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La normalisation des constantes dans la théorie des quanta*)
par E. C. G. Stueekelberg et A. Petermann.

(Lausanne et Genève.)

(28. III. 53.)**)

Summary. This article proposes a mathematical foundation to the method
previously employed (Stueckelberg and Rivier1)), (Stueckelberg and Green2))
to give a définit meaning to the products of invariant distributions such as,

(41l,^-, + W(1!)l K^Xl-XL-z+'-O' etc. in terms of arbitrary
constants Cj, c2. ct. .cr(ny The n'th approximation SW of the S[V] matrix (defined
for a given space-time region V) depends on these r (n) arbitrary constants in
addition to the arbitrary physical parameters (masses x, /x, and coupling
constants e, g

In the introduction (§ 1), we see that a définit physical meaning can be given
to the masses x, /x. A coupling parameter, however, can only be specified in terms
of a chosen development of a junction 8 (xy.., x.., cx.. of physical significance.
However, the terms of the actual correspondence development (in terms of e2) 8=S2
+ /S4+ have no physical meaning. Therefore the coefficient e2 in S2 has only
a mathematical significance. It requires that the functions of xy. 8t, 8S, .8n
have all been specified. As this specification involves the c/s, we must expect that
a group of infinitesimal operations Pt (djdct)c„Q exists, satisfying

Pi S hìe {x, p, e) d S(x pi e, 00.. .)/de,

admitting thus a renormalization of e.

§ 2 contains an outline of the general problem without referring to correspondence.

However the only way of attack being the correspondance principle, we discuss

(§3) the invariance properties of a classical theory, linear in the Dirac field. In
addition to the Weyl group of Gauge invariance, a group exists whose consequence
is the equivalence theorem between pseudoscalar and pseudovector coupling with the
pseudoscalar meson field. In § 4, we show that the definition of distributions in
terms of the c,-'s is a generalization of the method of M. L. Schwartz6). This permits
to discuss the group of normalization given by the Pi's. § 5 imposes certain restrictions

on this group, if we require invariance of S with respect to the corresponding
classical groups (Weyl and equivalence). The limiting case of photons with zero
rest mass then can be defined. - ;,,

*) Recherche subventionnée par la Commission Suisse d'énergie Atomique
(C.S.A.). „,

**) Le présent travail constitue, à des détails près, une thèse présentée par l'un
de nous (P) à l'Université de Lausanne, le 9 mai 1952, pour l'obtention du grade
de Docteur es Sciences.
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1. Introduction.

Le but du présent article est une mise au point du problème de
la normalisation des constantes dont dépendent les amplitudes de
probabilités pour processus entre quanta. Il fait ainsi suite à des

publications antérieures1)2)5). Quelques résultats ont déjà paru sous
forme de notes3)4). La mise au point en question a été grandement
facilitée par l'ouvrage de M. L. Schwartz6) sur la Théorie des

distributions.
Un processus est caractérisé par une première répartition de

quanta N' (cp) parmi tous les paquets d'ondes (cp cp (x)) incidents
dans une région d'espace-temps V (caractérisée par V(x) 1), et
une seconde répartition JV" (cp) parmi les paquets émergents de V.
Ve processus a lieu essentiellement dans la région d'évolution V,
séparée du reste de l'univers (caractérisé par V(x) 0) par une
couche v (caractérisée par d0V(x) $ 0). Dans une expérience idéale,
la couche v serait constituée par des compteurs idéaux. Ceux-ci
distinguent d'abord entre quanta incidents et émergents (cf. § 1 de

I*)). Ensuite ils précisent le nombre de charges portées par chaque
quantum, sa masse, son spin, sa parité, sa position dans l'espace x
et sa quantité de mouvement (à AxiApi > 1/4 près). L'époque
d'observation x* s t et l'énergie disponible E' p\ + p\ H sont
incertains à AEAt > 1f4 près. Les amplitudes de probabilité sont
ainsi fonctionnelles de V(x), N"(cp) et N'(cp), et forment la matrice S

S[V(),N"()/N'()] ->S[V] ZZSN„N,[V];S00 IS00[V] (1.1)
A'" JV

que l'on doit considérer comme le développement

N>'lN'\SN,,N.=SWi---Sr.N,cHcpl)--.-c(cp's,)S[V, cp"x...

9n"/9x---9n-Ì O--2)
avec

S[V, cp"x. •/. • • <p's.] =J---j 9i(x'i) ¦ ¦ ¦ 9Ì»(x"y") ¦PiK) • ¦ • <pAx'n) ¦

¦ S[V, x"x --./... x;,]; f= [dx\\-gaß\\™ V(x). (1.3)j j
en terme des produits ordonnés pour les opérateurs de création et
et d'annihilation c. Seuls les cas où l'étendue temporelle de la
région V est très grande par rapport à celle de v présentent un
intérêt physique. On peut alors nettement distinguer les processus
conservatifs (auxquels principalement les événements se produisant

*) La mention I se référera à l'article 2).
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à l'intérieur de V contribuent), des processus non conservatifs (pour
lesquels l'incertitude d'énergie AE participe au bilan de conservation

et qui se déroulent à l'intérieur des couches v ou tout près
d'elles (cf. I § 3, et 2))). Comme nous aurons souvent besoin de
relations ne tenant que dans la limite où ces «processus de surface»
peuvent être négligés, il est avantageux d'introduire le symbole
suivant :

^ signifie: «à des contributions de surface près». (1.5)

Si les amplitudes de probabilité sont normalisées et si l'on admet
le principe de superposition pour les états N(cp), la matrice S doit
être unitaire (S+S SS1" 1). Les amplitudes S[V, cp". ./cp'. .] sont
alors observables par des procédés statistiques. Les représentations
de Lorentz (paquets cpfl(x)) étant spécifiées par la nature des compteurs

(pi spin, parité, nombre de charge et masse), les transformées
S[V, x"../.. .x'] sont elles-mêmes observables dès que la normalisation

de

S^vA*) 9l(y)=D^(xy) &->(yx) (1.6)

a été convenue. En terme de l'opérateur d'ondes Qß (appartenant
à la représentation pi): Q^x) cp^x) cpß(x) Qß(x) 0 et de

ô(xy) || —f/a/sll'''2 °(x— V)' cette normalisation s'effectue par un
facteur Z2 > 0, dit de normalisation:

QAx) Df(xy) D^(xy) Q, (y) - Z\ ô (xy) (1.7)

D(?(xy) ± D^(xy) pour x*§ y* (1.8)

Admettons maintenant qu'une matrice S[V] ait été trouvée qui
satisfasse aux conditions physiques (causalité et unitarité, voir § 2).
Une telle matrice peut alors dépendre encore de certains paramètres
à normaliser par des conventions:

1° La phase. De l'invariance et de l'unitarité, il suit que

Sy.,0 =S[V,cpxcp2... f] Q, ; S00 S [V, f] ^ é*™ 1. (1.9).

