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Contribution à l'étude des ondes superficielles et interfaeiales

par Robert Mereier (E. P. U. L., Lausanne).

(6 V 1953.)

§ 1.

L'existence dans les corps, même homogènes, d'une part d'énergie

libre qui est proportionnelle à l'aire des surfaces qui les limitent
entraîne la notion d'énergie et de tension superficielle H. On sait
qu'une surface possédant une densité d'énergie se comporte comme
une membrane dont la tension, isotrope, serait précisément égale à

la densité d'énergie, ici H. De plus cette dernière, dans le cas de
solutions liquides ou de suspension, dépend de la concentration
superficielle en soluté ou micelles, ainsi que le montre la
thermodynamique.

La théorie cinétique des fluides, délaissée pendant quelques
décades, connaît un renouveau d'intérêt grâce à l'introduction de

nouveaux points de vue; elle permet d'étudier plus en détail le
mécanisme des phénomènes superficiels et de les relier directement à
des grandeurs fondamentales atomiques ou moléculaires. Il en
résulte aussi que le physicien expérimental s'intéresse tout autant
que le physicochimiste ou le biochimiste à cet aspect du problème
posé par les liquides.

Cette étude a pour but d'exposer une méthode de mesure où l'on
utilise les outils que l'électronique a mis à disposition du laboratoire.
Cette même méthode s'applique aussi à l'étude des tensions
interfaciales, c'est-à-dire de l'énergie libre superficielle existant dans

un système de deux liquides non miscibles en contact.

On a utilisé ici les propriétés des ondes capillaires se propageant
autour d'un centre d'ébranlement à variation sinusoïdale dans le
temps.
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§ 2. Le côté mathématique du problème.

a) Les équations de départ.

Le problème des ondes superficielles se propageant à la surface
de séparation d'un liquide et d'un gaz ressortit à l'hydrodynamique,
et nous allons le traiter comme tel en admettant que le liquide soit
parfait, c'est-à-dire incompressible et sans viscosité; il sera de plus
homogène et pesant tandis que le gaz n'aura pour seul effet que
celui d'exercer sur le liquide une pression constante. Cela revient
à admettre pour le gaz une densité nulle.

On sait que la distribution des vitesses et des pressions dans le
fluide parfait s'obtient par l'intermédiaire d'un potentiel des
vitesses 0 à condition que le mouvement soit irrotationnel. Il s'agit
de déterminer la distribution de ce potentiel dans le liquide et à sa
surface. Or, l'hydrodynamique établit que, en tout point de son
domaine de définition, 0 satisfait à l'équation de Laplace

V20 O. (1)

Il doit satisfaire, en plus, à des conditions aux limites spécifiques
à chaque cas particulier. Comme la vitesse de déplacement est
donnée par

u — grad 0 (2)

on devra avoir sur toute surface limitant le fluide
d<t>

dn 0. (3)

Par contre, une autre condition doit être satisfaite sur la surface
déformable de séparation liquide-gaz. Pour l'exprimer, nous
utilisons ici un système de coordonnées dont l'axe des z est vertical
montant et dont l'origine est dans le plan d'équilibre. L'équation
de Bernoulli y devient

p + ìou2 + Qgz—Q-jf= C

et si l'on ne considère, comme c'est le cas ici, que les petits mouvements

où u2 peut être négligé, se simplifie en

p + pgz-Q~JT= C (3)

où la constante C représente la pression constante exercée par le

gaz. Or, la tension superficielle H provoque une discontinuité de

pression à la surface et cette discontinuité est liée au laplacien de
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l'expression de la cote z de celle-ci. Ce laplacien, dans le système
de coordonnées cylindriques, vaut

Pz-o ». a„ \rldl d \ 1 d2

z-0 r dr Y Òr)
'

r2 à&2

et il se simplifie lorsqu'on ne recherche que des solutions dans
lesquelles le phénomène présente une symétrie de révolution autour
de l'axe des 0; il se réduit alors à

à2 1 d

Jr2 r~HV'

Dans ce dernier cas on obtient l'équation (4) à satisfaire en tout
point de la surface z 0

d2® à® „A à2 1 d I à® nQ^7ï~+ Q'9'^, Sk-5-H t— -c—=0. (4)^ dt2 L a dz [or2 r drj âz v '

Les équations (1), (2), (3) et (4) régissent alors la distribution du
potentiel 0, de la vitesse u et de la pression p en tout point du
liquide.

b) Recherche des solutions.

