given normal product, the irreducible graphs of a @4 theory are leading
to a still divergent series.

1. Introduction.

L’élimination des divergences ultraviolettes par les procédés de
renormalisation a distingué, parmi les divers modéles de théories
de champs, trois classes, selon que la constante de couplage cor-
respondante:

a) posséde la dimension de I'inverse d’une longueur;
b) est sans dimension;
c¢) a les dimensions d'une longueur.

Ces trois classes de théories portent couramment les noms respec-
tifs de théories superrenormalisables, renormalisables et non-renor-
malisables, cecl en considération du succés que les procédés de
renormalisation ont remportés dans 1’élimination des infinités.

Cette distinction semble également devoir jouer un rdle dans la
résolution d’une autre difficulté, plus récemment découverte, celle
de la divergence des séries de la théorie de perturbation. Il y a peu
de temps, en effet, dans des travaux effectués indépendemment,
Hurst?), THIRRING?2) et 'auteur®) ont mis en évidence cette diver-
gence pour des modeles du type @2 ou @2¢ couplant’ des champs
scalaires et appartenant de ce fait a la classe a) définie ci-dessus.
Ces auteurs ont de plus signalé que des conclusions identiques,
quant & la convergence, pouvaient certainement s’étendre & des
modeles du type @* (classe b)) ou plus généralement encore du

*) Recherche subventionnée par la Commission Suisse d’énergie Atomique.
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type @" (n > 4, classe ¢), ete.). A premieére vue, et sans qu’il soit
possible pour I'instant d’étendre I'investigation & des cas spinoriels,
1l semblait done, qu’indépendemment de la classe, le développement
de la théorie de perturbation conduisait &4 des séries divergentes.

Or, tout récemment, J. Hamirron?), adoptant la représentation
intermédiaire de Dyson®)*) de préférence a la représentation d’in-
teraction, parvenait & montrer, pour un modeéle @2, que les opéra-
teurs de cette représentation pouvaient s’exprimer en terme de
séries convergentes, pour autant que I' = 0.

Il devenait intéressant dés lors de voir si ce résultat était générali-
sable & n’importe quel modeéle de théorie, et spécialement & ceux de
la classe b) & laquelle appartiennent les théories physiquement in-
téressantes.

Le but de ce travail est d’examiner une théorie simple de b) intro-
duite par MaTTHEWS®) et de montrer que la contribution & 'opéra-
teur de champ @, des diagrammes irréductibles, pour un produit
normal donné, est une série divergente, quelle que soit la valeur
de la constante de couplage.

Au § 2, un bref rappel des notions nécessaires a la compréhen-
sion de la représentation intermédiaire est esquissé.

Le § 3 est alors consacré a ’évaluation d’une classe particuliere
de diagrammes irréductibles de la (2 n —2)1e approximation, pour
un certain produit normal figurant dans le développement de ’opé-
rateur de champ @, en ses constituants normaux. Tandis que la
contribution individuelle est asymptotiquement:

(Const)® A2n—2 . p=11. ['3. T, (1.2)
(7T'y: nombre positif)

leur nombre est O(n!) et ils fournissent un terme général de série
dont le comportement asymptotique est

(Congt)™ - f» - 47=, (1.3)

*) Essentiellement, la représentation intermédiaire se distingue de celle d’inter-
action par la modification suivante de la densité d’interaction:

¢
W', 2) > hy(@', %, 7) = hy(a’, 7. g(t— 1)) (1.1)

ol les conventions de notation suivantes ont été faites: 'index g caractérise la
représentation intermédiaire; 1 est la constante de couplage,  un point fixe.
g(a) est une fonction de a définie pour a >0, transformée de L.aAPLACE d’une fonction
G (I, I'’), avec I'= constante > 0. La représentation intermédiare adoptée par
HaMILTON est caractérisée par le choix G (I, 1")= 6(L'—1"). Voir formules
(2.4) et (3.1). : : ‘ : : :
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Les diagrammes irréductibles négligés ont tous une contribution
positive et ne font qu’aggraver cette divergence.

