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Berechnung linearer, realisierbarer Netzwerke zur Erz1elung
optimaler Signal/Rauschverhéltnisse
von K. Halbaech, Physikalisches Institut der Universitit Basel.
' (20. 1. 1953.)

Zusammenfassung: Es wird eine allgemeine Methode zur Berechnung derjenigen
linearen, realisierbaren Anordnung entwickelt, die am Ausgang ein optimales Ver-
héltnis von Signal zu Untergrund ergibt. Die Eigenschaften von Signal und Unter-
grund am Eingang werden dabei als bekannt angenommen, die Messzeit kann be-
liebig vorgegeben werden. Als Anwendung wird der optimale Ionisationskammer-
verstirker berechnet und mit dem RC—RC-Verstiarker und dem delay line chppmg
verglichen.

1. Problemstellung.

Viele physikalische Messungen werden auf das Problem zurtick-
gefithrt, gewisse Eigenschaften eines elektrischen Signals, z. B.
Kurvenform oder Signalhéhe, zu bestimmen. Da dem Signal immer
ein Untergrund iiberlagert sein wird (z. B. Widerstandsrauschen,
Rohrenrauschen), ist die gewiinschte Messung in den meisten Féllen
nur mit begrenzter Genauigkeit moglich. Diese Messgenauigkeit
wird im allgemeinen gedndert, wenn man das vom Untergrund iiber-
lagerte Signal durch ein Filter (Verstéarker) gibt, und man kann
nun diejenige lineare Anordnung*) suchen, welche die zu unter-
suchende Signaleigenschaft mit optimaler Genauigkeit zu messen
gestattet. Dabei kann man voraussetzen, dass die Anordnung selbst
keinen zusatzlichen Untergrund erzeugt. Die Berechnung der opti-
malen Anordnung zur Bestimmung der Signalform wurde von Bops
und SHANNON?) durchgefiihrt. Oft ist jedoch die Signalform be-
kannt, und man wiinscht die Signalamplitude mit moglichst grosser
Genauigkeit zu bestimmen. peN HarToc und MULLer?) haben
dieses Problem bereits behandelt. Es soll hier erneut diskutiert
werden, jedoch unter Beachtung zweier zusétzlicher Bedingungen,
welche die vom theoretischen und praktischen Gesichtspunkt aus
unbefriedigenden Losungen ausscheiden.

Zunéchst einmal muss man von der gesuchten Anordnung ver-
langen, dass sie realisierbar ist; sie darf also kein Ausgangssignal

*) Unter linearer Anordnung versteht man ein Netzwerk, das im Sinne der
Fourierzerlegung durch eine komplexe Ubertragungsfunktion beschrieben werden
kann, d. h. also, dass Eingangs- und Ausgangssignal miteinander durch lineare
Gleichungen bzw. Differentialgleichungen verkniipft sind.
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geben, das zeitlich vor dem erzeugenden Eingangssignal beginnt.
Ferner muss eine praktisch brauchbare Schaltung natiirlich stabil
sein, d. h. sie darf z. B. auf eine kleine Stérung nicht mit einem
bis ins Unendliche andauernden, exponentiell anwachsenden Aus-
gangssignal antworten.

Weiterhin wird man in vielen Fallen mit grosserer Messzeit auch
eine grossere Messgenauigkeit erreichen kénnen. Man muss also,
um nicht zu unendlich langen Messzeiten zu kommen, die Messzeit
irgendwie beschrinken. Das geschieht hier, indem die Zeit, zu der
man die Signalhdhe misst, relativ zum zeitlichen Auftreten des
Signals am Eingang beliebig, aber fest vorgegeben wird.

Ist Sy (w) das Fourlerspektrum des Signals F (f) am Eingang
der gesuchten Anordnung, deren Ubertragungsfunktion u(w) sei,
so 1st der zeitliche Verlauf des Signals am Ausgang des Verstarkers
gegeben durch:

o0

Ht) = [ So(0) p(w)eotdr Qav=w). (1)

o

— 00

Da der mittlere quadratische Fehler fiir die Messung der Signal-
héhe in einem vorgegebenen Zeitpunkt gleich dem Effektivwert des
Untergrundes ist, wahlen wir als Mass fiir die Messgenauigkeit das
Verhiltnis vom Quadrat der gemessenen Signalhohe zum quadra-
tischen Mittelwert (Quadrat des Effektivwertes) des Untergrundes.
Beschreibt man das Rauschen am Eingang durch sein quadratisches
Fourierspektrum Ny(w), das wir als bekannt voraussetzen, so ist
der quadratische Mittelwert des Rauschens am Ausgang bekannt-

lich*):

