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Berechnung- linearer, realisierbarer Netzwerke zur Erzielung
optimaler Signal/Rausehverhältnisse

von K. Halbach, Physikalisches Institut der Universität Basel.

(20.1.1953.)

Zusammenfassung: Es wird eine allgemeine Methode zur Berechnung derjenigen
linearen, realisierbaren Anordnung entwickelt, die am Ausgang ein optimales
Verhältnis von Signal zu Untergrund ergibt. Die Eigenschaften von Signal und Untergrund

am Eingang werden dabei als bekannt angenommen, die Messzeit kann
beliebig vorgegeben werden. Als Anwendung wird der optimale Ionisationskammerverstärker

berechnet und mit dem BC—BC-Verstärker und dem delay line clipping
verglichen.

1. Problemstellung.

Viele physikalische Messungen werden auf das Problem
zurückgeführt, gewisse Eigenschaften eines elektrischen Signals, z. B.
Kurvenform oder Signalhöhe, zu bestimmen. Da dem Signal immer
ein Untergrund überlagert sein wird (z. B. Widerstandsrauschen,
Röhrenrauschen), ist die gewünschte Messung in den meisten Fällen
nur mit begrenzter Genauigkeit möglich. Diese Messgenauigkeit
wird im allgemeinen geändert, wenn man das vom Untergrund
überlagerte Signal durch ein Filter (Verstärker) gibt, und man kann
nun diejenige lineare Anordnung*) suchen, welche die zu
untersuchende Signaleigenschaft mit optimaler Genauigkeit zu messen
gestaltet. Dabei kann man voraussetzen, dass die Anordnung selbst
keinen zusätzlichen Untergrund erzeugt. Die Berechnung der
optimalen Anordnung zur Bestimmung der Signalform wurde von Bode
und Shannon1) durchgeführt. Oft ist jedoch die Signalform
bekannt, und man wünscht die Signalamplitude mit möglichst grosser
Genauigkeit zu bestimmen, den Hartog und Müller2) haben
dieses Problem bereits behandelt. Es soll hier erneut diskutiert
werden, jedoch unter Beachtung zweier zusätzlicher Bedingungen,
welche die vom theoretischen und praktischen Gesichtspunkt aus
unbefriedigenden Lösungen ausscheiden.

Zunächst einmal muss man von der gesuchten Anordnung
verlangen, dass sie realisierbar ist; sie darf also kein Ausgangssignal

*) Unter linearer Anordnung versteht man ein Netzwerk, das im Sinne der
Fourierzerlegung durch eine komplexe Übertragungsfunktion beschrieben werden
kmn, d. h. also, dass Eingangs- und Ausgangssignal miteinander durch lineare
Gleichungen bzw. Differentialgleichungen verknüpft sind.
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66 K. Halbach.

geben, das zeitlich vor dem erzeugenden Eingangssignal beginnt.
Ferner muss eine praktisch brauchbare Schaltung natürlich stabil
sein, d. h. sie darf z. B. auf eine kleine Störung nicht mit einem
bis ins Unendliche andauernden, exponentiell anwachsenden
Ausgangssignal antworten.

Weiterhin wird man in vielen Fällen mit grösserer Messzeit auch
eine grössere Messgenauigkeit erreichen können. Man muss also,
um nicht zu unendlich langen Messzeiten zu kommen, die Messzeit
irgendwie beschränken. Das geschieht hier, indem die Zeit, zu der
man die Signalhöhe misst, relativ zum zeitlichen Auftreten des

Signals am Eingang beliebig, aber fest vorgegeben wird.
Ist S0 (co) das Fourierspektrum des Signals F0 (t) am Eingang

der gesuchten Anordnung, deren Übertragungsfunktion ji(co) sei,

so ist der zeitliche Verlauf des Signals am Ausgang des Verstärkers
gegeben durch:

CO

B(t)= [S0(co)pi(co)eimtdv (2nv=co). (1)
— CO

Da der mittlere quadratische Fehler für die Messung der Signalhöhe

in einem vorgegebenen Zeitpunkt gleich dem Effektivwert des

Untergrundes ist, wählen wir als Mass für die Messgenauigkeit das
Verhältnis vom Quadrat der gemessenen Signalhöhe zum quadratischen

