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Thermodynamique en Relativité Générale
par E.C.G. Stueckelberg et G. Wanders*) (Genéve).
(17 IV 1953.)

Summary. Non-relativistic phenomenological Thermodynamics is extendet to
the space-time of General Relativity!). One finds an unique energy—momentum
tensor, entropy—and substance current and irreversibility.

La Thermodynamique phénoménologique et non-relativiste est basée
sur deux principes exprimant I'impossibilité de perpetuum mobile
de premiére et seconde espéce. Le premier principe se traduit par
le principe de conservation de Uénergie H (au cours de I’évolution
temporelle ¢ < t" <t" < ...) auquel s’ajoutent les principes de
conservation des trows composantes de la quantité de mouvement m; et
de C quantités de substances indépendantes N, (4 =1,2, ..., C):

HI — Hﬂ‘ — HIH’ = L (1)
m=a = ...; i=1ad(=8) 2)
N,=N,=...; A=1aC (3)

Le deuxiéme principe localise d’abord ces quantités dans différents
systemes, ou phases: 1, 11,

H=H(I)+ H(II) + .
= (D) + m, (L) + ...
N,=N,(I) + N,(II) +

~ N
(= IR { =
— e e

Il décompose ensuite le transfert d’énergie d'un systéme & un
autre en deux termes: travail et chaleur. Le postulat de I'impossi-
bilité de transformer une quantité de chaleur retirée d’un systéme I
mtégralement en du travail fourni & un autre systéme II, sans que
I’état des autres systémes I1I, IV, ... ne soit modifié est la forme

*) Recherche subventionnée par la Comnnssmn Suisse de I’Energie Atomique
(C. S, A.).

1) B. Lrar, Phys. Rev. 84, 345 (1952), a fait récemment ’analyse correspon-
dante en relativité restreinte.
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classique du deuxiéme principe. On en déduit: d’une part, 'exis-
tence de U'entropie S, également localisable:

S=8I)+SUI)+ ... (7)
qui ne peut qu’augmenter au cours du temps:
Sr < S" \{ Sm < o (8)

D’autre part, on démontre qu’en tout systéme et & toute époque
doivent exister une fonction d’état positive, la température T, et
un certain nombre de coefficients positifs ou nuls: les viscosités trans-
versale et longitudinale n et &, la conductibilité thermaque x et les coef-
ficients de diffusion A4, Ap, ... des différentes substances, qui sont
aussi des fonctions d’état, ainsi que les C potentiels chimiques p .

En Théorie de la Relativnité, le transfert s’exprime par le flux
d’énergie & travers une surface. Mais, la décomposition de ce flux
en travail et chaleur n’est plus univoquement possible. Ceci a amené
certains auteurs (Pavri, TorLman) & introduire, en Relativité Res-
treinte, la notion dune température d'un corps en mouvement.
(Quant & nous, 1l nous semble que la seule maniére d’introduire le
deuxiéme principe en Théorie de la Relativité est de remplacer son
énoncé classique par sa conséquence (V) et (8), ¢c’est-a-dire, le postu-
lat d'une grandeur S, extensive au méme ftitre que H, z; et N,, qui
augmente au cours du temps pour tout observateur.

Dans un continu Riemannien quadri-dimensionnel, le correspon-
dant d’un terme des sommes (4), (5), est:

dH, = do, 6%; dH,—dn; dH,——dH (&) (5)

ou do, est ’élément d’une hypersurface tridimensionnelle caracté-
risant une époque; 1l n’est pas possible de définir une quantité de
mouvement et une énergie totales. Par contre, la quantité totale de
substance 4 et 'entropie totale sont données par:

N, = f Jdo, (6)

S =ft,dcra 5. (7)

Les (d + C + 1) équations d’évolution (1), (2) et (3) se traduisent
en:

D, 0! =0 (1) (29

D;n5 =0 (3')
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ou D, est le symbole de la dérivée covariante par rapport a %
Le deuxiéme principe prend la forme (i = wrréversibilité) :

D,s*—1=0; ¢>0. (8"

Comme 1l fallait s’y attendre, le remplacement du deuxiéme prin-
cipe par une de ses conséquences est insuffisant pour définir la
température. Par contre, deux axiomes supplémentaires introduisent
d’une maniére univoque les fonctions Tuy, &, 1, % et A4, ainsi que la
quadri-(d-) vitesse v*, comme nous le montrons dans cet article.
Ces axiomes sont:

19 Les (d + C + 2) principes (1'), (2'), (3") et (8') réglant 1’évolu-
tion des courants de quantité de mouvement, d’énergie, des subs-
tances chimiques indépendantes et de ’entropie ne sont pas indépen-
dants (en d’autres termes: I’état ne dépend que de (d + C + 1)
variables d’état: fi, fo, ..., furcen

29 Les (d + C + 1) variables d’état peuvent étre choisies telles
que les (d + C + 2) courants @, nf et s’ ne dépendent que liné-
airement des dérivées D,fy, Dofs, - - o, Dofys o +19%)-

Cependant, ces axiomes n’imposent que des relations entre les
signes des fonctions, sans fixer individuellement le signe de chacune
d’elles. En particulier, le caractére positif de la température est perdu.

