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La mesure statique et dynamique des forces éleetromotriees
par W. J. Poppelbaum, Lausanne.

(8 V1953.)

1. Introduction.

La généralisation des équations de Meixner1), reliant dans un conducteur le
champ électrique et le courant de chaleur d'une part au courant électrique et au
gradient thermique d'autre part, permet d'établir un formalisme suffisamment
général pour englober des phénomènes apparemment aussi différents que l'induction,

la thermoélectricité et les phénomènes chimiques dans une pile.
La distinction entre tensions voltaïques et tensions galvaniques2) amène un

traitement très simple des «différences de potentiel de contact» rencontrées dans la
mesure statique des forces électromotrices.

2. Caractéristiques d'une phase isolée.

Considérons une phase isolée, chargée, homogène et isotherme en
équilibre. Supposons que l'espèce d'ions a, • • • soit présent au nombre
N", - ¦¦ Introduisons

a) le potentiel électrique extérieur ip : c'est le potentiel qui intervient
dans les calcules de l'électrostatique tant que l'on reste à l'extérieur
de la phase. En particulier le quotient de la charge totale (somme
des charges des ions) par ip au voisinage immédiat (10~4 cm) donne
la capacité de la phase. Le travail correspondant aux forces images
(devenant sensibles à une distance de 10~4 cm) se trouve englobé
dans A.

b) La différence de potentiel électrique de surface x- c'est le saut
de potentiel lorsque l'on traverse la double-couche éventuelle (formée

de molécules polarisées) à la surface de la phase.
c) Le potentiel électrique intérieur cp : c'est le potentiel é. s. à l'intérieur

de la phase. On a
V> + X C2-1)

d) Les potentiels électrochimiques A : si Z U — TS + PV est l'en-
thalpie libre (ou potentiel thermodynamique total) de la phase, le

potentiel électrochimique Aa de l'espèce d'ions a est

A' (XM (2.2)
\ 0Na Jt,p,nP /5=M
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e) Les potentiels chimiques f : par définition

^ AX — e*cp (2.3)

où ea est la charge d'un ion de l'espèce oc.

3. Constance des § dans un milieu isotherme à pression constante.

Prenons un gaz ionique classique, c.-à.-d. un ensemble de particules

chargées obéissant aux lois des gaz parfaits se trouvant dans

un système ayant un potentiel électrique intérieur cp. Caractérisons
les ions a par leur masse ma, leur nombre Na, leur poids ionique Ma,
leur chaleur spécifique par unité de masse c" et leur charge e01. On
voit alors sans autre3) que

TJ=£N«mac*T+2JN«e°:cp (3.1)

S =2JN'm'c" In T +JT -^=- In *£-. (3.2)

Or

c'est-à-dire

(3.3)

Z U-TS + PV avec j

p VpI=M y.N'm' f^ V 2L Ma ]

Z cp£e«N« + T\n (X) £ Na m* ca

+ BT1» (£)£¦=£. (3.4)

Il s'en suit que

Aa | ea cp + |a avec
\dN«jT,P,Nß

T m«c* T In (X) + -^- ET In XX) (3.5)

£a(T, P,ma,ca,Ma).

On voit ainsi d'abord que fa est effectivement une grandeur intensive

(définissable localement) et ensuite que dans un mélange à

température et à pression constantes, fa est constant4).
Remarquons encore que la séparation de Aa en partie chimique

fa et partie électrique ea cp est purement arbitraire, mais toujours
légitime5) 6).

4. Les équations de Meixner pour les états quasi-stationnaires.

Plaçons un milieu conducteur contenant les k ions • • • a • • • [ayant
un potentiel chimique |a donné par une expression du type (3. 5)]
dans un champ électromagnétique lentement variable. Soit u la
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densité du courant d'énergie, nx la densité du courant particulate
des ions a, s" la densité du courant d'entropie, T la température,
w* la densité du courant de chaleur de Callen7),

J=2Je*na: (AA)

la densité de courant totale et p le vecteur de Poynting. Alors le

premier principe donne

w* u—2Jn'x^ — p (4.2)

Caractérisons la quasi-stationnarité par les conditions

div u 0

div n% 0

— div p =E-J
E étant le champ électrique total de Maxwell (champs é. s.+champ

induit). On voit que la dernière équation néglige E • D + H- B.
Va production interne d'entropie Z par unité de volume et par

unité de temps est alors donnée par

£= div s avec s* — (~\ (4.4)

c'est-à-dire

g= u grad (-X) —]Tn* £* grad (-X)

—E IF grad ^~vgrad xw) ~~ ~r div p

w* grad (X) - X£ n* grad f- + X E -f. (4.5)

Introduisons des densités de courant partiels

ifcL _ ^a g^ alors J=E T"

^= w* grad (X) _ A-21 T" [- B + grad (Ç)]. (4.6)

Choisissons les composantes de w* et de

p-grad(X)].X irP>* (4.7)

comme «flux» et celles de Ja et de

grad(X) +-XG (4.8)

comme «forces» au sens d'ONSAGER, les deux dernières équations
déifnissant Ea* et G.

