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Remarques sur la singularité du temps,
l'utilisation d'un formalisme quantique homogène

et sur la relation d'incertitude entre le temps et «l'énergie»1)
par P. Wilker et A. Mereier (Berne)2).

(15 IV 1953.)

Bésumé: La singularité de la variable temps. Le problème d'homogénisation.
Premier procédé. Deuxième procédé. Particule libre. Potentiel — V(x).

1. La singularité de la variable temps.

Le formalisme canonique ordinaire non homogène), comme le
formalisme quantique, mettent en évidence le rôle singulier du
temps par rapport à tous les paramètres du genre coordonnée,
moment etc. Ni le corset relativiste, qui ne s'applique d'une façon
systématique que pour la particule (ou le champ quantique correspondant),

ni l'homogénisation du formalisme canonique, ne sont
parvenus à effacer cette singularité. Cette dernière paraît bien être
d'ordre physique et non pas seulement mathématique3). Le meilleur

moyen de définir l'espace est celui préconisé par Lie qui le
fait engendrer par un groupe d'opérations4). S'il est juste de
procéder ainsi, — et il convient de le faire non seulement pour l'espace
ordinaire, mais pour tout espace employé dans une description
physique (configuration, phase, Hilbert...), le temps, lui, n'est pas
engendré par un groupe; en revanche, il apparaît, dans tous les cas
non-relativistes en tous cas, comme l'actualisation physique du
paramètre du groupe (continu) et l'introduction de la relativité ne
fait qu'en reporter formellement l'actualité sur un nouveau
paramètre.

C'est tout d'abord son sens unique qui donne au temps sa singularité.

C'est pourquoi il est artificiel d'intégrer le temps à l'ensemble
des coordonnées de tel ou tel espace en cause. Si c'est cependant,
ce que fait la théorie de relativité dans la forme minkowskienne par

1) Une note préliminaire a été présentée sous le titre «Beziehung einer
Unbestimmtheitsrelation von Energie und Zeit zum homogenen kanonischen Formalismus»

au Congrès International de Mécanique à Istamboul, 1952.
2) Hommage au professeur Albert Perrier pour son jubilé scientifique.
3) Voir, pour plus ample information, une étude parue dans les Stud, phil., X,

85 (1950).
4) Voir H. Margenau, The Nature of Physical Reality (New York, 1950),

spécialement le chap. 7.
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exemple, de nombreux auteurs se sentent tenus de rappeler qu'une
différence persiste; pour le voir, on s'en référera à l'absurdité qu'il
y aurait à passer de la «succession» physiquement possible

xx, x2, x3 xx, pour des époques tx < t2 < t3,

à «l'ordre» physiquement impossible

h' h' h h pour des positions xx < x2 < x3.

Cette absurdité se manifeste dans toute théorie qui fait usage
d'une équation dynamique dont les solutions ne sont définitivement
déterminées que par la fixation de conditions initiales (Newton,
Schrödinger, On remarquera qu'elle n'est pas en contradiction

avec une équation de continuité à cause de l'usage que fait
cette dernière du vecteur de la densité de courant.

C'est ensuite la distinction réversible—irréversible qui renforce
la singularité du temps. Dans le formalisme canonique, on voit
qu'il y a deux types de réversibilité, celle des dqk, qui est une
réversibilité géométrique, et celle des dpk qui est dynamique. Dans les
traités, on n'explique jamais que la seconde.

Le caractère d'irréversibilité des théories statistiques semble
intimement lié non seulement à une référence à l'espace de phase dont
l'origine canonique est bien évidente, mais aussi à l'emploi d'équations

dynamiques rentrant dans le cadre canonique, de façon qu'on
ait quelque chose comme le théorème de Liotjville qui, sans être
encore part intégrante de la théorie statistique, en assure néanmoins
le bon sens. Le théorème de Liotjville est d'ailleurs l'une des

propositions de la physique qui, sans être postulées comme d'autres
équations de continuité, mettent le mieux en relief la singularité
du temps.

Or (voir ci-dessous), la correspondance entre la mécanique non-
quantique et la mécanique ondulatoire n'est nulle part aussi
symétrique, que dans un formalisme homogène où le temps t est considéré
comme une coordonnée ayant perdu, formellement en tous cas,
sinon actuellement, le caractère singulier commenté ci-dessus. Pour
cette raison, il est utile d'examiner l'effet d'une homogénisation
(qx, q2, ql,t ql+1) aussi bien dans le cadre non-quantique qu'en
mécanique ondulatoire. Mais il faut le faire sans perdre de vue ce

qui a été dit plus haut, pour en reconnaître les bornes. Les calculs
qui suivent n'ont donc pas la prétention d'ôter à t sa réalité singulière.

