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On the Stability of Heavy Nuclei in the Strong-Coupling
Limit of the Pseudovector Meson Theory
by Ernesto Trueceo (University of Chicago, Chicago, Illinois).
(9. I1. 53.)

Abstract: Following closely a method introduced by WENTZEL, the stability of
a hypothetical heavy nucleus with pseudovector meson forces acting between the
individual nucleons is investigated on the assumption of strong coupling. This is
done by computing the total nuclear energy as a function of the nuclear volume,
the calculations being restricted to the case of sufficiently small nuclear radii.
The resultipg energy vs. volume curves are very similar to those found by WENTZEL.
for the case of scalar interaction: they show no minimum which would correspond
to a position of stable binding; also the nuclear forces do not exhibit any saturation
effects. Our model, therefore, does not adequately represent the basic properties
of an actual nucleus,

1. Introduction..

In treating the strong-coupling approximation of meson field
theories and its application to the problem of nuclear forces, WENT-
zuLY) first pointed out that a very stringent test for the usefulness
of each type of meson field can be obtained by investigating the
behavior of heavy nuclei. His calculations were based on the scalar
theory; the method consisted in using the Thomas-I'erma statistical
approach with a modification appropriate to take into account the
nuclear internal degrees of freedom which characteristically appear
in the case of strong coupling. '

F. ComsTir?) treated on similar lines the neutral and symmetrical
pseudoscalar as well as the symmetrical vector theories*), showing
that in these cases a stable heavy nucleus can exist, provided some
parameters entering the theory are suitably chosen. In the following
we shall assume the knowledge of both reff!)?) and only sketch very
briefly some of their most important features.

It is the purpose of this paper to apply the same method of ana-
lysis to the symmetrical pseudovector theory, the details of which
have recently been worked out by RtpEXBERG?).

*) Including also the MgLLER-ROSENFELD mixture of symmetrical vector and
pseudoscalar fields.
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The results will turn out to be very similar to those found by
WexTzEL for the scalar theory, leading to the conclusion that a
heavy nucleus cannot be stable if pseudovector meson forces with
strong coupling are assumed to act between the individual nucleons
and that this type of interaction must therefore be discarded.

At the end of this paper we shall also say a few words on the
validity of the conclusions reached by means of the THomas-IFErRMI
approximation and on some objections that might be raised
against 1t.

2. Brief survey of strong-coupling vector and pseudoveetor theory. The
statistical model and the semiclassieal approximation.

RuUpeNBERG’s paper follows closely WeNTZEL’S work on the sym-
metrical vector theory4). In both cases the first step is to set up
the Hamiltonian which is composed of two parts, H, and H,, the
former referring to the free meson field and the latter describing
the interaction between mesons and nucleons. Next, the one-
nucleon problem is solved and finally an expression for the force
between two particles is derived in the limiting case of fixed nucleons
(static approximation). The whole theory is essentially non-relati-
vistic, since it requires the introduction of a “cut-off”, or, in other
words, a finite size for the nucleons.

The most general form of H, compatible with invariance require-
ments consists of the sum of two terms, each of them affected by
a coupling constant, f and g respectively. HHowever, RUDENBERG
(in contrast to WENTzEL) confined himself to the cases in which
only one of these constants (either f or g) is.4+ 0, and we shall do
likewise.

We must refer to the above-mentioned papers for all details of
the rather cumbersome calculations, in particular as regards the
conditions that limit the applicability of the theory, 1. e. the inequa-
lities that must be satisfied by f and g in order that the coupling
may be termed strong. It will suffice here to say that a fundamental
and characteristic difference between the strong-coupling and the
usual weak-coupling approximation manifests itself in the treatment
of the one-nucleon problem. By a series of canonical transformations
new dynamical variables are introduced to describe the single
nucleon. The physical interpretation of this procedure is that the
originally “‘naked’” nucleon attaches some mesons so strongly to
itself as to form a new unit (the “complex nucleon’) which is sup-
posed to coincide with the observed or observable nucleon. In the
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symmetrical vector and pseudovector theory the coordinates of
the complex nucleon are:

g = (g% 0% s u5 s q%) with I

q' =1, Pty =y, (1)

qgt=cos @ =u, q*= D, g5 =%. l
(—l<u<]l; 0<P<2a; 0<V¥Y<2q). 2)

q', g% and ¢® determine the position in space*); in a modellistic pic-
ture, in which the complex nucleon is represented as a spherical top,
q%, q° and q°® are interpreted as Eulerian angles; they refer to the
internal degrees of freedom, i. e. charge and angular momentum
of the nucleon.

