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Note sur le lien entre spin et statistique dans la théorie
des particules élémentaires

par Dominique Rivier*).
Division of Physics, National Research Council of Canada, Ottawa, Canada.

(17 IV 1953.)

L'existence d'un lien entre le spin des particules élémentaires et
la statistique qui en régit les ensembles a été mise en évidence de
manière générale par M. Pauli1) comme une conséquence, sous
certaines conditions, de l'invariance relativiste de la théorie des

champs décrivant ces particules. Plus précisément, soient les deux
postulats suivants:

1 ° Pour un système de particules libres, c'est-à-dire sans action les

unes sur les autres et en l'absence de forces extérieures, la contribution
de chaque particule à l'énergie totale du système est définie positive.

2° A deux grandeurs physiques observées en deux points distincts
sur une surface spatiale de l'espace temps correspondent deux opérateurs

commutables dans l'espace de Hilbert des états quantiques du
système.

Pauli a montré que l'invariance des équations de mouvement
du système de particules par rapport à une transformation continue
de Lorentz jointe au premier postulat entraîae l'application nécessaire

de la statistique de Fermi-Dirac aux ensembles de particules
à spin demi-entier (%, la constante de Planck divisée par 2 n, est
l'unité de spin). La même invariance jointe au deuxième postulat
entraîne la nécessité de la statistique de Bose-Einstein pour
décrire les ensembles de particules à spin entier.

Mais pour l'établissement de ce lien entre spin et statistique,
un troisième postulat est nécessaire:

3° La métrique de l'espace de Hilbert des états quantiques du
système est définie positive.

*) National Research Laboratories Postdoctorate Fellow.
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Ce postulat, généralement admis sans autre commentaire, fait
partie de la définition même de l'espace de Hilbert. Cependant,
on sait que dans sa Bakerian Lecture2) du 19 juin 1941 M. Dirac a
envisagé la possibilité de décrire les états des systèmes quantiques
dans un espace analogue à l'espace de Hilbert, mais où la métrique
est indéfinie. L'interprétation physique de théories quantiques
utilisant de tels espaces comme espaces des états du système se heurte
à la difficulté des probabilités négatives, liées semble-t-il à une
métrique indéfinie. Malgré cette difficulté, il est possible d'étudier
les théories quantiques utilisant ces espaces où le troisième postulat
n'est plus valable. On trouve alors que l'abandon de ce dernier
postulat a une influence décisive sur les conclusions que l'on peut
tirer des deux premiers joints à l'invariance relativiste quant au lien
entre spin et statistique. En fait, Pauli a montré3) que si l'on admet
un espace à métrique indéfinie pour décrire les états du système, le
lien entre spin et statistique considéré comme une conséquence des

postulats 1 et 2 et de l'invariance relativiste disparaît. En d'autres
termes, dans de tels espaces on peut, de manière compatible avec
ces postulats et l'invariance relativiste, décrire des ensembles de

particules à spin demi-entier en utilisant la statistique de Bose-
Einstein, et aussi des ensembles de particules à spin entier en se

servant de la statistique de Fermi-Dirac; cela au prix de
l'introduction de probabilités négatives. Le fait que jusqu'à aujourd'hui
la nature ne nous a pas encore révélé de particules nécessitant ces

descriptions est un argument (provisoire, c'est bien sûr) contre
l'introduction d'espaces à métrique indéfinie pour décrire les états
des systèmes quantiques.

Quoiqu'il en soit, la présente note a plus spécialement trait au
cas des théories quantiques utilisant l'espace de Hilbert à métrique
définie positive: le postulat 3 est donc valable.