Le but en est d'une part de montrer comment on peut concevoir

et effectuer une homogénisation du formalisme quantique1)

x) Celle du formalisme de la mécanique préquantique est connu dans ses grandes
lignes et sera développé systématiquement ailleurs.
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d'autre part d'attirer l'attention sur certains caractères probabi-
listes et conjointement, sur la relation d'incertitude censée exister
entre l'énergie et le temps.

2. Le problème d'homogénisation.

En dynamique analytique classique, il est possible de réunir les
l coordonnées qk et le temps t ql+1 en un ensemble de X l + 1

coordonnées. On introduit un Aième moment conjugué pK, les
indices grecs variant de 1 à X et les latins de 1 à Z; on a alors les équations

canoniques dites homogènes

oft • ô§ ,„

pourvu que l'hamiltonien homogène § § (qx, qv px p;)
satisfasse à la condition

$ 0!). (2)

§ admet la forme particulière

S H + pl+x (3)

où H H (qx, qt; t; px, pt) est l'hamiltonien ordinaire non
homogène.

La règle d'application la plus rapide et en même temps la plus
élégante pour obtenir l'équation de Schrödinger consiste à
remplacer les 1 moments px par px %/i djdqx dans (2) avec (3) appliqué

alors à une fonction y> ip (qx, qx)2), et l'on a automatiquement

Hyj + TcW ° (n l;H=H(q,t,p)). (4)

Mais d'ordinaire, le temps t, ci-dessus ql+1, est en mécanique
quantique un nombre c au contraire des qk. Si le formalisme doit
être vraiment homogène, pourquoi y a-t-il cette différence!

On peut indiquer deux procédés pour atteindre une homogénisation

quantique plus parfaite.
D'une part on peut reporter sur un nouveau paramètre x le rôle

de variable indépendante assumé par le temps déjà dans le formalisme

inhomogène. D'autre part on peut chercher à formuler les
opérations qui transforment l'équation (4) distinguant le temps,
en une équation distinguant n'importe quelle variable qx.

x) Un exposé très complet du formalisme homogène de la mécanique analytique
paraîtra dans un ouvrage en préparation.

2) Voir H. A. Kramers, Grundlagen der Quantentheorie (Leipzig 1938), p. 46.
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3. Premier procédé.

En utilisant la fonction delta, on peut repousser sur un paramètre
t le rôle de variable indépendante en introduisant une nouvelle fonction

d'onde cp (qx qx, x) égale à

cp \ô(t-qx(x))xp(qx---ql,t)
Si l'on pose alors, avec g' — dg/dx,

on trouve
C» rr, J

i dr*?+4-4*-=o
et l'on peut interpréter

\cp\2dV

comme la probabilité de trouver le système dans l'état limité à

l'élément de configuration homogène dV dqx dqx. En vertu
des propriétés de la fonction delta, l'équation de continuité en cp

est satisfaite si elle l'est en yj.
Ce premier procédé ne mène pas très loin parce qu'il repousse

formellement l'inhomogénité sur x, et on pourrait l'appliquer
successivement à x (a), etc. Néanmoins il permet l'évaluation de
commutateurs qui n'apparaissent pas dans le formalisme inhomogène.
On démontre que

Pa1ß-9ßP* -J0*ß P°ur a,^ l,---A (5)

et que

*9«-9,$ T-Ht' •&P,-P^ -|-ôÔf;(^ l---^)-(6)et(7)

C'est donc entre px et qx t qu'on obtient, de (o), une relation
de commutation dont découle une relation d'incertitude et non pas
entre H et t.

En prenant ~ r
F(x) cp*FcpdV

pour valeur moyenne de F dans le formalisme homogène, on établit
à partir de (6) et (7) les équations canoniques pour les valeurs
moyennes

** dpx ' v* dqx
¦

Pour x k, on trouve les relations canoniques inhomogènes bien

connues, car qk qk et pk pk, où g j y>*g ip dv est la valeur
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moyenne dans le formalisme inhomogène. Quant à y. X, on
obtient o'. t' etx

~ oH
P* —3T-

Aussi, lorsque l'hamiltonien ne contient pas explicitement le

temps, trouve-t-on
px const.

C'est —px qui est l'opérateur d'énergie (et non pas H). Cette observable

a une valeur moyenne constante lorsque dHjdt 0: telle est
l'une des démonstrations les plus élégantes du théorème de conservation

de l'énergie en théorie quantique. On a d'ailleurs en toute
circonstance

4. Deuxième procédé.

Soit ipx (qx qx) la solution d'une équation de Schrödinger

[H(qx---qx; Px---Px_1)+P,]y 0 (8)

distinguant qx t. On sait que

Ql=Q>- QX(qx---qx_x; qò=W?
est la densité de probabilité à une époque donnée t qx, soit : la
densité de probabilité des variables non distinguées pour la valeur
donnée de la variable distinguée.

