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Thermodynamique en Relativité Générale

par E.C. G. Stueckelberg et G. Wanders*) (Genève).

(17 IV 1953.)

Summary. Non-relativistic phenomenological Thermodynamics is extendet to
the space-time of General Relativity1). One finds an unique energy—-momentum
tensor, entropy—and substance current and irreversibility.

La Thermodynamique phénoménologique et non-relativiste est basée

sur deux principes exprimant l'impossibilité de perpetuum mobile
de première et seconde espèce. Le premier principe se traduit par
le principe de conservation de l'énergie H (au cours de l'évolution
temporelle t' < t" < t'" < auquel s'ajoutent les principes de
conservation des trois composantes de la quantité de mouvement nt et
de C quantités de substances indépendantes NA, (A 1,2, C) :

H' H' H" (1)

ni ni ; i 1 à d 3) (2)

NA NA= ...; A làC (3)

Le deuxième principe localise d'abord ces quantités dans différents
systèmes, ou phases : I, II, :

H H(I) + H(II) + (4)

ni ni(l)+ni(II)+... (5)

NA NA(I)+NA(II)+ (6)

U décompose ensuite le transfert d'énergie d'un système à un
autre en deux termes: travail et chaleur. Ve postulat de l'impossibilité

de transformer une quantité de chaleur retirée d'un système I
intégralement en du travail fourni à un autre système II, sans que
l'état des autres systèmes III, IV, ne soit modifié est la forme

*) Recherche subventionnée par la Commission Suisse de l'Energie Atomique
(C. S. A.).

1) B. Leaf, Phys. Rev. 84, 345 (1952), a fait récemment l'analyse correspondante

en relativité restreinte.
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classique du deuxième principe. On en déduit: d'une part, l'existence

de l'entropie S, également localisable:

S S(I) + S(II)+ (7)

qui ne peut qu'augmenter au cours du temps :

S' < S" < S'" < (8)

D'autre part, on démontre qu'en tout système et à toute époque
doivent exister une fonction d'état positive, la température T, et
un certain nombre de coefficients positifs ou nuls : les viscosités
transversale et longitudinale r\ et |, la conductibilité thermique x et les
coefficients de diffusion XA, XB, des différentes substances, qui sont
aussi des fonctions d'état, ainsi que les C potentiels chimiques piA.

En Théorie de la Relativité, le transfert s'exprime par le flux
d'énergie à travers une surface. Mais, la décomposition de ce flux
en travail et chaleur n'est plus univoquement possible. Ceci a amené
certains auteurs (Pauli, Tolman) à introduire, en Relativité
Restreinte, la notion d'une température d'un corps en mouvement.
Quant à nous, il nous semble que la seule manière d'introduire le
deuxième principe en Théorie de la Relativité est de remplacer son
énoncé classique par sa conséquence (7) et (8), c'est-à-dire, le postulat

d'une grandeur S, extensive au même titre que H, nt et NA, qui
augmente au cours du temps pour tout observateur.

Dans un continu Riemannien quadri-dimensionnel, le correspondant
d'un terme des sommes (4), (5), est:

dHß doa0«; dH^dn^ dHx=-dH (4') (5')

où daa est l'élément d'une hypersurface tridimensionnelle caractérisant

une époque; il n'est pas possible de définir une quantité de
mouvement et une énergie totales. Par contre, la quantité totale de
substance A et l'entropie totale sont données par:

en

K jtA<yanA (6')

S'=fvdoas«. (T)

Les (d + C -f- 1) équations d'évolution (1), (2) et (3) se traduisent

Dß Gl 0 (1') (2')

DßnA 0 (3')
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où Da est le symbole de la dérivée covariante par rapport à xa.
Le deuxième principe prend la forme (i irréversibilité) :

DOLsa — i 0; *>0. (8')

Comme il fallait s'y attendre, le remplacement du deuxième principe

par une de ses conséquences est insuffisant pour définir la
température. Par contre, deux axiomes supplémentaires introduisent
d'une manière univoque les fonctions TpiA, |, r/, x et XA, ainsi que la
quadri-(d-) vitesse v*, comme nous le montrons dans cet article.
Ces axiomes sont:

1° Les (d + C + 2) principes (1'), (2'), (3') et (8') réglant l'évolution

des courants de quantité de mouvement, d'énergie, des
substances chimiques indépendantes et de l'entropie ne sont pas indépendants

(en d'autres termes: l'état ne dépend que de (d + C + 1)
variables d'état: fx, /2, f,d + c + x).

