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Contribution a I’étude des ondes superficielles et interfaciales
par Robert Mercier (E.P.U. L., Lausanne).
(6 V 1953.)

§ L.

I’existence dans les corps, méme homogénes, dune part d’éner-
gie libre qui est proportionnelle a 'aire des surfaces qui les limitent
entraine la notion d’énergie et de tension superficielle H. On sait
qu'une surface possédant une densité d’énergie se comporte comme
une membrane dont la tension, isotrope, serait précisément égale a
la densité d’énergie, ici H. De plus cette derniére, dans le cas de
solutions liquides ou de suspension, dépend de la concentration
superficielle en soluté ou micelles, ainsi que le montre la thermo-
dynamique. |

La théorie cinétique des fluides, délaissée pendant quelques dé-
cades, connait un renouveau d’intérét grace & l'introduction de
nouveaux points de vue; elle permet d’étudier plus en détail le mé-
canisme des phénomeénes superficiels et de les relier directement a
des grandeurs fondamentales atomiques ou moléculaires. Il en
résulte aussi que le physicien expérimental s'intéresse tout autant
que le physicochimiste ou le biochimiste a cet aspect du probleme
posé par les liquides.

Cette étude a pour but d’exposer une méthode de mesure ot 'on
utilise les outils que I’électronique a mis & disposition du laboratoire.
Cette méme méthode s’applique aussi & I’étude des tensions inter-
faciales, c’est-a-dire de l’énergie libre superficielle existant dans
un systéme de deux liquides non miscibles en contact.

On a utilisé ici les propriétés des ondes capillaires se propageant
autour d’un centre d’ébranlement a variation sinusoidale dans le
temps.
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§ 2. Le ¢0té mathématique du probléme.
a) Les équations de départ.

Le probléme des ondes superficielles se propageant a la surface
de séparation d’un liquide et d'un gaz ressortit 4 I’hydrodynamique,
et nous allons le traiter comme tel en admettant que le liquide soit
parfait, ¢’est-a-dire iIncompressible et sans viscosité; il sera de plus
homogeéne et pesant tandis que le gaz n’aura pour seul effet que
celul d’exercer sur le liquide une pression constante. Celd revient
a admettre pour le gaz une densité nulle.

On sait que la distribution des vitesses et des pressions dans le
fluide parfait s’obtient par l'intermédiaire d’un potentiel des vi-
tesses @ a condition que le mouvement soit irrotationnel. Il s’agit
de déterminer la distribution de ce potentiel dans le liquide et & sa
surface. Or, ’hydrodynamique établit que, en tout point de son
domaine de définition, @ satisfait a 1’équation de LaprLACE

72 =0, (1)

II doit satisfaire, en plus, & des conditions aux limites spécifiques
a chaque cas particulier. Comme la vitesse de déplacement est
donnée par

% = — grad @ (2)
on devra avoir sur toute surface limitant le fluide
od

Par contre, une autre condition doit étre satisfaite sur la surface
déformable de séparation liquide-gaz. Pour l'exprimer, nous uti-
lisons icl un systéme de coordonnées dont l'axe des z est vertical
montant et dont l'origine est dans le plan d’équilibre. L’équation
de BeErNoULLI v devient

oD
pt+iou+ogz—o—5;=0C

et s1 I'on ne considére, comme c’est le cas ic1, que les petits mouve-
ments olt u? peut étre négligé, se simplifie en

oD
pt+egi—e—4,=0C (3)

ou la constante C représente la pression constante exercée par le
gaz. Or, la tension superficielle H provoque une discontinuité de
pression a la surface et cette discontinuité est liée au laplacien de
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Pexpression de la cote z de celle-ci. Ce laplacien, dans le systéme
de coordonnées cylindriques, vaut :

1 0 0 1 02
R
VH)““?W(T W)+ 09T
et il se simplifie lorsqu’on ne recherche que des solutions dans les-
quelles le phénoméne présente une symétrie de révolution autour
de I'axe des z; 1l se réduit alors a
0? 1 0
o T o
Dans ce dernier cas on obtient I’équation (4) a satisfaire en tout
point de la surface z = 0

0P

0D 02 1 0700
Q atz + g __H[ ]

or? +7 or | 0z =0. (4)

Les équations (1), (2), (3) et (4) régissent alors la distribution du
potentiel @, de la vitesse % et de la pression p en tout point du
liquide.

b) Recherche des solutions.