et
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Supposons maintenant que l'on ait une chaîne linéaire de

phases, G et J" ayant toujours la direction instantanée de l'axe des x.
Soit EU* la projection de Ea* sur cet axe et soient G et j* les

intensités Gx et j*) de G et J* respectivement.
Alors les équations linéaires reliant les flux et les forces se réduisent

à
EV T 2JM«PjP

rp2
-G

«: -27M»+'-'j'+**+l*+1g
rpî

Posons
a, ß 1 •

TM«ß q«<ì \ Mh- >•"

Ma>k + 1 _jfi +1,4 + 1

rpî

(4.9)

alors il vient un groupe d'équations linéaires du type de celles de

Meixner:1)8)9) „ „ „l i E«. =£Q*PjP + e«G |

w* -JTnVje + XG
(4.10)

l-.-yt

•dr

(4.11)

Mais par définition

E«* E— grad (X) avec

E =Ês + Êioxx

Es — grad cp

Éi -lavec A =-fL.fi4n J r
cp étant le potentiel é. s. et A le potentiel vecteur. Donc

Ë"*=È*- grad (-^XX) Ei_ grad ^
5. Tensions dans une pile isotherme à phases isobares.

Soit une pile (en dehors des champs variables) formée des phases
A, B, C ••• A', la dernière A' étant chimiquement identique à A.
Supposons avec Lange2) qu'à chaque frontière il n'y ait qu'une
espèce d'ions susceptibles d'être échangés, chaque phase contenant
deux espèces différentes : soient 1 et 2 les espèces dans A, 2 et 3 celles
dans B. Soit AB la phase «interfaciale» très mince séparant A de B
et contenant les ions 1, 2 et 3. Prenons le cas où le débit de la pile
est négligeable: j E ja 0.

(4.12)
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Reprenons (4. 10) et (4. 12) avec E1 0 pour l'ion 2 qui traverse
AB; dans la couche de transition les jß et p0"5 sont finis, donc
d/dx (A2je2) reste fini: pour une couche suffisamment mince il vient
donc5)

A\ A% (5.1)
c'est-à-dire

¥a + <?9a ?b + *?<pI
d'où

2

9b-Va—^- (5-2)

où cpB et cpA sont les potentiels près de la séparation.
Considérons maintenant l'intérieur de la phase A; nous savons

qu'à pression constante I1 const, et |2 const. Or

grad»(y) eui1+?I2f

— srad* (-p-) e21 ?X e22 i2

c'est-à-dire puisque 7'1 + j2 0

— grad„ 9) (g11 — q12) j1

— gradxcp (p21 — e22)j1

ce qui n'est possible que si grad„ cp 0 ou encore

cp const. (5.3)

Remarque. Si j+ 0, —grad cp est proportionnel à j: ceci donne la
résistance interne de la pile.

Ainsi pour une pile à débit négligeable

9a-9a -E^ Sp (5.4)
phases

où eBC est la charge de l'ion s'échangeant entre les phases B et C10)
et Sp la force électromotrice.

6. Tensions galvaniques et voltaiques.
Force électromotrice d'une pile et variation de A.

Il est connu que les sauts de cp ne peuvent pas être mesurés
directement. Il en est tout autrement des sautes de y> cp — x Qui se

mesurent avec une facilité relative par voie électrostatique : — grad %p

donne le champ é. s. extérieur. Or

Wa'-Wa 9a'—9a — (Xa' — Xa) l6-1)
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si A et A' sont chimiquement identique, on a %A> Xa11)' donc

Va' —Va 9a- —9a- (6-2)

On peut alors mesurer cpA, — cpA en prenant la somme des sauts de

potentiel é. s. extérieur.

rDTe
%

Fig.l.

Dans la suite nous allons appeler tensions galvaniques VG les
différences de cp, tensions voltaïques Vr les différences de f. Dans le cas des

phases extrêmes identiques, on a donc

SP VV^VG. (6.3)

Il est intéressant de constater que l'identité de composition,
pression et température des phases A et A' permet d'écrire pour
l'ion a f* |£,, donc

AA,-A«A l;l,-l;A + e*(cpA,-cpA)=e*Sp. (6.4)

Or dans un conducteur à conduction purement électronique les
équations de Meixner se réduisent à

E*x pj + eG

w* =—nj + XG
(6.5)

En absence d'induction et à température constante on a donc dans
le cas j 0

— gradx (—) 0 ou A const. (6.6)

Si les phases A et A' contiennent des électrons (ion 1) et sont reliés
aux métaux M et N (aboutissant en P et Q sans fermer le circuit),
il vient en vertu de (5. 1) et (6. 6)

Ap-AQ AA,-AA eSP (6.7)

où e est la charge d'un électron (< 0).
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7. Couples thermoéleetriques.

Reprenons (6. 5) avec Eix= 0 et j 0; alors un tronçon de circuit
formé de deux métaux M et N aboutissant en P et Q à la même

P " N
Q

température T0 donne
Fig. 2.