As a consequence of this situation the strong-coupling theory also
predicts the existence of stationary states of the complex nucleon
with higher charge and spin values (so-called isobar states), giving
rise to an “‘energy of internal excitation’’ or isobar energy. In a clas-
sical approximation, 1. e. neglecting the commutators [p, q], this
energy 1s given by:

1 2
lee{(1~u2) 1 o (pé+p;a+2wwp¢)} (3)

which, 1n its dependence on the g%, ¢°, ¢® and their conjugate mo-
ments, corresponds exactly to the kinetic energy of a spherical top
and 1s thus essentially positive. The quantity & (>0) may be assum-
ed to be a constant in first approximation; its magnitude depends
on the coupling parameters f and ¢. In a quantized theory the inter-
nal energy H; is treated as an operator and its eigenstates or “sta-
tionary rotational states” determine the isobar energy levels of
the complex nucleon. The two lowest isobar levels correspond to
the usual neutron and proton states, and the internal energy of the
next excited state is of the order of magnitude .

If we denote by E;, the sum of kinetic and isobar energy, we may
write:

I sy Oy 1
.Ekin:"f—'z Egkpipkz"ﬁl‘lpl'gs (4)

*) We shall write z for (g%, ¢2, ¢°) = (21, %3, %3)-
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where M 1s the mass of the nucleon and the “‘metric tensor” ¢i* is
given by:
gt =06%af1 or k<3,
gt =2Me(1—u?

5 2 M
9P =g = s (5)

" 2Meu
56 _ 465 _ < %
97 =19 (1—u2)

ges = g6 — ¢B4 — g81 — (),

Finally, we need the expression for the nuclear interaction poten-
tial V(q’, ¢"). In the static approximation this is given by (cfr.?)):

a) symmetrical pseudovect-or theory with f = 0:

ff r )2 ’ N
V) == )Z: 218”(” io(©) 537057 J (& =)
o=1 1,j= i

b) symmetrical p%eudovectm theory with g = 0: (6)
1oy ‘. o2 :

V(q 4 )_ ( ) = Z; [61'} r“z_ —()—Z'—,-_’_O_;_c;;_] X

x o (2" — I)
Here:

: —plx —a"| _ _
J(lo'~a")) = gy ©=0 %), (7)

the meaning of the s;;(w) will be given later (see (10)) and u is the
meson mass™®).

As in WexTzEL's and CorsTeER’s papers the leading feature of
the present investigation will be to compute the total nuclear energy
as a function of the nuclear volume. To that end we use the statisti-
cal approach. Let us first write down the expression for the potential
energy. According to Hartree and Fock this 1s given by:

we =3 | [ 4444 [0(@) ela) — (@4 0@, q)] V(d.q)  (8)

") 18 Dirac’s mixed density and p(q) =

E

where ¢ (¢, ¢") = (q'|olq

e(q, 9)-
The coordinates (1) have to be inserted for q’, ¢” and the poten-

tials (6) for V. However, in treating a nucleus composed of many
particles, we may replace the non-central part of the potential by

*) Our units are such that # = ¢ = 1.
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1ts average over all spatial directions (as was done by CoESTER*))
and use the following simplified expressions for V:

) Vidhq) =—L I(|z—2)) 3 sy(@)s (o)
(9)

b)  Vigha) == PRI ) Y o) siw”).

In these formulae the double subscripts i¢ and jo have been re-
placed by the single index k now running from 1 to 9. The quantities
sp(w) are essentially the coefficients of an orthogonal transforma-
tion (rotation) in 3-dimensional space expressed as functions of the
Eulerian angles @, @ and ¥. We have:

$1(w) =sin @sin ¥+ cos D cos @ cos ¥

Sa(w) = —sin D cos ¥+ cos D cos Osin ¥ s3(w) = cos Psin@
$y(w) = —cos @sin ¥ +sin Pcos O cos ¥

S5(w) = cos Pcos P +sin PeosOsin ¥ sg(w) =sin D sin@
$7(w) =—smn 0B cos ¥

(10)

sg(w) = —sin@sin ¥ So{w) =cos O .