Nous imaginons le liquide contenu dans un bassin infiniment pro-
fond et infiniment étendu et nous nous bornons & étudier les mou-
vements périodiques, de pulsation o et présentant la symétrie de
révolution dont nous venons de parler. A cet effet, cherchons a
séparer la fonction @ (r, &, 2, t) en produit de quatre fonctions,
chacune ne dépendant que d’une variable et posons

O (r, 9, 2,1) = A-R(r)- O(9)-Z(2)- e . (5)

De plus, imposons I'obligation de ne trouver a grande distance du
centre r = 0 (ou nous provoquons I’ébranlement) qu'une onde pro-
gressive.

Par la méthode bien connue de séparation des Variables, on
trouve la solution

® = A-HD (kr)-éb=-ei®t, - (6)

ot H® est la fonction de HaNkEL de deuxiéme espéce (ou fonction
de BESSEL de troisieme espéce) définie par

H® (kr) = J, (k’i‘)—’b N (kﬂr)

J, et N, étant les fonctions de BesseL de prermere et seconde espéce
et d’ordre zéro, bien connues dans les problemes d’ondes cylindri-

*
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ques. On trouve des tables de la fonction HY (kr) qui ne différe de
H@ (kr) que par le signe de la partie imaginaire®). k est une constante
a déterminer ultérieurement et A une constante d’intégration.

On remarque que la variable & a disparu, mais c¢’est en vertu
de la symétrie imposée au phénoméne. L’expression plus générale
contiendrait encore la fonction

6'5- m-&
intervenant en facteur de fonctions du type H® (k) et I'on aurait

a sommer relativement & ’entier m, de facon a obtenir une série
de fonctions de HANKEL.

45

3
L}
35 /;
10 16
4
11
5
5§

Fig. 1.

Représentation dans le plan complexe, de la fonction de HANKEL H f)l YEer)
de premiére espéce.

Remarquons encore qu’a grande distance du centre, J, (kr) et
N, (kr) prennent les valeurs asymptotiques

2 7
J(kr) — E T (k?f'f—z)

-2 ; 4
N(k?f‘) — mSln (k'r'—z—)

*) WarsoN, Theory of Bessel Functions, Cambridge.
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de sorte que @ tend vers I’expression

2
V2rkr

D (kr) — A-ek=- 'ei(wt—]ar+%).
Cette derniére s’interpréte comme une propagation d’onde radiale
possédant une vitesse de phase

V = ok

et dont I'amplitude présente, avec la distance croissante, une va-
riation en —
1/)r;

de plus 1l apparait un déphasage supplémentaire de /4 (soit un hui-
tieme de période) sur la phase au centre. Ce résultat est analogue
a celul dans la théorie des ondes optiques et connu sous le nom de
théoréme de STURM.

. Enfin la constante k s’interpréte a grande distance, comme étant
le nombre d’onde 2 7/A.

La table numérique donne le module et ’argument de la fonction
H (kr) qui est représentée graphiquement dans le plan complexe
dans la figure 1.

Il reste & calculer la constante k. Pour cela, substituons dans 1’é-
quation (4) le valeur (6) du potentiel @. On obtient I’équation

A-[— o+ gk+ k3 Hjg] HO(kr) - é*t =0,

Celle-ci devant étre satisfaite pour toute époque et en tout point, il
est nécessaire que la parenthése s’annule, ce qui donne la relation

w? =gk + k3H/p

d’ou I'on tire la vitesse de phase a l'infini

_co_“l/g HEk

Ainsi 'on retrouve bien, & l'infini, pour la vitesse de phase la
valeur bien connue, établie dans I’hypothése d’ondes rectilignes,
c¢’est-a-dire unidirectionnelles.

¢) Cas de la tension wnterfaciale.