* La discussion de ce résultat occupe le § 4. Elle fait ressortir le role
privilégié que jouent, en représentation intermédiaire, les théories
superrenormalisables qui sont les seules & donner des résultats con-
vergents. Par contre, la divergence de série semble plus intimément
liée aux théories renormalisables, pour lesquelles la représentation
mtermédiaire donne des résultats aussi divergents que celle d’'inter-
action.

2. La représentation intermédiaire.

Introduite par Dyson, la représentation 1ntelmed1a1re se propose
le calcul d’opérateurs @,(p) donnés par -

O,p) = @)t [Ba) e ds, @)

D,(x) se déduisant de 'opérateur Corl'espondaht @(x) de la repré-
sentation d’'interaction au moyen de

D,(z) = S~H({) D(x) S() (2.2)

ou
S(t) = 2(’& (n1)- / da,.. /dm (&, 1), Ryl 23) ... hy(, a:n))
| (2.8)

La densité d’interaction h,(x, '), fonction des deux points z et 2’
est obtenue généralement de la densité h(z') de la représentation
d’interaction en adjoignant en ‘cofacteur de la constante de cou-
plage 4 la fonction g(f — t') définie pour ¢ > 0 par: S,

- [Gryeitear (2.4)
avec les conditions: ° |
g(0) =1; ga) — 0 s1. a — 0.

De plus, G(I") ne peut avoir de singulaﬁtés plus fortes que celles
d™une fonction ¢ pour un spectre discret de valeurs de I'. Ainsi, par

exemple, & la densité d’interaction:

h(z) = A PHx) | (2.5)
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de la représentation d’interaction, correspond, en représentation
Intermédiaire : ,
ho(z, ') = A gt —t') PHx'). (2.6)

De (2.1), (2.2) et (2.3), le calcul de @,(p) se rameéne donc & celui de:

+~0 -oe +oc

Dy(p) = (27)~% Y (1) ()~ /ﬂe"“f’“’) dx /ﬂ oy « sa /ndzvn S,, (2.7)
n—10 a LB -ﬂ-;o
Sy :PZ 6(x—ay) O(x — 25) ... 020y — ) -
[hol, 2y),  [oo. [Ry(2: 221, D(@)]...]] (2.8)

2 étant étendue aux n! permutations des points @, ... z,. Dans
Perm
Pexemple (2.6) que nous retenons pour fixer les idées, chacun des 2»

produits du multiple commutateur de (2.8) comporte en particulier
un produit I7, de n fonctions g. Au moyen de la représentation
(2.4), on obtient:

I, = [ G(IY) ATy, ... [ G(I,) AT, elfite==dt - +Tnte=al (9, 0)
/ ;

(V]

ou chaque I'; provenant de (2.4) est considéré comme un quadri-
vecteur a direction temporelle:

I, =(0,0,0,T)).

D,(p) est tout d’abord développé en constituants normaux M- N[ D]
selon les régles de Wick généralisées par DysoN pour les commuta-
teurs multiples. Ces constituants normaux peuvent &étre énumérés
au moyen de diagrammes de FEYNMAN G an+ 1 points: 24, ..., Z,, X.
Le coetficient M du produit normal N[@] est une somme sur tous
les graphes dont les lignes extérieures sont adéquates au produit N.

Les regles pratiques de calcul pour la contribution M(G) de G & M
ont été établies en détail?) et ne seront ici que résumées:

10 On considére tout d’abord 'expression (2.7) ou S, de (2.8) est
simplement remplacé par

P(h(zy), ..., h(z,), B(x)), (2.10)

produit chronologique habituel.
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20 Partant du point z dans le diagramme G, on double un trajet
connecté et simplement connecté (sans boucle fermée) en définissant
alnsl un sens positif sur ce trajet double, & savoir celul que 1'on suit
en s’éloignant de z. Indépendemment du doublage, chaque ligne
du diagramme posséde une direction inhérente spécifiée par une
fleche. On peut alors définir pour chaque ligne double un index # égal
a +1 selon que la fleche est dirigée dans le sens négatif ou non.