Nous imaginons le liquide contenu dans un bassin infiniment
profond et infiniment étendu et nous nous bornons à étudier les
mouvements périodiques, de pulsation eu et présentant la symétrie de
révolution dont nous venons de parler. A cet effet, cherchons à

séparer la fonction 0 (r, &, z, t) en produit de quatre fonctions,
chacune ne dépendant que d'une variable et posons

0(r,&,z,t) =A-R(r)-0(&)-Z(z)-eimt. (5)

De plus, imposons l'obligation de ne trouver à grande distance du
centre r 0 (où nous provoquons l'ébranlement) qu'une onde
progressive.

Par la méthode bien connue de séparation des variables, on
trouve la solution

0 A-Hf)(kr)-ehz-ei(at. (6)

où H^ est la fonction de Hankel de deuxième espèce (ou fonction
de Bessel de troisième espèce) définie par

Hf> (kr) J0 (fer) -i-N0 (fer)

J0 et N0 étant les fonctions de Bessel de première et seconde espèce
et d'ordre zéro, bien connues dans les problèmes d'ondes cylindri-
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ques. On trouve des tables de la fonction H(1) (fer) qui ne diffère de
27<2) (fer) que par le signe de la partie imaginaire*), fe est une constante
à déterminer ultérieurement et A une constante d'intégration.

On remarque que la variable # a disparu, mais c'est en vertu
de la symétrie imposée au phénomène. L'expression plus générale
contiendrait encore la fonction

A- m-&

intervenant en facteur de fonctions du type 27^ (fer) et l'on aurait
à sommer relativement à l'entier m, de façon à obtenir une série
de fonctions de Hankel.

Fig. 1.

Représentation dans le plan complexe, de la fonction de Hankel H^\kr)
de première espèce.

Remarquons encore qu'à grande distance du centre, J0 (fer) et
N0 (kr) prennent les valeurs asymptotiques

J(kr)

N(kr)

]/2nk',
-COS (fcr-f)

]/2nki
-sin (fer

*) Watson, Theory of Bessel Functions, Cambridge.
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de sorte que 0 tend vers l'expression

0 (k r) -> A ¦ ehz ¦ -rJL= • ëU% - kt + *VV ; ]/2jikr V 4/

Cette dernière s'interprète comme une propagation d'onde radiale
possédant une vitesse de phase

F=cu/fe

et dont l'amplitude présente, avec la distance croissante, une
variation en r—

1/J/r;

de plus il apparaît un déphasage supplémentaire de tt/4 (soit un
huitième de période) sur la phase au centre. Ce résultat est analogue
à celui dans la théorie des ondes optiques et connu sous le nom de
théorème de Sturm.

Enfin la constante fc s'interprète à grande distance, comme étant
le nombre d'onde 2 n\X.

La table numérique donne le module et l'argument de la fonction
H (fer) qui est représentée graphiquement dans le plan complexe
dans la figure 1.

Il reste à calculer la constante fc. Pour cela, substituons dans
l'équation (4) le valeur (6) du potentiel 0. On obtient l'équation

A ¦ [- co2 + g k + k3 H/q] Hf\k r) ¦ e1 mt 0.

Celle-ci devant être satisfaite pour toute époque et en tout point, il
est nécessaire que la parenthèse s'annule, ce qui donne la relation

co2 gk + ksH/Q

d'où l'on tire la vitesse de phase à l'infini

Ainsi l'on retrouve bien, à l'infini, pour la vitesse de phase la
valeur bien connue, établie dans l'hypothèse d'ondes rectilignes,
c'est-à-dire unidirectionnelles.

c) Cas de la tension interfaciale.

