Zeitschrift:	Helvetica Physica Acta
Band:	26 (1953)
Heft:	II
Artikel:	Ultrarotspektren und Struktur von - und -Hexabromcyclohexan
Autor:	Zbinden, R.
DOI:	https://doi.org/10.5169/seals-112404

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 05.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ultrarotspektren und Struktur von α - und β -Hexabromcyclohexan

von **R. Zbinden**, Basel. (24. II. 1953.)

1. Einleitung.

Wir haben uns die Aufgabe gestellt, die Absorptionsspektren der beiden Isomere α - und β -C₆H₆Br₆ im Gebiete von 2—15 μ zu deuten und die Struktur der α -Form zu finden. Für die β -Form ist diese bereits bekannt. Sie wurde von DICKINSON und BILICKE¹) aus dem Röntgendiagramm von Einkristallen bestimmt. Danach hat der Kohlenstoffring die Sesselform, und die Brom-Atome sind alle symmetrisch nach aussen angeordnet (Stellung *a* in Fig. 9). Dieses Resultat wird — wie wir später sehen werden — auch durch das Absorptionsspektrum (Fig. 13a) bestätigt. Es bleibt uns also die Aufgabe, die Konfiguration der α -Form zu finden. Zu diesem Zwecke werden wir zuerst alle geometrisch möglichen Stereo-Isomere abzählen und sehen, welche Konfigurationen für die α -Form in Frage kommen. Eine eindeutige Strukturbestimmung ist erst an Hand der UR-Spektren möglich, deren Deutung in Abschnitt 5 besprochen wird.

2. Herstellung der Substanzen.

Hexabromcyclohexan wird durch Bromieren von Benzol unter Einwirkung von Licht hergestellt²). Dabei entstehen im wesentlichen drei Stoffe: α -, β -C₆H₆Br₆ und Para-C₆H₄Br₂. Je nach den Bromierungsbedingungen ist das Mengenverhältnis verschieden. Hier seien zwei typische Fälle angeführt:

a) 100 g Brom + 100 g Benzol + 10 cm³ 1% ige Sodalösung, während 50 Stunden an Rückflusskühler kochen und mit 1000 Wattlampe beleuchten. Ergebnis: 2,3 g α -C₆H₆Br₆.

b) 100 g Brom + 20 g Benzol + 10 cm³ 1% ige Sodalösung, während 50 Stunden rühren, mit Eiswasser kühlen und mit 1000 Wattlampe beleuchten. Ergebnis: 1 g α -, 70 mg β -C₆H₆Br₆ und ganz wenig p-C₆H₄Br₂.

Im besten Fall ist also die Ausbeute für die β -Form immer noch kleiner als 1%. Wird nach dem Abfiltrieren von b) die Flüssigkeit noch etwa zwei Wochen stehen gelassen, so kristallisiert Paradibrombenzol in grossen Mengen (10 g) aus.

Die Reindarstellung der Isomere α - und β -C₆H₆Br₆ erfolgte nach der Vorschrift von HENDRIKS³).

Da man von Hexachlorcyclohexan 5 Isomere kennt, haben wir vermutet, bei der entsprechenden Bromverbindung ausser den zwei schon bekannten noch weitere zu finden. Bei den Ansätzen a) und b) wurde die zurückgebliebene Flüssigkeit und der Waschalkohol eingedampft. Von den Rückständen sowie vom festen Rohprodukt wurden *UR*-Spektren aufgenommen, um eventuell noch andere Substanzen nachzuweisen. In diesen Spektren konnten aber nur Banden von α -, β -C₆H₆Br₆ und von p-C₆H₄Br₂ gefunden werden. Die Empfindlichkeit der Nachweismethode beträgt ca. 1%.

3. Diskussion der sterisch möglichen Isomere.

Das $C_6H_6Br_6$ -Molekül hat nur Einfachbindungen. Wir nehmen deshalb an, die 4 Valenzen der C-Atome zeigen in Richtung der Ecken eines Tetraeders. Unter dieser Annahme sind für den C_6 -Ring zwei Konfigurationen möglich: die Sessel- und die Wannenform (Fig. 9). (Wir bemerken noch, dass der C_6 -Ring bei der Sesselform stabil ist, während er für die Wannenform ohne Energieänderung im Ring verdreht werden kann. Bei genügender Verdrehung entsteht aber wiederum ein wannenförmiger Ring.)

Fig. 9. Sessel- und wannenförmiger Kohlenstoffring.

An jedes C- sei je ein H- und ein Br-Atom gebunden. Diese Annahme wird auch durch das UR-Spektrum bestätigt, denn bei einer anderen Verteilung der 6 Br- und 6 H-Atome würde im Spektrum eine typische CH₂-Absorptionsbande bei ca. 7 μ erscheinen müssen. Das ist aber nicht der Fall (vgl. Fig. 13).

Durch einfaches Abzählen erhält man die Anzahl der geometrisch möglichen Stereo-Isomere. Sie beträgt für die Sesselform 16, für die Wannenform 36. Dabei ist zu beachten, dass bei der Sesselform 3, bei der Wannenform 12 Isomere ein Spiegelbild besitzen. Spiegelbilder unterscheiden sich im Absorptionsspektrum nicht, so dass wir für die Sesselform nur 13 und für die Wannenform 24 verschiedene Konfigurationen betrachten müssen.