3% Pour chaque ligne doublée un quadrivecteur 4 est défini, qui
est la somme des I correspondant & tous les points z, du trajet
doublé qui sont situés en avant d’elle dans le sens positif.

4> M(G) étant analytiquement représenté par une intégrale du
type:
400

Loo
M(G) = 4 [ ey .. [ dky Bl ... o), (2.11)

chaque ligne non doublée du diagramme contribue a I' par un
facteur:
(k2 + =%)-1;  a=n+l,...b, (2.12)

chaque ligne doublée par:
(0@ — s+ id))P 2] 0 i=lond (213)

Le calcul des intégrales auxquelles on est conduit par ces régles peut
se faire au sens de FEYNMAN, en considérant les quantités (i4))
comme des nombres réels et » plus grand que toute combinaison
des moments externes et des (7). Le résultat est alors une fonction
analytique de x et des I';. En maintenant x grand, les I'; sont ensuite
variés contin@iment de leurs valeurs imaginaires pures & des valeurs
réelles; puis » est amené a sa valeur physique. Ce prolongement
analytique sert & définir M(G).

¥) 4; = X 0pla; x) I
U, = 2y Opla; x,) 1
q; = Ea [BT(xi ma”)_ BT(xj xa,)] ka .
z,’s x,” sont les deux points extrémités de la ligne portant le moment k,, la fleche
de direction pointant de xz,” vers x,’.
1 si z, = x, ou si z; est situé plus avant que z, sur le trajet doublé;
6 placy 2,) =
0 autrement.
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3. Evaluation d’intégrales de la (2 n — 2)ie appm'ximatio'n.' -
Partant d’une densité d’interaction
ho(z, ') = Ag(t —t') @Yx') = Le= TP ("), (8.1)

nous nous proposons maintenant d’évaluer toute une classe d’inté-
grales. Elles proviennent de diagrammes irréductibles contribuant
au constituant normal M de l'opérateur @,, relatif a la collision de
six mésons. Un diagramme de cette classe est illustré par la figure 1.
Les autres diagrammes de la classe envisagée se déduisent de la
figure 1 par permutation des (n — 4) points z, ... £,_, et sont par
conséquent au nombre de (n—4)!

Fig. 1.
Diagramme de FEYNMAN doublé fournissant une contribution & M, cofacteur du
produit normal N(®D(q) D(t,) D(t,") D(t,) P(t,’)) dans le développement de D, (p).

Le passage'd’un diagramme donné a l'intégrale correspondante
de l'espace de Fourier s’effectue au moyen du formalisme de
Fryxman-Dysox tel que nous I'avons rappelé dans DP*). L’ex-
pression parameétrique

1
a"b1l=n / m”*l(a x+b(1— x))""*l dx
0
est utilisée pour rendre compacts les dénominateurs, tandis que les
intégrales sur les variables de base sont effectuées a l'aide de:

- (dk) . i n?
(@kE+ Ly ~ a*(n—1) (n—2) Ln °

*) DP. désignera par la suite la référence 3) de la bibliographie.




Une série divergente en représentation intermédiaire. 737

Dés lors, au diagramme de la figure 1 correspondra l’expression:

J1,2‘..n—2 = a" (4 m)7-3" ] /d% /da:n

! o :
< [dvy... [dvn [ duy.. /de ey .. /dznz ap-onzs (3.2)
0 0 i 0

U
avec:

. 2 n—1 ,n—3 n—2 2 n—2
Kig..n2=To@s...Tp " 0573 0,5 W05, 2]

: n—2 n—2
= ]]2(1 Wi Wy L~ aim_2> mm))_zﬂ(l — el — a’(k—l)kk))_z ’

'E12

y 20 .m—22

. .Zn_2 G]_,Z"’n"2;

