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Renormalisation dans les séries divergentes

par A. Petermann
Institut de Physique. Université de Genève, Suisse.

(15. IV. 53).

Summary. Substraction procedure is applied to divergent series arising from
perturbation expansions of purely scalar field theories. It is first shown that
mass renormalization cannot give rise to a conditionally convergent series for all
values of external momenta. Further, the charge renormalization is discussed, leading
again to a generally divergent series; however, some ambiguities remain in the
definition of parts which are to be considered as charge renormalization terms, and
thus this substraction procedure loses his well-definite character.

Tout récemment, plusieurs travaux simultanés ont eu pour objet
de démontrer la divergence des développements en série que l'on
rencontre, en calculant par la méthode de perturbation, les
grandeurs physiques relatives à des problèmes de collision. Les travaux
de Hurst1) et de l'auteur2)*), quoique par des méthodes essentiellement

différentes, ont mené à bien cette démonstration sans toutefois

distinguer l'effet que pourrait avoir, sur la convergence, les
procédés de soustraction destinés à éliminer les effets de masse et
de charge. L'éventualité se présentait, en effet, que de telles
soustractions aient pour effet de rendre les séries conditionnellement
convergentes en détruisant l'unicité de signe qui était à la base de

ces démonstrations. Thirring3), dans sa propre preuve, a résolu ce

problème pour une jauge particulière de renormalisation, ce qui ne
permet pas de lever cette éventualité. Il était donc nécessaire de
discuter plus à fond ce problème et c'est le but que nous nous
proposons d'atteindre dans ces pages.

Reprenant les notations employées dans I, nous en résumerons
pour débuter les résultats essentiels en spécifiant explicitement
toutefois tout nouveau symbole qui pourrait être introduit.

Utilisant la densité Lagrangienne d'interaction:

L gu* (1)

*) Par la suite désigné par I.
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couplant le champ u, nous assignons à ce dernier de satisfaire
l'équation

n - x2) u 0. (2)

La fonction de propagation de ce champ admet alors la représentation
de Fourier suivante:

U*W - (2 71)* J e
k2 + x2' (3)

Dès lors, les intégrales correspondant aux diagrammes de 2 nie ordre,
irréductibles en terme de self-énergies de plus bas ordres, sont du
type

i i i
i — 2) / dx-,.. I dxn I dv,..J«.;2...» H2jï)4 4 71 "1- • • I ""^n / «^2 ¦

0 0 0

1 1

r
I dvn / dw2.. / divn-Kt

K x9xî... x'!'1 - v"-2¦ ¦ ¦ vT2¦ w"-1.. .w"-1 ¦ G,n:2---n U/2 *3 ' ' " n n n:2.. -n-

G.
n;2...n [(1- v2 w2 (1- a(û)22)).. (1- vn wn (1 - a(n_2)nn))]

5

<(x2+v2a \-n+i c/ jt_H* ' V "(«-1)1,1,» ¦ "• 4jj

Les a,k)mm sont donnés par récurrence selon:

x(p<2+p2a(w_1)M)-K+1. « £. (4)

a,X0)mm

J<0)kl

Xn-m + l • • -Xn V1 Xn—m+X ' • • Xn) m 2.. .n.

a,'(k)mm

{k) l, m

[xn_k+x...xn(l— xn_l+x...xn) sik>l; k 2...n.

\Xn-l+ \ • ¦ -Xn (1 — Xn-i+X- ¦ • Xn) SÌl>k; 1=2... n.

l_o, n—n \ wk(l-vkß-b(k-im,k+i))2
x uk Vx u(k-l)mm, l-vkwk(l-a(k_1)k+lk+1)

l-vk(l-blk_X)lJ-
wk(^ - ¦»k^-hk-\)i,k+\)) i1 - vk^-hk-\)m,k+x))

«>*;

l-vkivk(l-a,k_x)k+Xik+x)
IV,. (5)

L'examen des G„;2...„ montre que toutes ces intégrales sont bornées
supérieurement par