La dernière identité arbitraire est appelée convention de phase.
2° Les masses. Pour les mêmes raisons, il suit, avec l'aide de la

convention (1.9):

à (9"l9) + SXX[V, <p»/cp'] ^ ô (cp-fcp') e-^-r. (1.10)

Il est nécessaire que ß' soit positif. En effet, la probabilité de trouver,

au lieu du seul quantum incident en cp', d'autres répartitions
comprenant plusieurs quanta vaut 1 — e-2 "', ß' > 0 et implique
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que le quantum cp' est instable2). La condition S[V2] S[VX] =S[V2 +
Vx) s'applique à tout V Vx + V2, dès que la couche des compteurs
de quanta émergents de Vx se confond à celle des compteurs de

quanta incidents en V2. Elle impose que l'exposant — i a' — ß' soit
fonction linéaire de la durée t" — t' de V :

-icx.'-ß' -i[fcoi2+^'lfx2)-co'](t"-t') (1.11)

si V est limité par deux plans temporels a;4 ^ t' et a;4 ^ t". Cet
exposant doit dépendre du paquet cp' et de la durée, de telle manière
que

ip'(x, t) cp'(x, t) exp [— i(\/co'2 + A (pt2) — o>') t) (1.12)

satisfasse à une équation d'onde invariante. Si

cp'(x, t) cp'(x, 0) exp (— ico'i), (1.13)

A(u2) est indépendant du paquet. Il représente un changement
complexe (à partie imaginaire positive) du carré de la masse de

repos. Il est ainsi avantageux d'imposer la convention de masse
suivante à S :

Partie imaginaire de Sxx [V, tp"/cp'] ^ 0 (1-14)

Elle spécifie que A(pi2) est imaginaire. En vertu de (1.12) et (1.13),
un quantum stable dans un paquet avec p ~ p ' se propage maintenant

avec la vitesse v p ' (pi2 + \p'\ 2)~1/2. Les compteurs parfaits
mesurant pi2 sont en effet construits de façon à mesurer la masse
en terme de v et de p.

3° Les constantes de couplage. Après l'examen de S00 et Sxx, il
convient de passer à celui de SX2, S22, etc. En électrodynamique, nous

'

avons en particulier l'émission d'un photon par un électron SX2

[V, cp'^u"Aj u'B] qui a une signification dès que 0AB(x) dépend de

x (champs classiques dans l'éq. d'onde). On peut alors l'utiliser
pour définir des constantes de couplage. Dans cette intention, on
exprime S12 par un développement formel en terme de distributions
ponctuelles (mesure de Dirac et ses dérivées)

-i23'2SAB(zxy) eyABô(zx) ô(zy)+my%oß(zx) ô(zy) + --- (1.16)

On interprète alors les parties réelles des coefficients e, m,... comme
les i intensités des pôle (charge), dipôle, quadrupôle, etc. électriques
(pi0 — (masse de cpa) -> 0). Une meilleure interprétation en serait
fournie .par le développement de SA,,A,B„B, (x"y"jx'y') qui apparait
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dans la collision entre deux électrons. La discussion en sera évidemment

facilitée, si on la fait sur l'intégrale:

-i2l22ffs(xylx'y')^y«y0LF(x'y')+y«ßy0,dßG(x'y') + -*) (1.17)
x y

Pour chaque fonction F, G, on fait un développement formel en
terme de distributions causales de masses différentes et de leurs
dérivées. La partie réelle e2 du coefficient de D(°\ en F est alors
interprétée comme le carré du pôle électrique, etc.

Toute cette discussion s'applique au cas où l'on a trouvé un S[V].
Pour l'instant, on ne connaît que des S[F]**) établis par une
correspondance classique et par un développement en série de certaines
constantes de couplage e, m, à signification classique. Les
détails du procédé de développement en série ont été discutés
en I, § 2. Nous relions ici d'une manière plus précise Causalité et
Correspondance.

2. Causalité et correspondance.

Soient cp,Sß)a(x) les composantes tensorielles ou spinorielles (index
a) d'un champ quantifié de spin s et de masse pi. Un tel champ est
toujours la somme de deux parties à fréquence définie en terme de

l'opérateur d'onde 0,su):

2m9>MaWHtiiï*+9tâa)(*) <+)(x) Sc(9„) V^W?- ¦ ¦ ¦ (2-1)

Dans les notations suivantes la sommation sur tous les spins et
toutes les masses est comprise dans la somme sur a***). Va condition

d'unitarité s'exprime par un système infini d'équations
intégrales (St(xx.../...yN) S(yN.../...xx))****)

SîoSoo + EW-rHirYf- ¦ ¦ f8U/xN- ¦ -xJS^y,. ..yN/)
x, VN

¦D^\xxyx)...D^(xNyN) l. (2.3a)

*) Une meilleure interprétation de e2 est obtenue en développant «l'interaction
retardée,, 0(x" y"jx' y') de l'équation inhomogène (Bethe et Salpeter7)) à laquelle
doit satisfaire le noyau de Feynman8) K^l(x"y" x'y') i f ¦ ¦ ¦ f A^c\x" y),
A(c\y"x)S^{xy^n) A^y') AM(rjx') + A(c\x"y')A(c) hj"x')-A(e\x'y') A(c\y" x").

**) Il est remarquable que dans les S[V] ainsi trouvés, on ait 8(V, xxx,1. .j
.Xj/\ S[V, xx.. xy]. Le développement peut donc s'effectuer en produits

ordonnéscpN (xx. .xN) de (5.1).