B,y o =g a(n—&)l (B + 82 azn—S)n—],vz;l T
o (tz + 2 ) a(n——B)n,’n + 2 (%(tl “F tlﬁ)) bzn—:s) 1,n—1 Sl Ll
+ @) 20— 8)2 g pp oo+ 2(q( ) x
X (21 —8) by, _g, r+ #271;
=A% (4 7))~

Les coefficients a, b, a,, b(), sont des expressions algébriques en
les parametres de FEYNMAN x;, v,, w;, 2; qui se construisent par ré-
currence de la facon suivante:

Bymm = Ta-mitee Tl — Tpomag .. Tn)
b ol B Bl — gy )5 K 32 L
0kl

0 |mnmlﬂ...xn(l%Jzn_kﬂ...:cn); E<l.

Aeymm = Wr [1 — Vp (1 — Gg—1) mm) -
. ”wk+1(1"”k+1(1—5'(k~1)m,k+1))2]
-y wp (L= a" 1y 41, 541)

; ; ‘ - (8.8a)
b(k)lm = Wetg [1 — Vg (1 — b(k—»l)lm) -
w1 =0y (T =01y 1, 241)) (1= 0511 = =1y m, +1))
A—vp g wp L=y 41, k+1)
2e+1 0%k m, k41 ]
—zZpr1 (L— ey p+1,541)
261 Oy m, k+1 by 1, k41 ] ‘
L=zppr (A= a@@yp1,640) ]

’

Ukymm = Fk+1 [a'(k) mm

b(k)l-m = k41 [b(k)lm—
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X 5
Qyrr = _ni[(Q n—1) 2.2, 1+ @2n—3) Zy... Tpy+ "+
+3 @y g1 — @y (142 1+ Xy g Tpg b+ Ty g Ty 2

€T .
b(()) r; = 7” [(7/ C(Jn_l. . .mn_i+1+$nwl. . omﬂ“’i_i—xn._lo . .LEn_i_1+"'

+ xn—-l ) .il?l) == .CL‘n. a .$n_f+1 (1 + ajn—]_ + :En—l mn_g + e
+ Zpy .. 2]

f n+k—1\2 ,
a’(k)I’I" = Wrpy [(1 —Vpi1 (1 e ("m—k——) a(k-—l)[’]")) oy
n+k—1

_ e (L (1 (557 b’m—nmrf} (3.3b)

\

T—vpp1 w1 A=’ G—1)p+1,2+1)

n+k-1 .,
b(k)Fl = Wit [(1 — Vg4 (1 B T b(ic—l)I*l))

n+k—1 7 ’
B wk+1(1_vﬁ:k}~_(1_7+k-_' b -1y 1, k1) )(1—”k+w1(1—b (k-1) g_,k+1))]

1=vpqrwpi1 - gnypr1,x+1)
2410241 ]
— %41 (L-agyp+1,5+1)
251 by rer1 Dy, 1 ]
L=z =e@myp+1,6+1) |7

’
Qiyrr = #r+1 [a(k)rr“ 1

b(k) ri= %rs1 [b(k)FL -
On va des maintenant rechercher une borne inférieure pour la partie
imaginaire de J; 5., ,_o.

Ecrivant K, 5. ,_, de (8.2) sous la forme:

B, , s=[B-iJ]"t=(B+1dJ) (R2+J?%)-1, (3.4)
avec
a) R = qza;n—3)1-1+(tl + tl’)z a’;n—:i)n—l,n—l Hremef (2 71%8)2 X
x (¢1)? G’ZR—S)PF—E— L
) J =2 20 8) Mgy by by |
+ (B2 + 1)1 b_gyn, s

(3.5)

on remarque que:
19 R?2+ J2 > 0 en tous points des chemins d’intégration.

