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La normalisation des constantes dans la theorie des quanta*)
par E. C. G. Stueckelberg et A.Petermann.

(Lausanne et Genéve.)

(28. TIL. 53.)**)

Summary. This article proposes a mathematical foundation to the method pre-
viously employed (STUECKELBERG and RiIvierl!)), (STUECKELBERG and GREENZ))
to give a definit meaning to the products of invariant distributions such as.
(A(xlz_y DS:) 7 48 (17), (Afcliyd(;)_z D;S)_z—k.. ..), etc. in terms of arbitrary con-
stants ¢;, ;. .. C;. . .Cp(y). The n’th approximation S of the S[V]matriz (defined
for a given space-time region V) depends on these r(n) arbitrary constants in .
addition to the arbitrary physical parameters (masses x, y, and coupling con-
stants e, g...). ‘

In the introduction (§ 1), we see that a definit physical meaning can be given
to the masses %, u. A coupling parameter, however, can only be specified in terms
of a chosen development of a function S (zy.., x%.., ¢;..) of physical significance.
However, the terms of the actual correspondence development (in terms of e2) §=8,
+ 84+ ... have no physical meaning. Therefore the coefficient e? in S, has only
a mathematical significance. It requires that the functions of xy.. 8,, S ..8,
have all been specified. As this specification involves the ¢,’s, we must expect that
a group of infinitesimal operations P; = (0/0c;),- exists, satisfying

P,S=h;,(x pe)oSxue, 00.. )/0 e,

admitting thus a renormalization of e.

§ 2 contains an outline of the general problem without referring to correspond- .
ence.

However the only way of attack being the correspondance principle, we discuss
(§ 3) the invariance properties of a classical theory, linear in the Dirac field. In
addition to the Weyl group of Gauge invariance, a group exists whose consequence
is the equivalence theorem between pseudoscalar and pseudovector coupling with the
pseudoscalar meson field. In § 4, we show that the definition of distributions .in
terms of the c¢,’s is a generalization of the method of M. L. ScawarTz®). This permits
to discuss the group of normalization given by the P;’s. § 5 imposes certain restric-
tions on this group, if we require invariance of .§ with respect to the corresponding
classical groups (WEYL and equivalence). The limiting case of photons with zero
rest mass then can be defined. 4

*) Recherche subventionnée par la Commission Suisse d’éneggie_Atomique_
(C.8.A.). ' ' L o

**) Le présent travail constitue, & des détails prés, une thése présentée par 'un
de nous (P) & I'Université de Lausanne, le 9 mai 1952, pour 'obtention du grade
de Docteur &s Sciences.
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1. Introduection.

Le but du présent article est une mise au point du probléme de
la normalisation des constantes dont dépendent les amplitudes de
probabilités pour processus entre quanta. Il fait ainsi suite & des
publications antérieures?)?)?). Quelques résultats ont déja paru sous
forme de notes?)%). La mise au point en question a été grandement
facilitée par l'ouvrage de M. L. Scawarrtz®) sur la Théorie des
distributions.

Un processus est caractérisé par une premiére répartition de
quanta N’ (@) parmi tous les paquets d’ondes (¢ = ¢ (x)) incidents
dans une région d’espace-temps V (caractérisée par V(x) = 1), et
une seconde répartition N” (@) parmi les paquets émergents de V.
Le processus a lieu essentiellement dans la région d’évolution V,
séparée du reste de I'univers (caractérisé par V(z) = 0) par une
couche v (caractérisée par 0,V (x) £+ 0). Dans une expérience idéale,
la couche v serait constituée par des compteurs idéaux. Ceux-ci
distinguent d’abord entre quanta incidents et émergents (cf. § 1 de
I*)). Ensuite ils précisent le nombre de charges portées par chaque
quantum, sa masse, son spin, sa parité, sa position dans l’espace
et sa quantité de mouvement (a AxiAp? > 1/, pres). I’époque d’ob-
servation a* o~ { et I’énergie disponible K’ = p! + p% + ... sont in-
certains & AEAt > 1/, prés. Les amplitudes de probabilité sont
ainsi fonctionnelles de V(x), N"(¢) et N'(g), et forment la matrice $

S[V(), N"O/N'()] — S[V]= ZZSV”V’ V] Sg0 =18 V] (1.1)

\u’f

que l'on doit considérer comme le développement
N"IN'1Sy =S,y Sy, €8 (g) -+ €lpp) SV, g - -
PyrlPL - Py] (1.2)

SV, @] = f j% xy) e @l ) @)+ - @y -

SV, 5]+ 24 f [azll=g "= V@.  (13)

en terme des produits oldonneb pour les opérateurs de création cf
et d’annihilation €. Seuls les cas ou I'étendue temporelle de la
région V est trés grande par rapport 4 celle de v présentent un in-
térét physique. On peut alors nettement distinguer les processus
conservatifs (auxquels principalement les événements se produisant

*) La mention I se référera a I’article 2).
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a Pintérieur de V contribuent), des processus non conservatifs (pour
lesquels I'incertitude d’énergie AE participe au bilan de conserva-
tion et qui se déroulent & I'intérieur des couches v ou tout prés
d’elles (cf. I § 3, et 2))). Comme nous aurons souvent besoin de
relations ne tenant que dans la limite ou ces «processus de surface»
peuvent étre négligés, 1l est avantageux d’introduire le symbole
suivant :

~ signifie: «& des contributions de surface pres». (1.5)

S1 les amplitudes de probabilité sont normalisées et si I’'on admet
le principe de superposition pour les états N(¢), la matrice S doit
étre unitaire (STS = §8T =1). Les amplitudes S[V, ¢"../¢"..] sont
alors observables par des procédés statistiques. Les représentations
de LorENTZ (paquets ¢, (x)) étant spécifiées par la nature des comp-
teurs (4 = spin, parité, nombre de charge et masse), les transformées
S[V, z"../...2'] sont elles-mémes observables dés que la normali-

sation de |
S, ¥ (@) ¢l (y) = D\P (xy) = D (yx) (1_-5)

a été convenue. En terme de I'opérateur d’ondes £2, (appartenant
a la représentation wu): 2,(z) ¢,(z) = ¢, (x) 2,(x) =0 et de

d(xy) = || — 9upl|” 6 (x — y), cette normalisation s’effectue par un
tacteur Z2 > 0, dit de normalisation: ,

Q () Dzy) = DiXzy) 2,(y) = — 23, 6 (xy) (1.7)

D(ay) = 5 D$F(zy) pour z* S y. (1.8)

Admettons maintenant qu’une matrice S[V] alt été trouvée qui
satisfasse aux conditions physiques (causalité et unitarité, voir § 2).
Une telle matrice peut alors dépendre encore de certains parameétres
4 normaliser par des conventions:

19 La phase. De l'invariance et de 'unitarité, il suit que

SN.'IO= S [V, PP . .fj] o~ SOG = S[V, /] == ein[V} =1 . (1.9)

La derniére identité arbitraire est appelée convention de phase.