-

B = | No(w) | () [2dy )

und man erhilt fiir das (quadratische) Verhéltnis von Signal zu
Rauschen am Ausgang, wenn man in (1) fir ¢ den zur Messung
der Signalhéhe vorgegebenen Wert #, einsetzt:

2

Vaty) = S = 2= . ; (3)

[NO )| w(w)|2dy

*) Aus formalen Griinden integrieren wir hier von — oo bis + co und nicht,
wie allgemein iiblich, von 0 bis + co. Dies bedeutet in der Normierung von N,(w)
einen Faktor 2,
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In diesem Ausdruck muss nun diejenige Funktion u(w) gefunden
werden, die ihn zum Maximum macht. Dabei sind jedoch nicht alle
denkbaren Funktionen zugelassen, sondern nur solche, die realisier-
baren und stabilen Anordnungen entsprechen.

2. Berechnung der Ubertragungseigensehaften des optimalen Netzwerkes.

Die Behandlung des Problems wird stark vereinfacht und die
Resultate werden sehr anschaulich, wenn wir die gesuchte Anord-
nung durch zwei hintereinandergeschaltete Netzwerke ersetzen der-
art, dass das quadratische Fourler%pektmm des Rauschens nach
der ersten Anordnung gleich eins, d. h. also frequenzunabhéngig,
wird (Fig. 1). Wir verlangen von diesen beiden Anordnungen, dass
jede fir sich realisierbar und stabil ist, so dass dies auch von der
gesamten Anordnung gilt. Sind die Ubertragungsfunktionen der
beiden Netzwerke u,(w) und py(w), so ist:

p(w) = py (@) po () - - (4)

Das quadratische Fourierspektrum des Rauschens nach der ersten
Anordnung ist gegeben durch:

Ny (@) = No(w) | a1 (@) [2-

Da wir dies zu eins machen wollen, muss fiir u,(w) auf der reellen
Frequenzachse gelten:

m@P=1UNo@). )

Betrachten wir die Ubertragungsfunktion u,(w) als Funktion der
komplexen Variablen w, so ist die Forderung der Realisierbarkeit
und Stabilitit bekanntlich dquivalent der Bedingung, dass u,(w)
in der unteren w-Halbebene (d. h. fiir o mit negatlvem Imagingrteil)
keine Pole hat. Ebenso miissen wir aber auch von g,(w) verlangen,
dass es keine Nullstellen in der unteren w-Halbebene hat; diese
Nullstellen kdnnten néamlich durch u,(w) nicht mehr kompensiert
werden (die Anordnung mit der Ubertragungsfunktion p,(w) wire
dann instabil oder nicht realisierbar) und wir wissen nicht, ob die
optimale Ubertragungsfunktion u(w) = u;(®) pe(w) Nullstellen in
der unteren w-Halbebene haben darf. Durch Gleichung (5) und
die Bedingung, dass u;(w) in der unteren w-Halbebene keine Null-
stellen und Pole haben darf, ist u;(w) bestimmt. In den meisten
Fallen ist Ny(w) der Quotient zweier Polynome von w?, so dass
man dann p,(w) sehr leicht direkt angeben kann. In komplizierteren
Fallen lésst sich p,(w) mit Hilfe der Beziehungen zwischen Ampli-
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tudengang und Phasengang, die man z. B. ber Bopr?) findet,
berechnen.

Durch dasNetzwerk u,(w) wird das Eingangssignal F'(t) verformt;
am Punkt 1 (Iig. 1) gilt namlich fiir das Fourierspektrum des
Signals S;(w) = Sy(®) - yy(w), und fir das Signal selbst ist:

Py () = / So () g (@) € d . (6)

a 7
: H (@) : [/“;:?0)1)] g; j
; !

| o
£ — Vi) %{z/zdt
f f)=F(1,-1) -

ElE)

oD
) ; S (@)=5, fré)=o,;(t<o) +2O o
ﬁ/?j Il I r(;}} 3 Vo= 22l oy
() Yy /=N f () = T - A,
Fig. 1.

Schematische Darstellung der allgemeinen Resultate.