2° Les (d + C + 1) variables d'état peuvent être choisies telles
que les (d + C + 2) courants &ß, nßA et sß ne dépendent que
linéairement des dérivées DJX,DJ2, DJ,4+ c + x)*).

Cependant, ces axiomes n'imposent que des relations entre les

signes des fonctions, sans fixer individuellement le signe de chacune
d'elles. En particulier, le caractère positif de la température est perdu.

De l'axiome 1° suit l'existence de (d + C + 2) coefficients homogènes

eva, ptA, T reliant les (d + C + 2) principes par:

ev*Dß6i+Z ^DßnA+T(DßSii-i) 0 (9)
A

qui sont univoquement définis (au signe de v* près) si on normalise
la quadri-vitesse va à:

v2 vava g0,ßv0ivß= — e; e2 1. (10)

Partant du tenseur 0e"3, symétrique, le plus général satisfaisant
l'axiome 2°, nous cherchons les restrictions qui doivent lui être
imposées pour que (9) soit une identité, et nous trouvons les expressions

de nA, s*, et i. Il s'agit donc de calculer:

r — evaDß6ßl DOLu0l+e&ßavßa (11)
où

u« -evßGi (12)

est la projection sur la quadri-vitesse «a du courant d'énergie-
impulsion, c'est-à-dire, le flux d'énergie interne, et:

v0a ±r(Dßva + Davß). (13)

*) L'axiome 2° exprime que ces courants décrivent le phénomène du transport.
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Choisissant les champs v", piA, et T comme variables d'état, nous
décomposons 0aß en une somme de termes ne contenant chacun
essentiellement que les dérivées d'un seul champ et nous analysons
séparément ces différents termes.

Le fluide parfait. Un premier terme 0*oß ne contient aucune dérivée

; sa forme générale est :

&fâ mvavß+epg«ß (14)

où: m m(T, piA, piB,. et p p(T, piA, pxB>...).

On trouve :

M(ó) — V®01 avec cp m — p (15)

et:

r^^cp + mD^v* (16)

q> (dérivée hydrodynamique de cp) ua Da <p

En introduisant les variables a, vA, vB, conjuguées de T, ptA,

pcB, :

où T cpa ; piA cpVA (17)

_ (°<P\ _ / °<P \^ \dakA CpvA~\dvA)°>VB*A

(p-Tcr+ZVa^a
A

et r(0) prend la forme exigée par (9) si :

m=To + ZrAvA (18)
A

en effet, on a alors :

r(0) TDa (av«) + Z'MADa(vA V). (19)
A

Nous montrons dans l'Appendice qu'étant données deux fonctions
m et cp de (C +1) variables xx, x2, x0+ x il est toujours possible
d'effectuer un changement de variables xx, x2, —> T, piA, piB,
tel que (18) soit vérifiée. Ainsi (18) choisit le système de variables
qui doit être identifié au système: température, potentiels chimiques,

pour que (9) soit satisfaite.
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(19) montre que 0?! fournit des contributions au courant d'entropie
et aux courants de substances parallèles à la quadri-vitesse:

s^0) ava nAI0) vAv" (20)

mais ne donne pas de contribution à l'irréversibilité i: i(0) 0.

Si @aß se réduit à 0^, l'équation d'évolutionDa @a/J 0 devient,
en tenant compte de

D^mv*) p

et en passant au référentiel lorentzien local de repos au point x,
dans le cas d 3 (gu =1, gr44 — 1, gaß 0 pour a dp ß; v* 0,
vA 1, au point X, s 1) :

mdivi — m G4*4 — d * p
avec

G„", Y 9e e' (d„ 9e> v - <V 9ß v + à, gt-J

qui est l'équation du mouvement d'un fluide parfait dans le champ
gravifique G4*4, m étant la densité de masse (au repos), p la pression.