Lorsque deux liquides homogénes et pesants sont en contact selon
un plan, une tension interfaciale existe, qui joue le méme role dans
les déformations superficielles que la tension H du probleme pré-
cédent. Toutefois une différence essentielle réside dans le fait que
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les densités des deux liquides sont, en général, différentes. Il y aura
dans ce cas deux potentiels des vitesses

D, (r, 9, 2,1) et D, (r, 3, 2 1)

définis chacun dans I'un des liquides. Tous deux satisfont & 1’équa-
tion de Larrace dans son domaine respectif de définition
Vid, =0
9 )
V“@z == O.

A la surface de contact toutefois une relation supplémentaire

0 D,
0z

_ 0d,

(8)

z2=0

exprime qu’il n’y a ni cavitation, ni interpénétration des deux mi-
lieux.

A cette méme surface, la loi de Laprnace qui donne la valeur de
la discontinuité de pression

pr—p=H-T

(ou I" est la mesure de la courbure totale de la surface) devient, en
utilisant les coordonnées cylindropolaires r», ¢, z,

0 B,

2z )

02 @, 0D, 02 1 0] 0@, 02 @,
: 0z 2702

%5 T2 95; H[W v or Ty T

On voit qu’elle ne difféere de 1'équation (4) du probléme précédent
que par la valeur du second membre qui cesse d’étre nul.

Sans donner de détail des calculs, on vérifie aisément que si nous
imposons les mémes conditions restrictives de symétrie et de dé-
pendance du temps, que dans le probléme précédent, les potentiels
sont '

&, — A-HD (k) .g—kz. giot
dans le liquide supérieur et | (10a)
Dy = — A'Hgm(kr) ptkz. giot (10b)

dans le liquide inférieur.
La condition (9) imposée en z = 0 fournit I’équation

A-HP (kr) {;(91 + 05) @% + (01 + 00) gk + k*H] et =0
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qui, de nouveau ne peut étre satisfaite que si la parentheése est nulle,
ce qui donne finalement la valeur

HEk3

w? =gk + .
g 0+ Q2

On en déduit, que, comme dans le cas des ondes superficielles, la
célérité de phase V est donnée loin du centre par 'expression

T [ w
g/k i 01+ 0 4 ( )

Cette expression ne différe de la valeur (7) que par I’apparition au
dénominateur, de la somme des densités. Il en résulte en particulier,
que la méme célérité d’onde serait obtenue dans le probléme des
ondes se propageant sur une membrane élastique de tension iso-
trope H, de densité négligeable et plongée dans un liquide de
densité (o; + 0,)/2. ,

11 est intéressant de constater, méme sans faire le calcul des com-
posantes des vitesses u, que dans les deux cas traités seule une zone
proche de la surface de discontinuité est le siege d’une perturbation
sensible puisque les potentiels des vitesses présentent une extinction
selon la lo1 |

e%¢ pour z > 0
et*? pour z < 0.

La pénétration, estimée par I'inverse de k vaut, donc 4/2 7 dans les
deux milieux, ¢’est-a-dire qu’elle est du méme ordre de grandeur
que la longueur d’onde. |

§ 3. Méthode expérimentale.

Elle consiste & générer en un point de la surface libre (ou de la
surface de séparation des deux liquides) une oscillation vertical de
pulsation donnée et & mesurer directement, en fonction de la distance
au centre, la phase du mouvement. La variation de cette phase
est liée & la vitesse de phase V du phénomene et les équations (7)
ou (11) permettent d’en déduire la tension superficielle dynamique H.

Deux générateurs ont été mis au point. L.’un, qui n’est applicable
qu’aux ondes superficielles en surface libre, consiste en un simple
jet d’air dont le débit est modulé sinusoidalement. Cette modulation
est obtenue trés simplement en pincant le tuyau de caoutchouc dans
un vibreur électromagnétique constitué par un électroaimant en fer
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a cheval (excitateur de compteur électrique) dont le circuit magné-
tique est presque fermé par une armature mobile. Il est important
que la source de courant d’excitation, dont la fréquence doit étre

Robert Mercier.