De I'axiome 19 suit I'existence de (d + C +2) coefficients homo-
geénes ev*, uy, 1" reliant les (d + C + 2) principes par:

ev* Dy OF 4+ 3w, Dynfy + T (Dys” —1) =0 (9)
' A
qul sont univoquement définis (au signe de v* prés) si on normalise
la quadri-vitesse v* a:
v2 = v, 0% = gz 0= —e; 2=1. (10)

Partant du tenseur @*f, symétrique, le plus général satisfaisant
Paxiome 2° nous cherchons les restrictions qui doivent lui étre im-
posées pour que (9) soit une identité, et nous trouvons les expres-
sions de n%, s, et 1. Il s’agit donc de calculer:

r=—ev*D; 0 = D u*+ 0%y, (11)
u* = — g0, 0 (12)

est la projection sur la quadri-vitesse v* du courant d’énergie-
impulsion, c’est-a-dire, le flux d’énergie interne, et:

ou

Vg, = -»12—-(Dﬁfv-a~i—Davﬁ) . (13)

*) L’axiome 2° exprime que ces courants décrivent le phénoméne du transport.
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Choisissant les champs v%, u,, et T comme variables d’état, nous
décomposons @*# en une somme de termes ne contenant chacun
essentiellement que les dérivées d'un seul champ et nous analysons
separément ces différents termes.

Le flurde parfast. Un premier terme @%f ne contient aucune déri-
vée; sa forme générale est:

O = mv*vP + ep g (14)

on: m=m (T, g, o) o6 p=p(Ts g i)

On trouve:
ufy = @v* avec @ =m—p (15)
et:
¢ = (dérivée hydrodynamique de ¢) = v* Dy ¢ .
En introduisant les variables o, v, 75, ... conjuguées de T 1y
Biip oot
ou T = Pos Hqa= Pv, (17)

_ (99 [ 8F
Po = ( 00)”A Py, = (OT’A )"’ VB4

p=To+2 mavs
et r) prend la forme exigée par (9) si:

m=Tc+§pAvA (18)
en effet, on a alors:

oy = T D, (6% “I“;Mi D, (v v%). (19)

Nous montrons dans I’Appendice qu’étant données deux fonctions
m et ¢ de (C + 1) variables z;, &5, ... Z¢, 1 1l est toujours possible
d’effectuer un changement de variables zy, 2y, ... = T, pu, pip, - .-
tel que (18) soit vérifiée. Ainsi (18) choisit le systeme de variables
qui doit étre identifié au systéme: température, potentiels chimi-
ques, pour que (9) soit satisfaite.
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(19) montre que O%f fournit des contributions au courant d’entropie

et aux courants de substances paralléles a la quadri-vitesse:
sl =00 0l = ;0 (20)

mais ne donne pas de contribution & Uirréversibilité i: v = 0.
S1 67 se réduit 4 OFf, 1’équation d’évolution D, @*F = 0 devient,
en tenant compte de

D,(mv*) =p

et en passant au référentiel lorentzien local de repos au point z,
dans le cas d =3 (g;; =1, g4 = — 1, 9,3 = 0 pour « ¥ g; vi =0,
v =1, au point z, ¢ = 1):

mo, vt =—mGS—0'p
avec

1 ’
G,ugv =*§‘ gQQ (Op gg’v_og’ g,uv-_}_ dv gg',u)

qui est ’équation du mouvement d™un fluide parfait dans le champ
gravifique G%y, m étant la densité de masse (au repos), p la pression.