In writing the potential energy we have neglected the Coulomb
interaction; for the moment we shall furthermore retain only the
first term of (8), 1. e. the non-exchange part of the potential energy.
We are then left with:

Al 1 Wi ! /4 / n ! " 13 I '
Evw=—57 [ [ dg dg" o(q") o(q") J(|& —'|) X s,(e) s (") (11)
% k
for the pseudovector theory. Here 4 is a positive constant:
h=(gy3) or (2-1%3). (12)

We may mention at this point that a similar constant 4" appear-
ing in the vector theory is negative. This difference in sign will turn
out to be of great consequence for the stability of the nucleus (see
sect. 3). :

As discussed by Corster, there are two limiting cases in which
the spatial density o(q) appearing in (11) can be easily calculated.

*) 1. e. we substitute:
02

r W 1 2 ’ " 1 2 ’ "
“5;;;0—%7'J(|x —a"]) —’75“' Vi Jla'—2") “*Tg“sifﬂ J(|a—=").
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These are those of “large’ and “small” nuclear radius. In the latter,
to which we shall confine ourselves, we may assume many isobar
states of the single nucleons to be highly excited*). For this reason,
since the complex nucleon 1s a system possessing a classical ana-
logue (namely a spherical top), we can use a semiclassical approxi-
mation, 1. e. the approximation of large quantum numbers, just as
in the theory of heavy atoms?)$)7). In this limit the commutators
[p, q] may be neglected, so that the use of formula (3) for Hj 1s
justified.

The (p, q) space (phase space) is divided into cells of volume
h% = (2 7)%; we introduce the 6-dimensional Tnomas-FErm1 poten-
tial

Ulg) = | dq"elq") V(g>q) =—2 | dg"e(q") I’ — a"])x

X 2 8i{(00") 51(00") (18)

and construct the surface of constant energy

1 " .
H(p,q) = 537 2 9" P+ Ulg) =W. (14)
ik

The energy parameter W is determined by the condition that each
of the cells, for which H(p, q) << W, shall be occupied by one par-
ticle, provided the x at which the cell is located lies inside the
nuclear volume; all other cells shall be empty. As usual in this
method, we thus assume the nucleus to be in the state of lowest
energy compatible with the fact that the nucleons obey FErmI
statistics. We have already mentioned that even in this case many
1sobar states will be excited for sufficiently small nuclear radius.

Thus we have for the density in phase space:

— 0 if H(p, d id
pq—{ 27)° 1 (p.q) < W and z inside (15)
0

otherwise. (v = nuclear volume.)

The particle density is then given Dby:

= fdp e(¢> p) (dP = ;lj dpi) ’ (16)

0< |pl2< 2 MW —U(g)]

*) See . WENTZEL, L. c. 1), § 3 for a more quantitative discussion of this point,
based on the scalar theory. WENTZEL verifies a posteriori that, below a certain
critical nuclear volume, the actual values of the variable ps are > h, so that the
distribution in phase space may be replaced by a continuous function.
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or L1 @MW-U@)
(27)°  )/det (gi%) 6

2M\32 1 \
0(q) = =( p ) 8 @ VU@ (17)

if W—U(q) > 0, and z inside v,

0 otherwise.

Neglecting surface effects, we shall assume that neither p(q) nor
U(g) depend on z inside the nucleus:

o(q) = { o(w) U(q) = { g(a)) inside the nucleus } (18)

0 outside the nucleus,
and change (13) into:
w)=—4 /dw o(w’) Zé )sp(w)  (do'=d® d¥' du’), (19)
where
A =1 4nfdfr72JT)>O (20)

Putting:
| — 4 f doo’ o(w (21)
(19) can be written:

. | |
= 37 Cos,(0). 22)

k=1
If N is the number of particles forming the nucleus (N > 1), we

have:
N =/dq9(q) zvfdw o(w) . (23)

The ““total kinetic energy” (= kinetic + isobar energy) i 18 obtain-
ed by adding the contributions from the single nucleons:

Bu,= | [ dpdqe(a.p) 537 |p*- (24)
Again, the p-integral can be easily calculated; we find: °

w =y [ dael@) (W =T,

where o(q) 1s given by (17) and (18). With the help of (23) this be-
comes :

E

B, — {NW—U [ dw o(w) U(a))} (25)