Lorsque deux liquides homogènes et pesants sont en contact selon
un plan, une tension interfaciale existe, qui joue le même rôle dans
les déformations superficielles que la tension H du problème
précédent. Toutefois une différence essentielle réside dans le fait que
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les densités des deux liquides sont, en général, différentes. Il y aura
dans ce cas deux potentiels des vitesses

0X (r, &, z, t) et 02 (r, &, z, t)

définis chacun dans l'un des liquides. Tous deux satisfont à l'équation

de Laplace dans son domaine respectif de définition

V20x 0

V209 0.
(1)

A la surface de contact toutefois une relation supplémentaire

d®x
ÒZ z 0

d®,
dz z 0

(8)

exprime qu'il n'y a ni cavitation, ni interpénétration clés deux
milieux.

A cette même surface, la loi de Laplace qui donne la valeur de
la discontinuité de pression

px-p2 H-r
(où F est la mesure de la courbure totale de la surface) devient, en
utilisant les coordonnées cylindropolaires r, &, z,

à2®. d®.

Qi^ + Q-9-j^ H d2

Jr2 r àr
d®x

~dz~
d2®2 Ò®2 /0\e^-df". (9)

On voit qu'elle ne diffère de l'équation (4) du problème précédent
que par la valeur du second membre qui cesse d'être nul.

Sans donner de détail des calculs, on vérifie aisément que si nous
imposons les mêmes conditions restrictives de symétrie et de
dépendance du temps, que dans le problème précédent, les potentiels
sont

0x A-Hf(kr)-e~kz-eimt

dans le liquide supérieur et

+ kz Oioit02 —A-B2)(kr)-e+kz-e

dans le liquide inférieur.
La condition (9) imposée en z 0 fournit l'équation

(10 a)

(10b)

A-Hf (fer) [-(ex + q2) co2 + (qx + Q2)gk + k3H] eimi 0
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qui, de nouveau ne peut être satisfaite que si la parenthèse est nulle,
ce qui donne finalement la valeur

o Hk3
wz gk

Qx+Qz

On en déduit, que, comme dans le cas des ondes superficielles, la
célérité de phase V est donnée loin du centre par l'expression

j/gß- Hk (H)
Qx+Qî

Cette expression ne diffère de la valeur (7) que par l'apparition au
dénominateur, de la somme des densités. Il en résulte en particulier,
que la même célérité d'onde serait obtenue dans le problème des
ondes se propageant sur une membrane élastique de tension
isotrope H, de densité négligeable et plongée dans un liquide de
densité (qx + o2)/2.

Il est intéressant de constater, même sans faire le calcul des
composantes des vitesses u, que dans les deux cas traités seule une zone
proche de la surface de discontinuité est le siège d'une perturbation
sensible puisque les potentiels des vitesses présentent une extinction
selon la loi

e-kz p0ur z > 0

e+kz p0ur z < 0.

La pénétration, estimée par l'inverse de fc vaut, donc X\2n dans les
deux milieux, c'est-à-dire qu'elle est du même ordre de grandeur
que la longueur d'onde.

§ 3. Méthode expérimentale.

Elle consiste à générer en un point de la surface libre (ou de la
surface de séparation des deux liquides) une oscillation vertical de

pulsation donnée et à mesurer directement, en fonction de la distance
au centre, la phase du mouvement. La variation de cette phase
est liée à la vitesse de phase V du phénomène et les équations (7)
ou (11) permettent d'en déduire la tension superficielle dynamiqueH.

Deux générateurs ont été mis au point. L'un, qui n'est applicable
qu'aux ondes superficielles en surface libre, consiste en un simple
jet d'air dont le débit est modulé sinusoïdalement. Cette modulation
est obtenue très simplement en pinçant le tuyau de caoutchouc dans
un vibreur électromagnétique constitué par un électroaimant en fer
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à cheval (excitateur de compteur électrique) dont le circuit magnétique

est presque fermé par une armature mobile. Il est important
que la source de courant d'excitation, dont la fréquence doit être

Table

de la fonction de Hankel
(extraite de Watson, Theory of Bessel Functions)