La wscosité.” Le terme de @*F contenant les dérivées du champ
v* a la forme générale:

o3 - 034 + 6% @1
ou:

O =—en(20* + £ (v*0° + v# %)) — £ (0 0P + 0P 0?) (22)
et:

O =—&& (g + ev*oP) v 2 — g v* 1P 2 (23)
n=n(T py-.); =0T, pgs---)---
@77 donne:
Uiy = Eo*
iy =D, (50%) —n Rv*P v, + ev*v,) —{ (0%0,)

Le premier terme de r,, est une divergence dont le développement
contient des dérivées de T et de u, dont est fonction £. Tandis que
les deuxieme et troisiéme termes sont des formes définies, ce premier
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terme ne peut pas étre écrit: (1D, s, + forme définie), comme I'exige
(9). Nous enlevons donc de (22) le terme en . Alors:

iy =0 (24)
oy = — N (2P 0,5+ £0%0,). (25)

(24) entraine @%f 6, . > 0 comme on le voit en passant au

référentiel lorentzien local de repos. Or:

A — 2 (2p*F 3
O8O, .5 =N (20" v 5 + ev¥v,).

Ainsi la contribution & Uvrréversibilité due & @‘(‘nﬁ)’

= (26)

Yy = — 7 T
est positive st 5 et T sont toujours de méme signe. Plus exactement :
i N'est une forme définie que si la métrique est définie (statique
pure) ou wndéfinie avec une seule dimension privilégiée (temps)*); v*
doit étre alors un vecteur temporel.
En passant au référentiel lorentzien local de repos, et dans le cas
limite d'un champ gravifique nul:

0:-3) = @?3) =0 | (27)

O = — 5 (0" + ') = — =, (28)
on retrouve le tenseur des tensions i/, dt 4 la viscosité transver-
sale; #n est donc identifié comme coefficient de viscosité transversale.
(27) exprime que ’existence de la viscosité transversale ne contribue
pas & la densité d’énergie de repos, ni au courant d’énergie.

Dans le référentiel lorentzien local de repos la densité d’énergie
O est proportionnelle & la divergence v de la quadri-vitesse ™.
Raisonnant comme plus haut on voit que y = 0. Alors:

uG =0 (29)
e = —§& (97)%. (30)
On a ainsi une contribution positive a Uirréversibilité
i = 5 (00 31
*) e =1 implique les signatures du g, diagonalisé (-1, -1, ..., —1) ou

(1,1, ...,1, =1); ¢ = —1 les signatures (1,1, ... 1) ou (1, =1, ..., =1, —1).
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si & et T sont toujours de méme signe. Dans le référentiel lorentzien
local de repos, et si le champ gravifique est nul:

Oit — @4 — 0 (32)

O = —£ (0,09 ¢ = — 7). {5s)

7}, est le tenseur des tensions da & la viscosité longitudinale et
& est identifié comme coefficient de viscosité longitudinale. (32) s’inter-
préte comme (27). '

La conduction therm@que Les dérivées du champ T donnent le

af.
terme @ ik

Of =—en (0P T +0f0°T) — (2% + o) ** T
—epg BT —oT (0*0f + 0P %) (84)

ot le dernier terme est une premiére partie du terme retranché de
05 (la seconde partie sera introduite dans les composantes de
G*F contenant les dérivées du champ uy,). (84) peut étre écrit:

@ = g*v° + ¢fv° ](@@BJre/g“ﬁ)T (85)
ou: _
q“m—exTimQT’é“; v,¢*=0
T, = (dérivée normale de T).= 0, T + evy T; Vy T°‘ == [y
L’argument qui entraina { = y = 0 nécessite ici w = = 0. On
a donc:
(q) q (86)
et, en posant: ¢* = T's% , (v, 8% = 0)
1 o
o = TD, St — £ (q q.) + “_‘ q* U, (% — 0). (37)

Pour que la contribution a Uirréversibilité soit positive, il faut que:
% = p, # > 0; alors:

5 1 e
by = 77 5 (0" q) =0 car eq*q, > 0. (38)
La contribution aw courant d’entropie %, est définie plus haut, elle
est normale a la quadri-vitesse. ‘
Dans le référentiel lorentzien local de repos:

0= 0y = (39)

@‘(”q’”)*—x()*T—%Tddlﬁ’ TG, (40)
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Lorsque 0,v* = 0 et en absence de champ gravifique, on retrouve
le courant d’énergie dii & la conduction thermique, » étant le coefficient
de conductibilité thermagque. Dans le cas général, les deux derniers
termes de (40) ne permettent plus d’identifier &) & un courant de
chaleur; en Thermodynamique relativiste la décomposition du cou-
rant d’énergie en chaleur et travail n’a plus de sens. Dans le cas
statique (0,0' =0 et Oy} =0), (40) montre que la température
n’est pas uniforme dans un champ gravifique non nul.

