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Renormalisation dans les séries divergentes

par A. Petermann
Institut de Physique. Université de Genéve, Suisse.

(15. TV. 53).

Summary. Substraction procedure is applied to divergent series arising from
perturbation expansions of purely scalar field theories. It is first shown that
mass renormalization cannot give rise to a conditionally convergent series for all
values of external momenta. Further, the charge renormalization is discussed, leading
again to a generally divergent series; however, some ambiguities remain in the
definition of parts which are to be considered as charge renormalization terms, and
thus this substraction procedure loses his well-definite character.

Tout récemment, plusieurs travaux simultanés ont eu pour objet
de démontrer la divergence des développements en série que 'on
rencontre, en calculant par la méthode de perturbation, les gran-
deurs physiques relatives a des probléemes de collision. Les travaux
de HursT?!) et de 'auteur?)*), quoique par des méthodes essentielle-
ment différentes, ont mené & bien cette démonstration sans toute-
fois distinguer l'effet que pourrait avoir, sur la convergence, les
procédés de soustraction destinés a éliminer les effets de masse et
de charge. L’éventualité se présentait, en effet, que de telles sous-
tractions alent pour effet de rendre les séries conditionnellement
convergentes en détruisant I'unicité de signe qui était a la base de
ces démonstrations. THIRRING?), dans sa propre preuve, a résolu ce
probléme pour une jauge particuliére de renormalisation, ce qui ne
permet pas de lever cette éventualité, II était donc nécessaire de
discuter plus & fond ce probléme et c¢’est le but que nous nous pro-
posons d’atteindre dans ces pages.

Reprenant les notations employées dans I, nous en résumerons
pour débuter les résultats essentiels en spécifiant explicitement
toutefois tout nouveau symbole qui pourrait étre introduit.

Utilisant la densité Lagrangienne d’interaction:

L=qgu? (1)

*) Par la suite désigné par 1.
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couplant le champ w, nous assignons & ce dernier de satisfaire
I’équation
(O—»2)u=0. (2)

La fonction de propagation de ce champ admet alors la représenta-
tion de FoURIER suivante:

_ =21 [ i (dR)
D,(2) = e | €%9 pimar (3)

Dés lors, les intégrales correspondant aux diagrammes de 2 n'¢ ordre,
irréductibles en terme de self-énergies de plus bas ordres, sont du

type

oo n=12m)* ( O; n-2)'fdm1 fda: /dfuz

]

/dvn / Bl « /dw s
U 0
Kn;2- =t R 1 e s v?z"“2. oy 2 B N M
—2
2
402 —n+1 _ 9
X (%2 PP ag_qyy,0) " A= g * (4)
Les agyy.  sont donnés par réeurrence selon:
By = T s o+ oy, =8, pyrvw ol il o= vt s P
TppireLy(1—2y ;. 1...2,) sik>1l; k=2...n.
b(o)kl - ; [—9
Ly giie Tyl —2 5.q...1,) sil>k; =2...n
wp (1= v (1= —1ym, k+1))? ]
a =|1—v, (l—a,,_ W,
R [ i =mm) g VWi (1= @ge-1) k+1,k+1)

b(k)l,m = [1_13{- (L= b(i.-—-l)l, m) —

(o (L=bg 1y 1)) (1 “”k(l_b(k‘”m”"“))] we.  (5)
1-vpwp(l—ag-1yk+1,k+1) f

L’examen des G,.,. ., montre que toutes ces intégrales sont bornées
supérieurement par

ou C est une constante indépendante de n.
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Cependant, toutes ces expressions contiennent en particulier des
termes de masse ; autrement dit ne s’annullent pas lorsque p2? = —x?2,
Outre des effets observables et des contributions & la charge, elles
apportent une contribution qui n’a d’autre effet que de renormaliser
la masse. La somme de ces contributions indésirables est donnée
sous forme d’une série infinie en g2

(5% =ZIT2‘H 92 n:*) (8)

dont les coefficients r,; représentent les contributions de masse des
intégrales du type (4) ainsi que de celles réductibles en terme de
self-énergies de plus bas ordre. Pour ces derniéres, 1l faut avoir soin
de choisir les r,; en tenant compte que les insertions ont déja été
privées de leur contribution de masse. 1l est donc & remarquer que
s1 2 est défini par

=2, % (0" (9)

ou 2, (p? est la contribution totale non renormalisée de la 2n'
approximation pour la self-énergie, 1dx + 2 (— x2).

Pour donner un aper¢u de la détermination des coefficients r,, en
(8), 'examen des diagrammes relatifs aux plus basses approxima-
tions est intuitif (Fig. 1):

Dans la colonne A4 figurent les diagrammes dont les expressions
correspondantes 2y, ;(p* contiennent encore les termes de masse
179y, = 2oy, ; (— %2), représentés dans la colonne B. On COmprend
bien comment les r,,,; sont déterminés en terme d’expressions dont
les insertions ont déja été dépouillées de leurs termes de masse (p.
ex. 2¢ graphe, ordre 2; 2¢, 3¢, 4¢ graphes, ordre 3).