Nr.	Isomer	Symmetrie	Dipolmoment in Einheiten C-Br	Coulomb- Energie der Br-Atome	Sterische Hinderung Br	Zuord Mecke Cl	nung Br
	Sesselform						
1	aaaaaa	D_{3d}	0	1,00	—	β	β
2	baaaaa		$\frac{2}{3}\sqrt{6} = 1,63$	1,04	-	δ	
3	bbaaaa	C_2 Sp	$\frac{2}{3}\sqrt{6} = 1,63$	1,04	-	α	α
4	babaaa	C_s	$2\sqrt{2} = 2,83$	1,12	+		
5	baabaa	C_{2h}	0	1,05	· -	З	
6	bbbaaa	C_s	$ ^{3}/_{4}/\sqrt{3} = 2,31$	1,07	+	γ	
7	bbabaa	C_1 Sp	$2/3 \sqrt{6} = 1,63$	1,11	+		
8	bababa	C3v	4	1,25	+		
9	bbbbaa	C_2 Sp	$ ^2/_3\sqrt{6} = 1,63$	1,14	+		10
10	bbbaba	C_s	$2\sqrt{2} = 2,83$	1,22	+		
11	bbabba	C_{2h}	0	1,15	+		
12	bbbbba	C_s	$^{2}/_{3}\sqrt{6} = 1,63$	1,23	+		
13	bbbbbb	D_{3d}	0	1,30	+		
	Wannenform		8		2		
14	aaaaaa	C2 v	$\frac{4}{3}\sqrt{2} = 1,88$	1,06	+		
15	abaaaa		$\frac{2}{3}\sqrt{2} = 0,94$	1,04	+		2
16	abbaaa	C_s	$\frac{4}{3}\sqrt{2} = 1,88$	1,08	. +		
17	abaaba	C_2 Sp	$ ^{2}/_{3}/\overline{2} = 0,94$	1,04	_		
18	abaaab	Cs	$ ^{2}/_{3}/\overline{2} = 0,94$	1,06	+		
19	abbaba	C_1 Sp	$ ^2/_3\sqrt{14}=2,49$	1,26	+		
20	abbabb	C2v	$ ^{8}/_{3}\sqrt{2} = 3,77$	1,26	+ .		

Tabelle 3.

Sp =Spiegelbild.

Mit Hilfe des Kalottenmodells nach STUART⁴) sieht man, dass von den 24 geometrisch möglichen Isomeren mit wannenförmigem Ring 17 sterisch sehr stark gehindert sind, nämlich diejenigen, bei welchen die Plätze 1b oder 4b (Fig. 9) durch Brom-Atome besetzt sind. Diese 17 Isomere kommen also nicht in Frage für die Struktur von α -C₆H₆Br₆. Die restlichen 20 Isomere der Wannen- und Sessel-

form sind mit ihren Symmetriegruppen in Tab. 3 aufgeführt. (Für die Sesselform sind die 13 Möglichkeiten schon bei KAUER⁵) erwähnt.) Aber auch von diesen 20 Isomeren sind wegen der grossen Br-Atome noch 15 sterisch gehindert (+ in Tab. 3), allerdings in · viel geringerem Masse als die vorhin erwähnten 17 Wannenformen. Für die α-Form kommen also nur noch die fünf Konfigurationen 1, 2, 3, 5 und 17 in Frage (Tab. 3). Da das Molekül nur näherungsweise durch ein Modell aus starren Holzkugeln dargestellt werden kann, geben wir noch ein Kriterium an, das bestätigt, dass die Wahrscheinlichkeit sehr gross ist, dass die α -Form durch eines der 5 erwähnten Isomere verwirklicht wird. Wir rechnen nämlich auf Vorschlag von Prof. R. MECKE*) - die Coulomb-Energie der 6 Brom-Kerne für die 20 in Tab. 3 erwähnten Konfigurationen aus. Darunter verstehen wir die Energie, die nötig ist, um alle Bromkerne von der Entfernung unendlich in ihre Gleichgewichtslage im Molekül zu bringen. Für die Kerne nehmen wir ein Coulomb-Potential an. Die Elektronen werden dabei nicht berücksichtigt. Wir nehmen nun an, dass die Wahrscheinlichkeit dafür, dass bei der Bromierung ein bestimmtes Isomer entsteht, abnimmt mit grösser werdender Coulomb-Energie. Natürlich ist das nur ein grobes, qualitatives Kriterium für die Möglichkeit einer bestimmten Form. Aus Tab. 3 sieht man, dass die 5 Konfigurationen, die sterisch nicht gehindert sind, auch die kleinste Abstossungsenergie besitzen (mit Ausnahme von 15, das eine kleine Abstossungsenergie besitzt, aber sterisch doch schwach gehindert ist). Diese ist für die β -Form (Nr. 1) auf 1 normiert. Wir dürfen deshalb mit ziemlich grosser Sicherheit annehmen, dass das α -C₆H₆Br₆ eine der 4 isomeren Formen 2, 3, 5 oder 17 hat.