Den zweiten Teil des optimalen Verstérkers beschreiben wir zweck-
massigerweise nicht durch seine Ubertragungsfunktion u,(w), son-
dern durch deren Fouriertransformierte:

) = | pa(w)etdr. (7a)
Diese Funktion hat eine direkt anschauliche Bedeutung: da ein
zur Zeit Null erfolgender 4-Stoss (unendlich kurz dauernder Impuls
mit endlicher Fliche) ein frequenzunabhéngiges Fourierspektrum
hat, ist f(t) das Ausgangssignal, wenn man auf den Eingang der
Anordnung mit der Ubertragungsfunktion us(w) zur Zeit Null einen
d-Stoss mit der Flache 1 gibt. Aus dieser Deutung wird sofort klar,
was die Realisierbarkeit fir f(t) bedeutet: fiir ¢ < 0 miissen wir
f(t) = 0 setzen. Die Stabilitdtsbedingung ist ebenso leicht einzu-
sehen: fir ¢+ co muss f(f) gegen einen endlichen Wert gehen;
wie wir spater am Resultat sehen werden, wird diese Bedingung
immer von selbst erfiillt sein. Wegen der Realisierbarkeit erhalten
wir fiir die Riicktransformation von (7a):

s (@) :/f(t) et dt, (7b)

Mit Hilfe dieser Beziehungen werden wir nun den Ausdruck fir
H(t) (Gleichung (1)) umformen:

H (i) = [ So(w) p(@) o™ dv= [ Som pye™'dy.
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Hierin ersetzen wir u, durch (7b):

Ht) = [ [ So(@) m()f (@) e ¢~ dads.
—% 0
Vertauschung der Integrationsfolge und Durchfiihrung der Inte-
gration iiber » ergibt mit (6):

H(t) = [Fy(t—o)f(2)dz = [ Fy(2)f(t—0) da. (®)

Auch diese Gleichung erlaubt wieder eine direkte Interpretation:
denkt man sich F'y(x) aus d-Stossen der Flache F'y(x) - dx zusammen-
gesetzt, so gibt ein derartiger, am Eingang zur Zeit « erfolgender
Impuls am Ausgang zur Zeit ¢ den Beitrag Fy(z)-f(t — x)-dz, und
Gleichung (8) ist die Summe aller Beitrage der gesamten Vergangen-
heit. :

Um den Ausdruck fiir das Rauschen (Gleichung (2)) umzuformen,
verfahren wir ganz dhnlich: mit (2) und (4) 1st:

R= [ Nof@) | (0)[2] pa(0)]2d.

Wegén (5) wird:

B= [ (o) |*dv— [ uy(w) s (—0) dv. (9)

—_—oQ

‘Wenden wir hierin auf u,(— w) Gleichung (7b) an, so wird:

R :fl/f(m) ity () €97 d dv .

—oo 0

Vertauschen wir darin die Integrationsfolge und beachten bei der
Durchfiithrung der Integration tiber » Gleichung (7a), so erhalten
wir:

Rxw/fz(a:)da:. (10)

Setzen wir (8) und (10) in (3) ein, so bekommen wir fir das (quadra-
tische) Verhialtnis von Signal zu Rauschen:

00 2
fFl(tu—x)f(x)dw] |

. -

HE(l) _
gt =

V2 () = =
12 () da
/
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Um diesen Ausdruck durch geeignete Wahl von f(x) zum Maximum
zu machen, variieren wir in der iiblichen Weise: wir ersetzen darin
f(x) durch f(x) + eg(x), differenzieren V2 nach e, lassen ¢ gegen
Null gehen und setzen dann das Ganze gleich Null. Wir erhalten so:

- 1 H ’
(HE — 5 RE)£=0=: 0. (11)
Mit (8) und (10) wird:

(H),mo= [ Fille—2)9(2) d2 5 (R),o=2 | 1(2)g(e) do.

Setzen wir diese beiden Ausdriicke in (11) ein und schreiben alles
unter ein Integralzeichen, so muss sein:
00 > . | ‘ ; :
[ [Frte—o)— 3 @] 9(e) da 0. (12)
0
Hierin ist H/E beziiglich der Integrationsvariablen  konstant und
enthélt die Funktion g(z) nicht mehr. Eine 1n f(f) noch enthaltene
willkiirliche Normierungskonstante konnen wir daher so festlegen,

dass HIR -1 (13)

wird. Da Gleichung (12) fir jede Funktion g(z) erfiillt sein muss,
bekommen wir als gesuchte Funktion, wenn wir wieder t statt «

schreiben: fO)=F,(t,—1) ({t>0). (14)

Wegen der Realisierbarkeit ist, wie schon weiter vorne angegeben,
f(t) =0 tar t <0; die Stabilitdtsbedingung ist auch erfiillt, da jede
sinnvolle Funktion F,(t) fiir sehr grosse negative Werte von ¢ ver-
schwinden wird. Aus (14) lasst sich mit Hilfe der Beziehung (7D)
die Ubertragungsfunktion u,(w) ohne Schwierigkeiten berechnen.
Wir verzichten hier auf Herleitung und Angabe des Ausdruckes
fiir us(w), da er nichts wesentlich Neues erkennen lidsst und, im
Gegensatz zu der sehr anschaulichen Gleichung (14), sehr uniiber-
sichtlich 1st.