H\ (kr)

kr
degrès

A<p

radians Vkjio

0 0 - 90 00 00

0,1 1,8300 - 56 58 11 0,57650 0,174
0,2 1,4660 - 47 3105 0,16496 0,605
0,3 1,2679 - 39 32 54 0,13909 0,718
0,4 1,1356 - 32 15 09 0,12734 0,784
0,5 1,0384 - 25 20 43 0,12055 0,828
0,6 0,9628 - 18 41 22 0,11616 0,859
0,7 0,9016 - 12 12 32 0,11311 0,882
0,8 0,8507 - 5 51 23 0,11087 0,900
0,9 0,8075 + 0 23 58 0,10919 0,914
1,0 0,7702 + 6 34 46 0,10786 0,925
2 0,557 + 6619 1,04254 0,957
3 0,458 + 124 36 1,01724 0,982
4 0,398 +182 27 1,00967 0,989
5 0,356 + 240 04 1,00561
6 0,325 + 297 36 1,00415
7 0,301 + 355 03 1,00270
8 0,282 + 412 29 1,00240
9 0,266 + 469 52 1,00153
10 0,252 + 527 15 1,00153
11 0,240 + 584 36 1,00095
12 0,230 + 641 57 1,00095
13 0,221 + 69918 1,00095
14 0,213 + 756 38 1,00066
15 0,206 + 813 58 1,00066
16 0,199 + 87117 1,00037
oo 0 oo 1,00000 1,000

variée à volonté, fournisse un courant sans distorsion; en effet,
les ondes superficielles présentent une forte dispersion de vitesse
(V dépend de eu) et toute harmonique de la loi excitatrice entrave
la détermination précise de la phase fondamentale.
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Le second générateur d'ondes est formé par un simple haut-parleur

électrodynamique de petite dimension auquel on enlève la
membrane et qui entraîne un petit plongeur formé d'un disque
circulaire horizontal. Alimenté par du courant bien sinusoïdal, ce
moteur peut aussi servir à exciter des ondes interfaciales.

Le récepteur ou palpeur superficiel est formé d'une tête de pic-up
à cristal dans laquelle l'aiguille habituelle a été remplacée par un
long levier d'aluminium plié, donc très léger, terminé par un
flotteur. La longueur du levier est choisie de façon à adapter à la haute
impédance mécanique du pic-up l'impédance très faible du plongeur
actionné par les ondes du liquide.

Le flotteur est un petit cylindre de polythene (plastique synthétique

à faible densité) de 2 à 3 millimètre de longueur, couché sur
la surface étudiée.

On repère la phase de la vibration locale par le procédé des figures
de Lissajou. Le balayage horizontal du spot d'un oscillographe
cathodique est assuré par la tension d'alimentation du vibreur tandis
que le balayage vertical est produit par la tension du pic-up,
préalablement amplifiée. Pourvu que l'amplificateur ne produise pas
de distorsion, le déphasage qu'il entraîne n'a pas d'importance pour
des mesures relatives.

Lorsqu'on utilise le moteur à air modulé, la fréquence de
modulation^ et celle des ondes produites, est double de celle du courant
d'alimentation; il en résulte que les figures de Lissajou, dont
l'expression mathématique est

x A cos cui

y B cos (cot + &)

comporte, comme cas particulier, la parabole caractéristique

y 2 ^x2-l- (a)

Par contre, lors de l'emploi du vibreur électrodynamique, la figure
de Lissajou est elliptique

x A cos eu t

y B cos cot + &

et comporte comme cas particulier les segments de droite

x=±^-y. (b)
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Moteur et pic-up sont montés sur une sorte de machine à mesurer
avec vis et tambour gradué qui permettent de déplacer le palpeur
et de mesurer sa translation radiale au l/100e de millimètre. Lors
de la translation, la figure à l'oscillographe change de forme et l'on
retrouve les figures caractéristiques (a) ou (b) chaque fois que le

déplacement vaut X\2 (moteur à air), respectivement X (moteur
électrodynamique).

La détermination de H exige donc la détermination des densités,
de la fréquence utilisée et la mesure de X. Cette dernière peut être
faite avec une bonne précision, car la translation peut compter au
moins une dizaine de longueurs d'onde. Le tout constitue un bon
travail pratique pour avancés.