Ainsi définis, les coefficients r,, ; ne sont pas nécessairement de
méme signe, comme on peut en particulier le voir pour 7, et 7,
quli sont précisément de 51gne opposé. Par conséquent, la série (8)

pour laquelle:
0(n?)

Ton =, Ton.i (10)

i=1

n’est pas a priori divergente.

*) La difficulté provenant du X, infini n’a pas été examinée. Elle ne semble
cependant pas essentielle car les conclusions de ce travail s’étendent intégralement
au cas Dy(k) ~ (k*+ %?)~2 ou elle n’apparait pas.
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Si elle converge conditionnellement, dx est fini*) et, en choisis-
sant une masse mécanique x2 telle que

W+ 0w =n2, (11)

masse observable pour laquelle on escompte des prévisions de la
théorie (se reporter & 4)), on peut suivre tous les raisonnements
mvoqués en I. Comme la série (9) diverge pour tout  fini, la renor-
malisation de masse ne peut conduire & une convergence condition-
nelle dans le cas ot (8) converge.
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Fig. 1.

Diagrammes des basses approximations et leurs termes de masse r,, ;
¥
correspondants.

Si, par contre (8) diverge**), le raisonnement ci-dessus ne peut
plus étre suivi et pour voir que la série des termes renormalisés
diverge encore, 1l est nécessaire d’adjoindre a la densité Lagran-
gienne d’interaction le terme

L =—au2dx,

#

et de recourir & une analyse plus approfondie de la dépendance en
p? des termes successifs.

*) Contient une constante arbitraire. Cf. 3) et 8).
**) Rayon de convergence g2 = 0, sinon on pourrait trouver des g suffisamment
petits pour que d» devienne fini, rendant ainsi une convergence conditionnelle de
(9) impossible.
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Comme l'examen détaillé de certaines intégrales effectué en I
I’a fait ressortir, le comportement asymptotique en n d’une expres-
sion du type

1 |
J, (pz):fdm. 1 Dy (@ ..) (12)

AUn-1)1,1(Z- - .) p2+ 2?1

ou z... symbolise I'ensemble des parameétres de Feynman utilisés,
est déterminé par la partie D, (x. . .) de (12). Une borne inférieure de
(12), de la forme C™, a été obtenue en utilisant une formule de la
moyenne pour une valeur simultanée des parameétres x... égale a
1 —1/n. Une borne supérieure du méme type*) montre que cette
évaluation correspond bien a la valeur réelle de (12). Il devient des
lors possible, pour ces mémes valeurs des parametres, d’évaluer
An—1y1,1 (2. .) et de discuter quel type de fonction de p? J,; (p?)
représente. On démontre tout d’abord la proposition suivante:

Théoréme: ay,_q1y11(x...) = a=0(1/n). De (5):

1-v,_o(1-bir—2)1,1)

e
—Vp—2Wp_o(l—AUn—2)r 1)

Gin—1y1,1 = [”n—1A(n-—2)1,k+ 1

X(1—w, o+, W, 5 A(n—Z)k, 1)] Wy_o

avec A(n_g)l,k = Op—9)1,1 b(n—2) Lk

A

n=2k,1 " Y=k, 8 Dn—2yr,1*

Les ay), by ayant la propriété d’étre compris entre 0 et 1/,, et
Au—1y1,3 = 0, il s’ensuit que

Up—oyp, A(n—ﬁ)k,l = b(n—2)1,k =0
et que

1-v, o(1—-(em—2)r,k— A(n—2)%,1))
1=v,_owy_o(1=ap_2)r 1)

p—-1)1,1 = X

1
L (g + 0y Wy s Au_syy, 1) Wy —2

Wy —g (1 vy -2) (1

—tv,_w, A, . ),
_vn—zwn—-Z(lﬁA(n—mk,l) =i e 2, 1

=1 n

*) Hursr, cf. 3).
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car le minimum du terme fractionnaire est obtenu pour b, _s; = 0.
Dés lors on examine séparément les deux cas:

10 Aoy, <d <O0(1/m):

Up-1y1,1 = 1/n-n/3-1/n =0 (1/n).

20 Ay_oyp,1 > 1/n:
. 3
Gy—1y1,1 = 1/n- (v, _ow,_, A(n—z)k,l) '

‘(In+o,_yw, , A(n-—2) k, ) = 1/n=0(1/n).
D’ol, comme on I’avait annoncé,
An—1y1,1 (aj 5 ) = 0= 0(1/%) . (13)

La dépendance de p2? de (12) est donc celle d'une fonction décrois-
sant pour le moins comme (%2)~"*1 (p2/x2-1/n+1)~"*1 lorsque p2 >
— %2 croit, ce qui permet d’écrire, dés que n est assez grand :

.
Jusi ) = () (14)

Jn;j(_%z) -

Les intégrales correspondant a des diagrammes réductibles en
terme de self-énergies requiérent une discussion spéciale. Lors-
qu’aucune renormalisation de masse n'a été effectuée sur les inser-
tions, elles sont encore de la forme générale (12) dont I’examen vient
d’étre fait. Un théoréme semblable & celul énoncé régit le comporte-
ment du cofacteur ag,_;y; ; de p2