Mittelwert (Quadrat des Effektivwertes) des Untergrundes.
Beschreibt man das Rauschen am Eingang durch sein quadratisches
Fourierspektrum N0(co), das wir als bekannt voraussetzen, so ist
der quadratische Mittelwert des Rauschens am Ausgang bekanntlich*)

:
OO

R= I N0(co)\pi(co) \2dv (2)

und man erhält für das (quadratische) Verhältnis von Signal zu
Rauschen am Ausgang, wenn man in (1) für t den zur Messung
der Signalhöhe vorgegebenen Wert t0 einsetzt :

V2(t0) -f
fs0{w)/i(oj)eimt«dv

(3)

N0(co)\fi(m)\2dv

*) Aus formalen Gründen integrieren wir hier von — oo bis - oo und nicht,
wie allgemein üblich, von 0 bis + oo. Dies bedeutet in der Normierung von N0(a>)
einen Faktor 2.
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In diesem Ausdruck muss nun diejenige Funktion ß(co) gefunden
werden, die ihn zum Maximum macht. Dabei sind jedoch nicht alle
denkbaren Funktionen zugelassen, sondern nur solche, die realisierbaren

und stabilen Anordnungen entsprechen.

2. Berechnung der Übertragungseigenschaften des optimalen Netzwerkes.

Die Behandlung des Problems wird stark vereinfacht und die
Resultate werden sehr anschaulich, wenn wir die gesuchte Anordnung

durch zwei hintereinandergeschaltete Netzwerke ersetzen derart,

dass das quadratische Fourierspektrum des Rauschens nach
der ersten Anordnung gleich eins, d. h. also frequenzunabhängig,
wird (Fig. 1). Wir verlangen von diesen beiden Anordnungen, dass

jede für sich realisierbar und stabil ist, so dass dies auch von der
gesamten Anordnung gilt. Sind die Übertragungsfunktionen der
beiden Netzwerke fix(co) und pt2(co), so ist:

fi(co) nx(co) n2(co) (4)

Das quadratische Fourierspektrum des Rauschens nach der ersten
Anordnung ist gegeben durch :

Nx(co) N0(co)\f*x(co)\2.

Da wir dies zu eins machen wollen, muss für pix(co) auf der reellen
Frequenzachse gelten:

\fix(co)\2 llN0(co). (5)

Betrachten wir die Übertragungsfunktion /J,x(co) als Funktion der
komplexen Variablen co, so ist die Forderung der Realisierbarkeit
und Stabilität bekanntlich äquivalent der Bedingung, dass pix(co)

in der unteren co-Halbebene (d. h. für co mit negativem Imaginärteil)
keine Pole hat. Ebenso müssen wir aber auch von fix(co) verlangen,
dass es keine Nullstellen in der unteren eo-Halbebene hat; diese
Nullstellen könnten nämlich durch pt2(co) nicht mehr kompensiert
werden (die Anordnung mit der Übertragungsfunktion fa2(co) wäre
dann instabil oder nicht realisierbar) und wir wissen nicht, ob die
optimale Übertragungsfunktion fi(co) ptx(co) /j-2(co) Nullstellen in
der unteren co-Halbebene haben darf. Durch Gleichung (5) und
die Bedingung, dass pix(co) in der unteren co-Halbebene keine
Nullstellen und Pole haben darf, ist ptx(co) bestimmt. In den meisten
Fällen ist N0(co) der Quotient zweier Polynome von co2, so dass

man dann pix(co) sehr leicht direkt angeben kann. In komplizierteren
Fällen lässt sich px(co) mit Hilfe der Beziehungen zwischen Ampli-
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tudengang und Phasengang, die man z. B. bei Bode3) findet,
berechnen.

Durch das Netzwerk /ux(co) wird das Eingangssignal F0(t) verformt;
am Punkt 1 (Fig. 1) gilt nämlich für das Fourierspektrum des

Signals Sx(co) S0(a>)-pix(co), und für das Signal selbst ist:

Fx(t) - [S0(co)/ix(a>)eimtdv. (6)

fi(o>) fr»
l^rajj

fitti
I

hh - —iff-yfc
vS,(a>)=Solul

~N,(u)=l

f(l)=o; (Ko)

-yhi^ßßM

¦'¦Soli+*f%
Fig.l.

Schematische Darstellung der allgemeinen Resultate.