***) Sommation sur toutes les représentations du groupe de Lorentz.
****) / Nombre conjugué complexe de /.
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"oo "nm(xi ¦ ¦ ¦ xN/yx ¦ • • yM) + S00SNM (xx.../... yM)
oo oo

+E(n\m^E---E E
Perm N'M'N"M">0 n=0

' (n (y)Y '"//'" /S*'-W' ^Xl ' ' ' ^'^1 • * ' V**-* X'n--- Xl)
x/ xn' y/ yn'

• SN„M, (yx... yn xN,+x... xN!yM,_n+x ¦.. yu)

¦D^(x'xy'x)...D^(x'ny'n) 0*). (2.3b)

La condition de causalité est une condition asymptotique que l'on
doit imposer à la solution du système (2.3). Elle a la forme
suivante :

Si un premier groupe de N événements (xî ~ xl ~ ~ x) est
dans le futur lointain (a4 — y4->- + oo) d'un second groupe de M
événements (y\ ~ y"k ~ ~ y), avec N + M N' + N", le
développement de Fourier doit satisfaire à:

lim SN„s.(xx...y'x.../x-...y"k...) -> S(+)N\x\. (2.5a)

S(+)(x'x. •)=/*• • • fdki- ¦ -dkN exp [i(kxx[ + + kix'-+...)}
-é+\kx...ks,yi...y"M) (2.5b)

s(+\kx... kN, y\... y"M) 0 pour k{ + k\ +. + k% < 0. **) (2.5c)

Le fait expérimental qu'il existe un spectre discret d'un nombre infini de masses
différentes (comprenant les particules dites élémentaires et les états liés entre
plusieurs particules élémentaires), semble indiquer que l'équation intégrale (2.3)
ne possède un système de solutions causales que si :

1° Toutes les représentations du groupe de Lorentz (tous les spins) ont été
prises en considération.

*) (2.3) a été écrit pour des spins entiers. La somme sur les permutations est
alors à effectuer sur les Ni Mi permutations des xt, j/4, les fonctions S étant
symétriques par rapport à ces permutations. Pour des spins demi-entiers, on remplacerait

y2D( + Xxx') par l'anticommutateur

jAA+l(xx') =-ijH(«'ji) [vA+\x), tXX'X <2'4)

Les S deviennent alors antisymétriques pour une permutation de deux événements
spinoriels. De plus des facteurs + 1 interviennent dans la somme des permutations.

**) Les S(x, S[Vx, .] dépendent explicitement du domaine
d'intégration. Donc (2.5), comme (1.16) et (1.17), ne peut être postulé que si la région
d'évolution s'étend sur une grande région d'espace-temps et si x* — y* reste petit
par rapport aux époques qui séparent les xii des époques d'observation. Notons
enfin que la causalité peut être définie pour des métriques plus générales sans
référence au développement de Fourier.
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2° Pour un spin s et une parité p*), les masses forment un ensemble dénom-
brabie /x /*„,„.

p 0;i; s 0,^,1, ...; n 0, 1,2, (2.6)

A l'époque actuelle, on ne connaît aucun procédé pour discuter le
problème formulé par (2.3), (2.5) et (2.6). On doit ainsi se contenter
de considérer 1° et 2° comme une hypothèse. On traitera, par la
suite, le problème des collissions par la méthode d'approximation
exposée en I. On discute donc:

a) Un opérateur S qui ne fait intervenir qu'un nombre fini de

représentations de Lorentz, par exemple la restriction aux seuls

champs: électron-positron UT, u, photon <jpa et méson &5 avec les

masses x, pi0 et pi.

b) La dépendance de S (outre des masses x, pi0 et pi arbitrairement
choisies) d'un nombre fini de constantes arbitraires additionnelles
e, g, f et m. Ces constantes sont définies comme les cofacteurs de
certaines actions locales hermitiennes. Ils remplacent, dans une
certaine mesure, les représentations omises. Dans notre exemple,
les actions locales sont: l'action vectorielle (v), pseudovectorielle
(pv), pseudoscalaire (ps) et tensorielle (t), soit

eA\l> ejj'Va; fA$f> ffj^d^;
gA^=gfj50,; mA^ \mj>'Ba,;
j*ß... (u^u)ABya/B- («V^-a):**) (2.7)

Développant alors S 1 + S, + S2 + en termes de puissances
des constantes de couplage, on exige que chaque approximation
satisfasse aux conditions d'unitarité et de causalité. La série ainsi
obtenue

S^=S^(x,pt0,fx,e,g, 1 +St + .+Sn (2.8)

Sx i{eA% + jAtf + gA^) iA,. (2.9)

est formellement univoque. Le développement est identique, à la

*) p distingue le champ tensoriel du champ pseudotensoriel de même spin.

**) Les ya= /*B sont réels. On a d'autre part /. £AB fB, §AB =-yiB.
Les quatre yAB sont ainsi réels, donc hermitiens. Le sont également: y" — if et

y6 — y5 — i y* yß yy y6 ya ß yô (a ß y ô permutation paire de 1234), les six

ya P y™ j/, a £ ß et les quatre ya 5
ya y5 - y „ s. — est le signe d'ordonna-

tion des opérateurs, c'est-à-dire, si 21/2 a i/+' + «/—',2 (u\ uB) t»^~'Wj^'

- w^ u/+> + w<j-> w(B-) + «//> *4+) (u*u)AB (x y), cf. aussi (5.1).
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suite S(m) purement formelle, obtenue par la représentation d'interaction

de Tomonaga et Schwinger, à condition que la région
V(x) 1 soit délimitée par deux surfaces temporelles. Comme cette
représentation a été obtenue par une Lagrangienne L (ut, u, cp, 0)
fonctionnelle des champs classiques:

L(u^u,cp,0) L^0) + LM + L^ + AX IJU) + L(^ + U0). (2.10)

Vu0) - f^[-(^Ü)u + n\Qu)}~-, QAB(x) (y*da(x)+xi-)AB

U«=-f± 1

-B.ßBxß + MÎ<P«P2

L(*>=- f±[d0l4>5da<Pl> + tx2®5&5]~ (2.11)

la théorie formelle : S[v] 1 + Sx + S2 + correspond à une théorie
classique engendrée par la Lagrangienne L de (2.10). Nous allons,
par conséquent, étudier d'abord le groupe qui laisse invariante la
partie bilinéaire en «t u, soit :