Nachdem jetzt die Ubertragungseigenschaften des gesuchten
Systems bekannt sind, miissen wir noch bestimmen, wie das
damit erzielte Verhéltnis von Signal zu Rauschen abhingt von
der Zeit t,, zu der man die Signalhdhe misst. Mit den Glei-
chungen (3), (8), (13) und (14) erh&lt man dafiir:

V@=Vﬁmwt | (15)
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Es se1 an dieser Stelle noch einmal daran erinnert, dass, wie schon
angedeutet, 1/V(t;,) der mittlere relative Fehler fiir eine Messung

der Signalhohe ist. Wenn man den Grenzfall {, -+ oco betrachtet,
wird :

Vo) - [ B at

Eine ganz gleiche Betrachtung, wie wir sie zur Herleitung der
Gleichung (10) aus Gleichung (9) angewandt haben, fithrt zu:

Vo) = [ ISy 2= [ 1S0(a) ()| dr-

Wegen (5) wird somit:
V(o0) = l/ --':Sf—(“’” (16)

Obgleich bei vielen praktischen Problemen die Gleichung (15)
von besonderem Interesse sein wird, ist' doch auch der Ausdruck
(16) sehr bemerkenswert: er ermdoglicht es auf einfache Weise,
direkt aus den vorgegebenen Grossen Sy(w) und Ny(w) zu berechnen,
wie gross das mit einer linearen Anordnung prinzipiell tiberhaupt
erreichbare Verhéltnis von Signal zu Rauschen ist. Fig. 1 gibt noch
einmal eine Ubersicht, wie sich die Grossen uy(w), f(t), V2(t,) und

V2 (c0) aus den vorgegebenen Funktionen Fy(t) und Ny(w) berech-
nen lassen.

3. Anwendung auf einen Spezialfall.

Zur Erlduterung der allgémeinen Methode soll im folgenden als
einfaches Beispiel die Messung von Ladungen mit Hilfe der Ionisa-
tionskammer behandelt werden. Im allgemecinen verbindet man
bei derartigen Messungen die Sammelelektrode der Ionisations-
kammer mit dem sonst freien Gitter der ersten Verstirkerrohre,
wihrend die andere Elektrode an eine Gleichspannung gelegt wird
und somit wechselstrommaissig geerdet ist. Um eine etwas ein-
fachere Darstellung zu bekommen, nehmen wir an, dass man von
der Anode der ersten Rohre zunéchst einmal auf einen idealen (d. h.
frequenzunabhéngigen) Breitbandverstirker BBV geht, so dass man
an dessen Ausgang geniigend iiber dem Storpegel der folgenden
Anordnung liegt und von der ersten Réhre entkoppelt ist (Fig. 2).

Wie MiLaTz und KELLERY) gezeigt haben, ist bis auf unwesent-
liche: Konstanten an der ersten Anode und damit auch am Ausgang
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des BBV das quadratische Fourierspektrum des Rauschens gegeben
durch:
No(w) =1+a? w?. (17)

Unter der Annahme einer unendlich kurzen Sammelzeit der Kam-
mer erzeugt ein zur Zeit { = 0 auftretendes ionisierendes Teilchen
am Ausgang des BBV ein Signal von der Form:

Foty=1; (Fot)=0 fir t<0). (18)

Fiir den ersten Teil des optimalen Ubertragungssystems finden wir
mit (5) und (17) sofort:

() =i of(io+a). (19)
71y
7
ot
Kammer 40%) 7
i g 7
l——l BBy 1] 7 :@
= RC‘=,’é¢|
[ [ ]
e
Fig. 2.

Ubersicht iiber den optimalen Ionisationskammerverstirker.

