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La mesure statique et dynamique des forces électromotrices

par W, J. Poppelbaum, Lausanne.
(8 V 1953.)

1. Introduction. .

La généralisation des équations de MEIXNER!), reliant dans un conducteur le
champ électrique et le courant de chaleur d’'une part au courant électrique et au
gradient thermique d’autre part, permet d’établir un formalisme suffisamment
général pour englober des phénoménes apparemment aussi différents que ’induc-
tion, la thermoélectricité et les phénoménes chimiques dans une pile.

La distinction entre tensions voltaiques et tensions galvaniques?) améne un
traitement trés simple des «différences de potentiel de contact» rencontrées dans la
mesure statique des forces électromotrices.

2. Caractéristiques d’une phase isolée.

Considérons une phase isolée, chargée, homogene et isotherme en
équilibre. Supposons que 'espéce d’ions «, - - - soit présent au nombre
N%, ... . Introduisons :

a) le potentiel électrique extérieur y: ¢’est le potentiel qui intervient
dans les calcules de I’¢électrostatique tant que I’on reste a l'extérieur
de la phase. En particulier le quotient de la charge totale (somme
des charges des ions) par ¢ au voisinage immédiat (10-* cm) donne
la capacité de la phase. Le travail correspondant aux forces images
(devenant sensibles & une distance de 10-%cm) se trouve englobé
dans A.

b) La différence de potentiel électrique de surface x: c’est le saut
de potentiel lorsque 'on traverse la double-couche éventuelle (for-
mée de molécules polarisées) & la surface de la phase.

c) Le potentiel électrique intérieur ¢ : ¢’est le potentiel é. s. a I'inté-
rieur de la phase. On a

p=y+x (21

d) Les potentiels électrochimiques A:s1 Z=U —TS + PV est ’en-
thalpie libre (ou potentiel thermodynamique total) de la phase, le
potentiel électrochimique A* de 'espéce d’ions « est

A°‘=(0Z) : (2.9
ON* /7, P, NB B+a :
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e) Les potentiels chimiques &: par définition
51 — A% % @ (23)

ou e* est la charge d’un 1on de 'espéce a.

3. Constance des § dans un milieu isotherme & pression constante.

Prenons un gaz ionique classique, c.-4.-d. un ensemble de parti-
cules chargées obéissant aux lois des gaz parfaits se trouvant dans
un systéme ayant un potentiel électrique intérieur . Caractérisons
les ions « par leur masse m?, leur nombre N¥, leur poids ionique M?,
leur chaleur spécifique par unité de masse ¢* et leur charge e*. On
voit alors sans autre®) que

U=J'N*m*c*T+ D N*e* ¢ (3.1)

S=YNemee*In T+3 0" In 5L, (3.9)
U Z=U—-TS+ PV avec
. RT « N*m® (3-3)
Py p:= 2T 5
¢’est-a-dire ”
Z—=¢) ¢ N*+TIn (—T—)Z'N“‘m“c“
+RT In (57 Z%ﬁ* (3.4)
Il s’en suit que |
0Z
Aa g — p* Ed
(ON“)T,p,Nﬁ e* @+ &* avec
£ m*e* T ln (%)+;_ RTIn (7o) (3.5)

=& (T, P,m* c* M"*) .

On voit ainsi d’abord que &* est effectivement une grandeur inten-
sive (définissable localement) et ensuite que dans un mélange & tem-
pérature et a pression constantes, & est constant?).

Remarquons encore que la séparation de A* en partie chimique
&% et partie électrique e* @ est purement arbitraire, mais toujours
légitime?®) ©).

4. Les équations de Meixner pour les états quasi-stationnaires.

Placons un milieu conducteur contenant les k ions --- a -+ [ayant
un potentiel chimique &* donné par une expression du type (3. 5)]
dans un champ électromagnétique lentement variable. Soit % la
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densité du courant d’énergie, n* la densité du courant particulaire
des ions «, § la densité du courant d’entropie, T la température,
w* la densité du courant de chaleur de CALLEN?),

7=)e*n* (4.1)

la densité de courant totale et p le vecteur de PoynTing. Alors le
premier principe donne

W =i Y e e p (4.2)
Caractérisons la quasi-stationnarité par les conditions
dive =0
divn*=0 a=1---k (4.3)

—divp =E.J
E étant le champ électrique total de MAxwELL (champs é. s.+champ
induit). On voit que la derniére équation néglige E-D+H-B.

La production interne d’entropie X par unité de volume et par
umte de temps est alors donnée par

Z—- divs avec s = (-ET—*) (4.4)
¢’est-a-dire

:\7~_u grad ( ) — X' 5" grad (T)
—2 %T orad &*—p grad ( ) — div p
= w* grad (%) — %2’75“ grad &%+ _’T'E 7. (4.5)
Introduisons des densités de courant partiels

= n*e% alors ]—27

ZZ w* grad (%) = —%,—2 72 [—E + grad (%—)] . (4.6)
Choisissons les composantes de w* et de

[E —grad (g)] : % = —11,,— o * (4.7)

et

comme «flux» et celles de 7% et de
grad ( ) + ;,2 G (4.8)

comme «forces» au sens d’ONSAGER, les deux derniéres équations
déifnissant E** et G.
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Supposons maintenant que l’on ait une chaine linéaire de
phases, Get7® ayant toujours la direction instantanée de I’axe des 2.
Soit E%* la projection de E** sur cet axe et soient G et §* les
intensités (= G, et 43) de G et 7* respectivement.