Den zweiten Teil des optimalen Verstärkers beschreiben wir
zweckmässigerweise nicht durch seine Übertragungsfunktion ju2(co),
sondern durch deren Fouriertransformierte :

/(i)=/V2He» (7a)

Diese Funktion hat eine direkt anschauliche Bedeutung: da ein
zur Zeit Null erfolgender ö-Stoss (unendlich kurz dauernder Impuls
mit endlicher Fläche) ein frequenzunabhängiges Fourierspektrum
hat, ist f(t) das Ausgangssignal, wenn man auf den Eingang der
Anordnung mit der Übertragungsfunktion pi2(co) zur Zeit Null einen
(5-Stoss mit der Fläche 1 gibt. Aus dieser Deutung wird sofort klar,
was die Realisierbarkeit für f(t) bedeutet: für t < 0 müssen wir
f(t) 0 setzen. Die Stabilitätsbedingung ist ebenso leicht einzusehen

: für t -> oo muss / (t) gegen einen endlichen Wert gehen ;

wie wir später am Resultat sehen werden, wird diese Bedingung
immer von selbst erfüllt sein. Wegen der Realisierbarkeit erhalten
wir für die Rücktransformation von (7a) :

H (m) =¦ / / C) e 'dt. (7b)

Mit Hilfe dieser Beziehungen werden wir nun den Ausdruck für
H(t) (Gleichung (1)) umformen:

CO CO

H(t) I S0(co) ju(co)eiatdv= fS0pixpi2eiœtdv.
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Hierin ersetzen wir pc2 durch (7b) :

CO CO

H(t) f fs0(co)pix(co)f(x)eia>«-x)dxdv.
—co 0

Vertauschung der Integrationsfolge und Durchführung der
Integration über v ergibt mit (6) :

CO

H (t) [fx (t-x)f(x)dx= I'fx (x) f(t-x)dx. (8)
0 —oo

Auch diese Gleichung erlaubt wieder eine direkte Interpretation:
denkt man sichF1(x) aus o-Stössen der Fläche Fx(x) • dx zusammengesetzt,

so gibt ein derartiger, am Eingang zur Zeit x erfolgender
Impuls am Ausgang zur Zeit t den Beitrag Fx(x) -f(t — x) • dx, und
Gleichung (8) ist die Summe aller Beiträge der gesamten Vergangenheit.

Um den Ausdruck für das Rauschen (Gleichung (2)) umzuformen,
verfahren wir ganz ähnlich: mit (2) und (4) ist:

R N0(co) | nx(co) \21 (i2(co)|2dr.
— co

Wegen (5) wird:
oo oo

R \ß2 (cu) |2 dv / fx2 (co) pi2 (— r«) dv (9)

— CO —oo

Wenden wir hierin auf pi2(— co) Gleichung (7b) an, so wird :

CO CO

B f ff(x)/j,2(co)ei,"xdxdv.
— oo 0

Vertauschen wir darin die Integrationsfolge und beachten bei der
Durchführung der Integration über v Gleichung (7a), so erhalten
wir:

CO

R=ff2(x)dx. (10)
ü

Setzen wir (8) und (10) in (3) ein, so bekommen wir für das (quadratische)

Verhältnis von Signal zu Rauschen:

V2(t0)= H*(to)
Fx(t0-x)f(x)dx

B °°
I f2(x)dx
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Um diesen Ausdruck durch geeignete Wahl von f(x) zum Maximum
zu machen, variieren wir in der üblichen Weise : wir ersetzen darin
f(x) durch f(x) + eg(x), differenzieren V2 nach e, lassen e gegen
Null gehen und setzen dann das Ganze gleich Null. Wir erhalten so:

(S'.'-iir-BlL-o. (H)R eh=o

Mit (8) und (10) wird:
no CO

(HO.-0=/Pi (h- *) g (*) ^ ; tö).-«,=2/ f(x) g (x) dx.
u u

Setzen wir diese beiden Ausdrücke in (11) ein und schreiben alles
unter ein Integralzeichen, so muss sein:

CO

J\Fx(to-x)-HËf(x)]g(x)dx 0. (12)
0

Hierin ist H/R bezüglich der Integrationsvariablen x konstant und
enthält die Funktion g(x) nicht mehr. Eine in f(t) noch enthaltene
willkürliche Normierungskonstante können wir daher so festlegen,
daSS

H!B 1 (13)

wird. Da Gleichung (12) für jede Funktion g(x) erfüllt sein muss,
bekommen wir als gesuchte Funktion, wenn wir wieder t statt x
schreiben: _ s ,„ „f(t)=Fx(t0~t) (<>0). (14)