6
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On the other hand, using (13) and (18) we can write for the po-
tential energy (11):

o — jdw o(w) U(w) , (26)
so that the total energy of the nucleus will be:
BE=2NW—1v[doo) Uw). (27)
Multiplying (21) by C,, summing over k and using (22), we find:

202 .
kA o / do o(w) U(w) . (28)

Hence (27) can be written:
3 W 1 Z ;
E =3 Z’ .N + 41&* L /U ® k C]i . (29)

We now call £ the whole domain of variability of the 's, detined
by (2), and £ that part of £ in which W — U(w) > 0. Also we put
y=(E/N) and x=(v/N)%¥). (30)

Collecting our formulae, we then have the following set of equa-
tions:

N B-(W-Uw)® it W-U(w) >0

o(w) = { 0 otherwise } (I)
B>0.

U(w) = ZC s(®)  (si(w) given by (10)), (IT)

where:

C,=—A. B/ da)s"(w)[W 2‘ () r (I11)

(N/v)=(1/x) =B f dw [W—Zq' O, Sk((;)ﬂ3 . (IV)
O =1

; 3 , e oo
EIN)=y==W+- 2 3 CE. (V)
k=1 .

) l\\ot to be confused with x = (¢, ¢2, ¢°).
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3. Coester’s Theorem and the First Saturation Requirement.

CoestiEr’s Theorem states that the quantity .
/.dw o(w) U(w)
Q

1s < 0, and vanishes if and only if p(w) is a constant, in which case
we have U(w) =0 (as follows from (19) and from the relations

fdw'sk(w'):o for k—=1,2,8,---9).
0

We therefore see from (28) that if the constant 4 (cfr. (20) and

(12)) were < 0, our equations (I), (II), ... (V) could be satisfied
only by the “trivial solution”
Ci=Ca=0Cy=--+++..=0y=0. (31)

This happens to be the case in the vector theory, and a similar
situation holds for all types of meson fields treated by CorsTER
(notice that CorstEr’s 4 corresponds to — (4/4) in our notation).

Thus the sign of 4 is of primary importance in our statistical
model of the nucleus. It was noticed by WENTzEL and CoEsTER that
for A < 0 the nucleons tend to be uniformly distributed over the

space of the angular variables: o(w) — const. and Q = Q; whereas
for 4 > 0 there takes place a peculiar “freezing’’ of the internal

degrees of freedom: the domain £ within which o(w) 1s+0 be-
comes smaller and smaller with decreasing nuclear radius. As shown

by the calculations, this shrinking of £ is closely connected with
the fact that the nuclear forces tend to loose their saturation char-
acter as the nuclear volume becomes very small.

In the usual weak-coupling approximation the isobar energy does
not exist and the ordinary kinetic energy is roughly proportional
to the number of nucleons N (sece: RosexrELD, l. c. §§ 9, 11, 12).
Then a necessary condition in order that the nucleus should exhibit
the observed saturation properties is that the non-exchange part
of the potential energy be = 0. RosgxrreLD calls this the first
saturation requirement.

In our case, however, the situation is not quite so definite. It is
true that (if the C’s are not all zero) the potential energy (11) or
(26) 15 < 0 by CorsTER’s theorem; yet, this effect might be com-
pensated by the positive “‘total kinetic energy” which could be
proportional to some power of N higher than the first for very
dense nuclei (see also the end of sect. 4). In other words, the nuclear
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motion (translational and internal) could counteract the strong at-
traction caused by the non-saturated nuclear forces and thus prevent
a “collapsing” of the nucleus. It will turn out, however, that this
1s not the case, just as in the scalar theory.

4. Solution of the bhasic equations in two simple cases.
Non-saturation charaeter of the forces.

A and B being known constants, we now have to solve the equa-
tions (III) and (IV) for the ten unknown quantities C';, C,, ... C,,
W, and 1nsert the values thus obtained into (V).