20 Les masses. Pour les mémes raisons, il suit, avec ’aide de la
convention (1.9):

O (9" 9"+ SullV, ¢"|¢ ] =6 (¢" /") e =F, (1.10)

Il est nécessaire que f’ soit positif. En effet, la probabilité de trou-
ver, au lieu du seul quantum incident en ¢’, d’autres répartitions
comprenant- plusieurs quanta vaut 1 —e=2#, 8’ > 0 et implique
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que le quantum ¢’ est instable?). La condition S[ V,] S[V,]=8[V, +
V,) s’applique a tout V = V; + V,, dés que la couche des compteurs
de quanta émergents de V; se confond a celle des compteurs de
quanta incidents en V. Elle impose que 'exposant — 1 o’ — £’ soit
fonction linéaire de la durée t” — ¢t de V':

e —f=—i[Jo't + A () — ] (t?'—t’) (1.11)

s1 V est limité par deux plans temporels x* ~ t' et z* ~ {". Cet ex-
posant doit dépendre du paquet ¢’ et de la durée, de telle maniére
que ) .
W(Z, 1) =¢' (&, 1) exp[—1(Jo'2+ 4(u?) —o')t] (1.12)

satisfasse & une équation d’onde invariante. Si-
o', 1) = ¢'(z,0) exp (—iw'l), (1.13)

A(p?) est indépendant du paquet. Il représente un changement
complexe (& partie imaginaire positive) du carré de la masse de
repos. 1l est ainsi avantageux d’imposer la convention de masse sui-
vante &4 S:

Partie imaginaire de Sy, [V, ¢"/¢'] == 0. (1.14)

Elle spécifie que 4(p?) est imaginaire. En vertu de (1.12) et (1.13),
un quantum stable dans un paquet avec p ~ p’ se propage mainte-
nant avec la vitesse v =p' (u2+| P |%)~"%. Les compteurs parfaits
mesurant u? sont en effet construits de fagon & mesurer la masse
en terme de v et de p.

30 Les constantes de couplage. Apres 'examen de Sy, et 843, 1l con-
vient de passer a celui de 8.5, S,s, etc. En électrodynamique, nous’
avons en particulier I’émission d’un photon par un électron Sy,
[V, g, u"4/ w'2] qui a une signification dés que £ (x) dépend de
« (champs classiques dans 1’éq. d’onde). On peut alors l'utiliser
pour définir des constantes de couplage. Dans cette intention, on
exprime Sp, par un développement formel en terme de dzstmbutwns
ponctuelles (mesure de Dirac et ses dérivées)

iS5 (2y) = ey 5 6 (2) (ay) + My Oy(a) O (ay) + - (116)

On interpréte alors les parties réelles des coefficients e, m,. . . comme
les intensités des pdle (charge), dipdle, quadrupdle, etc. électriques:
(4o = (masse de ¢,) > 0).. Une meilleure interprétation en serait
fournie :par:le développement de S v rpry (2"y"/2'y") qui apparait
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dans la collision entre deux électrons. La discussion en sera évidem-
ment facilitée, si on la fait sur 'intégrale:

—i212° [ [S(ay/a'y) = yy,Pa'y) + 790,06 y) %) (L17)
z ¥

Pour chaque fonction F, G, ... on fait un développement formel en
terme de distributions causales de masses différentes et de leurs déri-
vées. La partie réelle ¢ du coefficient de D en F est alors inter-
pretée comme le carré du pole électrique, etc.

Toute cette discussion s’applique au cas ott 'on a trouvé un S[V].
Pour I'instant, on ne connait que des S[V]**) établis par une cor-
respondance classique et par un développement en série de certaines
constantes de couplage e, m, ... a signification classique. Les
détails du procédé de développement en série ont été discutés
en I, § 2. Nous relions ici d’une maniére plus précise Causalité et
Correspondance.

2. Causalité et correspondance.

Solent @, ,,(%) les composantes tensorielles ou spinorielles (index
a) d’'un champ quantifié de spin s et de masse . Un tel champ est
toujours la somme de deux parties & fréquence définie en terme de
lopérateur d’onde £ ,,:

2" 9oyl ®) =(PL) o+ Pl (@) s 957 (2) = Se(,) ¢, (2), 7=+ (2.1)
Pu

Dans les notations suivantes la sommation sur tous les spins et

toutes les masses est comprise dans la somme sur a***). La conds-

tion d’unitarité s’exprime par un systéme infini d’équations inté-

grales (St(zy...[...yx) = Blyy. . .[. .. z))****) -

1\ Y
STo Soo "‘%: (N~ (E) fL(tN(/ajl\ - 1) Syo(Ya- - - Ynl)
2 N

D2y .. DV (g yy) =1. (2.3a)

*) Une meilleure interprétation de e2est obtenue en développant «l’interaction re-
tardée» G (x” y”[x’ y') de I’équation inhomogéne (BETHE et SALPETER7)) a laquelle
doit satisfaire le moyau de Frynman®) KQ(x"y” 2'y)=if[-«-[ Az y),
A(C)(y”x)Szg(xy/-‘f?y) ACE ) A(c)(n ) + A9 (z ”y’)A(c) (y"z’)— ANa'y) A y” ).

**) Il est remarquable que dans les S[V] ainsi trouvés, on ait S(V, z; z,.../
..xy)l=8[V,z,... xy]. Le développement peut donc s’effectuer en produits
ordonnés N (x,...zy) de (5.1).
*%%) = Sommation sur toutes les représentaticns du groupe de LORENTZ.