Revenons aux deux premiers postulats. Leur origine physique
apparaît immédiatement: le premier traduit la propriété
fondamentale de l'énergie totale d'un système isolé d'être définie positive;
le second est motivé par l'indépendance cinématique de deux
observations faites en deux points distincts d'une surface spatiale de

l'espace temps. Il est important de noter que, dans le cas de la
théorie classique, ces deux propriétés peuvent être considérées
comme deux conséquences de la théorie de la relativité restreinte:
équivalence entre masse et énergie d'une part, et existence d'une
vitesse limite supérieure pour la propagation des perturbations
énergétiques d'autre part. Cela conduit naturellement à penser que
le lien entre spin et statistique peut être une conséquence directe
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de l'invariance relativiste de la théorie classique des champs de
particules et du principe de quantification de cette théorie (c'est-à-dire
du principe qui donne la manière de transcrire la théorie classique
dans l'espace de Hilbert des états quantiques), sans qu'il soit
nécessaire d'invoquer spécifiquement les postulats 1 et 2.

Habituellement, le principe de quantification est fondé sur le
formalisme canonique, soit implicitement, soit explicitement4) ; il
utilise soit la correspondance entre crochets de Poisson et commutateurs,

soit la correspondance entre transformations canoniques
et transformations unitaires. Alors, comme l'a montré Pauli, il
est nécessaire de recourir explicitement aux postulats 1 et 2 afin
d'établir le lien entre spin et statistique. Le recours nécessaire à

ces postulats peut surprendre si l'on adopte le point de vue donné
plus haut, car alors 1 et 2 semblent pouvoir perdre leur caractère
de postulats pour devenir des conséquences de l'invariance relativiste

et du principe de quantification.
Le but de cette note est de signaler que les postulats 1 et 2 peuvent

en fait être économisés par l'introduction d'un principe de
quantification sans aucun lien avec le formalisme canonique et qui utilise
la théorie des groupes continus de transformations. Ce principe est
le suivant :

Les opérateurs de la théorie quantique qui correspondent aux
constantes de mouvement de la théorie classique forment, dans l'espace de

Hilbert des états quantiques, une représentation des opérateurs
infinitésimaux qui définissent les groupes continus de transformations
laissant invariantes les équations de mouvement de la théorie classique,
et auxquels correspondent les constantes de mouvement.

Les raisons qui conduisent à l'introduction de ce principe de

quantification, et l'application à la théorie des particules élémentaires

libres dont il est question ici, ont été données ailleurs5). On
ne présente donc que l'essentiel de l'argument, en renvoyant pour
les détails et les preuves à l'article cité.

On sait que la description classique des particules libres est fournie

par des champs d'ondes Xg(x) satisfaisant l'équation

(a-x2)Xe(x) o (i)

où désigne le dalembertien — d^ d^ — gß„ d^d" avec d^ djdx^,
x11 (x1, x2, x3, a;4 et) (x, x4), et où gßr représente le tenseur
métrique fondamental : gßV 0, /i + v, gxx g22 g33 — g44 — 1.

En outre x mc\%, où m est la masse de la particule correspondant



Lien entre spin et statistique. 303

au champ Xe(x)> ^ es^ ^a constante de Planck divisée par 2 n et
c la vitesse de la lumière.

L'invariance relativiste des équations de mouvement entraîne, en
théorie classique, l'existence de dix constantes de mouvement G(i)

i 1, 10, à savoir l'impulsion-énergie Pß et les moments angulaires

généralisés Mflv — Mv/l, correspondant aux dix opérateurs
infinitésimaux g(i), i 1, 10 du groupe de Lorentz: les quatre
translations pß et les six rotations généralisées mßV —mVM. Les
constantes de mouvement s'expriment en fonction des champs et
des opérateurs infinitésimaux par les formules

GWM ncfdax(y)xt(y)Cx(y)gii)Xe(y)> * !¦ • -l°- (2)

Dans (2) l'intégrale du second membre est étendue à une surface
spatiale quelconque E, avec dax (y) nx (y) der (y), où da (y) est
l'élément de surface et nx(y) le vecteur unité normal en chaque point
avec tc4 > 0. L'opérateur C*(y) qui figure dans la relation (2) apparaît

aussi dans la formule

XM fdax(y)Fea(x-y)C\y)xa(y) (3)