It seems hopeless, however, to attempt the solution of this mathe-
matical problem in all its generality, as may already be seen by
assuming £ = £. Then the integrals appearing in (III) and (IV)
can be evaluated explicitely and we get ten equations of the third
degree for W and the C’s. Each real solution of this system gives
a possible y(x) curve, as long as

W Z Ck ' Sk(w)

remains > 0 for all values of the o’s.
To exemplify the procedure let us treat the very simple special
case:

01202: """" :CBZO, CQZC:FO- (32)
Let us also assume:
W=>|C|>0, ie 2=2. O (39)

The first eight of eqs. (III) are then automatically satisfied; the
last one becomes:

2_72 2_:: ,.1

C=—AB [ [ [d®a¥auu[W—Cus =8 AB (CW2+ - ¢9)
0 0 =1

or:

C?=(5/8a%24AB)—5-W2, (34)

Similarly we get from (IV):
1/ =8a2B.(W3+W.C?. - (39)
Inserting C? from (34) we then have a relation between W and x:

W3- (5/32.72- A.B)-W+(1/82.2%-B)- (1/z) =0,  (36)
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which permits us to calculate W(x) and hence C*(z) from (34) and
y(z) from (V). Finally, by (84) and (36), the condition (33) amounts
to the following restriction for the values of x:

a2 (VB <o <m@42yB. (37)

Instead of carrying this discussion further, it is-convenient to
- use a slightly different method, which will allow us to get rid of
the assumption (33). Putting

t=(W/0), (38)

we try to express both x and y as functions of the parameter i.
We then have to distinguish the following cases:

a) C>0,t>1, Q= 0,
(84) and (85) become, with the help of (38):

———— ‘
O:V8n2AB(5t2+1) =LV, (39)
+

and : ‘
(1/B-C3-x) = 872 (t3 + 1), or, using (39):

z(f) = (25‘4)3"2. B . BEFIE %) (40a)

From (V) we finally obtain:

y(t) = (8/4) - 1- O(f) + (1/4- A) - z(f) - [C(t) ]2 =

- 1 15¢2+2012+1 |
8n)/10 AB {t(t2+1)1/5t2+1)"l' (40b)
b) C >0, —1 <t <1
The domain £ is now determined by :
0L D<2m, 0P < 2m, —1 <L u<t. ** (41)

) (1) ~4n( ) VB, w(co)=n(2APYE (see (37)).
**) Since t = —1 corresponds to x = 0 (cfr. (44a)), we see that the extension
of Q tends to zero for & — 0, as mentioned in sect. 3.
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86
(IV) can be written:
(1/C3.2)=4n*B [dfu, c(t—u)®=n%-B-(1+1)4 (42)
(I1I) gives: - .
C@%:n@iniyABa—ﬂ:>O’ ’ (43)
+
and 1n the same way as before we find
x (1) _n( ) VB (4 (t+1)2, (44a)
L ‘”+L: (44b)

YO =55y dB t+1)2)(4-0)

g) € < Ik
(W/|C]), we obtain

Introducing the parameter ¢ = — (W/C) =
the same equations as (40) and (44) (with |C| instead of C) and

therefore the same energy vs. nuclear volume curve

P 4\/4;I'AB i
o Yo

g M

/ S e

/ t=3> ‘_:‘-_

i ——e T T s

l e t=1 v t=too

o4t | ,/Y, tz-2.912
/ .

| ’ Yo
03r | /

! /

l,'ti’—l

o2r|

| /
[o I o !’r-__b_l

It

% /1 2 .
X= - X
AaTTaB

Fig. 1.

The curves y vs. z (y = E/N =z = v/N)

It is a matter of simple algebra to discuss the functions (40) and
(44) and to construct the resulting curve y(x) which 1s plotted in
fig. 1 (denoted by y,(x) to distinguish it from other solutions).
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Besides the “trivial solution” (81) which gives:
Yo(2) = (3/4) - Ba?B)~'7 27, (45)

another relatively simple case is obtained if we try to solve our
equations on the assumption that:

01=O5=09:C#0
Co=03=0,=03=0;=03=0. (46)

However, since the calculations pertaining to (46) are rather in-
volved, they will not be reproduced here. The general procedure 1s
the same as before; it 1s found that a separate discussion is neces-
sary for:

a) C >0, and b) C < 0.

We then put again { = (W/C) and find
C(t), W(t) = t-C(t), =(t) and y(t).
It turns out that in case a) the parameter ¢ can assume the values

—1 <t< o
and we have:
g(—=1) =0, y(—1) = — oo,

Q< Qfor—1<t<3, Q= 0Qfort>38.

In case b), on the other hand, the possible values of t are:

—oco < t< 3
with:
z(3) =0, y(8) = — oo,

Q=0 for —co<t<—1, 0< 0 for —1<t<8.