L(M) =/ [27 (("td«) r*u-tfr«(dau))+J0Xo + eJ«x*

+ -en-JaßX«ß + fJlXl + 9J6^} (2-12)

où les grandeurs X sont des champs quelconques avec lesquels les

particules du champ u sont en interaction. Pour fixer les idées, on
retrouve l'exemple étudié, si l'on pose: Xo —^> Xa ÇPa> wi 0,
Za5 ^a*5et Xs #5

3. Le groupe de jauge.

La Lagrangienne L(M), définie en (2.12), dépend des spineurs uA et
uA, du tenseur symétrique gaß et des quatre tenseurs y«., Xaß> X\> X&

XI3 II r*)-
Les spinotenseurs y dépendent de gaß par la relation ôy0L= y2yß

ôg^, qui laisse invariant l'anticommutateur [ya, yß]+ 2 gaß.

Ve but du présent paragraphe est de montrer que cette Lagrangienne

est invariante par rapport au groupe engendré par les trois
paramètres infinitésimaux ôr0, ôX0 et ôX5, définis comme suit:

ôuA àFAuB, ôuA -uBôr^B;
ÔF ^-y°ôz0 + ey<>ÔX0 + ifysôX5; y0i -iôA. (3.1)

*) Souvent, par la suite, pour alléger la typographie, u, X " ' son* imprimés :

11, x • • • • Le lecteur rétablira lui-même le caractère opératoriel de ces grandeurs
si besoin est.
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En d'autres termes, nous nous proposons donc de voir qu'une
modification infinitésimale des paramètres r0, X0 et Xh, dont paraît à

priori dépendre L, laisse cette dernière inchangée. Les conclusions
auxquelles on parvient alors sont les suivantes :

1° La transformation ôr0 n'est qu'un changement de normalisation

de la métrique et par conséquent se trouve être sans intérêt
direct pour ce qui va suivre. Nous n'y reviendrons donc pas.

2° La transformation ôX0 exprime un changement de la jauge
électromagnétique habituelle.

3° La transformation ôX5, elle, montrera que les Lagrangiennes
engendrées par des potentiels scalaires, pseudoscalaires et
pseudovectoriels reliés entre eux par certaines relations sont équivalentes
au sens du théorème d'équivalence bien connu, relatif aux
premières approximations de la théorie pseudoscalaire avec couplages
ps et pv. Elle comprendra entre autres la transformation indiquée
par M. L. L. Folby10). Par analogie avec 2°, nous dirons qu'elle
exprime un changement de la jauge mésonique.

Si l'on varie les tenseurs g et y, conformément à:

*9*ß 9*ßar0; ôg^ -g^ôr0; ôY«^±-y«ôr0; (3.2)

àx^-àJX»; (3.3)

àXo^-Zf9XSàh
<5*5 -2-U0<U5 (3.4)

àxl à*àX5

d(TX*ß) -iTXv'dX«>y (3-5)

il s'en suit immédiatement que ôL(u) ^0. Va transformation ô XQ

(3.3) est le groupe de jauge habituel pour le vecteur yx- Un champ
Xa de masse non nulle (à quatre polarisations) peut être décomposé
suivant :

*«=?«-*. V *¦(?«) 0 (3.6)

en un champ à trois polarisations cpa (agissant sur Ja) et un champ
scalaire X0 (sans influence sur Ja). On appellera ce groupe, le groupe
électromagnétique. Va transformation dX5 (3.4) montre que le groupe
de jauge pseudovectorielle laisse invariant le scalaire

xt-g2x"x^x20 + g2(xù2 «+bï); (=,si\\gaß\\=-i). (3.7)

Ce groupe sera appelé groupe mésonique.
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Ainsi les Lagrangiennes engendrées par tous les potentiels
scalaires, pseudoscalaires et pseudovectoriels reliés par

Xo a0 cos (2 / X5) + b5 sin (2 fX5)

g Xi — ao sin (2 fXs) + bb cos (2 fXs)

AaC P., + daX5,

(3.8)

sont équivalentes. La théorie du couplage pseudoscalaire pur Ax
gA^s>, peut être réalisé par la jauge fX5 0, si l'on choisit: a0 — x,
h g^h, car Xo — », gXô 9®5> fx*5 0. Posant ensuite fX5
— g/2x05 en (3.8), on constate que ce couplage pseudoscalaire
pur est en particulier équivalent à un couplage pseudovectoriel

Ax f A[v°\ avec / — g (2 x)'1

fxl6 —iïda06=fda06,

(3.10)

(3.11)

auquel s'ajoutent des couplages pseudoscalaires et scalaires sans
terme linéaire dus à:

gy* -x sin (gx-1 <Z>5) +g05cos (gx-1 <Z>5) -\x~2 (g05) *+•¦¦)
Xo=—x cos (gx-1 05) —g05 sin (gx-1 </>5)

^>c-^x-1(g05)2 + ^x-3(g0^-.--
(3.12)

La correspondance formelle nous fait donc attendre que la série
S(n) en g engendrée par l'action locale pseudoscalaire et linéaire:

Ax eA[v) + gA{vs); gA[ps) I J5(g®. (3.13)

soit égale à la série en g obtenue de l'action locale pseudovectorielle
et non linéaire:

avec:

et

_4(p»)

'(»

eA^ + fA^ + E9lBm
1 2

J^tx-idG,)

%l\(vty*x(iySx-10^lU)~ *)

1

~2 '
1_

m

Y' tti ~= ¥ ;

(3.14)

(3.15)

(3.16)

*) y" i - i ôB ; (y5)2 B ôB ; yAB et yAB sont hermitiennes.
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Si l'on veut, lors d'une transformation de jauge, que les actions
électriques et mésoniques restent indépendantes l'une de l'autre,
il est nécessaire que le moment magnétique disparaisse (m 0).
Par contre, une action / Jr°l5 cpa5 d'un champ mésonique à spin 1,

peut toujours être superposée, sans changer le théorème d'équivalence.