Ein weiteres Hilfsmittel für die Isomerenzuordnung ist durch die Messung des Dipolmoments des Moleküls gegeben. In Tab. 3 ist das Gesamtdipolmoment eingetragen, das bei der entsprechenden Konfiguration theoretisch zu erwarten ist. Dabei wurde bei der Rechnung das Moment der CBr-Bindung zu 1 angenommen. Absolute Werte können zum voraus nicht angegeben werden, da man das Moment der einzelnen Bindungen nicht kennt. R. MECKE und SCHILL**) haben durch DK-Messungen für die 5 Chlorisomere das Dipolmoment bestimmt. LIND, HOBBS und GROSS⁶) haben dieselben Resultate erhalten:

$$\begin{array}{ll} \alpha:2,14D & \beta:0 & \gamma:2,84D \\ \delta:2,21D & \varepsilon:0 \ (1D=1 \ \mathrm{Debey}=10^{-18} \ \mathrm{cgs\text{-}Einh.}). \end{array}$$

^{*)} Inst. für Phys. Chemie, Freiburg i. Br.

^{**)} Mündliche Mitteilung.

Ultrarotspektren und Struktur von α - und β -Hexabromcyclohexan. 1

Es war R. MECKE möglich, aus dem Verhältnis der gemessenen Werte die 5 Chlorisomere den Formen 3, 1, 6, 2 und 5 zuzuordnen. Dabei könnten allerdings α und δ noch vertauscht sein. Wir haben nun versucht, in ähnlicher Weise für das α -Bromisomer Schlüsse über die Struktur des Moleküls zu ziehen. Herr Prof. MECKE war so freundlich und hat von unserem α -C₆H₆Br₆ ebenfalls das Dipolmoment bestimmt und den Wert

$1,95 \pm 0,02 D$

erhalten. Für das Hexabromcyclohexan gibt es allerdings keine weiteren Isomere, so dass kein Verhältnis der Dipolmomente bestimmt werden könnte. Doch ist für die einzelne C-Cl- und C-Br-Bindung nach PAULING⁷) das Dipolmoment ungefähr gleich gross (Abweichungen kleiner als 5 %). Deshalb dürfen wir den Wert 1,95 D direkt mit den Werten für die Chlorisomere vergleichen. Aus Tab. 3 sieht man, dass wegen des Dipolmoments von den 4 sterisch und energetisch wahrscheinlichsten Isomeren 2, 3, 5 und 17 für das α -C₆H₆Br₆ nur noch die beiden Formen 2 und 3 in Frage kommen. Welche der beiden Konfigurationen im α -Isomer verwirklicht ist, werden wir mit Hilfe des UR-Spektrums von Kristallen mit polarisierter Strahlung feststellen können, da die Formen 2 und 3 verschiedene Symmetrien, nämlich C_s und C₂ besitzen.

4. Normalschwingungen der Konfigurationen 1, 2 und 3 und ihre UR-Aktivitäten.

Um die Spektren von α - und β -Hexabromcyclohexan zu deuten und obige Frage der Zuordnung zu entscheiden, müssen wir zuerst untersuchen, was für Normalschwingungen die Formen 1 (D_{3d}) , 2 (C_5) und 3 (C_2) (Tab. 3) haben können, und welche dieser Schwingungen UR-aktiv sind. Dies ist das Ziel dieses Abschnittes.

Wir legen ein Koordinatensystem in das Molekül, wie es in Fig. 10 angegeben ist. Wenn N die Anzahl der Atome im Molekül bedeutet, so ist die Zahl der echten Normalschwingungen 3N-6. Dies ergibt für den C₆-Ring 12 und für das ganze C₆H₆Br₆-Molekül 48. Von den 3 Symmetriegruppen D_{3d}, C₂ und C_s ist in den Tab. 4, 5 und 6 für die verschiedenen Symmetriegruppen der Charakter eingetragen. Darunter versteht man die Spuren der Matrizen, die zur irreduziblen Darstellung des betreffenden Symmetrietypus gehören⁸). Weiter ist für das C₆H₆Br₆-Molekül (die β -Form hat die Symmetrie D_{3d}, die α -Form C₂ oder C_s) die Zahl der echten und unechten (Translationen T und Rotationen R) Normalschwingungen und ihre

UR-Aktivität für die verschiedenen Typen angegeben. M_x , M_y und M_z bedeuten, dass bei einer aktiven Schwingung das elektrische Dipolmoment in der entsprechenden Richtung geändert wird.

Koordinatensystem in sesselförmigem Ring.