*kk*) f = Nombre conjugué complexe de f.
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S Swar( @1 Ty/Ys- - Yar) + SooShar (@1 /- yap)

+Z(N!M!)“IZ.O'..

Perm N’M’N”I!:I”>0 n=0
(n!) f ff /SN e By w5 Bl Pye s Yigegy Wi s %1
x/n, '
¢ 8 g [y » » 'yn Tyryr Ly Yur—pire - Yar)
D (aiyy). .. D@, y,) = 0%). (2.3Db)

La condition de causalité est une condition asymptotique que 'on
doit 1mposer & la solution du systéme (2.3). Elle a la forme sui-
vante:

Si un premier groupe de N événements (r; ~ x; ~ ... ~ x) est
dans le futur lointain (a* — y*—> + oo) d'un second groupe de M
événements (y; ~yy ~ ... ~y), avec N+ M =N’ + N”’, le dé-
veloppement de Fourier doit satisfaire a:

Iy 8 g gl e s s By, 5 5 /s s Yo ms) — Boldys sa)  (2.80)

SNzl . .) / [dk codby exp {i(kyz) ..+l a4 )}
- 850y s o Ko Wes « Y ng) (2.5b)
s Ey. Ky, y;. . .yy) =0 pour ki +Fks+...+ky <0.%%) (2.5¢)

Le fait expérimental qu’il existe un spectre discret d’'un nombre infini de masses
différentes (comprenant les particules dites élémentaires et les états liés entre
plusieurs particules élémentaires), semble indiquer que 1’équation mtegrale (2.3)
ne posséde un systéme de solutions causales que si:

1% Toutes les représentations du groupe de LorENTz (tous les sping) ont été
prises en considération.

*) (2.3) a été écrit pour des spins entiers. La somme sur les permutations est
alors a effectuer sur les N! M ! permutations des x,, ¥, les fonctions § étant symé-
triques par rapport & ces permutations. Pour des spins demi-entiers, on remplace-
rait 1, D{+Xza’) par I'anticommutateur

5 480 @a) = A0} @ @) = [0 (@), 0 P @], (2.4)
Les § deviennent alors antisymétriques pour une permutation de deux événements
spinoriels. De plus des facteurs 4 1 interviennent dans la somme des permutations.

**) Les S(x, ...) = S[Vx, ...] dépendent explicitement du domaine d’inté-
gration. Donc (2.5), comme (1.18) et (1.17), ne peut étre postulé que si la région
d’évolution s’étend sur une grande région d’espace-temps et si x*— y* reste petit
par rapport aux époques qui séparent les x*; des époques d’observation. Notons
enfin que la causalité peut étre définie pour des métriques plus générales sans
référence au développement de FoUrIER.
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2° Pour un spin s et une parité p*), les masses forment un ensemble dénom-
brable u = p,,.

p =0,1; 3:0,1

5L n=0,1,2,... (2.6)
A Tépoque actuelle, on ne connait aucun procédé pour discuter le
probléme formulé par (2.3), (2.5) et (2.6). On doit ainsi se contenter
de considérer 1° et 2° comme une hypothese. On traitera, par la
suite, le probléme des collissions par la méthode d’approximation
exposée en I. On discute done:

a) Un opérateur S qui ne fait intervenir qu'un nombre fini de
représentations de LorENTz, par exemple la restriction aux seuls
champs: électron-positron uf, u, photon ¢, et méson @, avec les
masses %, u, et u.

b) La dépendance de S (outre des masses x, u, et u arbitrairement
choisies) dun nombre fini de constantes arbitraires additionnelles
e, ¢, f et m. Ces constantes sont définies comme les cofacteurs de
certaines actions locales hermitiennes. Ils remplacent, dans une
certaine mesure, les représentations omises. Dans notre exemple,
les actions locales sont: ’action vectorielle (v), pseudovectorielle
{pv), pseudoscalaire (ps) et tensorielle (t), soit

e AD) — efJ“goa, fA(P”)—ffJ“f’o b ;

gAGY =g [J, 5 mAR—5m [J7B,;

JoF — (uta s i (ufy P u) " **) (2.7)
Développant alors 8§ =1 +8; + 8, +... en termes de puissances
des constantes de couplage, on exige que chaque approximation

satisfasse aux conditions d’unitarité et de causalité. La série ainsi

obtenue
S™ = 8™ (s, o use,q, ...) =1+8;+...+8, (2.8)
Sy =i{eAD + [ARY + g AP} =i 4,. (2.9)

est formellement univoque. Le développement est 1dentique. & la

*) p distingue le champ tensoriel du champ pseudotensoriel de méme spin.

**) Les y*= 'y“ sont réels. On a d’autre part [, = &, B, Ein ——y‘hé,.
Les quatre y% 5 sont ainsi réels, donc hermitiens. Le sont également: 30 = — i et
¥ =—ys =—iy*pP ¥ 0= 428V 9 (4 B9 § = permutation paire de 1234), les six
y*P = 9% yP a+ B et les quatre p*° = y%° = —Vp,0- ~ estle signe d’ordonna-
tion des opérateurs, c’est- e‘z-dire, si 212 g =Py 2 (u:[1 uB); vgf) ﬂ(g’)
—w(l';) 'wff) - "’21 dwl) + w (+) = (u a) 4 5 (z ), of. aussi (5.1).
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suite $® purement formelle, obtenue par la représentation d’inter-
action de TomoNAGA et ScuwINGER, & condition que la région
V(x) =1 soit délimitée par deux surfaces temporelles. Comme cette
représentation a été obtenue par une Lagrangienne L (uf, u, ¢, D)
fonctionnelle des champs classiques:

Lutu, ¢, @) = L& + L® L [P £ 4 = L® + [ 1 [P (2.10)
L0 = — [ [~ @l Q) u+u(Qu)]} Q,5(2) = (70,(c) +%8) 1
1@ _ —f"'lé_ [;ABaﬂBaﬂ ke, ¢o¢]~
L@ = —f%[dq¢50“¢5+#2@5¢5]‘, (2.11)

la théorie formelle: S[v] =1 + 8; + S, +. .. correspond a une théorie
classique engendrée par la Lagrangienne L de (2.10). Nous allons,
par conséquent, étudier d’abord le groupe qui laisse invariante la
partie bilinéaire en ut u, soit:

L(u) *f uTO mu;u’rym (Oau))+-f°%o+6~’-°‘xq
+m~’°‘5%aﬁ+f~fix§+gﬂxs] (2.12)

ou les grandeurs ¥ sont des champs quelconques avec lesquels les
particules du champ @ sont en interaction. Pour fixer les idées, on
retrouve l'exemple étudié, si 'on pose: Yo = —x, Yo =P, m =0,
Xous = 0, Py et X5 = Py

3. Le groupe de jauge.y

La Lagrangienne L™, définie en (2.12), dépend des spineurs u} et
14, du tenseur symétrique g,5 et des quatre tenseurs y,, ¥, 2%, Zs
=llgliz®*

Les spinotenseurs y dépendent de g,5 par la relation dy*= 1y,
d¢*#, qui laisse invariant 'anticommutateur [y*, y#], = 2 g%,

Le but du présent paragraphe est de montrer que cette Lagran-
glienne est invariante par rapport au groupe engendré par les trois
parametres infinitésimaux dt,, 04, et 045, définis comme suit:

dut = oI4uB, oul=—ul oI5,
oI ==~ 3L 08Tyt epd8i, Lifyd oA YA =—idd.  (8.1)
*) Souvent, par la suite, pour alléger la typographie, u, -+ sont imprimés:

%, %---. Le lecteur rétablira lui-méme le caractére opératoriel de ces grandeurs
si besoin est.
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En d’autres termes, nous nous proposons done de voir qu’une
modification infinitésimale des parameétres 1, 4, et 45, dont parait a
priori dépendre L, laisse cette derniére inchangée. Les conclusions
auxquelles on parvient alors sont les suivantes:

1° La transformation d7, n’est qu'un changement de normalisa-
tion de la métrique et par conséquent se trouve étre sans intérét
direct pour ce qui va suivre. Nous n’y reviendrons donc pas.

29 La transformation 4, exprime un changement de la jauge
électromagnétique habituelle.

3¢ La transformation d4;, elle, montrera que les Lagrangiennes
engendrées par des potentiels scalaires, pseudoscalaires et pseudo-
vectoriels reliés entre eux par certaines relations sont équivalentes
au sens du théoréme d’équivalence bien connu, relatif aux pre-
miéres approximations de la théorie pseudoscalaire avec couplages
ps et pv. Klle comprendra entre autres la transformation indiquée
par M. L. L. Forpy1?). Par analogie avec 2° nous dirons qu’elle
exprime un changement de la jauge mésonique.

Si I'on varie les tenseurs ¢ et y, conformément a:

\ o 1 [0
00us = Gup070; 0g*=—g*Pd7y; 8y =57"07;  (3.2)

Sy, =— 0,8 Ay; (3.8)
S0 =—21g250hs l
P QL 2o 04 (8.4)
Syt = 004, J |

O (5 2as) = i Ohupys (3.5)

il s’en suit immédiatement que 6L™ ~ 0. La transformation d 4,
(3.3) est le groupe de jauge habituel pour le vecteur y,. Un champ
%~ de masse non nulle (& quatre polarisations) peut étre décompose
suivant :

Ky = %*Oa Ay 0%(g,) =0 (8.6)

en un champ a trois polarisations ¢, (agissant sur J%) et un champ
scalaire 4, (sans influence sur J=). On appellera ce groupe, le groupe
électromagnétique. La transformation 04, (3.4) montre que le groupe
de jauge pseudovectorielle laisse invariant le scalaire

109" 2% =to+ 92 (1) * = (@5 +85)5 (=, [[gp || =—1). (3.7)

Ce groupe sera appelé groupe mésonique.
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Ainsi les Lagrangiennes engendrées par tous les potentiels sca-
laires, pseudoscalaires et pseudovectoriels reliés par

Xo = @ €05 (2 f A5) + s sin (2 f4;)
gxs =— @y sin (2 f45) + by cos (2 f45) (3.8)
Yas = Pas T 0y 45,

sont équivalentes. La théorie du couplage pseudoscalaire pur 4, =
gA®9), peut étre réalisé par la jauge f A5 =0, si I'on choisit: ag=—x,
by = gDy, car xo = —x, §%5 = ¢ DPs, %45 = 0. Posant ensuite fi; =
— ¢g/2% @5 en (3.8), on constate que ce couplage pseudoscalaire
pur est en particulier équivalent & un couplage pseudovectoriel

A, =fAPY avec f=—¢g(2x)! (3.10)
fx:5:~2—9;4-0a®5zf0a@5’ (311)

auquel s’ajoutent des couplages pseudoscalaires et scalaires sans
terme linéaire dus a:

g5 =—x8in (g1 Dg) +gPscos (g~ D)= _%%—2(9@5)3+ "'
X = — % €08 (g1 D5) — g D, sin (=~ Py) (3.12)
— (g B g (g By

La correspondance formelle nous fait donc attendre que la série
S$™ en g engendrée par I'action locale pseudoscalaire et linéaire:

A= AP g APY; gAY~ [Py, (3.13)

soit égale a la série en g obtenue de ’action locale pseudovectorielle
et non linéaire:

A* = e AP+ fAPY + 3'¢'B, (3.14)
=2
avec:
AP = — 2 [ Je3 (10, By) (3.15)
1 - 2 y a™ 5 .
By, = a, [ (u'y®x (iy% &y u)”
et
1 1 1
Gy =55 QGg=-; Og=—F;. .. (3.16)

*) 30 "1‘3: =—1 6‘%; (y5)2%, = (S‘é; 7’3413 et 'Vi,tB sont hermitiennes.
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Si 'on veut, lors d’'une transformation de jauge, que les actions
électriques et mésoniques restent indépendantes l'une de l'autre,
il est nécessaire que le moment magnétique disparaisse (m = 0).

Par contre, une action f J*5 @, d'un champ mésonique & spin 1,
peut toujours étre superposée, sans changer le théoréme d’équiva-
lence. On verra pourtant par la suite qu’en théorie quantifiée, la
théorie

' 1
f@.s=0; +mB,, =0 (8.17)

est la seule qui soit normalisable.