Ap — AQ e fgradj~\dx — e feGdx e I (eM—eN) dT. (7.1)
Q Q Te

Va force électromotrice Sc étant définie par
T

Sc= f(su-eN)dT, (7.2)

on a
Ap — AQ eSc

(voir l'article de J.-P. Jan dans le fascicule précédent).

(7.3)

8. Transformateurs isothermes.

Supposons que l'on place un conducteur métallique isotherme
dans une région où les champs sont variables, alors les éq. de Meixner

deviennent grâce à (4. 12)

Ei-gradx(^)=QJ. (8.1)

Si j est négligeable, on aura donc
¦ A'Et grad,, (X); (8.2)

on peut exprimer ceci en disant que le champ induit est équilibré
par un champ électrochimique

'A'Ee/ — ?rad (-) (8.3)

ceci restant vrai sij 4= 0 et q 0 (self idéale!).
Aux bornes P, Q du conducteur il y a une différence de potentiel

électrochimique-i p p

Ap-AQ efgradx(^-)dx efEidx (8.4)
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Appelons

W. J. Poppelbaum.

&T : Eidx

la force électromotrice du transformateur, alors

Ap — AQ e ST

(8.5)

(8.6)

9. Mesure électrostatique des forces électromotrices. Potentiels de contact.

Prenons deux métaux isothermes M et N en contact. Nous savons
alors en vertu de (6. 6) que AP AQ, P et Q étant les points qui

fp' Yp' de M

M

P.
/ vide
ip + Q.

électrons
•0

N

V
Force èlectromotrice'ë

Fig. 3.

limitent le tronçon. Supposons qu'entre M et N on ait une phase
formée d'électrons dans le vide; la température étant constante,
on aura pour ces électrons f const.

Mais si P' et Q' sont des points juste en dehors de M et N, les
potentiels intérieurs cpp, et cpQ, dans la phase entre M et N sont
identiques aux potentiels extérieurs fP- et y>Q> de M et N. On en
déduit que """" (9.1)

Donc

e fp- + i e cpp, +1 Ap,

ey>Q, + Ç ecpQ, + Ç AQ,

Ap,-AQ,
Vp'-Vq' X^-

D'autre part AP AQ entraîne qu'en posant

Ap--Ar0pp.

0nn-
/la' - A0

il vient
Vp- - Vq' *.pp. 0.QQ'

(9.2)

(9.3)
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Or en considérant la variation d'énergie d'un système isotherme
formé de deux parties correspondant aux potentiels Ap, et AP, on
voit que le passage d'un électron de l'une à l'autre nécessite un
«travail de sortie» 0PP,12).

On en conclut que deux métaux isothermes en contact donnent
lieu à une tension voltaïque

Vc Wp, - fQ, 0pp, - 0QQ, (9.4)

appelée différence de potentiel de contact13).
Si l'on intercale entre M et N des piles, couples et transformateurs14)

de force électromotrice totale S £P+ tßc + St> on aura
d'après (6. 7), (7. 3) et (8. 6)

Ap-AQ eS (9.5)

où Ap+ Ap et Aq+Aq dans les calculs précédents. Alors les
nouvelles grandeurs ipP, et tpQ, donnent pour la tension électrostatique
V entre P' et Q' ap, - A0-

V=tPp,-%.= pe Q

puisque (9. 1) reste valable. Donc

eV=(Ap,-Ap)- (AQ, -AQ) + (Ap- AQ). (9.6)

Or Ap,-Ap e0PP,p- P FF \ (9.7)
Av-AQ=e0w, ]

les 0pp- et 0QQ- étant les mêmes que précédemment, le travail de
sortie étant indépendant du reste du circuit. Donc

V=VC + S (9.8)

c'est-à-dire dans la mesure électrostatique de la force électromotrice
totale, il faut retrancher la différence de potentiel de contact de la
tension mesurée15) 16) 17) 18).

10. Mesure électrodynamique des forces électromolrices.

Fermons le circuit du paragraphe précédent par un voltmètre
isotherme à grande résistance interne R (j & 0). Alors les équations de
Meixner donnent

Ap, — AQ, e / gradz(—) dx — e f pjdx — eRI (10.1)
Q' Q'

où I est le courant dans le voltmètre. Mais la tension U qu'indique le
voltmètre vaut — RI, donc

e

puisque Ap, AP et AQ, A,

U= ~J"-~q "p-"Q =S (10.2)
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Un voltmètre électrodynamique de grande résistance interne
mesure donc directement la force électromotrice.

V

M

P- •P <?'. • 0

N

'
*

'

Force électromotrice §?

Fig. 4.

11. Conclusions.

Au point de vue des mesures Aje (pour les électrons) joue un rôle
qu'anciennement en attribuait au potentiel électrique. Les mesures
électrostatiques ne diffèrent des mesures électrodynamiques que
par le fait qu'il faut tenir compte de la différence des travaux de

sortie pour les phases limitant le dispositif de mesure.

2)

3)

4)

5)

6)

7)

8)

9)

10,

")
12)

13)

14)

15)

16)

17)

18)
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