It can also be verified by direct calculation that the equations
(III) and (46) are compatible, 1. e. that:

— 4B [ dorsy (0 {1 [2(0) + 5 0) + s 0] =

IC @

1;2{01' k=1,5,9
0 for k1 =2,3,4,6,7,8.
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We denote the energy vs. nuclear volume curves resulting from
(46) by y.(x) and y_(x), according to whether C is > Oor < 0;they
are also plotted in fig. 1, together with the trivial solution y,(x).

Closer inspection shows that the different sections of the various
curves all join smoothly. In particular, at the point corresponding
tot = 4 oo (C = 0) the four curves y,, y_, y, and y, have the same
value and the same tangent.

As far as these calculations go, no stable nucleus can exist, since
none of our curves y(x) shows a minimum of the energy. The simi-
larity between these results and those found by WeNTZEL 1s evi-
dent, and m both cases the most striking feature of the curves is
their asymptotic behavior in the vicinity of z = 0. Excluding the
trivial solution (y ~ z~'), we find that the product

x(t) -y (1)

tends to a finite negative value as ¢ > t;,, where {, 1s such that
x(ty) = 0. This means that

E ~—(N2/v) as v >0,

1.e. In this limit the nuclear forces behave like ordinary, non-satu-
rated attractive forces, causing the nucleus to shrink to an infini-
tesimal volume.

It has already been noticed by WeNTZEL (l. ¢.1)) that neither
the CouromB energy nor the exchange energy, both of which we
have hitherto neglected, can alter this result, and we shall not 1nsist
further on this point*).

The simple calculations based on (32) may also serve to illustrate
the remark made at the end of sect. 3 on the influence of the kinetic
energy. For —1 <t <1 we have from (25), (28), (38), (43) and

(444):
B/ N) = (8/4) {t- C(t) + (= (t)/4)-[C (1) *} =
3
T w548 (+1) (-1
Comparison with (44a) shows that

Ekin l/ v

N VN

~ *) In CoESTER’s case we have the opposite situation, since there the non-satura-
tion part of the potential energy is = 0 and therefore the exchange energy plays
an essential role in bringing-about the stability of the nucleus. In fact, if both the
Courome and the exchange energy were neglected, the y(x) curve for 4 < 0 and

small  would be given solely by our ‘“‘trivial solution‘¢ which obviously does not
correspond to any stable state of binding.
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has a finite value for { - — 1, so that, in the limit of vanishing
nuclear radius, the ““total kinetic energy’’ increases only as (N3/2/)/v)
i contrast to the potential energy which is proportional to —(N2%/v)
and thus becomes preponderant.

5. Coneluding remarks.

The arguments presented in sects. 3 and 4 suggest strongly that,
if U(w)=£0, the energy will in all cases behave asymptotically as
E ~—(N2/v) for v > 0; yet we did not succeed in finding a general
mathematical proof for this fact. Fortunately, however, 1t is not
necessary to deal with this problem, since, even if there existed a
curve y(x) with a minimum corresponding to a state of binding, the
latter could only have a limited lifetime. The heavy nucleus, being
a system with very many degrees of freedom, would soon perform

E
' N

Fig. 2.

a transition to the energetically lower state of closest packing (fig. 2).
The conclusions enunciated in sect. 1 therefore appear to be gene-
rally valid.

Our description of the nucleus is adequate only for sufficiently
small values of x = (v/N); within this range the approximations
made, In particular the use of the Tromas-FrrmI method, seem
quite reasonable. Perhaps the most serious omission concerns the
surface effects. As well known, they are by no means unimportant®),
but it is clear that they cannot prevent the shrinking of a nucleus
composed of sufficiently many particles.

In his review of ComsTER’S work, RosENFELD (. c.2)) states that
the use of the statistical model is “‘far from reliable”. This remark,
however, would rather seem to apply to the quantitative conclusions
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drawn by CogrsTERr from his calculations than to the general quali-
tative features of the theory. Though Fock’s method 1s admittedly
far less reliable in nuclear than in atomic physics, the only essential
thing we have to prove i1s the inadequacy of the kinetic energy in
preventing a ‘‘nuclear breakdown”, since the first saturation re-
quirement is not fulfilled. Remembering that the actual values of
the energy are always lower than those resulting from Fock’s equa-
tion, we have no reason to doubt the validity of our conclusions.
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