4. Le groupe de normalisation en théorie quantigque.

Les méthodes de caleul destinées &4 évaluer les termes $® de la
suite d’approximations de 8 (cf. (2.8)), qu’elles proceédent par cons-
truction différentielle ou intégrale de la matrice S, sont amenées &
mtégrer sur le domaine d’évolution (V(z) =1) des produits de
noyaux D(zy), A(xy), etc. Il est bien connu que ces produits, con-
sidérés comme produits de fonctions, conduisent & des difficultés de
sommation (divergences) ainsi qu’a des inconsistances (ambiguités
telles que perte de 'invariance de jauge dans ’espace de Fourigr,
etc.). Or, les D, 4... sont des distributions, solutions tempérées
d’équations hyperboliques. Leur analyse ressort strictement de la
théorie des distributions établie en détail par M. L. ScawartzS).
A la différence des formalismes récents (Dyson et autres), dans
lesquels les divergences sont acceptées comme telles et «renorma-
lisent», au moyen d’une algébre de grandeurs infinies, les constantes
du probléme, nous considérons que les produits multiplicatifs T de
distributions 4, B..., c’est-a-dire T' = AB. .., ne sont en général
pas définis. Le développement en série, qui fait intervenir de tels
produits n’a done pas de sens précis.

Il est cependant possible de définir ces produits 1’ chaque fois
quils apparaissent dans la série en employant le détour suivant:
On cherche d’abord une distribution ¢ = T définie univoquement,
pour toute association des facteurs de ¢ et de 1. Ensuite, par divi-
sion de ¢ par &, on obtient la définition de 7', 4 I'indétermination
du probleme de la division prés. Cette définition peut &étre ainsi
effectuée en deux étapes distinctes:

19 Recherche des distributions @ qui, par division par ¢ donne-
ront le produit T cherché.

29 Discussion de l'indétermination provoquée par la division.
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Le point 1° a été discuté en I et peut se résumer ainsi: Si 'on a
a définir une distribution T'(xy...), produit des deux distributions
A(zxy...), B(zy...) selon

T(zy...)=A(zy...)-B(xy...), (4.1)

on est ramené a la recherche de distributions ¢ définies univoque-
ment:

QF 7 (zy...) = 9%F 7 (zy...t) T(zy..1) (4.2)
avec
9507 (my. . ) = (2t () tee. (4.8)

Les tenseurs 9% sont des fonctions covariantes, définies dans la
région V(z) + 0. T est alors défini par division de ¢ a I'indétermina-
tion de cette division prés. Un certain ensemble de ces ¢ forme un
systeme définissant 65, définissant T, si la définition de T' en terme
de @ est faite avec le minimum de constantes arbitraires®).

De plus, s1 T est un produit de la forme

T(x...u...)—/A(m...y...)O(y...)B(y...u...) (4.4)

défini sur B™, et que les produits: ‘
Ti(z...y...)=A(x...y...) 0(y..) (4.5)
To(y...u...)=0(y...)B(y...u...) (4.6)

donnés sur B™ et R": respectivement ne sont eux-mémes déterminés
qu’'a une certaine combinaison linéaire arbitraire de mesures de
Dirac et de leurs dérivées Zoa,; 69 (x...y...), Z0b, gy (y. . .u...)
prés, T est elle-méme indéterminée, en plus des termes X'dd; 6@
(...w...), aux expressions

» my—1

/Zéaié"") (z...y...)B(y...u...)=3"6a;Ty;(z...u...)
g =o

b

et 20b,Typ(x...%...) prés. On a donc

m;—1 me -1
0T (x...u...)=3'0a,Ty;(x...u...)+ 3 b Top(x.. . u...)
=0 — k=0
+ 3 0d,60(z. . .u...) (4.7)
=0
*) Les entiers positifs ng, ng, ... ont la valeur minimum nécessaire pour que

@ soit une distribution déterminée,
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ou les T';; sont des couches multiples d’ordre 4 + 1 composées de
distributions définies sur R™ *). Ainsi, sous la forme des T,; sont
immeédiatement séparées les divergences d’empiétement, sans avoir
recours & un vocabulaire autre que celui de la théorie des distri-
butions (comparer avec A. SAnAM15)).

Il est entendu, comme nous I’avons exposé en I, que la définition
n’est nécessaire que pour les distributions du complément causal.
La réalité des constantes a, b. .. est donc 1imposée.

Exemple 1: T est donné sur R1*¥*) par la trace du bi-spineur
tr(4,_, 4,_,) non défini, comme c’est le cas dans deuxiéme appro-
ximation de la «self-énergie» du photon, par exemple. Q,_,= (z—y)?
tr Ay oy A, ,***) est une distribution ¢) déterminée pour toute asso-
ciation de facteurs (z* — y*), (28— yP), (2¥—y") et 4,_,. Par divi-
sion on obtient:

T, =trd, A, =—2— (4.8)

A v (z-y)?

a une indétermination I (z — y) prés qui satisfait (x — y)2 I, _, = 0.
Celle-ci ne peut étre qu'une combinaison linéaire, arbitraire de la
mesure de Dirac et de ses dérivées d’ordre < 2 (support x — y = 0)
by Vi g 8y Ozt Caup 03%,. La trace étant un scalaire, I'indé-
termination se réduit a ¢, 8,y + 5 [1 05y, car, pour des raisons de
symétrie, aucun vecteur constant b, ne peut intervenir (cas du
«photon scalaire»). Une fois la division effectuée, le calcul de 1’élé-
ment de matrice qui contient la distribution T' s’effectue de la
maniere suivante:

M(g')g')= [ [dzdy Vo' (@) T, , Vo' ().

C'est une régularisation de T,_, par la fonction V' (y) ****)
(T4 V¢') (x), suivie du produit scalaire de cette régularisée par la
fonction Vet” (z). D’ou:

M= (T« Ve), Vgt") = (Vo' (T + V). (4.10)

Exemple 2: (« Renormalisation de la charge») T est donnée sur R?
par le bi-spineur 4,_, 4,_, 4,_, = 1,5 (xy2) non défini.