Wegen der Realisierbarkeit ist, wie schon weiter vorne angegeben,
f(t)=0 für t < 0; die Stabilitätsbedingung ist auch erfüllt, da jede
sinnvolle Funktion Fx(t) für sehr grosse negative Werte von t
verschwinden wird. Aus (14) lässt sich mit Hilfe der Beziehung (7b)
die Übertragungsfunktion pt2(co) ohne Schwierigkeiten berechnen.
Wir verzichten hier auf Herleitung und Angabe des Ausdruckes
für pt2(co), da er nichts wesentlich Neues erkennen lässt und, im
Gegensatz zu der sehr anschaulichen Gleichung (14), sehr
unübersichtlich ist.

Nachdem jetzt die Übertragungseigenschaften des gesuchten
Systems bekannt sind, müssen wir noch bestimmen, wie das
damit erzielte Verhältnis von Signal zu Rauschen abhängt von
der Zeit t0, zu der man die Signalhöhe misst. Mit den
Gleichungen (3), (8), (13) und (14) erhält man dafür:

V(t0)=y j°F2(t)dt. (15)
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Es sei an dieser Stelle noch einmal daran erinnert, dass, wie schon
angedeutet, ljV(t0) der mittlere relative Fehler für eine Messung
der Signalhöhe ist. Wenn man den Grenzfall t0 -*¦ oo betrachtet,
wird :

72(oo)= fF2(t)dt.
— CO

Eine ganz gleiche Betrachtung, wie wir sie zur Herleitung der
Gleichung (10) aus Gleichung (9) angewandt haben, führt zu:

oo CO

72(oo)= f \Sx(co)\2dv= f\S0(co)\2\fix(co)\2dv.
—CO —CO

Wegen (5) wird somit:

Obgleich bei vielen praktischen Problemen die Gleichung (15)
von besonderem Interesse sein wird, ist doch auch der Ausdruck
(16) sehr bemerkenswert: er ermöglicht es auf einfache Weise,
direkt aus den vorgegebenen Grössen 80(co) und N0(co) zu berechnen,
wie gross das mit einer linearen Anordnung prinzipiell überhaupt
erreichbare Verhältnis von Signal zu Rauschen ist. Fig. 1 gibt noch
einmal eine Übersicht, wie sich die Grössen pix(co), f(t), V2(t0) und
V2 (oo) aus den vorgegebenen Funktionen F0(t) und iV0(co) berechnen

lassen.

3. Anwendung auf einen Spezialfall.

Zur Erläuterung der allgemeinen Methode soll im folgenden als
einfaches Beispiel die Messung von Ladungen mit Hilfe der
Ionisationskammer behandelt werden. Im allgemeinen verbindet man
bei derartigen Messungen die Sammelelektrode der Ionisationskammer

mit dem sonst freien Gitter der ersten Verstärkerröhre,
während die andere Elektrode an eine Gleichspannung gelegt wird
und somit wechselstrommässig geerdet ist. Um eine etwas
einfachere Darstellung zu bekommen, nehmen wir an, dass man von
der Anode der ersten Röhre zunächst einmal auf einen idealen (d. h.
frequenzunabhängigen) Breitbandverstärker BBV geht, so dass man
an dessen Ausgang genügend über dem Störpegel der folgenden
Anordnung liegt und von der ersten Röhre entkoppelt ist (Fig. 2).

Wie Milatz und Keller4) gezeigt haben, ist bis auf unwesentliche

Konstanten an der ersten Anode und damit auch am Ausgang
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des BBV das quadratische Fourierspektrum des Rauschens gegeben
durch :

N0(co) l+a2loj2. (17)

Unter der Annahme einer unendlich kurzen Sammelzeit der Kammer

erzeugt ein zur Zeit t 0 auftretendes ionisierendes Teilchen
am Ausgang des BBV ein Signal von der Form:

F0{t) l ; (F0(i) 0 für t<0), (18)

Für den ersten Teil des optimalen Übertragungssystems finden wir
mit (5) und (17) sofort:

(ix(co) i coj(ico + a) (19)

fft)

AWKammer

Y0fmBB/

RC

Fig. 2.

Übersicht über den optimalen Ionisationskammerverstärker.