Unter Berücksichtigung des Charakters (Tab. 4) sind in Fig. 11 die Formen aller Normalschwingungen des C₆-Ringes und in Fig. 12

Sym- metrie- typen	E	$^{+120}_{-120}_{-120}_{-120}_{-120}$	$^{+60}_{$	3 C ₂	$3 \sigma_d$	i	Echt C ₆ -Ring	e NS C ₆ H ₆ Br ₆ β –	T, R	Aktiv
A_{1g}	+1	+1	+1	+1	+1	+1	2	6		
A_{1u}	+1	+1	-1	+1	-1	-1	1	3		
A_{2g}	+1	+1	+1	-1	-1	+1	0	2	R_y	
A_{2u}	+1	+1	-1	-1	+1	-1	1	5	T_y	M_y
E_{g}	2	$2 \cos (\pm 2.120^{\circ}) - 1$	$2 \cos (\pm 2 \cdot 60^{\circ}) - 1$	0	0	$2 \cos (\pm 2.180^{\circ}) + 2$	2 imes 2	2 imes 8	$R_x R_z$	
E_u	2	$2 \cos (\pm 120^{\circ}) - 1$	$2 \cos (\pm 60^{\circ}) + 1$	0	0	$2 \cos (\pm 180^{\circ}) - 2$	2 imes 2	2 imes 8	$T_x T_z$	$M_x M_z$

Tabelle 4. D_{3d} , 6 Klassen, wobei C_3 in Richtung der y-Achse.

Ultrarotspektren und Struktur von α - und β -Hexabromcyclohexan. 135

die echten des β -C₆H₆Br₆-Moleküls eingezeichnet. Je nach der Form sind sie als Valenzdehnungs- oder Biegungsschwingungen mit ν bzw. mit δ bezeichnet.

Symmetrie-	E	C_2	Echt	e NS	<i>T</i> , <i>R</i>	Aktiv
	+1	+1	7	$\frac{\sim_{6}\Pi_{6}D\Pi_{6}}{\alpha}$	$\overline{T_z R_z}$	
В	+1	-1	5	23	$T_x T_y R_x R_y$	$M_x \tilde{M}_y$

Tabelle 5. C_2 , 2 Klassen, C_2 in Richtung der Z-Achse.

Tabelle 6.							
C_s ,	2	Klassen,	σ	\mathbf{in}	xy-Ebene.		

Symmetrie-	Echte NS		Echte NS		<i>(</i> ,)	
typen	E	σ	$C_{6} ext{-Ring}$	$C_6H_6Br_6 = \alpha - \alpha$	<i>T</i> , <i>R</i>	Aktiv
A'	+1	+1	7	27	$T_x T_y R_z$	$M_x M_y$
$A^{\prime\prime}$	+1	-1	5	21	$T_z R_x R_y$	M_z

Nach Tab. 4 sind für die β -Form (D_{3d}) nur die Typen A_{2u} und E_u aktiv. Man erkennt übrigens aus Fig. 12, dass sich für die andern Typen das Gesamtdipolmoment des Moleküls während der Schwin-

Fig. 11.

Normalschwingungen des C₆-Ringes.

gung nicht ändern kann. Bei der α -Form dagegen, die die Symmetrie C_s oder C_2 haben kann, werden alle Normalschwingungen aktiv. Im Falle von C_s ist an einem (Nr. 1 in Fig. 10), im Falle von C_2 an zwei (Nr. 2 und 3 in Fig. 10) C-Atomen das Brom- mit dem Wasserstoff-Atom vertauscht. Wir fassen diese Vertauschung als Störung auf, so dass der Charakter der Schwingung erhalten bleibt, d. h. z. B. eine CH— δ -Schwingung bleibt eine solche im gestörten

Molekül. Wenn diese Störung nicht allzu gross ist, wird die Frequenz der Schwingung nur wenig verschoben. Ebenso wird auch die Entartung der E_u - und E_g -Schwingungen nur schwach oder gar nicht aufgehoben sein. Das Experiment bestätigt diese Betrach-

Normalschwingungen von β -C₆H₆Br₆.

tung. Wir werden nämlich aus dem Spektrum sehen, dass die α -Form nur 8 CH— δ -Banden (wie man es bei der Symmetrie D_{3d} erwarten würde) aufweist; bei Aufhebung der Entartung müssten es 12 sein.

Um aus der β -Form die α -Form zu erhalten, muss an einem (für die Symmetrie C_s), bzw. an zwei (für die Symmetrie C_2) C-Atomen das Brom mit dem Wasserstoff vertauscht werden. Die Symmetrie wird dadurch erniedrigt, so dass im Falle von C_s noch eine Ebene, die mit der xy-Ebene zusammenfällt, im Falle von C_2 noch eine zweizählige Achse in der z-Richtung übrig bleibt. Dadurch wird aber die Anzahl der Symmetrieklassen und -typen auf 2 reduziert.