Ql(m_";:% y—Z’) = 81.(AAD)x»y, y-z (x_y) (AA.D)xfy, y-z
Qo(x—y, y—2) = 9,(44D),_, , .~ (y—2) (44D)

*) L. Soewartz®), Tome I, p. 125. Théoréeme VIII.
**) Espace & | X 4 dimensions z*— y*.
**%) 3 est la valeur minimum de l’exposant pour que '@ soit déterminée (cf. I
et 4)). o
****) Voir index terminologique de M. L. SCHWARTZG), tome II Vg'(x) est une
fonction a décroissance rapide.

(4.11)

r-Y, Y-z
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sont des distributions déterminées. Les définitions par division
1° (AAD):c—y, y—z = Ql/ﬁl; 20 (AAD)xHy, y—z Qz/&z

sont indéterminées a des couches multiples d’ordre 1 (portées par
z—y =0, y—2z=0 respectivement) prés. On a done:

Q
5 20 AAD =32+ 1y, 06, . (413)

ly-z azfy;

10 AAD=% 4
4
L’associativité demande @,/ =0),/5. Done AAD est indéterminé a

AAD = (AAD> + a6 3(44D) = das, o, _, (4.14)

z—y Oy-25 z-y Y-z

prés. Par (44D} on comprend une distribution définie.

Exemple 3: («self énergie» en 4° approximation) T' est donné sur
R1 par le bi-spineur

TAB =" f./ dy az AT’*U Dx—‘z AU‘-Z Dy—u Azu (4'15)

(x —u)2 T,_, est défini, comme on va le constater. Vu que (z — u)
=@—y)+y—2)+—u),et (z—u?=(c—y?*+{H—2°+
..oonadly, = (x—u2l,, =

=10 //P(aj_y)z Ax—y D:c»—z Aywz DU—“ AZ_“
vz

60 + f/ 2y —2) (=) Aypyvevnnn. (4.16)

1° Le premier produit multiplicatif (x — y)2 4,_, D,_, 4,_, est-
défini. Par contre, le produit 4,_, D,_, 4,_, ne l'est pas et sa
définition doit étre effectuée conformément & ’exemple 2, c’est-a-
dive Ty — <Ay, Dy A, > +ady .0, ,

2° On invoque, pour la définition de 2° un argument en tous
points analogue & celui utilisé pour 1°.

3%—69 sont tous définis.
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La division par (z — u)?, que 'on effectue ensuite, donne:

10 ff 2—y)? (2—u) 2 AD<ADA> + b, 8,_,+byy,8_, +ad,_,D, .

U

20 f [ ) (e-w) 2 <ADA DA+by 8, +by7, 85,40 4, D, ,
Au total on obtient:

~ [ [<ADADA> + dy6,_,+dyy, 05, + a <AD> +b<AD>
+ @cy 0, ,+acy, 05 ,+

0T,y ..o=0dy0,_,+0dyy, 0%, +6a<AD>+ 8b<A4D>
=) 0c; P, T, (4.17)

ci=d,dsab...

avec: [ [<ADADA)
“f/(‘” u)=2[(x—y)2AD {ADAY + (z—u)2 <ADAY DA+ - - -]

A ADADA correspond un diagramme (losange). 1l en est de méme
pour les ADA (triangles) et les AD (biangles). On peut alors formuler
le groupe sous la forme symbolique suivante:

Yy

6_:1: » =6d1—;—+5d2m;—+5aw—+5bv
2 (4.17a)

et dire que-le losange est défini a ses diagrammes affaissés prés. Un
diagramme peut &tre affaissé par rapport a n’importe quel dia-
gramme qu’il contient. Ainsi, ’affaissement du losange par rapport
a lui-méme est le «point a deux attaches» (intervenant avec deux
couplages différents 6 (x — u) et v, 6*(x — u)). Affaissé par rapport
4 un des triangles, il fournit un des biangles de la self-énergie,-car
le triangle affaissé est un «point a trois attaches».

Les images de FouriER des systémes définissants sont des sys-
temes d’équations différentielles aux dérivées partielles. Pour cette
raison, 1l est avantageux d’utiliser la transformation de FouriEr
pour le calcul, comme nous ’avons fait en L.

La définition par division met & disposition une infinité de distri-
butions différent entre elles par des expressions du type (4.7). Le
probléme S envisagé peut donc sembler & premiére vue compléte-
ment indéterminé. Or, il est possible de montrer que des change-
ments des parameétres (réels) du groupe dc;, ne font rien d’autre .
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que de changer les valeurs des constantes x, y,. .., g. Pour le vorr,
il est avantageux de considérer les champs quantifiés ¢ et @ comme
les produits e et g@, soit des champs normalisés’en terme des fonc-
tions causales par les relations (1.7) (1.8):

Q,DO%=D Q% =—e2050 (x,y); Q2F = (00— ud)g*’—0*0°
QD =D D =—g*(x,y); Q5=90=(0O—nr3|—4l
Q0= _ATQ4, = Z646(x, y); Q4P = (0,0* +xE)'P  (4.18)
e? et g2 sont alors des facteurs de normalisation.

Au lieu des constantes de couplage, nous utilisons les » parametres
e, (0 =sa ), introduits dans Vopérateur Lagrangien atin de déve-
lopper S en série des e:

Se=1; 8§ =1bl; 5§ =... avec:
L o)\ & ;
anuL(“m—exfoO-i—e(pL(“”)-Eﬂo /~§°~(§0an )24+ e, AD+e, AP+ ...

4 e4f%4¢4. (4.19)

Le S™ ainsi défini dépend, outre des parameétres e,, des grandeurs
physiques %, pg,... €, g... ainsi que de r = r(n) parameétres supplé-
mentaires ¢, On constate d’abord que l'opérateur de LAGRANGE
contient, en plus des termes d’interaction (2.7) (tri- et multi-linéaires
dans les champs) des termes bilinéaires.