La viscosité.' Le terme de 6>a/S contenant les dérivées du champ
va a la forme générale:

0„? ©?,£ + <%? (21)

ou:

et:

0«g — e n (2 v*ß + e (v* vß + vß ù01)) — f (v" vß + vßva) (22)

&* — eè (g"ß +£V<X vß) vee — x v* vß vee (23)

r, ri(T,fxA,...); f f(T, ^, ...)•• •

0"^ donne:

»£> £*"

Le premier terme de tv,,) est une divergence dont le développement
contient des dérivées de T et de ptA dont est fonction f. Tandis que
les deuxième et troisième termes sont des formes définies, ce premier
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terme ne peut pas être écrit : (TDas*^ + forme définie), comme l'exige
(9). Nous enlevons donc de (22) le terme en 'Q. Alors:

K,) ° (24)

rM -y(2v«ßvaß + ev«va). (25)

(24) entraîne 0Jß, 0, > 0 comme on le voit en passant au
référentiel lorentzien local de repos. Or:

0ad%)«ß-y2(Zv*ß\ß + ^va).
Ainsi la contribution à l'irréversibilité due à 0?R

\n) - i r<») (26)

est positive si r/ et T sont toujours de même signe. Plus exactement :

i{n) n'est une forme définie que si la métrique est définie (statique
pure) ou indéfinie avec une seule dimension privilégiée (temps)*); v01

doit être alors un vecteur temporel.
En passant au référentiel lorentzien local de repos, et dans le cas

limite d'un champ gravifique nul:

G\% 0\% 0
'

(27)

00 -n (dV + dW) -t« (28)

on retrouve le tenseur des tensions xP, dû à la viscosité transversale;

n est donc identifié comme coefficient de viscosité transversale.
(27) exprime que l'existence de la viscosité transversale ne contribue
pas à la densité d'énergie de repos, ni au courant d'énergie.

Dans le référentiel lorentzien local de repos la densité d'énergie
0fç) est proportionnelle à la divergence v^ de la quadri-vitesse va.

Raisonnant comme plus haut on voit que % 0. Alors :

u,% 0 (29)

r(i)=-ï(%V- (30)

On a ainsi une contribution positive à l'irréversibilité

%) | «)2 (31)

*) £ 1 implique les signatures du <7aâ diagonalisé (-1,-1, —1) ou
(1,1, 1, —1); e — 1 les signatures (1, 1, 1) ou (1, -1, — 1, -1).
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si i; et T sont toujours de même signe. Dans le référentiel lorentzien
local de repos, et si le champ gravifique est nul:

e% 0tl) ° (32)

G% -t(dev*)gi> -x%. (33)

Tjlj est le tenseur des tensions dû à la viscosité longitudinale et

I est identifié comme coefficient de viscosité longitudinale. (32) s'interprète

comme (27).
La conduction thermique. Les dérivées du champ T donnent le

terme 0*?:

0«ß — ex(v'xdßT + vßd«T) — (2x + co) v«vßT

— ey)gaßT~0T(vavß+vßva) (34)

où le dernier terme est une première partie du terme retranché de

0"tß} (la seconde partie sera introduite dans les composantes de

0"-ß contenant les dérivées du champ piA). (34) peut être écrit:

®tï) =q*vß + qß v« - X (v* vß + e -Y g*ß) T (35)

où:
q« — e x TI — q Tv a; va f 0

T*±_ (dérivée normale de T) da T + e va T ; v* T£ 0

L'argument qui entraîna f X 0 nécessite ici co y> 0. On
a donc : ,q„.ua(q) qa (36)

et, en posant : ga Ts«q), (va sfg) 0)

%) TD«sl) - hi (<f<Ü + v <f% (* - £?)• (37)

Pour que la contribution à l'irréversibilité soit positive, il faut que:
x q, x > 0; alors:

La contribution au courant d'entropie s?. est définie plus haut, elle
est normale à la quadri-vitesse.

Dans le référentiel lorentzien local de repos:

0^;= 0^ 0 • (39)

0« _ xd{T - xTdJ - xTGix. (40)
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Lorsque d^v1 0 et en absence de champ gravifique, on retrouve
le courant d'énergie dû à la conduction thermique, x étant le coefficient
de conductibilité thermique. Dans le cas général, les deux derniers
termes de (40) ne permettent plus d'identifier 0M à un courant de

chaleur; en Thermodynamique relativiste la décomposition du
courant d'énergie en chaleur et travail n'a plus de sens. Dans le cas
statique (dtv{ 0 et 048lj 0), (40) montre que la température
n'est pas uniforme dans un champ gravifique non nul.