Alors les équations linéaires reliant les flux et les forces se rédui-
sent a |

o * af g Mgl
B :T[ZM pip g 2T G]
. e MEFLE+L
m, =k M e ———
B 1.k
Posons T 18 =Qaﬁl MESLE B
M k+1 ) ME+1,k+1 1 (4.9)
7 ° ] T T

alors 1l vient un groupe d’équations linéaires du type de celles de
MEeixnER:?) 8) 9)

Er =D 0P+ %G
2 ‘ (4.10)
w, =—23'7f¥+AG
nB=1-Fk
Mais par définition
Eo* = F — grad (f::) avec
E =E'+E ot
B (4.11)
E* =—grad ¢
Hi —— 4 avec j:%f—zdt
7T r

@ étant le potentiel 6. s. et A le potentiel vecteur. Donc

E** —=Ei—grad (§a+eaqp) — Ei— grad (%) (4.12)

e(l

5. Tensions dans une pile isotherme & phases isobares.

Soit une pile (en dehors des champs variables) formée des phases
4,B,C--- A', la derniére 4’ étant chimiquement identique & A.
Supposons avec Lanee?) qu’a chaque frontiére i1l n’y ait qu’une
espéce d’ions susceptibles d’étre échangés, chaque phase contenant
deux especes différentes: soient 1 et 2 les espéces dans 4, 2 et 3 celles
dans B. Soit AB la phase «interfaciale» trés mince séparant 4 de B
et contenant les ions 1, 2 et 8. Prenons le cas ou le débit de la pile
est négligeable: § = 2'j* = 0.
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Reprenons (4. 10) et (4. 12) avec E¢ = 0 pour 'ion 2 qui traverse
AB; dans la couche de transition les 7% et ¢*# sont finis, donc
d/d» (A?/e?) reste fini: pour une couche suffisamment mince il vient

donc?) " ~
A% = A% (5.1)
c¢’est-a-dire
Gt =&+egp
d’ou e g
Pp— Pa=— g (5.2)

ou @p et @, sont les potentiels prés de la séparation.
Considérons maintenant 'intérieur de la phase 4; nous savons
qu’a pression constante &1 = const. et £2 = const. Or

— grad,, (Aelt) — gl1j14 pl22
— grad, (g) — g2l jly p222

c¢’est-a-dire puisque §! +72 =0
—grad, ¢ = (e¥! —e'®) 7
— grad, ¢ = (* —¢*)7*
ce qui n’est possible que si grad, ¢ = 0 ou encore
@ = const. (5.3)

Remarque. Si j+0, — grad ¢ est proportionnel & j: ceci donne la
résistance interne de la pile.
Ainsi pour une pile & débit négligeable

Ep=i
Pur— Pa— 2 e = Ep (5:4)
phases
ol e8¢ est la charge de I'ion s’échangeant entre les phases B et C'19)
et &p la force électromotrice.

6. Tensions galvaniques et voltaiques.
Force électromotrice d’une pile et variation de A.

Il est connu que les sauts de ¢ ne peuvent pas étre mesurés direc-
tement. Il en est tout autrement des sautes de y = ¢ — x qui se
mesurent avec une facilité relative par voie électrostatique: — grad v
donne le champ é. s. extérieur. Or

Yo —Va = Par— Pa— Aar— Xa) (6.1)
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s1 4 et A’ sont chimiquement identique, on a y, = ¥, '), donc

Vo~ V4= Py — Py (6.2)

On peut alors mesurer ¢,-— ¢, en prenant la somme des sauts de
potentiel é.s. extérieur.

T

Fig. 1.

Dans la suite nous allons appeler tensions galvaniques Vi les diffé-
rences de @, tensions voltaiques V}, les différences de y. Dans le cas des
phases extrémes 1dentiques, on a donc

Ee=Vy=V,. | (6.3)

Il est intéressant de constater que l'identité de composition,
pression et température des phases 4 et A’ permet d’écrire pour
I'ton « & =&}, donc

A=A =83 — &+ e (pp—94) =" Ep- (6.4)

Or dans un conducteur & conduction purement électronique les
équations de MEIXNER se réduisent &

E¥=0j+¢@G
(6.5)
#* — — i+ A G

4l

En absence d’induction et & température constante on a donc dans
le cas ) =0 4
— grad,, (?) =0 ou A = const. (6.6)

Si les phases 4 et A’ contiennent des électrons (ion 1) et sont reliés
aux métaux M et N (aboutissant en P et () sans fermer le circuit),
1l vient en vertu de (5. 1) et (6. 6)

Ap—Ag=AL— AL = e &p (6.7)

ou e est la charge d’un électron (< 0).