On verra pourtant par la suite qu'en théorie quantifiée, la
théorie

/ya5 0; y«.BF 0 (3.17)

est la seule qui soit normalisable.

4. Le groupe de normalisation en théorie quantique.

Les méthodes de calcul destinées à évaluer les termes S(TC) de la
suite d'approximations de S (cf. (2.8)), qu'elles procèdent par
construction différentielle ou intégrale de la matrice S, sont amenées à

intégrer sur le domaine d'évolution (V(x) 1) des produits de

noyaux D(xy), A(xy), etc. Il est bien connu que ces produits,
considérés comme produits de fonctions, conduisent à des difficultés de
sommation (divergences) ainsi qu'à des inconsistances (ambiguïtés
telles que perte de l'invariance de jauge dans l'espace de Fourier,
etc.). Or, les D, A... sont des distributions, solutions tempérées
d'équations hyperboliques. Leur analyse ressort strictement de la
théorie des distributions établie en détail par M. L. Schwartz6).
A la différence des formalismes récents (Dyson et autres), dans
lesquels les divergences sont acceptées comme telles et «renormalisent»,

au moyen d'une algèbre de grandeurs infinies, les constantes
du problème, nous considérons que les produits multiplicatifs T de
distributions A, B.. c'est-à-dire T AB.. ne sont en général
pas définis. Le développement en série, qui fait intervenir de tels
produits n'a donc pas de sens précis.

U est cependant possible de définir ces produits T chaque fois
qu'ils apparaissent dans la série en employant le détour suivant:
On cherche d'abord une distribution Q &T définie univoquement
pour toute association des facteurs de & et de T. Ensuite, par division

de Q par #, on obtient la définition de T, à l'indétermination
du problème de la division près. Cette définition peut être ainsi
effectuée en deux étapes distinctes:

1° Recherche des distributions Q qui, par division par {r donneront

le produit T cherché.
2° Discussion de l'indétermination provoquée par la division.
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Le point 1° a été discuté en I et peut se résumer ainsi: Si l'on a
à définir une distribution T(xy. produit des deux distributions
A(xy.. B(xy... selon

T(xy...)=A(xy...)-B(xy...), (4.1)

on est ramené à la recherche de distributions Q définies univoque-
ment:

Qaß---V(xy...) &«ß---v(xy...t) T(xy.A) (4.2)
avec

aaß---Y(xy. ..t) (af—P)"«. ..(yß—tß)nß ¦¦¦ + ¦¦-. (4.3)

Les tenseurs ii^ß--- sont des fonctions covariantes, définies dans la
région V(x) 4= 0. T est alors défini par division de Q à l'indétermination

de cette division près. Un certain ensemble de ces & forme un
système définissant ©T, définissant T, si la définition de T en terme
de Q est faite avec le minimum de constantes arbitraires*).

De plus, si T est un produit do la forme

T(x. .u. fA(x. .y. 0(y.. B(y.. .u. (4.4)

défini sur Rn°, et que les produits:

Tx(x...y...) A(x...y...) 0(y..) (4.5)

T2(y...u...)=0(y...)B(y...u...) (4.6)

donnés sur RHi et Rn' respectivement ne sont eux-mêmes déterminés
qu'à une certaine combinaison linéaire arbitraire de mesures de
Dirac et de leurs dérivées Z1 ô a{ <5®(ai. .y.. Eôbk o(k)(y. .u..
près, T est elle-même indéterminée, en plus des termes Eôdi ô®

(x.. u...), aux expressions

/. m, — l
IJT oa(ô(i) (x...y...) B(y...u...) E °aiTli(x...u.

et EôbkT2!c(x. .u.. près. On a donc

m,- X m2 1

ôT(x. .u. EàatTxi(x.. .u. + E obkT2k(x. .u..
i-0 fc-0

«1,-1

+ Eàdlôm(x...u...) (4.7)

*) Les entiers positifs »%, nß, ont la valeur minimum nécessaire pour que
Q soit une distribution déterminée.
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où les Tai sont des couches multiples d'ordre i + 1 composées de
distributions définies sur Rn°*). Ainsi, sous la forme des Tai sont
immédiatement séparées les divergences d'empiétement, sans avoir
recours à un vocabulaire autre que celui de la théorie des
distributions (comparer avec A. Salam15)).

Il est entendu, comme nous l'avons exposé en I, que la définition
n'est nécessaire que pour les distributions du complément causal.
Va réalité des constantes a, b.. est donc imposée.

Exemple 1: T est donné sur R1**) par la trace du bi-spineur
tr(Ax_y Ax_y) non défini, comme c'est le cas dans deuxième
approximation de la «self-énergie» du photon, par exemple. Qx-y=(x—y)3
tr Ax_y Ax_y***) est une distribution Q déterminée pour toute
association de facteurs (xa — y"), (xß — yß), (x7—y7) et Ax_y. Par division

on obtient:

T^-ir'A^A^-Jj^ (4.8)

à une indétermination I (x — y) près qui satisfait (x — y)3 Ix^y 0.

Celle-ci ne peut être qu'une combinaison linéaire, arbitraire de la
mesure de Dirac et de ses dérivées d'ordre < 2 (support x — y — 0)

Co °x-y + cla àx_y + c2aß 0%ty Va trace étant un scalaire,
l'indétermination se réduit à c0 ôx_y + c3 n òx~y> car, pour des raisons de

symétrie, aucun vecteur constant foœ ne peut intervenir (cas du
«photon scalaire»). Une fois la division effectuée, le calcul de
l'élément de matrice qui contient la distribution T s'effectue de la
manière suivante:

M(cp"jcp')=jjdxdy Vcpr'(x) Tx_yVcp'(y).

C'est une régularisation de Tx_ynar la fonction Vcp" (y) ****)
(Ty. Vcp') (x), suivie du produit scalaire de cette régularisée par la
fonction Vcpt"(x). D'où:

M ((T* Vcp'), Vcpt") (Vcpt", (T*Vcp')). (4.10)

Exemple 2: («Renormalisation de la charge») T est donnée sur R2

par le bi-spineur Ax_v Ay_z Ax_z TAB (xyz) non défini.