Wie man sich leicht ﬁberlggtr, entspricht das in Fig. 2 angegebene
RC-Glied gerade dieser Ubertragungsfunktion. Das durch (18)
gegebene Signal wird durch dieses RC-Glied bekanntlich umge-

formt in:
Fi{fy=e; (F,(f)=0 fir t<0). (20)

Damit und mit (14) ist nun auch das gesuchte f(f) bekannt:
Pl e, (i<,
F(t)—0 (<05t 1.

In Figur 3 ist diese Funktion fiir ¢, = 1/a dargestellt. Durch Ein-
setzen von (20) in (15) erhalt man fiir das mit der optimalen Anord-
nung erreichte Verhaltnis von Signal zu Rauschen:

Vet,) = (1—e 244/ 2q. (21)

Zum Vergleich mit in der Praxis verwendeten Verstarkern ziehen
wir zunéchst den sogenannten RC—RC-Verstarker heran. Bei ihm
wird der Frequenzgang nach hohen und tiefen Frequenzen je mut
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einem RC-Glied beschnitten; seine Ubertragungsfunktion hat also
die Gestalt:
1 (0) po = w3 -1 0[(l o + ) o+ wy).

Die beiden Kreisfrequenzen w,, w, sind die reziproken Werte der
beiden verwendeten Zeitkonstanten R, C; bzw. E, C,. Wie vAN
HeerpENY) gezeigt hat, wird das Verhéltnis von Signal zu Rauschen
am grossten, wenn man w; = w, = a macht. In diesem Fall hat
das Ausgangssignal seine Maximalamplitude zur Zeit ¢ = 1/a, und

es wird:
72— 2

Durch Vergleich mit (21) sieht man, dass fir ¢, > 1/a der optimale
Verstiarker um den Faktor ¥,/ Vze = /2, d. h. rund 869, besser

fre)

74

—

4I5 ‘ 7 ' al
Fig. 3.
f(t) tiir den optimalen Verstirker (———)
fiur den RC-RC-Verstirker (= omen )
fiir delay line clipping (———-)
(t, = 1/a).

18t als der RC—RC-Verstirker. In seinen Betrachtungen tber die
prinzipielle Grenze der Messgenauigkeit, wenn Signal und Rauschen
durch (17) und (18) gegeben sind, kommt vaANn HEERDEN?) zu dem
gleichen Resultat. Schreibt man fiir den optimalen Verstarker die
gleiche Messzeit {, = 1/a vor, wie sie der beste RC—RC-Verstarker
hat, so ist der Gewinn im Verhéltnis von Signal zu Untergrund nur
noch 26%,. Da das die tiefen Frequenzen beschneidende REC-Glied
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des besten RC—RC-Verstirkers identisch ist mit dem Gleichung (19)
darstellenden RC-Glied des optimalen Verstarkers, konnen wir den
zweiten Teil der Ubertragungsfunktion des RC—RC-Verstarkers
(= a/(a+1w)) mit dem f(t) des optimalen Verstérkers vergleichen.
Die a/(a+iw) dquivalente Funktion f(f) ist in Fig.3 wiedergegeben.
Man sieht aus dieser Darstellung, dass man als néchst bessere Appro-
ximation des optimalen Verstirkers ein f(t) wihlen wird, das etwa
der gestrichelten Geraden entspricht. |

Wie man leicht findet, ist eine derartige Anordnung, zusammen
mit dem durch (19) beschriebenen RC-Glied, gleichbedeutend mit
dem in der Praxis schon lange gebrauchten delay line clipping. Das
damit im Maximum (bei t, = 1,25/a) erreichbare Verhiltnis von
Signal zu Untergrund liegt nur noch 109, unter demjenigen des
optimalen Verstarkers bei unendlich langer Messzeit. Wegen der
Verbesserung der Statistik sind jedoch 1m allgemeinen besonders
die kurzen Messzeiten von Bedeutung. Ilier muss man natiirlich
das mit dem delay line clipping erreichbare Verhéltnis von Signal
zu Untergrund mit dem des optimalen Verstiirkers bei gleicher
Messzeit t, vergleichen. Als Resultat einer entsprechenden Rech-
nung erhélt man in sehr guter Naherung:

Virelto) Vol 1 — 225 (at,<1,92).

Man kommt also offensichtlich bei Ionisationskammermessungen
mit den gebréduchlichen Methoden der prinzipiell iiberhaupt mog-
lichen Messgenauigkeit schon so nahe, dass eine wesentliche Ver-
besserung nur durch ganz andersartige Betrachtungen und Ideen

moglich ist. Aber vielleicht hat auch diese Erkenntnis einen gewissen
Wert.
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