§ 4. Quelques compléments mathématiques.

Chaque point de la surface étant animé d'un mouvement dépendant

sinusoïdalement du temps, on peut représenter le potentiel des
vitesses 0 par un vecteur tournant de Fresnel, dont l'expression
est précisément

0 AHf(kr) émt

Désignant alors par cp l'argument de la fonction complexe H§\kr),
0 peut encore s'écrire

0(r,t) =^|H<11)(fcr)|ei(a,(-^.

On voit alors que le retard de phase que présente le point à la
distance r sur le mouvement au pôle est simplement donnée par la
troisième colonne du tableau numérique, soit cp. Il peut également
se lire sur la figure 1.

Dans la propagation de 0 le long d'un rayon, la vitesse locale
de phase peut être définie par l'expression

-, ,-TT 1 dtp k dtp
' co dr ojdjkr)'

Comme eu et fc sont des grandeurs constantes, fixées dans chaque
type de propagation, le diagramme de la fonction H^ permet le
calcul de cette vitesse. En effet, on peut en première approximation
remplacer les différentielles par des différences finies et poser

¦Tj o) A cp

k A (kr)

C'est ainsi qu'a été établie la cinquième colonne du tableau numérique

qui donne le quotient, reporté à la fin de chaque intervalle,



Contribution à l'étude des ondes superficielles et interfaciales. 327

de l'accroissement de fcr (première colonne) par l'accroissement de

l'argument cp (quatrième colonne). On obtient donc ainsi le quotient
de la vitesse moyenne de phase dans l'intervalle, divisé par le
rapport eu/fe représentant, on l'a vu, la vitesse de phase asymptotique.
La figure 2 reproduit le même résultat et l'on voit qu'il n'y a variation

sensible de la vitesse de phase que dans les premières longueurs
d'onde à partir du centre. Il n'est pas étonnant que cette vitesse
de phase semble tendre vers zéro près de ce centre, puisque la densité

d'énergie, comme le potentiel des vitesses, y devient infinie
théoriquement.

A ce propos, il est évident que la solution trouvée ici ne s'applique
pas en réalité autour du centre puisque sur une petite région
l'entourant agit encore l'effort moteur produit par le vibreur.

1.0.

Pig. 2.

Variation de la vitesse de phase V en fonction de la distance au centre d'ébranle¬
ment. En ordonnée est reporté le quotient V kjco.

On peut encore rappeler quelques propriétés de la loi de dispersion
de la vitesse de phase (7) ou (11).

Si la tension superficielle H peut être considérée comme indépendante

de la fréquence et de l'amplitude (ce qui n'est pas le cas pour
les solutions ou suspensions de substances superficiellement actives)
la vitesse V présente un minimum pour

fc-
H

ainsi qu'un point d'inflexion pour

fc* fcOTl/3;
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elle tend, pour de grandes valeurs de fc (fréquences élevées), vers la
forme asymptotique

Ainsi, à toute valeur possible de V correspondent deux valeurs de
fc, l'une, inférieure à fcm, qui appartient à des ondes de faible
fréquence, dites ondes de gravité, et pour lesquelles la tension
superficielle ne joue qu'un rôle négligeable, et l'autre, supérieure à fem

appartenant aux ondes dites capillaires essentiellement régies par
la valeur de H. Si donc on désire mettre en évidence une variation
de la valeur de H c'est dans ce dernier domaine qu'il conviendra
d'opérer.

Pour des liquides dont la tension H est voisine de 50 dyne/centimètre

et la densité proche de celle de l'eau, on aurait

km 4,4 cm-1 Xm 1,4 cm

Vm 21 cm/sec

qui correspond à la fréquence

vm 15 sec-1 com 93,5 sec-1.

En opérant avec des fréquences supérieures à 50 sec-1, on aura donc
la plus grande sensibilité aux variations de H qui pourraient
éventuellement se présenter dans une solution aqueuse.

Laboratoire de Physique technique E.P.U.L.
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