20 J > 0 pour gy, (t; +1t)s (3 + 1), tous positifs. En effet, les
coefficients b/, g r ;s0nt tous positifs comme le montre ’'argument
suivant: au lieu d’éerire que I'y=1I"; I'y+ 1y =21 ..., I'1+...+1",,
= mlI’, on conserve la notation I",, jusqu'a 'expression finale de
J1,s.. .n_g.De plus, on assimile pour un instant les (:I",) & des quadri-
vecteurs dont les composantes sont des nombres réels, soit, a des
moments extérieurs supplémentaires; dans ces conditions, les
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C-oefﬁ.eients Ap—3) Ty, T b(’ﬂ._g) T apparaissant dans Ej 5., 4o sont
positifs. En effet, il ne doit pas exister de processus réels tant que

— (2 Moments)? < %2, (3.6)

condition pour laquelle il est nécessaire que les ay_gr, r,. etc.,
sotent positifs. Alors en restituant a (1.1",) la valeur (¢mI"), on voit

que ’'on a par exemple:
2n—3

b (gyrr = ‘2: b —y T & 0. (3.7)

Une démonstration directe de la positivité des a(yr,.. et br... peut
du reste étre fournie en utilisant le schéma de I'appendice I de DP.

Dans ces conditions, I'intégrand est positif sur tous les chemins
d’intégration, les a,, a(, figurant dans G, ,. ., » étant bornés par
0 <a, <1.

On emploie alors une formule de la moyenne du type:

. _

~

/ f(x) dx > (b — a) [Minimum de f(x) sur I'intervalle a > b],
a b>a;f(x) =20 poura <z <b,

qui fournit pour (3. 2):

T me) g s (1221 (1/n2—1 )47 =8 [ Minimmum |

g (3.8)
de 7 (k5 ,_o) sur les intervalles de 1 —1/n? >1—1/n?]. J

Laissant & une discussion ultérieure le terme K, . ,_,, on peut
chercher le minimum de k{ 5., ,_, pour lequel K, 5 . ,_, serait provi-
soirement remplacé par 1.

Le § 3 de DP est en grande partie consacré au calcul de la borne
supérieure des 6 y,,,. Dans les intervalles (1—1/n?) > (1—1/n3) pour
chaque variable, cette derniére est trouvée inférieure a4 3/n2 En se
reportant & (3.3a), les a( et b, étant compris entre 0 et 1, on voit
facilement que, par exemple:

Uy o m < Cgymm < B[N k=m—1,m—2, (3.9)
et ainsi:

’ n2\in—10
Gl,z..n-—2 = (—5—) ’ (3 10)
ce qui entraine pour k':

! 8n—20 O=5—2n ,—4
Ko, nog==nin2025°"2g=4n (3.11)
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et permet d’écrire, au lieu de (3.8):

T (J1a. - 2) = - -—l-‘)m [124+ %% 1e~4"n~4[Minimum

T (B, ,_s) surlesintervalles (1--1/n?) (1ﬁ1/n3)] (3.12)
pour chaque variable]. ‘

Maintenant, en tenant compte de (3.4), (3.5a) et (3.5b):

i o _ MinJ  22n-3)I'T,
}IIH ‘—/(EI,Q..71—2) T Max (R2+J2) - (272,—3)4 a4 pt — (313)

go Ty I-Fg—%, %)

o T, est. un nombre positif (2e remarque page 738). La borne
désirée pour (3.2) est alors fournie par

‘7 (']1.2 (4 ).m[

o

o N—Z

124 w¥]-le-tnp-11T, -3, (3.14)

Les intégrales que I'on déduit des diagrammes construits & partir
de la figure 1 par les (n—4)! permutations des points zy ... Tp_,
conduisent & une borne du méme type que (3.14) pour leur partie
imaginaire. En effet, rien n’est changé dans ’évaluation du déter-
minant: G 5. ..,—»**); de plus, le nombre d’intégrations auxiliaires,
les constantes numériques, le signe, subsistent sans modification et
le minimum de /(E, ,...) s’évalue comme en (3.13), avec un résul-
tat 1dentique.

Ainsi, la contribution au développement des (n—4)! diagrammes
envisagés est asymptotiquement exprimeée par:

T (M) =ty a1 (Const) Ty ['-3pn-15, (3.15)

qui est le terme général d'une série divergente.