La mesure statique et dynamique des forces électromotrices. 495

7. Couples thermoélectriques.

Reprenons (6. 5) avec E! = 0 et j = 0; alors un trongon de circuit
formé de deux métaux M et N aboutissant en P et ) & la méme

To T To

.P M N Q.

Fig. 2.
température T, donne

P T

Ap—Ag— ejgradx(%) d = -—eqst dx = ef(eM—sN) dT. (7.1)

[]

La force électromotrice &, étant définie par

T
6o [ (ew—ex) dT, (1.2)

on a T
Ap—Ay=e&y (7.3)

(voir I’article de J.-P. Jan dans le fascicule précédent).

8. Transformateurs isothermes.

Supposons que l'on place un conducteur métallique isotherme
dans une région ou les champs sont variables, alors les éq. de MEIx-
NER deviennent grace i (4. 12)

b 4 :
E: — grad, (—e-) =p7. (8.1)
Si 7 est négligeable, on aura donc |
Ei = grad, (é) (8.2)

on peut exprimer ceci en disant que le champ induit est équilibré
par un champ électrochimique

Eee = — grad (—fm) (8.3)

ceci restant vraisij + 0etp = O (self idéale!).
Aux bornes P, @ du conducteur il y a une différence de potentiel

électrochimique P

‘ P
Ap— A, = d,(L)drx=e [Eid (8.4)
P 0 e!g#a (6) % eé/ x
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Appelons L
S5p= | E'dx (8.5)
O x

/

la force électromotrice du transformateur, alors

Ap—Ag=e&yp (8.6)

9. Mesure électrostatique des forees électromotrices. Potentiels de contact.

Prenons deux métaux isothermes M et N en contact. Nous savons
alors en vertu de (6. 6) que Ap = Ay, P et ¢ étant les points qui

0= ¥p'de M
. 1o ;
Pe 043 vf}-e Qe | oQ

électrons

L ¥ J

e
force électromotrice &€
Fig. 3.

limitent le trongon. Supposons qu’entre M et N on ait une phase
formée d’électrons dans le vide; la température étant constante,
on aura pour ces électrons & = const.

Mais s1 P’ et )" sont des points juste en dehors de M et N, les
potentiels intérieurs ¢p et gy dans la phase entre M et N sont
identiques aux potentiels extérieurs yp et yy de M et N. On en
déduit que evpt+E—epptE—A,
er’+§:6(PQ’+§:AQ’

Donc Ap—Age
Ypr—Yog=—, -

(9.1)

D’autre part Ap = A, entraine qu’en posant

B = 2
/1 (9.2)
o — g
Poy = e ]
1l vient ¢
'(I)Pr_"'l/)Qr == @PP’_®QQ' - (9.3)
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Or en considérant la variation d’énergie d'un systéme isotherme
formé de deux parties correspondant aux potentiels Ap et Ap, on
voit que le passage d'un électron de I'une & ’autre nécessite un
«travail de sortie» @pp12).

On en conclut que deux métaux isothermes en contact donnent
lieu & une tension voltaique

V= Vp— Yy = @PP,—@QQ, (9.4)
appelée différence de potentiel de contact®).

Si I’on intercale entre M et N des piles, couples et transforma-
teurs?) de force électromotrice totale & = &p+ &g + Sp, on aura
d’apres (6. 7), (7. 3) et (8. 6)

Ap—Ay=ed (9.5)
ou Ap+ Ap et Ay+4, dans les calculs précédents. Alors les nou-

velles grandeurs ¥, et ¥y donnent pour la tension électrostatique

V entre P’ et ' Ao — An
[ 7 - ¢P,*¢Q,:M
e

puisque (9. 1) reste valable. Done
eV=(Ap—Ap)—(Ay—Ag) +(Ap—A). (9.6)
Ay —Ay = e@QQ,, l
les @ppr et Dy étant les mémes que précédemment, le travail de
sortie étant indépendant du reste du circuit. Donc

V=Ve+& (9.8)

c¢’est-a-dire dans la mesure électrostatique de la force électromotrice
totale, 1l faut retrancher la différence de potentiel de contact de la
tension mesuréels) 16) 17) 18y

9.7)

10. Mesure électrodynamique des forces électromotriees.

Fermons le circuit du paragraphe précédent par un voltmeétre iso-
therme & grande résistance interne I (j ~ 0). Alors les équations de

MEIXNER donnent e

Ap—Ay=e /°gradx(_f_) dxz—eﬂ)jdx:—em (10.1)
¢ @

ou I est le courant dans le voltmétre. Mais la tension U qu’indique le
voltmeétre vaut — R1, donc
U_ Ar-4q¢ _ Ap-dg
e e

puisque Ap = Ap et Ay = A,.

& (10.2)
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Un voltmétre électrodynamique de grande résistance interne
mesure donc directement la force électromotrice.

[ )

Y
force électromotrice €

- Fig. 4.

11. Conelusions.

Au point de vue des mesures A /e (pour les électrons) joue un role
qu’anciennement en attribuait au potentiel électrique. Les mesures
électrostatiques ne différent des mesures électrodynamiques que
par le fait qu’il faut tenir compte de la différence des travaux de
sortie pour les phases limitant le dispositif de mesure.
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