(6)Jn;2...n>iC»

où C est une constante indépendante de n.
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Cependant, toutes ces expressions contiennent en particulier des

termes de masse; autrement dit ne s'annullent pas lorsque p2 —x2.
Outre des effets observables et des contributions à la charge, elles

apportent une contribution qui n'a d'autre effet que de renormaliser
la masse. La somme de ces contributions indésirables est donnée
sous forme d'une série infinie en g2

à*=Zr2ng2\*) (8)
n l

dont les coefficients r2i représentent les contributions de masse des

intégrales du type (4) ainsi que de celles réductibles en terme de

self-énergies de plus bas ordre. Pour ces dernières, il faut avoir soin
de choisir les r2i en tenant compte que les insertions ont déjà été
privées de leur contribution de masse. Il est donc à remarquer que
si S est défini par

Z(p2)=ZZ2n(p2)g2» (9)

où U2n(p2) est la contribution totale non renormalisée de la 2nie
approximation pour la self-énergie, iôx 4= S (— x2).

Pour donner un aperçu de la détermination des coefficients r2nen
(8), l'examen des diagrammes relatifs aux plus basses approximations

est intuitif (Fig. 1) :

Dans la colonne A figurent les diagrammes dont les expressions
correspondantes E2n^(p2) contiennent encore les termes de masse
ir2n,j= ^2n,j (— k2)> représentés dans la colonne B. On comprend
bien comment les r2n!j sont déterminés en terme d'expressions dont
les insertions ont déjà été dépouillées de leurs termes de masse (p.
ex. 2e graphe, ordre 2; 2e, 3e, 4e graphes, ordre 3).

Ainsi définis, les coefficients r2nj ne sont pas nécessairement de
même signe, comme on peut en particulier le voir pour riX et ri2
qui sont précisément de signe opposé. Par conséquent, la série (8)

pour laquelle :

0(m!)

r2n=Zr2n,j (10)
j l

n'est pas à priori divergente.

*) La difficulté provenant du E2 infini n'a pas été examinée. Elle ne semble
cependant pas essentielle car les conclusions de ce travail s'étendent intégralement
au cas Dx(k) — (k2 + x2)~2 où elle n'apparaît pas.
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Si elle converge conditionnellement, ôx est fini*) et, en choisissant

une masse mécanique x2 telle que

x2+ôx x20, (11)

masse observable pour laquelle on escompte des prévisions de la
théorie (se reporter à 4)), on peut suivre tous les raisonnements
invoqués en I. Comme la série (9) diverge pour tout x fini, la
renormalisation de masse ne peut conduire à une convergence conditionnelle

dans le cas où (8) converge.

Ordre,
en _<r ri B

s—x H»

2

^—^ lu

r*2^_^ ^_^
5/

3 ta

r,i

fit

S7~?zsr\

~~^ rn

Fig. 1.

Diagrammes des basses approximations et leurs termes de masse r„n
correspondants.

Si, par contre (8) diverge**), le raisonnement ci-dessus ne peut
plus être suivi et pour voir que la série des termes renormalisés
diverge encore, il est nécessaire d'adjoindre à la densité Lagran-
gienne d'interaction le terme

L.. ¦iu2ô x,
et de recourir à une analyse plus approfondie de la dépendance en
p2 des termes successifs.

*) Contient une constante arbitraire. Cf. 5) et 6).

**) Rayon de convergence g2 0, sinon on pourrait trouver des g suffisamment
petits pour que ôx devienne fini, rendant ainsi une convergence conditionnelle de
(9) impossible.
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Comme l'examen détaillé de certaines intégrales effectué en I
l'a fait ressortir, le comportement asymptotique en n d'une expression

du type
i

¦I'n;(P2)-Jdx. Dn(x...)
(«(»-i) 1,1 (*•••)!>*+«y

(12)

où x. symbolise l'ensemble des paramètres de Feynman utilisés,
est déterminé par la partie Dn(x. de (12). Une borne inférieure de