Table

de la fonction de HANKEL
(extraite de Watson, Theory of Bessel Functions)

H, (kr)

e O 4 A Vijw

9 degres radians
0 0 — 9000 00
0,1 1,8300 | — 565811 | 0,57650 0,174
0,2 1,4660 | — 473105 | 0,16496 0,605
0,3 1,2679 | — 393254 | 0,13909 0,718
0,4 1,1356 | — 321509 | 0,12734 0,784
0,5 1,0384 | — 252043 | 0,12055 0,828
0,6 0,9628 | — 184122 | 0,11616 0,859
0,7 0,9016 | — 121232 | 0,11311 0,882
0,8 0,8507 | — 55123 | 0,11087 0,900
0,9 0,8075 | + 02358 | 0,10919 0,914
1,0 0,7702 | + 63446 | 0,10786 0,925
2 0557 | + 6619 | 1,04254 0,957
3 0,458 | +124 36 1,01724 0,982
4 0,398 | +18227 1,00967 0,989
5 0,356 | +240 04 1,00561
6 0,325 | +297 36 1,00415
7 0,301 | +35503 1,00270
8 0,282 | +41229 1,00240
9 0,266 | -+469 52 1,00153
10 0,252 | +52715 1,00153
11 0,240 | +584 36 1,00095
12 0,230 | +641 57 1,00095
13 0,221 | +69918 1,00095
14 0,213 | +756 38 1,00066
15 0,206 | +813 58 1,00066
16 0,199 | +87117 1,00037
00 0 o0 1,00000 1,000

variée & volonté, fournisse un courant sans distorsion; en effet,
les ondes superficielles présentent une forte dispersion de vitesse
(V dépend de w) et toute harmonique de la loi excitatrice entrave
la détermination précise de la phase fondamentale.
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Le second générateur d’ondes est formé par un simple haut-par-
leur électrodynamique de petite dimension auquel on enléve la
membrane et qui entraine un petit plongeur formé d'un disque cir-
culaire horizontal. Alimenté par du courant bien sinusoidal, ce
moteur peut aussi servir & exciter des ondes interfaciales.

Le récepteur ou palpeur superficiel est formé d’une téte de pic-up
a cristal dans laquelle I’aiguille habituelle a été remplacée par un
long levier d’aluminium plié, done trés léger, terminé par un flot-
teur. La longueur du levier est choisie de fagon a adapter 4 la haute
impédance mécanique du pic-up 'impédance trés faible du plongeur
actionné par les ondes du liquide.

Le flotteur est un petit cylindre de polythéne (plastique synthé-
tique a faible densité) de 2 &4 8 millimétre de longueur, couché sur
la surface étudiée.

On repére la phase de la vibration locale par le procédé des figures
de Lissasou. Le balayage horizontal du spot d’un oscillographe ca-
thodique est assuré par la tension d’alimentation du vibreur tandis
que le balayage vertical est produit par la tension du pic-up, préa-
lablement amplifiée. Pourva que 'amplificateur ne produise pas
de distorsion, le déphasage qu’il entraine n’a pas d’importance pour
des mesures relatives.

Lorsqu’on utilise le moteur & air modulé, la fréquence de modu-
lation-et celle des ondes produites, est double de celle du courant
d’alimentation; il en résulte que les figures de Lissasou, dont I'ex-
pression mathématique est

z = A cos wt
y = Bcos (wt+ )
comporte, comme cas particulier, la parabole caractéristique
_oB 2 4.

Par contre, lors de ’emploi du vibreur électrodynamique, la figure
de Lissasou est elliptique ‘

rt=Acoswt

y=DBcoswt+ &

et comporte comme cas particulier les segments de droite

z= 4y (b)
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Moteur et pic-up sont montés sur une sorte de machine & mesurer
avec vis et tambour gradué qui permettent de déplacer le palpeur
et de mesurer sa translation radiale au 1/100° de millimetre. Lors
de la translation, la figure a l'oscillographe change de forme et 1’on
retrouve les figures caractéristiques (a) ou (b) chaque fois que le
déplacement vaut A/2 (moteur a air), respectivement A (moteur
électrodynamique).