Il existe encore d’autres diagrammes irréductibles & mémes lignes
externes que celul de la figure 1 et que nous n’avons pas discutés;
icl encore, on peut montrer que leur partie imaginaire est de signe
constant, a savoir le méme que pour les intégrales évaluées au cours
de ce paragraphe. On peut donc trouver, pour tous les diagrammes
irréductibles de effet étudié, une minorante qui donne lieu & une
série divergente.

*) Le théoréme: b'(,_gyr > 1/4 n* sur les intervalles (1—1/n%) & (1-1/n?)
utilisé dans 1’évaluation de (3.13) n’est pas démontré ici. La preuve en est assez
simple mais comporte un algébre long et fastidieux. Elle se déduit des lemmes de
I’Appendice I de DP. étendus aux coefficients a’ et b dont les indices peuvent
étre I 0 0

*¥) Démonstration essentiellement due & Hurst et THIRRING (loc. cit.).
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4. Diseussion.

Toutes les théories de la classe b), renormalisables, comportent
de ce fait méme une difficulté que ne présentent pas celles de la
classe a) (superrenormalisables) dans le calcul des intégrales: les
divergences ultraviolettes. Alors que dans le cas de deux champs
scalaires en interaction scalaire, un seul type de diagramme (self-
¢énergie de seconde approximation) conduit & une telle difficulté,
les modéles b) ont & la résoudre en toute approximation; et ceci
non seulement pour les self-énergies, mais pour les «vertex parts»
a trois et méme quatre branches. Ce qui implique en particulier la
séparation des divergences d’empiétement et complique considé-
rablement la discussion quand elle ne la rend pas impossible. Le fait,
par exemple, que les «vertex parts» de la théorie g@2 ne sont jamais
divergents a permis a TurrriNG?2) d’adopter une jauge de renormali-
sation®) dans laquelle on n’effectue pas de renormalisation de vertex.
Celle des self-énergies est alors aisée & accomplir. Par contre, les
théories b) doivent extraire, par soustraction, une partie finie des
vertex divergents, ce qui détruit, dans les diagrammes réductibles
en terme de vertex, I'unicité de signe et ne permet plus, par la, de
lever I’éventualité d’une convergence conditionnelle. Pour peu pro-
bable que soit cette derniere, elle n’est néanmoins pas exclue et nous
n’avons eu par conséquent, au cours de ce travail, aucune prétention
de prouver la divergence d'une théorie @* renormalisée, pas plus
que cela n’a été fait dans tout autre cas*). Nous n’avons tenu qu’a
donner un exemple de série divergente en représentation intermé-
diaire et, plus spécialement, & mettre en évidence l'inefficacité com-
pléte du procédé I pour la classe b). Les résultats sont éloquents:

En représentation d’interaction et utilisant la méme méthode
d’évaluation, la série des termes discutés dans ce travail est mi-
noree par:

S; = D (Const)» A2—2 =4 =2 (n—4)! (4.1)

alors que le module de la méme série en représentation intermédiaire
est borné par ’expression:

1S, = 3 (Const)n 2202 =11 T, =% (n—4)! (4.2)

n

*) Il est & noter que méme pour une théorie @3, la possibilité subsiste de trouver
une jauge telle que la série converge pour toutes valeurs finies des moments ex-
ternes, En effet, ’avoir montré pour une jauge particuliére (THIRRING) n’implique
pas que cela soit vrai pour une autre, étant donnée I'importance que joue l’ordre
des termes dans une série non absolument convergente.



742 A. Petermann,

dont évidemment la forme asymptotique est équivalente a celle
de (4.1).

Comme nous 'annoncions done, le succes de la représentation
intermédiaire en classe a) est spécifique de cette derniére, et non
généralisable aux théories renormalisables qui, elles seules, ont pour-
tant un intérét physique direct. Il nous semble que la situation
serait méme empirée en classe ¢). Mais ceci sort du cadre que nous
nous sommes fixé dans ces pages.

Pour terminer, nous tenons a remercier M. le Professeur W. PavLr
ainsi que le Dr W. THIRRING pour nous avoir signalé le résultat de
J. HaMILTON, '
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