Charakte- ristische Ei-	Symmetrietypen und ihre UR-Aktivität							Unsere Werte Brom-Isomere	
gungen	1) _{3 d}		C_2		Cs	⁹)	β	α
CH _v	A_{1g}		A	M_z	A'	$M_x M_y$	(2960)		(2900)
2900 cm^{-1}	A_{2u}	M_y	B	$M_x M_y$	A'	$M_x M_y$	(2900)	(2900)	(2900)
	$E_g \\ E_g$		$egin{array}{c} A \ B \end{array}$	$M_z M_x M_y$	$egin{array}{c} A' \ A'' \end{array}$	$M_x M_y M_z$	(2900)		(2900)
	$E_u \\ E_u$	$M_x M_z$	B A	${M_x M_y \atop M_z}$	A' A"	${M_x M_y \over M_z}$	(2900)	(2900)	(2900)
$\mathrm{CH}_{\boldsymbol{\delta}}$	A_{1g}		A	M _z	A'	$M_x M_y$	(1100)		1085
1000- 1400 cm ⁻¹	A_{1u}		A	M _z	A''	Mz	(1345)		1331
1400 Cm	A_{2g}		B	$M_x M_y$	A''	Mz	?		1195
n.	A_{2u}	M_y	B	$M_x M_y$	A'	$M_x M_y$	1309	1297	1296
ш. 1	$E_g \\ E_g$		$egin{array}{c} A \ B \end{array}$	$egin{array}{c} M_z \ M_x M_y \end{array}$	A' A"	$M_x M_y M_z$	(1260)		1226
	$E_g \\ E_g$		$egin{array}{c} A \ B \end{array}$	M_z $M_x M_y$	A' A"	$M_x M_y M_z$	1027		1180
	$E_u \\ E_u$	$M_x M_z$	$B \\ A$	$M_x M_y M_z$	A' A"	$M_x M_y M_z$	1230	$1170\\1152$	1160 1154
	E _u E _u	$M_x M_z$	$B \\ A$	${M_x M_y \atop M_z}$	A' A"	${M_x M_y \over M_z}$	1048	1028 1018	1021
Ring _v	A_{1g}		A	M _z	A'	$M_x M_y$	790		712
700- 1000 cm ⁻¹	A _{1u}		A	Mz	A''	Mz	(950)	_	941
1000 011	$E_g \\ E_g$		$egin{array}{c} A \ B \end{array}$	$M_z \\ M_x M_y$	A' A"	${M_x M_y \over M_z}$	856		783 790
	E _u E _u	$M_x M$	$B \\ A$	${M_x M_y \over M_z}$	A' A''	${M_x M_y \over M_z}$	905	853	880
$\begin{array}{c} \hline C & Br_{\nu} \\ < 700 \mathrm{cm^{-1}} \\ bzw. \\ C & Cl_{\nu} \\ < 750 \mathrm{cm^{-1}} \end{array}$	A_{1g}		A	M _z	A'	$M_x M_y$	670		?
	A_{2u}	M_y	B	$M_x M_y$	A'	$M_x M_y$	(750)	663	(680)
	$E_g \\ E_g$		$egin{array}{c} A \ B \end{array}$	$egin{array}{c} M_z \ M_x M_y \end{array}$	$egin{array}{c} A' \ A'' \end{array}$	$M_x M_y M_z$	730		?
197 197	$E_u \\ E_u$	$M_x M_z$	$B \\ A$	$M_x M_y M_z$	A' A"	$M_x M_y M_z$	755	?	?

Tabelle 7.

() = Zuordnung unsicher.

? = ungedeutet oder Bande liegt nicht mehr im gemessenen Spektralgebiet.

Die Anzahl der Normalschwingungen bleibt dagegen erhalten, so dass bei der oben erwähnten Vertauschung der H- mit den Br-Atomen die Typen der Gruppe D_{3d} in diejenigen der Gruppe C_s oder C_2 übergehen. Wie das im einzelnen geschieht, ist in Tab. 7 angegeben. (Wir erwähnen noch, dass eine entartete Schwingung der Gruppe D_{3d} im allgemeinen in zwei nicht entartete der Gruppe C_s oder C_2 aufgespalten wird; die zwei Schwingungen gehören dann verschiedenen Symmetrietypen an.) Die Tabelle enthält eine Zusammenstellung aller echten Normalschwingungen, die in das Wellenlängengebiet von 2–15 μ fallen, geordnet nach charakteristischen Eigenschwingungen. Für die schon erwähnten Punktgruppen D_{3d} , C_2 und C_s sind die Auswahlregeln angegeben, d. h. die Richtung, in welcher das elektrische Dipolmoment schwingen kann. Weiter sind die durch R. MECKE⁹) zugeordneten Frequenzen von C₆H₆Cl₆ aufgeführt. Die zwei letzten Kolonnen enthalten unsere Deutung der Spektren von β - und α -C₆H₆Br₆, die wir im nächsten Abschnitt erläutern werden.

5. Spektren.

Die Absorptionsspektren von β - bzw. α -C₆H₆Br₆ sind in Fig. 13a) und b) gegeben. Wir mischten die Kristalle im Verhältnis 1:1 mit Paraffinöl und mahlten sie zu einer Korngrösse von 1–2 μ . Dieses Gemisch wurde bei einer Schichtdicke von 0,05 mm zwischen zwei Steinsalzplatten aufgenommen. Die Paraffinabsorptionsbanden sind punktiert eingezeichnet.

5.1. β - $C_6H_6Br_6$.

Das Molekül hat die Symmetrie D_{3d} , deshalb sind nur wenige Normalschwingungen UR-aktiv. Nach den Auswahlregeln in Tab. 7 erwartet man 2 CH_v-, 3 CH_δ-, 1 Ring_v- und 2 CBr_v-Absorptionsbanden. Es ist möglich, dass die beiden letzteren nicht im betrachteten Spektralbereich (650–4000 cm⁻¹) liegen. Die CBr_δ- und die · Ring_δ-Schwingungen absorbieren ebenfalls bei Frequenzen kleiner als 600 cm⁻¹. Die CH_δ-Frequenzen fallen bei ca. 2900 cm⁻¹ zusammen.