Qx(x-y, y-z) ^x(AAD)x^y^_z (x-y) (AAD)x_y>y_z

Q2(x-y,y-z) &2(AAD)x„V:y_z=(y-z)(AAD)x_y>y_z (4.11)

*) L. Schwartz6), Tome I, p. 125. Théorème VIII.
**) Espace à I x 4 dimensions xa— ya.

***) 3 est la valeur minimum de l'exposant pour que Q soit déterminée (cf. I
et«)).

****) Voir index terminologique de M. L. Schwartz6), tome II. Vcp'(x) est une
jonction à décroissance rapide.
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sont des distributions déterminées. Les définitions par division

1» (AAD)x_y>y_z Qx/{rx; 2« (AAD)x_y,y_z Q2f&2

sont indéterminées à des couches multiples d'ordre 1 (portées par
x — y 0, y — z 0 respectivement) près. On a donc :

io AAD -QJ- + Ily„zôx_y; 20 AAD=^+I2x_yôy_, (4.13)

L'associativité demande QJ&x=Q2/&2. Donc AAD est indéterminé à

AAD (AAD? + aôx_yoy_z; Ô(AAD) ôaôx„yèy_z (AAA)

près. Par (AAD} on comprend une distribution définie.

Exemple 3: («self énergie» en 4e approximation) T est donné sur
i?1 par le bi-spineur

TAB x-u Jf dy dz Ax_uDx_zAy_2Dy_uAz «• (4-15)

(x — u)2 Tx_u est défini, comme on va le constater. Vu que (x — u)
(x — y) + (y — z) + (z — u), et (a: — u)2 (x — y)2 + (y — z)2 +

on a &TX_U (x — u)2Tx_u

1° J ](x-y)2Ax_yDx_zAy_zDy_uAz_u
y z

2° + ff(z-u)2Ax_y
30 + ff(y-z)2Ax_y
Ao + Jj2(x-y)(y-z)Ax_y
50 + ff2(x-y)(z-u)Ax_y
6« + fJ2 (y-z) (z-u) Ax_y (4.16)

1° Le premier produit multiplicatif (a; — y)2 Ax_y Dx_z Ay_z est •

défini. Par contre, le produit Av_z Dy_u Az_u ne l'est pas et sa
définition doit être effectuée conformément à l'exemple 2, c'est-à-
dire Tx <Ay_zDy_uAz_u> +aôy-zôz_u.

2° On invoque, pour la définition de 2°, un argument en tous
points analogue à celui utilisé pour 1°.

3°—6° sont tous définis.
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La division par (x — u)2, que l'on effectue ensuite, donne:

1» ff(x-y)2(x-K)-2AD<ADAy + bxôx_u+b2yJx_u + aAx_uDx_u

2» /J(z-u)2(x-u)-2<ADAyDA+b3ôx_u+biyJx_u+bAx_uDx_u.

Au total on obtient:

T fJ (ADADA > + dx òx_u+$d2y~ òx_u+ a <AD> + b <AD>

+ ac1ôx_u+ac2yJl_u+¦ ¦-

àTa^...u=òdxòx_u+od2yJl_u + òa(ADy + òb(ADy

^2Jàc(PiTi (4.17)
ci dx d2a b. •.

avec: / \ (ADADA y

f f(x—u)~2 [(x — y)2AD <[ADA} + (z — u)2 (ADAy DA + ¦ ¦ ¦]

A ADADA correspond un diagramme (losange). Il en est de même

pour les ADA (triangles) et les AD (biangles). On peut alors formuler
le groupe sous la forme symbolique suivante :

y

ô ~iC /*~=ödi_r+öd2~x-+ôa-x^>-+ôb-K^-
T^ (4.17a)

et dire que le losange est défini à ses diagrammes affaissés près. Un
diagramme peut être affaissé par rapport à n'importe quel
diagramme qu'il contient. Ainsi, l'affaissement du losange par rapport
à lui-même est le «point à deux attaches» (intervenant avec deux
couplages différents ô (x — u) et ya da (x — u)). Affaissé par rapport
à un des triangles, il fournit un des biangles de la self-énergie, ear
le triangle affaissé est un «point à trois attaches».

Les images de Fourier des systèmes définissants sont des
systèmes d'équations différentielles aux dérivées partielles. Pour cette
raison, il est avantageux d'utiliser la transformation de Fourier
pour le calcul, comme nous l'avons fait en I.

La définition par division met à disposition une infinité de
distributions différent entre elles par des expressions du type (4.7). Le
problème S envisagé peut donc sembler à première vue complètement

indéterminé. Or, il est possible de montrer que des changements

des paramètres (réels) du groupe ôcit ne font rien d'autre
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que de changer les valeurs des constantes x, pi0..., g. Pour le voir,
il est avantageux de considérer les champs quantifiés cp et 0 comme
les produits ecp et g0, soit des champs normalisés" en terme des fonctions

causales par les relations (1.7) (1.8):

QtlD<°>« DQlß=-e2o«o(x,y); ÛJf (D-täf-W
Q^ DQl^-g2ò(x,y); fl», fl& (D~M2) Il -ffll
QxAVA -AïQAB ZôAô(x,y); QfB ± (àay* + xÇ)AB (4.18)

e2 et g2 sont alors des facteurs de normalisation.
Au lieu des constantes de couplage, nous utilisons les v paramètres

ee (g s à v), introduits dans l'opérateur Lagrangien afin de
développer S en série des e:

avec:

r<«o> / x J0+e rw_£ / _^_(œ œ«)2 + e,..4W-f-*>!<?*>+ • • •

s0 l; Si %L; S 2 —

'xJ°+ e.^W--»J i4
2

¦(9Paî

Ve f /x*

4
<&4. (4.19)

Le /S(n) ainsi défini dépend, outre des paramètres e„, des grandeurs
physiques x, pi0,... e, g.. ainsi que de r r(») paramètres
supplémentaires c{. On constate d'abord que l'opérateur de Lagrange
contient, en plus des termes d'interaction (2.7) (tri- et multi-linéaires
dans les champs) des termes bilinéaires.