Il s'agit alors de distinguer une variable quelconque qô telle que,
ipô (qx qx) étant la solution d'une «équation transformée» de

Schrödinger,
ôô(?!¦•¦ ïà-x> &+1 >¦ • ¦ 3a; qs) WT (9)

fournisse la répartition statistique quantique des variables qx,

qô-v qe+v ¦ ¦ ¦ qx pour une valeur donnée de qâ.
Or (8) est la transcription quantique de (2) avec (3). Supposons

alors l'équation (2) résolue par rapport au moment classique ps et
mise par conséquent sous la forme

H<a' + pd 0 avec &«> H (qx - - - qx ; px---pô_x, pd+1,---pù (10)

L'hypothèse la plus simple est d'admettre qu'on peut écrire

[H^+pâ]ve=0. (11)

Le passage de (8) à (11) se fera en principe de facon que H(<i)

soit hermitien dans l'espace où qd est distingué, et l'on aura une
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«conservation en qj) pour \rpô\2, dont la signification physique n'est
cependant pas évidente. Il faut admettre une proposition ayant à

peu près la teneur que voici: Le système se manifeste en chaque
point à une époque t comprise entre — oo K t K oo. (Comparer la
conclusion à la suite de (27), ci-dessous.)

On remarque de suite que l'application de (11) peut présenter une
difficulté d'ordre mathématique. En physique quantique ordinaire,
H H{X>) est, dans tous les cas connus, un polynôme hermitien en
lespx. On ne peut s'attendre par contre à ce que H(d) en soit également

un. Il faut donc faire appel à une méthode qui permette de
formuler l'opération H1' y+ pour un opérateur Jf* quelconque. D'une
part, H. Weyl1) a indiqué qu'on y parvient en développant
H^(q, p) en intégrale de Fourier

oc

Hf(q,p)= feHav+r"H(a,x)dadx, (12)
— oo

puis en y remplaçant

ei(op+rq) par e-iiOTeiT*y+(g—ff)

ce qui fournit une expression de H+ yß :

00

Hifi=fe-iiazÌ(a,x)eiriyii(q- a) da dx. (13)
— 00

D'autre part, J. von Neumann2) a indiqué le procédé que voici:
Un opérateur hermitien quelconque A se développe selon son spectre

A=JxdEx,

et toute fonction F (A) s'obtient sous la forme

F(A) [F(x)dEt.

On peut montrer que pour toute fonction de l'un des opérateurs
q ou 1/i d/dq, les procédés de Weyl et Neumann coincident. Par
contre, le procédé de Neumann, au contraire de celui de Weyl, ne
s'applique pas à une fonction des deux opérateurs non commutables
qk etpk. Malheureusement le développement (12) n'est possible que
lorsque i?f remplit certaines conditions de convergence. Nonobs-

ZS. f. Physik, 46, 1, 1928.
2) Annals of Math., 32, 1931.
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tant cela, on peut formellement effectuer une transformation de
Fourier pour calculer £ (a, x) que l'on réintroduit dans (13) qui
s'écrit alors

Hf v+ -~ fe ~l [r^+r^av\ jj\ fflt yj eirq yt fq_ffj d/ldvdr da (14)

L'intégrale converge si l'on impose à yfi des conditions assez
fortes. Supposant celles-ci remplies, on peut considérer (14) comme
définition de l'opération H* yi*. Nous traiterons les cas d'une
particule unique libre et d'une particule dans un champ.

5. Particule libre.

On a les deux équations du type (2)

H«>+plS\~pl+pt=0 (^+pt n2x + pt,(nx ^,m l)
et

D'où les «équations de Schrödinger»

(HM + 7ix)cp(x,t)

ße-^y—//"cos Aff99(a;,/ — o-)d/M^o- + y— -£ =01). (16)
u '

L'équation (15) admet la solution particulière

y e«**-»t> avec *!. „. (17)
À

En effet: Soit
oo oo oo

(/ — p f Bip) cos pa da; P(a) —— / |/ — /x cos /xa dix —— / ]f/x cos /iad/t,2nJ 1 r — r—r- 2
u ô

donc y—p —— / y fx cos /xa cos pa da d/x Be—— / yjx cos /xa e'pada d/x,
u o

oo

et enfin en vertu de (13) (/—jt> tp(x,t) Be / (//* cos /xa cp(x,t — a) dad/x D'où

o
l'équation (16).
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Tentons de prendre le second membre de (17) pour solution cp de

(16) également:

cp(x,t)=ei«*-«t\cp(x,t-o)=ei«°cp,^d£=-^cp, (18)

donc selon (16),

1 /" — • k
— Re^— Ypi cos pi a elm°dpi da + • - 0

L'intégrale étant l'intégrale de Fourier de j/cû, on a automatiquement

k |/2 m, et (18) est bien solution. Mais la fonction y> de (17)
n'est pas absolument intégrable et l'intégrale diverge. Cela ne doit
pas nous étonner, car la théorie quantique ordinaire ne considère

pas des fonctions d'onde pareilles comme solutions strictement
possibles, si ce n'est comme composantes de paquets d'ondes.
(Comparer ci-dessous, à l'équation (26)).