Les corrections de masse aux insertions sont des diagrammes con-
tenant des points ry; dans leurs lignes de propagation. Leur com-
portement en fonction de p? fait montre d’'une dépendance moins
forte que celle relative aux diagrammes envisagés plus haut. Néan-
moins, comme la structure des diagrammes contenant des points
le montre, on peut en tous cas écrire, pour les intégrales J,.; aux-
quelles 1ls ménent:

SuPL K%, (92> (15

Jn; i(=x?) o F ’
ou K est une constante positive.
*) A un terme du type log p? prés. Une inégalité beaucoup plus complexe per-

mettrait d’étendre ces considérations & tout p? > — %2, Nous n’entrerons néanmoins
pas dans ces détails.
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Dans le domaine des p? positifs, on peut alors séparer les termes
de chaque approximation qui fournissent une contribution positive
4 79, de ceux qui en fournissent une négative, et donner a r,, la
forme suivante:

0(n!) O(n!) ¢
=D it D e (16)
=1 j=1

Séparant semblablement les Jf%, Ji%, on a, en tenant compte
de (14) et (15) en tous cas:

O\<‘~ ‘Jn,;,(pz ‘ 2 (J (—~x2)| - pz [721Q (17)
et
Tios () — 18 <o (E 5 —1)
(18)
Jﬁ%(p) 1@%75§——T?f?,
et deés lors:
20an(P?) =X (T2 (p?) —18%.) + 2 (T2 (p?) — 2% ) <

%2
<ng;$;i(KF—1)—ngig;,.. ., (19)
v 7

p? —>

terme général d’une série divergente.
Ainsi la série des self-énergies renormalisées:

3y = 292“2‘;‘; (»?) 21)

diverge pour p? — co.

Les termes 23, (p?) de (21) contiennent encore, & ce stade du calcul,
des contributions a la charge. Autrement dit, on peut écrire (21)
sous la forme:

270 =92 2 () +9* (X5 (%) + By 35" () +
+9%( 2 (0% +2 B, Y (09 + B, 3T (07) + 98 (O (0?) +
+38 R, 3" (p?) +(Ré2+2 B) Y (0 + By )" (pY) +---, (22)

(21) correspondant au cas out 2J* = 27 et, parla, R, = 0. Cepen-

dant, le développement (21) est univoquement déterminé par le
calcul de perturbation, ce qui implique que les cofacteurs des ¢*”
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dans (22) sont invariants par rapport aux transformations de la
«jauge de renormalisation» telles que:

R' Rll . Ik ¥
en 7 Alayp; on T 2n "

Comme TueLLuNe?) I’'a montré, il n’est en général pas possible
d’opter en faveur d’'un des référentiels de renormalisation plutdt
que d’un autre en invoquant des raisons physiques. Exception doit
étre faite de l'électrodynamique pour laquelle des circonstances
spéciales (masse nulle du photon, observabilité de e?/4 n) inter-
viennent.

Puisque dans le modéle de théorie envisagé 1ci, aucun terme de
(21) ne présente de difficulté ultraviolette, on peut donc sans in-
convénient et sans restreindre la généralité adopter comme systéme
de renormalisation R,, = 0 et constater que (21) diverge pour toute
valeur de g2 = 0.

Pour terminer, 1l nous semble indispensable de signaler que la
renormalisation de charge, sous I’angle que nous avons choist pour
Iexaminer, perd son caractére défini du fait de la nature divergente
des séries telles que (21). En effet, effectuant le changement de
jauge de renormalisation suivant

(B;, =0) - (B;, = R;,) (23)
(22) peut s’écrire:
2700 =2 )9 [1+¢* By +¢* B+ -]
+ 2] (%) ¢ [1+9%2 Ry +g* (R4+ 2 Ry) +- -]
+s (0% 9°[1+ 928 By+- -]+ -
=2 @) G+ @) g+ Y ) g (24)

@=9*(1+9*Ry+9* By++-), (25)

S1

en changeant convenablement I'ordre des termes. Tant que 'on
consideére des séries convergentes, il est clair que le changement (23)
permet de retrouver le résultat 2*(p?) en choisissant la constante
de couplage selon (25), peu important ’ordre dans lequel les termes
sont sommés. Lorsque 'on est en présence d’une série divergente
telle que (21), on n’est plus stir que les transformations combinées
(23), (25) conduisent encore au méme résultat. Car par résultat
il faut préciser ce que l'on veut dire: le seul intérét que présentent
les séries divergentes de la théorie de perturbation réside dans la
somme d’un certain nombre de leurs premiers termes et 1l est facile
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de voir que les bouleversements de 'ordre des termes tels qu’ils
résultent du calcul (24) ne conduisent plus & des résultats univoques
pour toute jauge de renormalisation. it méme &1l est possible pour
2*(p?) de trouver une jauge telle que les premiers termes soient
en accord avec l'observation, il n’en est généralement plus de méme
pour une autre grandeur M (p, q, r) par exemple en utilisant la
méme jauge.

Nous tenons & remercier MM. les Professeurs L. RosENFELD et
M. Fierz pour leurs communications privées qui nous ont été trés
précieuses.
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