Im Gebiete der CH-Schwingungen findet man tatsächlich 3 Absorptionsbanden; zwei davon sind doppelt. Ihre Zuordnung ist folgende:

1297	cm-1	:	A_{2u}
1028	cm^{-1}		\mathbf{F}
1018	cm^{-1}	}:	L_u
1170	cm-1	ĺ	T
1152	cm^{-1}	} :	L_u
	2		

Beim β -Chlorisomer sind die entsprechenden Frequenzen nach etwas grösseren Werten verschoben (vgl. Tab. 7). Die E_u -Banden bei 1230

Spektren von a) β -C₆H₆Br₆;

b) α -C₆H₆Br₆;

- c) α -Form, polarisierte Strahlung, elektrischer Feldvektor parallel zur y-Achse;
- d) wie c), elektrischer Feldvektor parallel zur z-Achse.

und 1048 cm⁻¹ sind dort einfach, was man auch erwartet, wenn das Molekül wirklich die Symmetrie D_{3d} besitzt. Die schwache Aufhebung der Entartung beim Bromisomer kann man sich nur dadurch erklären, dass wegen der grossen Bromatome die Moleküle im Kristallgitter schwach deformiert werden. Die E_u -Ring_v-Schwingung liegt bei 853 cm⁻¹. Die Absorptionsbande bei 663 cm⁻¹ kann nur zu einer CBr_v-Schwingung gehören. Ihr Typ ist A_{2u}^*).

5.2. $\alpha - C_6 H_6 B r_6$.

In den Punktgruppen C_2 und C_s , die nach den Ausführungen in Abschnitt 3) für die a-Form noch in Frage kommen, sind alle Normalschwingungen UR-aktiv. Nach Tab. 7 sollte das Molekül 6 (4) CH_v-, 12 (8) CH_o-, 6 (4) Ring_v- und 6 (4) CBr_v-Schwingungen besitzen. Infolge von Entartung ist bei der Symmetriegruppe D_{3d} diese Anzahl reduziert. Die Anzahl der Normalschwingungen ist durch die Zahlen in Klammern gegeben, wenn bei C_2 und C_s dieselbe Entartung vorliegt wie bei der Gruppe D_{3d} . Im Spektrum finden wir tatsächlich nur 8 (Substanzen in CS₂ gelöst) bzw. 9 (feste Kristalle in Paraffinöl) CH_o- und 4 (eine doppelt) Ring,-Absorptionsbanden. Bei der α -Form ist also die Entartung nur schwach oder gar nicht aufgehoben, wie wir schon in Abschnitt 4 bemerkt haben. Die CH-Frequenzen können wir nicht diskutieren, da sie alle bei ca. $2900 \,\mathrm{cm^{-1}}$ zusammenfallen. Die einzige CBr.-Frequenz, die wir noch messen können, liegt bei 680 cm⁻¹. Wir ordnen ihr wie bei der β -Form den Symmetrietyp $A_{2\mu}$ zu (vgl. Anmerkung*), doch müssen wir hier etwas vorsichtiger sein in bezug auf diese Zuordnung, da die Br-Atome im a-Isomer keinen Sechserring bilden. Die Zahl 680 ist deshalb in Tabelle 7 eingeklammert.

Durch Vergleich mit dem Spektrum der β -Form, den Zuordnungen der Absorptionsbanden des C₆H₆Cl₆ durch R. MECKE⁹) (Tab. 7) und unter Anwendung der in der Anmerkung^{*}) angeführten Regel, können wir folgende 5 CH_{δ}- und alle Ring_{ν}-Absorptionsbanden ihren Schwingungstypen zuordnen (wir beziehen uns trotz der Symmetrie C₂ oder C_s auf die entsprechenden Typen

^{*)} Es gilt ganz allgemein, dass bei einem stumpfwinkligen Ringsystem diejenige charakteristische Schwingung (z. B. $\operatorname{Ring}_{\nu}$) mit der höchsten Symmetrie (A_{1g}) die kleinste Frequenz, diejenige mit der niedrigsten Symmetrie (A_{2u}) die höchste Frequenz besitzt. Die Frequenzen der entarteten Schwingungen liegen dazwischen. Bei einem spitzwinkligen Ringsystem (Dreieck) ist es gerade umgekehrt. Diese Regel sieht man leicht ein, wenn man für einen Ring die Normalschwingungen ausrechnet, unter der Annahme von charakteristischen Bindungsfrequenzen und dass nur zwischen benachbarten Atomen eine Kopplung bestehe.

der Gruppe D_{3d} (vgl. Seite 138 oben), weil nur dadurch eine genügende Differenzierung der Normalschwingungen möglich ist):

CH_{δ} : 1331 cm ⁻¹	$: A_{1u}$	$\operatorname{Ring}_{\boldsymbol{\nu}}$:	$712 {\rm cm^{-1}}$	$: A_{1g}$
$1296 \ {\rm cm^{-1}}$: A_{2u}		783 cm ⁻¹)	. F
1160 cm^{-1})			790 cm ⁻¹ ∫	: L _g
1154 cm^{-1}	: L_u		880 cm^{-1}	: E_u
$1085 \ {\rm cm^{-1}}$	$: A_{1g}$		941 cm ⁻¹	: A_{1u}
$1021 {\rm cm^{-1}}$: E_u			