Aux relations évidentes

d/d log e„S(n) d/d loge S(n) etc. (4.21)

on ajoute encore
dEuS<"> ^ d/d log ZSM (4.22)

+ £«+ «0 <XS<"> d/d log x Sw ¦

et d'autres relations analogues pour ev, e^ et pour e0, elt, en terme
de e, pi0, pi et g. On les démontre par intégrations partielles (cf. I,
§ 3) et à l'aide de la relation:

d/d\ogxAx_y=-xjAx_zAz_y, d/d\ogxu(x) -xfAx_zu(z). .(4.23)
z z

Ayant ainsi montré que toute variation des e peut s'exprimer par
des variations de grandeurs physiques, il nous reste finalement à
voir qu'une variation des r(n) constantes arbitraires est, toujours i

équivalente à une variation des eQ.
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Une variation des constantes arbitraires peut être générée par le

groupe infinitesimal :

oSM EàciPiSM; P, (ô/dCi)Cx=C2=...Cf(M)=o. (4.24)
i

Pour un diagramme de complication quelconque dans SM, les P{ S(n)

sont des diagrammes affaissés par rapport à un diagramme qu'il
contient, à savoir celui qui est indéterminé à une distribution près dont
ôci est le co-facteur. Ce diagramme affaissé contient donc, à la place
de l'élément primitif, une interaction ponctuelle. Or, ce diagramme
existant déjà dans SM muni d'un paramètre ee, on peut trouver des

fonctions
hiQ hie(x....Z,ex...er) (4.25)

telles que

P, S<»> JP K dEg S™ ; i 1... r (n) (4.26)
e-i

ait lieu, pour autant qu'il existe des coefficients L\k (indépendants
des Ci) satisfaisant :

[J\.,PJ_ -2,£kJ',. (4-27)
i

ce qui est bien le cas5).
On a donc bien montré, comme on l'avait annoncé, qu'une variation

des constantes arbitraires ne change que les constantes
physiques x, pi0, pi... Z, g.

Va normalisation de Z est arbitraire. L'arbitraire dans la
normalisation des autres constantes, par contre, n'est qu'une confirmation
du fait que le développement en série ne peut pas donner d'information

sur les valeurs numériques des grandeurs physiques x, pi0...
(cf. fin du § 2).

5. Le groupe électro-mésonique en théorie quantique.

La correspondance d'une théorie S à une théorie classique du type
(2.10), fait attendre que les propriétés de cette dernière, en particulier

l'invariance par rapport aux sous-groupes (3.3) et (3.4),
puissent être étendues à la première. Nous allons examiner, dans ce

paragraphe, les conditions pour qu'il en soit ainsi :

Groupe électromagnétique. En terme des puissances ordonnées de
tfA, uB, <pa et 4>5,

u\x)u(y) (u!u)(xy) + ^-A<-+)(xy);

(u^u) (xy) (uJu) (zt) (u^u)2 (xyzt) + • • •

9a(x) 9ß(y) 9lß(xv) + YD*V(xy) ¦ i5-1)
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l'opérateur S s'exprime par:

S(0<p) ESenm= [••¦[£(El)-»(N\Miy-i{tfu)*9>»*"x

x SENM (xxyx...yEzx...zNtx.. tM) (5.2)
où

&ENM ^A1B1A,. ..Be
' (Xl 2/l * • • Zh - - - *Jf) • (5-3)

Une condition suffisante pour qu'il soit invariant par rapport au

groupe électromagnétique

Xa SPa- Mo1 Pa ^0 î <^0 X« ~ M^ V* Ô Â0 (5.4)

est que les courants électriques

<fe(%- • -tM)=-if f(El)-2(tfu)ZS*ENM(xy. .z. .t) (5.5)

x y

satisfassent, à des effets de surface près, à l'équation de continuité:

^.«TM=0. (5.6)

Cette relation est satisfaite par la plupart des termes du développement

de S, en vertu de l'équation d'onde (dont da Jxxo(z) 0 est
une conséquence). Mais, pour le terme de la self-énergie, (5.6) impose
des conditions aux constantes arbitraires. Dans sa première
approximation, (5.6) se réduit à dXi Sfyff (zx z2) 0 pour la distribution

produit S^ -y tr (y* A™) (zx- z2) /M« (z2 - zx) + <s> «) (cf. I,
§ 4). Simultanément il est nécessaire de poser ev + e„o 0. La
définition par division a été faite en I et a introduit trois constantes
arbitraires*).

Si on les définit par I (4.22), la condition de continuité (5.6) exige
que

61 0; b0 + b2 0 en I (4.22). (5.7)

Utilisant alors (5.6), on démontre, par intégrations partielles, que

S*-S S(x,0)-S(<p,®)^O; ôÀoS(x,0)^O. (5.8)

S* S (x, 0) est donc, à des termes de surface près, invariant

*) Ceci peut directement être déduit de notre exemple 1 du § 4: étant données
les propriétés des y01, la trace est un tenseur symétrique. Son indétermination
vaut (cf. 4.9)

W*i-**> - ^«.«A-X^a, <X22+6<Xa;_V (5-9)

Si la partie déterminée est définie de manière à satisfaire da (Sqoq) =0, (5.7)
en résulte.
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par rapport au groupe de jauge du potentiel vecteur xa- Si l'on décompose

un Xa quelconque selon (5.4) (avec pa(Za) + 0), les quanta
du champ A0 ne sont émis ou absorbés que dans la couche
superficielle entourant la région V. Ces effets étant inobservables par
définition, l'invariance de jauge est démontrée.

L'invariance de jauge permet de faire le passage à la limite piQ -> 0

et arriver ainsi à l'électrodynamique des photons à masse nulle.
Pour cela, il est nécessaire qu'une transformation de jauge de <jPa

à Xa puisse être trouvée, qui fasse intervenir, au lieu de la
distribution causale B%\, une distribution D*lc) satisfaisant à (4.18) avec

Q7 (n-vi) oßa +Ri+(VJß log pi2)+ (dß log ^V«. *) (5.10)
(Baß tenseur de Riemann-Christoffel contracté.)