Aux relations évidentes
0/0 log £,8" = 0/0loge S™... ... etc. (4.21)
on ajoute encore : _
0¢, 8 =0/0 log ZS™ (4.22)
(1+e,+¢,)0:,8S™ = 0/0 log » $™ ’

et d’autres relations analogues pour ¢,, ¢, et pour &4, ¢,, en terme
de e, gy, p et g. On les démontre par intégrations pa.rtielles (ef. I,

§ 3) et a l'aide de la relation:

0/0logx A, ——w|A A ofologru(x) = —x [ A, u(z). (4.28)
r—y rx—2 T E—Y

Ayant ainsi montré que toute variation des ¢ pe-ut s’exprimer par
des -variations de grandeurs physiques, il nous reste finalement a
volr qu'une variation des r(n) constantes arbitraires est:toujours :
équivalente & une variation des &,.
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Une variation des constantes arbitraires peut étre générée par le
groupe infinitesimal :

68(7&) = Z(SC; Pz S(n); Pz = (0/0 Ci)cl=cz-_-...cr(n)-_-,-0 . (4.24:)

Pour un diagramme de complication quelconque dans S®, les P; S™
sont des diagrammes affaissés par rapport & un diagramme qu’il con-
tient, & savoir celui qui est indéterminé & une distribution prés dont
dc; est le co-facteur. Ce diagramme affaissé contient donc, a la place
de 1’élément primitif, une interaction ponctuelle. Or, ce diagramme
existant déja dans S® muni d’un paramétre ¢,, on peut trouver des

fonctions
By =hip(%....Z, &...¢,) (4.25)
telles que ) '
P; 8™ = 3"h,,0,8"; i=1...r(n) (4.26)
e=1

ait lieu, pour autant qu’il existe des coefficients L., (indépendants

des ¢;) satisfaisant:
[P, Py]_=— )] L, P, (4.27)
I

ce qui est bien le cas?).

On a donc bien montré, comme on I’avait annoneé, qu'une varia-
tion des constantes arbitraires ne change que les constantes phy-
siques %, g, ... Z, g.

La normalisation de Z est arbitraire. L’arbitraire dans la norma-
lisation des autres constantes, par contre, n’est qu'une confirmation
du fait que le développement en série ne peut pas donner d’infor-
mation sur les valeurs numériques des grandeurs physiques %, . . .

(cf. fin du § 2).

5. Le groupe électro-mésonique en théorie quantique.

La correspondance d’une théorie 8 & une théorie classique du type
(2.10), fait attendre que les propriétés de cette derniére, en parti-
culier l'invariance par rapport aux sous-groupes (3.3) et (3.4),
puissent &tre étendues & la premiére. Nous allons examiner, dans ce
paragraphe, les conditions pour qu’il en soit ainsi:

Groupe électromagnétique. En terme des puissances ordonnées de
utt ub, ¢, et D,

ul () u(y) = (uhu) (zy) + 3 4D (2y);
(') (o) (') (o) = (w1 )? (2 yzd) +- -
7.(7) 95 (4) = @% 5z y) + 5 DS (). (5.1)
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I’opérateur S s’exprime par:

ZSENM / fZ'(El )-2 (N1 M- l(uT) p¥ DM

ENM -~
X Spyu (it - Ygor---2xti-- ty) (5.2)
ou
Bisv B
Spyy = Si‘laﬁl..?‘ﬁ; M@y yy- -2y By (5.8)

Une condition suffisante pour qu’ill soit invariant par rapport au
groupe électromagnétique

Ao = Pou— 15 Vyto; O3 Nu=—t5 Vy0a (5.4)

est que les courants électriques
Tagsilen - ty) =—i [ [(B) 2 @rw)® Sy @y, 2...) (5.5)

satisfassent, & des effets de surface prés, a I'équation de continuité:
0, Jgnsy(21) == 0. (5.6)

Cette relation est satisfaite par la plupart des termes du développe-
ment de S, en vertu de I’équation d’onde (dont 0, J34(2) = 0 est
une conséquence). Mais, pour le terme de la self-énergie, (5.6) impose
des conditions aux constantes arbitraires. Dans sa premiére appro-
ximation, (5.6) se réduit & 0, S (2; 25) = 0 pour la distribution

produit S35* = — 517 (7 4) (2 —2) Y A9 (2 — 2) + O) (ef. T,

§ 4). Simultanément il est nécessaire de poser ¢, + ¢, = 0. La défi-
nition par division a été faite en I et a introduit trois constantes
arbitraires®).

S1 on les définit par I (4.22), la condition de continuité (5.6) exige

que
bl = 0; bg -+ bz = 0 en I (4.22). (5.7)

Utilisant alors (5.6), on démontre, par intégrations partielles, que
S*—S=8(P)—S(p,P) =0; 948y P)=0. (58
§* = S (), @) est done, & des termes de surface prés, invariant

*) Ceci peut directement étre déduit de notre exemple 1 du § 4: étant données
les propriétés des %, la trace est un tenseur symétrique. Son indétermination
vaut (cf. 4.9)

Ioti Az (zl_ 252) - bl gﬂh 7] 621—22+ b2 g L] 6 + b %, % (5-9)

%y Kg 21—2g

Si la partie déterminée est définie de maniére & satisfaire Oa (8e> =0, (5.7)
en résulte.
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par rapport au groupe de jauge du potentiel vecteur . Si l’on décom-
pose un. Y, quelconque selon (5.4) (avec p*(x.) + 0), les quanta
du champ 4, ne sont émis ou absorbés que dans la couche super-
ficielle entourant la région V. Ces effets étant inobservables par défi-
nition, I'invariance de jauge est démontrée.

L’invariance de jauge permet de faire le passage & la limite p, -~ 0
et arriver ainsi a l’électrodynamique des photons & masse nulle.
Pour cela, il est nécessaire qu’une transformation de jauge de @,
a ), puisse.étre trouvée, qui fasse intervenir, au lieu de la distri-
bution causale DY, une distribution D} {? satistaisant 4 (4.18) avec

Q. = (00— ) 8+ B+ (7, 0" log ) + (0" log w?) v, *)  (5.10)

(Rqp = tenseur de Riemann-Christoffel contracté.)

Dans un référentiel de LoreNTZ 0n a alors:
D (cy) = 9,527 ‘4fdp ¢y (p2+uﬁ)‘1 = 9.5 D3 (29)
P G i I CA Y

qui n’est autre chose que l'interaction causale du champ électro-
magnétique, d’ou le terme wu;20,,0,,D8 (xy) qu'on avait en
I (4.9) a disparu.