ì
qui généralise de manière invariante l'égalité

Xe(x,t)= f(dy)3 ô(x-y)Xe(y, t) (4)

servant à la définition de la fonction de Dirac dans l'espace à trois
dimensions. Cx(y) et la distribution Fea (x — y) qui apparaît avec
lui dans (3) sont complètement déterminés par les équations de

mouvement des champs, en particulier par la densité d'action L\j\
utilisée par le principe de variation dont ces équations peuvent se
déduire. En fait, on a

CÀ(y)=i,r(VLX(y)-V>(y)) (5)

avec
dL zt(y)vL\y), ,,/1, =y\y)xM- (6)

d(dxttm Ae™' xa" o(dxX+(y))

Le passage à la théorie quantique utilise pour celle-ci la forme de

Heisenberg (Heisenberg's picture) des équations de mouvement, où
l'état quantique du système n'évolue pas avec le temps. Alors aux
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fonctions xe (x) correspondent dans l'espace de Hilbert les opérateurs

de champ Xe(x), dont les équations de mouvement sont
identiques à celles des champs classiques %e(x). Si l'on désigne par
G(i) s G(t-)[X] l'opérateur qui, dans l'espace de Hilbert, correspond
à la constante de mouvement G,^ [x], le principe de quantification
proposé plus haut donne les dix relations

^c[G(i)[Z}Ae(x)\=g{ï)Xt(x), i \...10. (7)

dont la compatibilité est assurée par la structure des fonctionnelles
G(i)[x] données en (2). Les relations (7), jointes à (2) et (3)
déterminent de manière unique les relations fondamentales de commutation

sous la forme

y H [X9(x), Xt (y)l> -Fea (x-y),

[Xe(x), xa(y)]m [#(*), x:(y)]m 0, (8)

[A,B]m AB+coBA, co ±1, r/(+l)=±l, r/(-1)^ + 1.

A première vue pourtant, les facteurs co et.rj (co) sont partiellement
indéterminés. Et le facteur co est essentiel dans la question qui nous
occupe ici, à savoir le lien entre spin et statistique. En effet, suivant
que co vaut + 1 ou — 1, c'est l'anticommutateur ou le commutateur
qui intervient dans les relations fondamentales (8). Et l'on voit
alors que la statistique de Fermi-Dirac doit être utilisée dans le
cas où co + 1, et celle de Bose-Einstein dans celui où co — 1.

Or, il se trouve que la valeur de co et celle de n (co) sont
déterminées par la distribution Fea(x — y) du second membre de (8).
Pour s'en rendre compte, il suffit de calculer à partir de (8)

yWj (àx)z {[ xe(x), xi (y)}* + [xe(y), x+Q(x) ]«,},._,.
— oo

- J(dx)3{FeQ(x-y)+FQQ(y~x)}x^y, (9)
—oo

et d'utiliser les propriétés de la distribution Fea(x — y): on voit
alors que dans le cas de spin 0,1 (entier) le second membre de (9)
est nul, tandis qu'il est défini positif dans le cas de spin x/2 (demi-
entier). Mais on doit demander du premier membre de (9) qu'il
jouisse des mêmes propriétés que le second. Et cela n'est possible
en général (si on exclut le cas de champs identiquement nuls) que
si w a la valeur — 1 dans le cas de spin entier et la valeur + 1 dans
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celui de spin demi-entier. Remarquons en passant que pour ce
dernier raisonnement, il faut faire intervenir explicitement le troisième
postulat de la métrique définie positive de l'espace de Hilbert.