La détermination de H exige donc la détermination des densités,
de la fréquence utilisée et la mesure de 4. Cette derniére peut étre
faite avec une bonne précision, car la translation peut compter au
moins une dizaine de longueurs d’onde. Le tout constitue un bon
travail pratique pour avancés.

§ 4. Quelques compléments mathématiques.

Chaque point de la surface étant animé d’'un mouvement dépen-
dant sinusoidalement du temps, on peut représenter le potentiel des
vitesses @ par un vecteur tournant de FresNeL, dont I’expression
est précisément

@ = AHP (kr) e .

Désignant alors par ¢ I'argument de la fonction complexe H®(kr),
@ peut encore s’écrire

D (r, 1) = A|HP (kr)|ei =9,

On voit alors que le retard de phase que présente le point a la dis-
tance r sur le mouvement au pdle est simplement donnée par la
troisieme colonne du tableau numérique, soit ¢. Il peut également
se lire sur la figure 1.

Dans la propagation de @ le long d’un rayon, la vitesse locale
de phase peut étre définie par 'expression

_lde k dg
W= = waw

Comme w et k sont des grandeurs constantes, fixées dans chaque
type de propagation, le diagramme de la fonction H{" permet le
calcul de cette vitesse. En effet, on peut en premiére approximation
remplacer les différentielles par des différences finies et poser

o Ag
V’?A(kr)‘

C’est alnsi qu’a été établie la cinquieme colonne du tableau numé-
rique qui donne le quotient, reporté a la fin de chaque intervalle,
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de I'accroissement de kr (premiére colonne) par l'accroissement de
I'argument ¢ (quatridme colonne). On obtient done ainsi le quotient
de la vitesse moyenne de phase dans l'intervalle, divisé par le rap-
port w/k représentant, on 1’a vu, la vitesse de phase asymptotique.
La figure 2 reproduit le méme résultat et ’on voit qu’il n'y a varia-
tion sensible de la vitesse de phase que dans les premiéres longueurs
d’onde & partir du centre. Il n’est pas étonnant que cette vitesse
de phase semble tendre vers zéro prés de ce centre, puisque la den-
sité d’énergie, comme le potentiel des vitesses, y devient infinie
théoriquement. | S |

A ce propos, il est évident que la solution trouvée ici ne s’applique
pas en réalité autour du centre puisque sur une petite région I'en-
tourant agit encore 'effort moteur produit par le vibreur.

g5

kr

0 05 1 2 ’ 3 4
Fig. 2.

Variation de la vitesse de phase V en fonction de la distance au centre d’ébranle-
ment. En ordonnée est reporté le quotient V k/w.

On peut encore rappeler quelques propriétés de la loi de dispersion
de la vitesse de phase (7) ou (11).

o1 la tension superficielle H peut étre considérée comme indépen-
dante de la fréquence et de I’'amplitude (ce qui n’est pas le cas pour
les solutions ou suspensions de substances superficiellement actives)
la vitesse V présente un minimum pour

ro—]/e9

m

ainsl qu'un point d’inflexion pour
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elle tend, pour de grandes valeurs de k (fréquences élevées), vers la
forme asymptotique
V — [/ﬁ—k )
Q

Ainsi, & toute valeur possible de 17 correspondent deux valeurs de
k, I'une, inférieure a k,,, qui appartient & des ondes de faible freé-
quence, dites ondes de gravité, et pour lesquelles la tension super-
ficielle ne joue qu’un roéle négligeable, et I'autre, supérieure a k,,
appartenant aux ondes dites capillaires essentiellement régies par
la valeur de H. Si donc on désire mettre en évidence une variation
de la valeur de H c’est dans ce dernier domaine qu’il conviendra
d’opérer.

Pour des liquides dont la tension H est voisine de 50 dyne/centi-
metre et la densité proche de celle de 'eau, on aurait

k,=44cm™? Anm = 1,4 cm
V.. =21 cm/sec
qui correspond & la fréquence
v, = 15 sec—1 ,, = 93,5 sec™!.

En opérant avec des fréquences supérieures a 50 sec~1, on aura donc
la plus grande sensibilité aux variations de H qui pourraient éven-
tuellement se présenter dans une solution aqueuse.

Laboratoire de Physique technique E.P.U.L.
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