6. Potentiel -V(x).

Les deux équations du type (2) s'écrivent

nl-V(x)+pt 0 (19)

±Vv(x)'^pt + 7tx 0, (20)

«celles» de Schrödinger

-m-V(z)v+l% 0 (21)

(H^ +^cp -.^Jei^\/V(xy^cp(x,t-a)d/xda+-^d£ 0.

(22)

L'équation (20) montre que t est variable cyclique, aussi essaiera-
t-on comme solution (particulière) de (22) la fonction

P» Z (*)«""'. (23)
donc

H^cp x(x)HMeimt x(x) [- -^ fe1"" VV(x) -~pt e*»«-«* dpi da

cpm [- ~ feia" YV(x)^Ji eima dpt dai cp K (x, co) (39)
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où l'intégrale est le développement de Fourier de

K(x,co)=-]/V(3^~co.
En introduisant (23) dans (22), il reste par conséquent une équation

pour x, qui s'écrit

\/2dx

d'où la solution particulière

—iK(x,co)x,

<Pm(x,t) =e
¦it— Y 2. j K(t, oS)dt

X

e \ " ' (25)

La solution générale s'obtient par superposition de solutions (25)
correspondant à un spectre de fréquence A (co) :

X

f i m t i Yî I |/f(t)-cu dz

cp(x,t)= A(co)e e
J (26)

On déterminera A (co) en se donnant cp (0,t) à l'origine des x, car

cp(0,t) fA(co)eitmdco, d'où A(co) =-~ I'cp(0,a) e-iaado.

Or, on démontre1) qu'étant donné une densité de probabilité du
type (9) et la probabilité z (qx, qx) dqxdq2.. .dqx de trouver
simultanément les coordonnées qx dans les intervalles (qx, qx + dqx),

on a, indépendemment des équations de Schrödinger, mais simplement

parce qu'il s'agit d'aléatoires,

ô_ z(ix---v)
lzdq1 ¦¦dqô_1dqd+1---dqx

Pour x et t, donc,

Qx(x,t)= .z{x't] çf (x,t)- z{x't]
z (x, t)dx I z (x, t) dt

Si l'état est stationnaire en t, q* q*(x) et

z(x,f) q1(x) z(x,t) dx; zdt q\x) / zdxdt çf(x)

puis

ztr t\ Qt(x) zdx r
e'(x, t) zx^- J z (x t) dx Q*(t)

zdt S W J

Voir H. Cramer, Mathematical Methods of Statistics (1946), p. 268 ff. et p. 292.
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Ce calcul prouve que si q* (x) est indépendant de t (état station-
naire en t), qx ox(t) est indépendant de x (état stationnaire en x).
Il faut alors que

z(x,t)=Ql(x)Q*(t).

Soit alors un état stationnaire en t, de la forme y>* a(x)exvt,
solution particulière de (21), et sa densité de probabilité |y'|2 q*

indépendante de t; il faut que pour la solution correspondante y>x

de (22), la densité de probabilité \y>x\2 qx ne dépende pas de x.
Pour y satisfaire, on choisira

A (co) 0 pour co < co0 ~— et co > co0-]——, A co -> 0

de sorte que
X

lYifYWÖ^^odr

if(x, t) A(co0) e » ém'lAco

g*= \yf\2 \A(oj0)\2(Aco) 2

En normant y>x: f\y>x\2dt f\A(co)\2dw \A(co0)\2 Aco 1, on
trouve simplement

qx Aco-+0. (27)

Donc: Etant donné un état rigoureusement stationnaire en t, la
probabilité ox de trouver la particule à une époque située dans
l'intervalle (t, t + dt) en une position x donnée s'évanouit.

On rapprochera cette conclusion des estimations faites à propos
de la relation d'incertitude censée exister entre le temps et l'énergie1).

Il est entendu que la question capitale qui se pose est de savoir
si la distinction d'une coordonnée quelconque q6, même
mathématiquement correcte, a un sens physique, car en fin de compte la
grande multitude des expériences atomiques ne confirme sûrement
que la distinction du temps t qx, et pas une autre.

1) Comparer par exemple aux passages suivants: H.A.Kramers, Grundlagen
der Quantentheorie (loc. cit.), page 25. — W. Pauli, Wellenmechanik (Hdb. der
Physik, XXIV/1), p. 85 et p. 146, note. — E. S. Schrödinger, Berliner Sitzungsberichte

(1931), page 243.
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