Pour découvrir la transformation adéquate, il faut se souvenir
que tout D =i/, (DW —2 4 D®) apparaissant dans le développe-
ment en &" provient d’une contribution hermitienne D™ en H,, (§ 1
de I) et de son complément causal — 2 1D® en 14,. Le D}V appa-
rait ainsi lors de la mise en ordre des prodults deyxend,, Conforme-
ment a:

o) s (Y) + A5 () X (%) = Ao p(zy) + x5, (y 2} + DD (xy).  (5.12)

Afin d’obtenir D}, au lieu de D,,, il est nécessaire de normaliser
le champ 4, en terme de Q2D{) =—e?d(zy) et d’introduire des
probabilités négatives11)12) pour les états & nombre de quanta 4,
impair. On a alors le commutateur changé de signe

—»gaﬁ[ 6(

(467 (2), 27 {y)]- = — /. DG (2 y) (5.18)
(5.12) contient alors:
Docﬁ_ﬂ()_z an VyﬁDOO(wy) =D:,B (514)

qui satisfait & (4.18) avec (5.10). Vu que I’émission des quanta 4,
ne peut se faire que dans les couches superficielles, des transitions

*¥) V4 est la dérivée covariante définie par Vy ggy = 0.
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a4 des états & probabilités négatives ne sont jamais contenus dans
les éléments observables de S (processus conservatifs). Il reste &
voir que la probabilité d’émission pour un quantum longitudinal de
@ est toujours inférieure & celle concernant un quantum transversal
(rapport de 'ordre de u2/(k?)2). Cela ressort d’un calcul essentielle-
ment classiquel?). On peut alors substituer a ¢, un champ transver-
sal A, de masse nulle ((]A4, =0; = (4,) =0).

On peut directement montrer que la matrice invariante S* =
S (A, @, Dy, est causale et unitaire (dans le sens S*TS8* ~ 1),
malgré le fait que la relation habituelle entre le champ A, trans-
versal et D;{" n’existe pas. On part de D'interaction vectorielle non
wmvariante de la théorie du rayonnement:

e, A +2C, = ¢, f (A, T—grad (— 4)-1 div. J) () +
+ &2/, f Tt (— A)-1 T (x) (5.16)

contenant des interactions non locales. Ce sont: 'interaction entre
le champ transversal et la charge, et l'interaction statique de
Couroms*). La loi de commutation

(A, AT = (i + 0,0, (—4)71) DGP (2 y) (5.17)

et la loi de continuité en chaque approximation font ressortir de
I'interaction non invariante une matrice S unitaire et causale (mais
non invariante). Par des intégrations partielles, on peut alors I’ame-
ner & la forme invariante**) §* = S (4, @, D} ;) =~ S.

Groupe mésonique. L’'invariance de S par rapport au groupe mé-
sonique réclame une démonstration laborieuse et ne revét, d’autre
part, pas plus d’intérét que l'invariance de S par rapport & la trans-
formation particuliére (3.8) pour fi;=0 et fi; = — 9/, P,. Nous
nous en tiendrons donc & cet exemple.

A cette fin, on calcule tout d’abord I'opérateur $* engendré par
la Lagrangienne L* formé par le A* en (3.14):

L¥ = e Ly = ot ey AP — gy (24) AL+ 3 (2,) By (5.19)
e =

On calcule ensuite 'opérateur $ obtenu & partir de

L= 45, AP+ 5, AP (5.19)

*) (—A4)71 est opérateur du potentiel de Covroms.
**) Qutre le fait que 'interaction (5.16) est non invariante, elle est de plus
non définie, car le terme coulombien est «non ordonné». On ne ’ordonnera qu’une
fois la forme invariante $* = 1+ .8F+ .8+ ... obtenue.
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et compare les résultats & chaque approximation par intégration
partielle des éléments de $*. On montre alors que $* — S =~ 0, ex-
primant I’équivalence des deux représentations; cela, pour autant
que les conditions suivantes sont satisfaites:

1° les coefficients numériques a; contenus dans les termes B,
doivent prendre les valeurs (3.16), conformément aux séries (3.12);

29 parmi I'infinité de distributions, provenant de la définition par
division des produits

6:u—y[Dg:-)—y V= b.N 6:::—1; *) (520)

(non définis & priori), le choix by = 0 doit s’imposer.

Il est & remarquer enfin que la condition (5.6) impose encore
d’autres restrictions sur le groupe des ¢; que celle énoncée en (5.7);
par exemple, dans le probléme de la désintégration d’un méson sca-
laire (neutre) en deux photons (couplage scalaire), une relation du
type ¢; + ¢ = — 7 est nécessaire a la sauvegarde de la continuité
(5.6). Cette relation, entre deux facteurs arbitraires ¢, et ¢, prove-
nant de la définition par division, est équivalente & une des condi-
tlons données par Fukupa et Kinosarral4), Comme le demande du
reste la théorie de la division des distributions, une telle relation ne
peut &tre invoquée que lorsqu’une condition physique du type (5.6)
I'exige, et dans ce cas seulement. Son emploi inconsidéré, c’est-a-
dire I'emploi de cette méme égalité chaque fois que le méme pro-
bléme de division se présente, conduit & des erreurs manifestes (cf.
les conditions en 14)). Z. Kosa et ses collaborateurs sont parvenus,
lors d’un récent travail, & des conclusions identiques?®).

En résumé de ces pages, on peut donc affirmer qu’il est possible
d’effectuer par voie intégrale, dans 1’électromésodynamique envi-
sagée, un développement unitaire de la matrice S sans infinités ni
ambiguités.

L’un de nous (Srt) tient & remercier M. N. Bour; c¢’est en effet, lors
d’un séjour & Copenhague, en 1947, qu'il a pu mettre au point ses
notions sur la causalité. Nous remercions en outre M. G. pe Ruam
d’avoir attiré notre attention sur les travaux de M. ScHwWARTZ.

Institut de Physique de I'Université, Genéve.

*) Des intégrations par parties transforment les polygones électroniques, photo-
niques..., etc. fermés, en boucles fermées, qui demandent une définition des pro-
duits de distributions (5.20).
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