La diffusion des substances. La discussion du terme de ©*# conte-
nant les dérivées du champ u, est semblable a la précédente. On
trouve:

Ol — 507 + v 1)
ou ) Ly

1a=—¢ehy (0, +ep v?) (42)

Uigy= 1% - (43)

@ﬁf) donne une contribution aw courant de la substance A, normal
a la quadri-vitesse:
1

[» S oL, —
Nigy = o 135 VeMigy=0 (44)
et une contribution & U'irréversibilité:
o 1 b2 . . ~
Ya) = T g g U4 Jaa) (45)

positive si pu A, a méme signe que 1.
Dans le référentiel lorentzien local de repos:

Oy = 0, =0 (46)

Oy =—240 py—Ayp 00" — A p, Gy (47)

Si 0,0 =0 et Gy = 0, O est le courant d’énergie familier d

a la diffusion de la substance A, avec coefficient de diffusion A4 ,. Si
I'on tient compte de la diffusion et de la conduction thermique, les

potentiels chimiques et la température sont liées au champ gravi-
fique, dans le cas statique, par I’équation:

0T + DA, 00uy = — (2T + D A py) GFy (092 (48) *¥)
) 4
Les réactions chimiques. Si les substances 4, B, ... peuvent
réagir entre elles (3') doit étre remplacée par (r, = "rate of produc-
; TAL AN
tion)%): D' —1r, =0 (49)

*) A'ne pas confondre avec le 7 introduit plus haut.
**) Vu qu’on doit encore satisfaire & m ¥ = — 0% p, la solution de (48) ne peut

étre que T/Ty = py/pao = (91)7 %
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ou r, est la vitesse de production (2 0) de la substance 4. La
chimie relie les r, par la loi des proportions constantes:

2uta=0 a=12...,e<C (50)
A

a dénombrant les espéces atomiques.
Dans (9), D, n% est remplacé par (D,n% —r,) et un terme ¢
2 ke Y §; I & b V4
s'ajoute & I'irréversibilité:

. 1
14
v =—2?#ATA- (51)
1
La substance 4 peut participer & une série de réactions possibles
Prgy o2 1a= D] T4, de vitesses de réaction ay, 1.e. 74, = 4, ap0U

v
les ¢4 , sont des entiers positifs ou négatifs. Posant ensuite:

Gy = — Cp ; CaplMy (52)

' =, avec 1/, = %{’— (AZCAp'yA)Q (58)

P
Les réactions chimiques donnent une contribution positie a U'irré-
versibilité si C, et T ont le méme signe.
En résumé (9) est une identité, c’est-a-dire: le deuxiéme principe
est une conséquence des autres principes d’évolution si:

- o B
0% = O3 + OF + O+ O3 + ; 0%

1l vient:

avec:
O = mv* v’ + epg*?
O = —en (20 + & (1*0? + vP0%))
O = — & (g*P + ev*oP) v 8
O =v*gf +fq* @ =—en(T7+ eTv%)
. Ofy =y + 0" 1% = —ehy (i) +epy v
et:

m="To+2Zuuvy; T=9;5p=09,; ¢=m—p
n(Tuy, . )T >0 &E(T,py,,..)T =0
(T ppaye <) 20 A (T p4s: )Ty 0 , (Lyppyes )T >0

o a0 o o« _ Lo o« _ '
Ny=Ny+ny, NGy =40 My =5 la-

Le courant d’entropie vaut alors:

1
A ol o o 4 a T
§=¢8,+8,  §;,=00 & = T q
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et I'irréversibilité est donnée par:

. ) oy & 1 e
q,:_g,-(Qa; P+ €0 Vo) + o 0)2 + o xT (7" .)

tp

o 3 g e + 3 (2 eap )
p

APPENDICE.

11 est possible de définir les variables T, p,, p g, ... de telle fagon

que: m = Tcr—l—AZ/,cAvA.
Solent deux fonctions m et @ données en termes de variables
quelconques, ¢”, v}y, ...:
" "
m — m# (G”, 'VA) (p s (pn’l (O_H, T}A) .

Il est possible de définir un changement de variables:

" 4 n
o =o' (0", vy vy=1v,

tel que:
=g 0¥
m=ag -0&7 .
d dp" dc" . o
En effet: a;p, == 0?;,, 0(;’ et la relation exigée s’écrit:
i} r 1 ()(p" I "
5&7 Iog g = m” OO,H (6 ) vA)

équation différentielle en ¢” dépendant paramétriquement de vy,
. et définissant la fonction: ¢’ = ¢’ (¢, v4) cherchée.
Opérons le changement de variables:

Alors:

o

et en définissant T et w, comme conjuguées de o et v : 1T = v

0 . . .
oy = % , on obtient la relation exigée.
4
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