Bei dieser Zuordnung haben wir die Banden der gleichen Frequenz im Spektrum der α - und β -Form miteinander identifiziert. Das ist nicht zum vorneherein zulässig, denn es könnten ja Frequenzverschiebungen zwischen den beiden Formen auftreten. Dies scheint nun allerdings für die CH_e-Schwingungen nicht der Fall zu sein. Das Doublett 1160 und 1154 cm⁻¹ entspricht sicher demjenigen von 1170 und 1152 cm⁻¹ der β -Form; denn im Spektrum einer CS₂-Lösung der α-Form findet man an dieser Stelle nur eine einfache Absorptionsbande bei 1154 cm⁻¹. Eine Deformation des Moleküls im Kristallgitter vermag also für beide Formen die Entartung aufzuheben. Die Aufspaltung, bzw. die Deformation, ist bei der β -Form grösser als bei der α -Form. Der Grund ist wohl der, dass die Moleküle im Kristall der β -Form kleinere Abstände haben. Die Dichte beträgt nämlich für das β -Isomer 3,197 g/cm³), für die α -Form dagegen nur 2,78 g/cm³.

Von den CH_{δ} -Banden bleiben nur noch diejenigen bei 1180, 1195 und 1226 cm⁻¹ ungedeutet. Die eindeutige Zugehörigkeit der einzelnen Frequenzen zu den 3 noch übrig bleibenden Typen werden wir aus den Spektren mit polarisiertem UR bestimmen können.

5.3. Spektren von α -C₆H₆Br₆ mit polarisiertem UR.

Die Anzahl der charakteristischen Banden ist nach Tabelle 7 für die Gruppen C_s und C_2 gleich. Man kann also aus dieser Anzahl nicht auf die eine oder andere Symmetrie schliessen. Dagegen wer den wir aus den Spektren mit polarisiertem UR von Einkristallen zwischen der Symmetrie C_2 und C_s unterscheiden können. Dies ist allerdings nur möglich, wenn in bezug auf die Orientierung der Moleküle im Einkristall eine Richtung ausgezeichnet ist. Von α -C₆H₆Br₆ haben wir für diese Untersuchung dünne Einkristalle von 1–2 mm² Fläche und ca. 40 μ Dicke gezüchtet, die – alle gleich orientiert - mit einer sehr dünnen Bienenwachsschicht auf eine Steinsalzplatte gekittet wurden.

Die Kristalle sind monoklin-holoedrisch, d. h. die Symmetrie-Elemente sind eine zweizählige Achse C_2 und eine Ebene σ . Fig. 14 zeigt die Form eines Kristallplättchens. Wir wählen ein Koordinatensystem so, dass die *yz*-Ebene mit der Zeichenebene (= NaCl-Platte) und mit σ zusammenfällt. Der Kristall ist optisch zweiachsig. Die eine der optischen Achsen fällt mit der *x*-Achse und mit C_2 zusammen, die andere liegt irgendwie in der *xz*-Ebene Die Kristalle weisen eine sehr gute Spaltbarkeit in der *zy*- und in der *xy*-Ebene auf. Die Fig. 13c und d sind die Spektren, aufgenommen mit polarisierter Strahlung, wobei der elektrische Feldvektor parallel zur *y*- bzw. zur *z*-Achse schwingt. Wie man aus den Spektren sieht, sind die Kristalle noch etwa dreimal zu dick, denn schwache Absorptionsbanden in 13 b wie z. B. diejenigen bei 739 und 918 cm⁻¹ (die wir für irgendwelche Ober- oder Kombinations-Schwingungen halten) werden jetzt ziemlich intensiv; die starken Banden der

Kristall von α -C₆H₆Br₆.

Grundschwingungen werden verbreitert. Leider war es experimentell nicht möglich, Plättchen von nur 10—15 μ Dicke herzustellen. Trotzdem kann man aber aus den Spektren 13c) und d) entscheiden, welcher Symmetriegruppe die α -Form angehört. Wenn in der Anordnung der Moleküle im Kristall eine Richtung ausgezeichnet ist, so müssen bei verschiedener Polarisationsrichtung die Spektren Unterschiede zeigen. Nach den Auswahlregeln in Tab. 7 verhalten sich die Banden vom selben Symmetrietyp gleich. Für die in Abschnitt 5.2. zugeordneten Banden ergibt sich für die Gruppen C_2 und C_s folgendes Bild:

Hat das Molekül z. B. die Symmetrie C_2 , so müssen sich die 4 Absorptionsbanden vom Typ A bei Änderung der Polarisationsrichtung im gleichen Sinne ändern; die Bande vom Typ B verhält sich umgekehrt wie die Banden vom Typ A. Das Analoge gilt für die Symmetriegruppe C_s , die die Typen A' und A'' besitzt. Im Spektrum 13 c absorbieren die Schwingungen bei 1085, 1331, 712 und 941 cm⁻¹ stärker und diejenige bei 1296 cm⁻¹ schwächer als im Spektrum 13d. Daraus folgt eindeutig, dass die ersten 4 erwähnten Schwingungen zum selben Typ gehören. Das α -C₆H₆Br₆-Molekül besitzt folglich die Symmetrie \overline{C}_2 . Es hat also wie α - $C_6H_6Cl_6$ die Konfiguration Nr. 3 in Tabelle 3. Von den drei noch ungedeuteten Banden (siehe Seite 141) verhält sich bei Änderungen der Polarisationsrichtung diejenige bei 1195 cm⁻¹ gleich wie die schon zugeordnete A_{2u} -Schwingung bei 1296 cm⁻¹; denn im Spektrum 13c ist sie viel stärker als in 13d. Deshalb kommt für diese Bande von den noch ungedeuteten Typen nur A_{2q} für die Gruppe D_{3d} und B für die Gruppe C_2 in Frage. Die beiden restlichen Banden bei 1180 und 1226 cm^{-1} können nur die zwei noch nicht zugeordneten E_g -Schwingungen sein. Dies ist auch aus dem Verhalten der beiden Banden klar, denn sie ändern ihre Intensität nicht bei einer Änderung der Polarisationsrichtung der Strahlung. Bei den in der Gruppe D_{3d} entarteten Schwingungen kann beim Übergang zu C_2 das Dipolmoment in allen drei Koordinatenrichtungen schwingen, so dass aus dem Verhalten der E_u und E_g -Absorptionsbanden für die Orientierung der Moleküle im Kristall im allgemeinen keine Schlüsse gezogen werden können.

Die Intensität der E_u -Ring-Schwingung bei 880 cm⁻¹ ist sehr stark abhängig von der Polarisationsrichtung, wie die Spektren 13c und 13d zeigen. Das bedeutet, dass diese Schwingung nicht in allen drei Koordinatenrichtungen absorbiert, wie man es nach Tabelle 7 erwarten würde. Dieses Verhalten können wir folgendermassen verstehen: die Bande ist nämlich auch bei der β -Form aktiv, und zwar absorbiert sie in Richtung der x- und z-Achse des Moleküls (vgl. Fig. 10). Bei der α -Form scheint die D_{3d} -Symmetrie des C-Rings nicht erheblich gestört zu sein, so dass auch dort das Molekül noch im wesentlichen in der x- und z-Richtung absorbiert.

Da die Kristallgitterstruktur der α -Form nicht bekannt ist, ist es nicht möglich, die genaue Orientierung der Moleküle im Kristallgitter anzugeben. Wären z. B. alle gleich orientiert, und würde das Koordinatensystem des Moleküls (Fig. 10) mit demjenigen des Kristalls (Fig. 14) übereinstimmen, so müssten in 13c die A_{1u} -, A_{1g} - und E_u -Ring-, in 13d die A_{2u} - und A_{2g} -Absorptionsbanden

ganz verschwinden. Dies ist nicht der Fall, doch werden sie wesentlich geschwächt, d. h. die Moleküle besitzen *teilweise* die oben erwähnte Orientierung im Kristall.

Die vorliegende Arbeit wurde an der Physikalischen Anstalt der Universität Basel unter der Anleitung von Herrn Prof. Dr. P. HUBER ausgeführt. Herr Prof. Dr. R. MECKE (Institut für physikalische Chemie, Freiburg i. Br.) war mir bei der Deutung der Spektren behilflich. Während der letzten drei Jahre hatte ich Gelegenheit, mit Herrn Dr. E. GANZ viele fruchtbare Diskussionen zu führen. Ihnen allen möchte ich meinen herzlichsten Dank aussprechen.

Weiter danke ich Herrn Dr. M. BRENNER, der mir bei der Herstellung der Substanzen behilflich war, sowie Herrn cand. phil. H. Schwander, welcher im Mineralogischen Institut die Kristallstruktur von α -C₆H₆Br₆ bestimmt hat.

Für die finanzielle Hilfe möchte ich noch der Kommission des Bundes zur Förderung wissenschaftlicher Forschung meinen besten Dank aussprechen.

Literaturverzeichnis.

¹) R. G. DICKINSON and C. BILICKE, Journ. Am. Chem. Soc. 50, 764 (1928).

²) W. R. ORNDORFF and V. A. HOWELLS, Am. Chem. Journal 18, 312 (1896).

³) S. B. HENDRIKS and C. BILICKE, Journ. Am. Chem. Soc. 48, 3007 (1926).

- ⁴) A. STUART, Zeitschrift Phys. Chem. B 27, 350 (1934).
- ⁵) K. C. KAUER, R. B. DUVALL and F. N. ALQUIST, Ind. a. Eng. Chem. **39**, 1335 (1947).
- ⁶) E. LIND, M. E. HOBBS and P. M. GROSS, Journ. Am. Chem. Soc. 72, 4474 (1950).
- ⁷) L. PAULING, The Nature of the Chemical Bond (1940).
- ⁸) Vgl. z. B. G. HERZBERG, Infrared and Raman Spectra.
- ⁹) R. MECKE, LANDOLT-BORNSTEIN (Tabellenwerk) 1. Bd., 2. Teil, Springer 1951, Ergänzungsblatt.