(12), de la forme Cn, a été obtenue en utilisant une formule de la
moyenne pour une valeur simultanée des paramètres x... égale à
1 — 1/n. Une borne supérieure du même type*) montre que cette
évaluation correspond bien à la valeur réelle de (12). Il devient dès
lors possible, pour ces mêmes valeurs des paramètres, d'évaluer

a(n-i)i,i (x- ¦) e* de discuter quel type de fonction de p2 Jn;(p2)
représente. On démontre tout d'abord la proposition suivante:

Théorème: a(n_1)lx(x...) > a 0 (1/n). De (5):

a,
l-«m_2(l -b(n-2.)l,k)

(„-0..1 "„-l-(K-2)i,*T l-„n_2^_2(l_a(B_2),,)

x (1 - wn_2 + vn_2 wn_2 A,n_2)kt x) w.n-2

avec J(n-2)l,i a(m-2)l,l "(»-2)1, i
^(n-2)J-, 1 a(n-2)k,k °(n-2)k,l

Les a,jy, bfß ayant la propriété d'être compris entre 0 et 1/i, et
<4(„-U i,k > 0, il s'ensuit que

a(n-2)k,k ^(«-2)*,1 ~~ "(»-2)1,* => "
et que

>
* ~ "n~2 ^ ~ (a(n-2)k,k~ ^(n-2) k, l))

(«-i)l,l -- 1-vn_2wn_2(l-a,n_2)k>k)

vn-2lvn.-2A(n-2)k,l) Wn-2V„-9 10„

> M>»_2 (!-*>„-2)
-2wn-2(l~ A{n-2)k,l) \n Vn-2Wn-2A(n-2)k.lj '

*) HURST, cf. 3).
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car le minimum du terme fractionnaire est obtenu pour ò(„_2)1 k 0.
Dès lors on examine séparément les deux cas:

1° An-2n,i<à<0(l/n):
«(«-Di,i >l/»-n/S-l/n=0(1/n).

2° An-m,x>Vn:

Vl)l,l > 1/»-(»»_2«'«-84(ii-2)t,l)"1 *

• (1/n + ^„_2 wn_2 A(n_2) ti x) > 1/n 0 (1/n)

D'où, comme on l'avait annoncé,

O(»-i)i,1(«---)>o 0(l/n). (13)

La dépendance de p2 de (12) est donc celle d'une fonction décroissant

pour le moins comme (x2)~n+1 (p2/x2-l/n + l)~n+1 lorsque p2 >
— x2 croît, ce qui permet d'écrire, dès que n est assez grand :

J«-Av*) <e-^ + 1).
(14)

Jn.j(-X2)

Les intégrales correspondant à des diagrammes réductibles en
terme de self-énergies requièrent une discussion spéciale. Lors-
qu'aucune renormalisation de masse n'a été effectuée sur les insertions,

elles sont encore de la forme générale (12) dont l'examen vient
d'être fait. Un théorème semblable à celui énoncé régit le comportement

du cofacteur a(n_i)i,i de p2.
Les corrections de masse aux insertions sont des diagrammes

contenant des points r2j dans leurs lignes de propagation. Leur
comportement en fonction de p2 fait montre d'une dépendance moins
forte que celle relative aux diagrammes envisagés plus haut.
Néanmoins, comme la structure des diagrammes contenant des points
le montre, on peut en tous cas écrire, pour les intégrales Jn;i
auxquelles ils mènent :

Jn;iW) <KX2) (p« >*•)•) (15)
•^»;t(-«2)

où K est une constante positive.

*) A un terme du type log p2 près. Une inégalité beaucoup plus complexe
permettrait d'étendre ces considérations à tout p2 > — x2. Nous n'entrerons néanmoins
pas dans ces détails.
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Dans le domaine des p2 positifs, on peut alors séparer les termes
de chaque approximation qui fournissent une contribution positive
à r2„ de ceux qui en fournissent une négative, et donner à r2n la
forme suivante:

0(«l) 0(m!)