La diffusion des substances. La discussion du terme de 0*ß contenant

les dérivées du champ piA est semblable à la précédente. On
tr0UVe:

0& J>' + Ji«" (41)
où

jA ~eXA(fiA±+SfxAv*) (42)

«&,= £• (43)

G^y donne une contribution au courant de la substance A, normal
à la quadri-vitesse:

»w) ^Ä; »«»k) 0 (44)

et une contribution à l'irréversibilité:
1 £

T Ja U (3a La) (45)

positive si piA XA a même signe que T.
Dans le référentiel lorentzien local de repos :

<9,ii)=0fi)=O (46)

©U) - K * Ma - Kx Ma à' v{ - XA fiA 6*t. (47)

Si d4 v1 0 et G/4 0, 0*^ est le courant d'énergie familier dû
à la diffusion de la substance A, avec coefficient de diffusion XA. Si
l'on tient compte de la diffusion et de la conduction thermique, les

potentiels chimiques et la température sont liées au champ gravifique,

dans le cas statique, par l'équation:

x d* T + X K à1 Ma - (* T + £K Ma) «À M2- (48) **)
A A

Les réactions chimiques. Si les substances A, B, peuvent
réagir entre elles (3') doit être remplacée par (rA "rate of produc-
tim'T): Dan-A-rA 0 (49)

*) A ne pas confondre avec le r introduit plus haut.
**) Vu qu'on doit encore satisfaire à m ¥ — d1 p, la solution de (48) ne peut

être que T/T0 piA/piAo (g-44)-*.
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où rA est la vitesse de production (< 0) de la substance A. La
chimie relie les rA par la loi des proportions constantes :

27^^ 0 a 1,2, ...,c<C (50)
A

a dénombrant les espèces atomiques.
Dans (9), DanA est remplacé par (Da nA — rA) et un terme i'

s'ajoute à l'irréversibilité:

i' ~ZÌMArA- (51)
A

La substance A peut participer à une série de réactions possibles
p, q, ; rA= TJ rAp, de vitesses de réaction ap, i. e. rAp cAp ap où

p
les cAp sont des entiers positifs ou négatifs. Posant ensuite:

ap -ÇPZ capMa (52)
il vient: A

*' Z *'p avec Vv ¦# (Z^pPa)* (53)
p ^.

Les réactions chimiques donnent une contribution positive à
l'irréversibilité si Cp et T ont le même signe.

En résumé (9) est une identité, c'est-à-dire: le deuxième principe
est une conséquence des autres principes d'évolution si:

avec :

et:

U — U(o) + U(n) + U(S)+ U(q) ^ Z/ UU)
A

0(4 w^3 + epgaß

0«ß} -£))(2î)^+£ (l)a^ + VßV*))

0«ß — s i (fß + e v« vß) vee

0«£ vaqß + vßqa q« — ex(Tl + eTva)

&& *ÌA + JÌA Ja -£*a(Mas_ + £MaV*)

m=Ta + SjxAvA; T cpa; piA cpVA; cp m-p
y(T,piA!...)T>0 e(T,piA,...)T>0

x(T,fxA,...)>0 XA(T,plA,...)T/xA>0 Cp(T,piA...)T>0
?»S=»1// + »ÎX n%l^VA^ nÄ±=-~A-JA-

Le courant d'entropie vaut alors:

s* s«ll + s«L s*n oif s\ -^cf
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et l'irréversibilité est donnée par:

i -J- (2 v*ß vaß + e v« va) + ± («/)2 + ^- ^r (<f qx)

+ Z t fxIH ^A i«^ + Z ^T [Z ca p Ma) ¦

Appendice.

Il est possible de définir les variables T, piA, ptB, de telle façon
que : m Ta + 2J piA vA

A
Soient deux fonctions m et cp données en termes de variables

quelconques, a", v"A, :

m m" (a", v"A) cp cp" (a", v"A).

Il est possible de définir un changement de variables:

a =a (a ,vA) vA vA
tel que:

dw
m a -r-vdo

t^ üj- x °<P °<p" da"
Ln ettet : -r—r -r—»- -*-y et la relation exigée s écrit :

oo va Oo °
à i / 1 d<p" „ „s

sr-^r log a —w -r^r (a v A
da" b m" da" v ' A'

équation différentielle en a" dépendant paramétriquement de v"A,

et définissant la fonction: a' a' (a", vA) cherchée.

Opérons le changement de variables :

a a' vA v'A a'.
Alors :

UW V-T uf

et en définissant T et piA comme conjuguées de a et vA : T — ~r—

piA — -x—, on obtient la relation exigée.
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