Dans un référentiel de Lorentz on a alors :

Kf(.*V) gaß(2n)~*fdp ^-»V+^-1 g«ßD$(xy)

—> 9aß[^a{(x-y)2) + i^(x-y)-2\ (5.11)

qui n'est autre chose que l'interaction causale du champ
électromagnétique, d'où le terme piQ2dxaidyßD^)0(xy) qu'on avait en

I (4.9) a disparu.
Pour découvrir la transformation adéquate, il faut se souvenir

que tout D(c) l/2 (D(1) —- 2 i D(s)) apparaissant dans le développement

en en provient d'une contribution hermitienne D(1)' en Hn (§ 1

de I) et de son complément causal — 2 iD(s) en iAn. Ve D*i^ apparaît
ainsi lors de la mise en ordre des produits de X en An, conformément

à:

Xo,(x)xß(y) + Xß(y)x*(x) xlß(xy) + xUyx) + D*v(xy). (5.12)

Afin d'obtenir D*ß au lieu de Dxß, il est nécessaire de normaliser
le champ Â0 enferme de QD^\ — e2ô(xy) et d'introduire des

probabilités négatives11)12) pour les états à nombre de quanta A0

impair. On a alors le commutateur changé de signe

[i<+>(x), *<-%)]_ - v. D(0V (x y) (5-13)

(5.12) contient alors :

D«ß-MÖ2Vx*VyßDoo(xy)=Dlß (5.14)

qui satisfait à (4.18) avec (5.10). Vu que l'émission des quanta À0

ne peut se faire que dans les couches superficielles, des transitions

*) Va est la dérivée covariante définie par Va Cfßy 0.
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à des états à probabilités négatives ne sont jamais contenus dans
les éléments observables de S (processus conservatifs). Il reste à
voir que la probabilité d'émission pour un quantum longitudinal de
ÇP est toujours inférieure à celle concernant un quantum transversal
(rapport de l'ordre de ptlftk*)2). Cela ressort d'un calcul essentiellement

classique13). On peut alors substituer à <jPaun champ transversal

Aa de masse nulle (\~]AX 0; V* (AA 0).
On peut directement montrer que la matrice invariante S*

S(Ax05, D*ß) est causale et unitaire (dans le sens S*tS* ^ 1),
malgré le fait que la relation habituelle entre le champ Aa
transversal et D*^1' n'existe pas. On part de l'interaction vectorielle non
invariante de la théorie du rayonnement :

evAx+e2vC2 evJ(Â, J-grad (-A)-1 div. j) (x) +

+ e2J2fj*(-A)-1J*(x) (5.16)
X

contenant des interactions non locales. Ce sont: l'interaction entre
le champ transversal et la charge, et l'interaction statique de

Coulomb*). La loi de commutation

[4X4X (gik + àxidyk (-A)-1) D<+> (xy) (5.17)

et la loi de continuité en chaque approximation font ressortir de
l'interaction non invariante une matrice S unitaire et causale (mais
non invariante). Par des intégrations partielles, on peut alors l'amener

à la forme invariante**) S* S (Aa 0, D*ß) ^ S.
Groupe mésonique. L'invariance de S par rapport au groupe

mésonique réclame une démonstration laborieuse et ne revêt, d'autre
part, pas plus d'intérêt que l'invariance de S par rapport à la
transformation particulière (3.8) pour fX6 0 et fX5 — 9/2x 05. Nous
nous en tiendrons donc à cet exemple.

A cette fin, on calcule tout d'abord l'opérateur S* engendré par
la Lagrangienne L* formé par le A* en (3.14) :

oo

L* =2>A • • • + £(*> Aiv)- %* (2*)-^r+2>(2X'iV (s-18)
Q 1 2

On calcule ensuite l'opérateur S obtenu à partir de

L + ewi4<'>+W4?'> (5.19)

*) — Zl)_1 est l'opérateur du potentiel de Coulomb.
**) Outre le fait que l'interaction (5.16) est non invariante, elle est de plus

non définie, carie terme coulombien est «non ordonné». On ne l'ordonnera qu'une
fois la forme invariante S* 1 + S* + S% + obtenue.
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et compare les résultats à chaque approximation par intégration
partielle des éléments de S*. On montre alors que S* — S ä 0,
exprimant l'équivalence des deux représentations; cela, pour autant
que les conditions suivantes sont satisfaites :

1° les coefficients numériques a2 contenus dans les termes Bl
doivent prendre les valeurs (3.16), conformément aux séries (3.12) ;

2° parmi l'infinité de distributions, provenant de la définition par
division des produits

ôx-y[D^ylN bNôx_y*) (5.20)

(non définis à priori), le choix bN 0 doit s'imposer.

Il est à remarquer enfin que la condition (5.6) impose encore
d'autres restrictions sur le groupe des ct que celle énoncée en (5.7) ;

par exemple, dans le problème de la désintégration d'un méson
scalaire (neutre) en deux photons (couplage scalaire), une relation du
type cx + c2 — ti est nécessaire à la sauvegarde de la continuité
(5.6). Cette relation, entre deux facteurs arbitraires cx et c2 provenant

de la définition par division, est équivalente à une des conditions

données par Fukuda et Kinoshita14). Comme le demande du
reste la théorie de la division des distributions, une telle relation ne
peut être invoquée que lorsqu'une condition physique du type (5.6)
l'exige, et dans ce cas seulement. Son emploi inconsidéré, c'est-à-
dire l'emploi de cette même égalité chaque fois que le même
problème de division se présente, conduit à des erreurs manifestes (cf.
les conditions en 14)). Z. Koba et ses collaborateurs sont parvenus,
lors d'un récent travail, à des conclusions identiques16).

En résumé de ces pages, on peut donc affirmer qu'il est possible
d'effectuer par voie intégrale, dans l'électromésodynamique
envisagée, un développement unitaire de la matrice S sans infinités ni
ambiguïtés.

L'un de nous (St) tient à remercier M. N. Bohr; c'est en effet, lors
d'un séjour à Copenhague, en 1947, qu'il a pu mettre au point ses
notions sur la causalité. Nous remercions en outre M. G. de Rham
d'avoir attiré notre attention sur les travaux de M. Schwartz.

Institut de Physique de l'Université, Genève.

*) Des intégrations par parties transforment les polygones électroniques,
photoniques..., etc. fermés, en boucles fermées, qui demandent une définition des
produits de distributions (5.20).
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