Wie man sich leicht überlegt, entspricht das in Fig. 2 angegebene
jRC-Glied gerade dieser Übertragungsfunktion. Das durch (18)
gegebene Signal wird durch dieses EC-Glied bekanntlich umgeformt

in:
Fx (t) e-at • (Fx (t) 0 für t < 0) (20)

Damit und mit (14) ist nun auch das gesuchte f(t) bekannt:

f(t)
f(t) 0

(0<t<to)
(t<0;t>t0)

In Figur 3 ist diese Funktion für t0 1/a dargestellt. Durch
Einsetzen von (20) in (15) erhält man für das mit der optimalen Anordnung

erreichte Verhältnis von Signal zu Rauschen:

F2(y (l~e- )/2o. (21)

Zum Vergleich mit in der Praxis verwendeten Verstärkern ziehen
wir zunächst den sogenannten BC—BC-Verstärker heran. Bei ihm
wird der Frequenzgang nach hohen und tiefen Frequenzen je mit
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einem BC-Glied beschnitten; seine Übertragungsfunktion hat also
die Gestalt:

pi(co)RC — co2-i col(i, CO-, [l CO - <o2).

Die beiden Kreisfrequenzen cox, co2 sind die reziproken Werte der
beiden verwendeten Zeitkonstanten Bx Cx bzw. B2 C2. Wie van
Heerden5) gezeigt hat, wird das Verhältnis von Signal zu Rauschen
am grössten, wenn man cox co2 — a macht. In diesem Fall hat
das Ausgangssignal seine Maximalamplitude zur Zeit t IJa, und
es wird:

V\c 2jae2.

Durch Vergleich mit (21) sieht man, dass für t0 ^> 1/a der optimale
Verstärker um den Faktor VopijVRO e/2, d. h. rund 36% besser

fr»

S

0,5
V>

at0,5 1

Fig. 3.

f(t) für den optimalen Verstärker (-
für den BG-BC-Verstärker (-
für delay line clipping (-

(«o Va).
-)

ist als der BC—EC-Verstärker. In seinen Betrachtungen über die
prinzipielle Grenze der Messgenauigkeit, wenn Signal und Rauschen
durch (17) und (18) gegeben sind, kommt van Heerden5) zu dem
gleichen Resultat. Schreibt man für den optimalen Verstärker die
gleiche Messzeit t0 1/a vor, wie sie der beste BC—EC-Verstärker
hat, so ist der Gewinn im Verhältnis von Signal zu Untergrund nur
noch 26%. Da das die tiefen Frequenzen beschneidende EC-Glied
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des besten BC—EC-Verstärkers identisch ist mit dem Gleichung (19)
darstellenden BC- Glied des optimalen Verstärkers, können wir den
zweiten Teil der Übertragungsfunktion des EC—EC-Verstärkers

aj(a+ico)) mit dem f(t) des optimalen Verstärkers vergleichen.
Die aj(a+ico) äquivalente Funktion f(t) ist in Fig. 3 wiedergegeben.
Man sieht aus dieser Darstellung, dass man als nächst bessere
Approximation des optimalen Verstärkers ein f(t) wählen wird, das etwa
der gestrichelten Geraden entspricht.

Wie man leicht findet, ist eine derartige Anordnung, zusammen
mit dem durch (19) beschriebenen EC-Glied, gleichbedeutend mit
dem in der Praxis schon lange gebrauchten delay line clipping. Das
damit im Maximum (bei t0 1,25/a) erreichbare Verhältnis von
Signal zu Untergrund liegt nur noch 10% unter demjenigen des

optimalen Verstärkers bei unendlich langer Messzeit. Wegen der
Verbesserung der Statistik sind jedoch im allgemeinen besonders
die kurzen Messzeiten von Bedeutung. Hier muss man natürlich
das mit dem delay line clipping erreichbare Verhältnis von Signal
zu Untergrund mit dem des optimalen Verstärkers bei gleicher
Messzeit t0 vergleichen. Als Resultat einer entsprechenden Rechnung

erhält man in sehr guter Näherung:

VAlc(to)lVovt(t0)^l~^ (at0 < 1,2).

Man kommt also offensichtlich bei Ionisationskammermessungen
mit den gebräuchlichen Methoden der prinzipiell überhaupt
möglichen Messgenauigkeit schon so nahe, dass eine wesentliche
Verbesserung nur durch ganz andersartige Betrachtungen und Ideen
möglich ist. Aber vielleicht hat auch diese Erkenntnis einen gewissen
Wert.
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