^^Ki+K8,- (16)
i 1 J 1

Séparant semblablement les J£?*, Jjj^, on a, en tenant compte
de (14) et (15) en tous cas:

0<\Jn;ii(P2)\<K^\Jn;}(-x2)\=K-p\r2n}\ (17)

et

<!(P2) -r\Zti < rH)i(K$~l)
fnég (n2\ rnég <- „nég
°n;i \P I '2«;j^ '2n;j>

et dès lors:

Ein (p2) =Z(J%i(p2) -rr:;i)+Z(J:tf(p2)-rì%) <

<Zrr:jK~-i)-z^%- —? -r2n> as)
I \ F / j pi ^. QQ

terme général d'une série divergente.
Ainsi la série des self-énergies renormalisées :

oo

Z*(P2)=Z92nZtn(P2) (21)
» 1

diverge pour p2 -> oo.
Les termes H2n (p2) de (21) contiennent encore, à ce stade du calcul,

des contributions à la charge. Autrement dit, on peut écrire (21)
sous la forme:

Z* (p2) s227 (p2)+^ (27 (p2) + KZ'* (p2)) +

+</6(27 (v2) + 2 KZx (p2)+KZ'Ï (p2))+s8 (27 (p2) +

+ 3 B'2Z7 (P2) + (R'i+ 2 B'ù Z? (P2) + R'eZ'* (P2)) + • • •
- (22)

(21) correspondant au cas où E'*n E*n et, par là, B'2n 0. Cependant,

le développement (21) est univoquement déterminé par le
calcul de perturbation, ce qui implique que les cofacteurs des g2n
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dans (22) sont invariants par rapport aux transformations de la
«jauge de renormalisation» telles que:

tV ryll V"1'* \-fn*a2n _> -""2»» ^2« ~> Zu2n-
Comme Tiiellung7) l'a montré, il n'est en général pas possible
d'opter en faveur d'un des référentiels de renormalisation plutôt
que d'un autre en invoquant des raisons physiques. Exception doit
être faite de l'électrodynamique pour laquelle des circonstances
spéciales (masse nulle du photon, observabilité de e2/4 n)
interviennent.

Puisque dans le modèle de théorie envisagé ici, aucun terme de

(21) ne présente de difficulté ultraviolette, on peut donc sans
inconvénient et sans restreindre la généralité adopter comme système
de renormalisation R'2n 0 et constater que (21) diverge pour toute
valeur de g2 + 0.

Pour terminer, il nous semble indispensable de signaler que la
renormalisation de charge, sous l'angle que nous avons choisi pour
l'examiner, perd son caractère défini du fait de la nature divergente
des séries telles que (21). En effet, effectuant le changement de

jauge de renormalisation suivant

(ß2n 0)->(E2s E;j (23)

(22) peut s'écrire:

2*(p2)=22*(p2)92[i+rt+34 £;+•••]
+ 27(p2)94[l + 322i?; + 34(^2+2 R'ù+---]

+ 27(p2)</6[l+</23E2 +...] + ••

Z'*(P2) 9r+ZT(P2) Vr+ZsiP2) £+¦¦¦
qi

(24)

gf g2(l + g2R2 + giR'i + -.-), (25)

en changeant convenablement l'ordre des termes. Tant que l'on
considère des séries convergentes, il est clair que le changement (23)
permet de retrouver le résultat Z*(p2) en choisissant la constante
de couplage selon (25), peu important l'ordre dans lequel les termes
sont sommés. Lorsque l'on est en présence d'une série divergente
telle que (21), on n'est plus sûr que les transformations combinées
(23), (25) conduisent encore au même résultat. Car par résultat
il faut préciser ce que l'on veut dire: le seul intérêt que présentent
les séries divergentes de la théorie de perturbation réside dans la
somme d'un certain nombre de leurs premiers termes et il est facile
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de voir que les bouleversements de l'ordre des termes tels qu'ils
résultent du calcul (24) ne conduisent plus à des résultats univoques
pour toute jauge de renormalisation. Et même s'il est possible pour
H*(p2) de trouver une jauge telle que les premiers termes soient
en accord avec l'observation, il n'en est généralement plus de même

pour une autre grandeur M (p, q, r) par exemple en utilisant la
même jauge.

Nous tenons à remercier MM. les Professeurs L. Rosenfeld et
M. Fierz pour leurs communications privées qui nous ont été très
précieuses.
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