L'argumentation qui vient d'être esquissée montre donc que
l'invariance de la théorie classique des champs par rapport au
groupe continu de Lorentz d'une part, et le principe de quantification

proposé ci-dessus d'autre part, déterminent complètement les
relations fondamentales de commutations (8) entre les opérateurs
des champs ; et en particulier la valeur du paramètre co en fonction
du spin de la particule attachée au champ : ce qui n'est autre chose

que le lien entre spin et statistique. Les postulats 1 et 2 ne sont
pas intervenus dans le raisonnement, et maintenant l'on voit même
que ces postulats peuvent à juste titre être considérés comme des

conséquences (sous certaines conditions) de l'invariance de la théorie
dans le groupe continu de Lorentz, et du principe de quantification.
Dans le même ordre d'idées, il peut être intéressant de noter que le
second postulat (qui peut, dans une certaine mesure, être considéré
comme une condition nécessaire pour la quantification) est ici
directement lié à la possibilité de localiser le champ d'onde %Q(x) qui
décrit la particule élémentaire. Car cette propriété de la fonction
Xe(x) de ne dépendre que d'un seul point x de l'espace temps joue
un rôle essentiel dans le développement de la théorie tel qu'il vient
d'être esquissé, particulièrement dans la définition des constantes
de mouvement.

Dans un récent mémoire, M. Schwinger6) a présenté le lien entre
spin et statistique comme une conséquence: premièrement d'un
principe de quantification implicitement lié au formalisme
canonique; deuxièmement de l'invariance de la théorie par rapport à

une transformation continue de Lorentz; et troisièmement de
l'invariance de la théorie par rapport à une symétrie qui combine
la conjugaison de la charge avec l'inversion par rapport au temps.
Quel que soit l'intérêt de ce point de vue, il semble important de
souligner que le lien entre spin et statistique est déjà une
conséquence de l'invariance de la théorie par rapport à une transformation
continue de Lorentz, sans qu'il soit nécessaire de considérer
l'invariance par rapport à des symétries. Et la présente note ne peut
que confirmer l'opinion émise par M. Pauli à la fin de son mémoire
de 19407):

the connection between spin and statistics is one of the most
important applications of the special relativity theory."
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Notes.

x) W. Pauli, Phys. Rev. 58, 716 (1940). Consulter aussi du même auteur: Ann.
Inst. H. Poincaré 6,137 (1936), et encore M. Pierz, Helv. Phys. Acta 12, 3 (1939) ;

W. Pauli and P. J. Belinfante, Physica 7, 177 (1940).
2) P. A. M. Dirac, Proc. Roy. Soc. A. 180, 1 (1942).
3) W. Pauli, Progress of Theoretical Physics 5, 526 (1950).
4) A la suite de P. Jordan et W. Pauli, Zeit. f. Phys. 47, 151 (1928), de nombreux

auteurs (M. Fierz, loc. cit. ; P. A. M. Dirac, The Principles of Quantum Mechanics,

Oxford, seconde édition 1935; W. Pauli, Revs, of Mod. Phys. 13, 203 (1941),
etc.) introduisent pour la quantification la relation

iHf={H,fV (7a)

comme une condition à satisfaire par l'opérateur d'énergie H. Mais les raisons
qui entraînent cette condition semblent dans ces travaux se réduire à l'analogie
de (7a) avec la relation

tirée de la mécanique classique; cette dernière relation est manifestement liée
au formalisme canonique, dont (7a) procède alors aussi. Il est toutefois bien
clair que (7a) peut aussi être considérée comme une des relations (7), avec G(i)
Pé H et g(4) ir£r-

5) D. Rivier, Progress of Theoretical Physics (sous presse).
6) J. Schwinger, Phys. Rev. 82, 914 (1951). Le lien entre le principe d'action

généralisé (utilisé dans le mémoire pour obtenir les relations de commutation) et le
formalisme canonique apparaît dans l'usage essentiel des quantités 77a, conjuguées

canoniques des champs tpa.
7) W. Pauli, Phys. Rev. 58, 716 (1940), p. 722.
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