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Allg-emeine Theorie der Dämpfungsphänomene für
niehtstationäre Prozesse.

III. e4-Korrekturen zur Linienbreite

von E. Arnous*).
(Seminar für Theoretische Physik, Universität Zürich.)

(9. VI. 1952.)

The e4-correction to the line breadth Re -T40;0 (E0) is considered. It is shown
that this quantity can be written in a covariant 4-dimensional manner (excepting
a part depending on the excitation conditions) and that it is finite and unambiguous.
The order of magnitude is ~ y/1373 — y2/jr e where y is the line breath in second

approximation and 2 £ a measure for the extension of the incident exciting
spectrum.

Die vorliegende Arbeit schliesst sich unmittelbar an zwei frühere
Arbeiten1) desselben Titels an, die im folgenden mit I und II zitiert
werden. Betreffend Problemstellung, Methode und Bezeichnungen
verweisen wir auf diese Arbeiten, insbesondere auch auf II. Der
Zweck der vorliegenden Arbeit III ist die Behandlung der nächsten
Ordnung in der Entwicklung der Linienbreite, das heisst Be ri0/Q.
Die Hauptfrage ist, ob diese Grösse, die sich auf ein gebundenes
Teilchen und auf Anregungsbedingungen bei einer endlichen Zeit
t0 bezieht, mit den gegenwärtigen Methoden der Ladungs- und
Massenrenormalisation eindeutig berechenbar und endlich ist. Wir werden

sehen, dass beides der Fall ist. In § 4 werden wir die Grössenordnung

abschätzen. Da die Berechnung von Be P"4 sehr langwierig
ist, so können wir nur den Gang der Untersuchung und die
hauptsächlichsten theoretischen Punkte hier wiedergeben. Wir werden
uns darauf beschränken, Be i] 0/0 (E0') (E0' verschobene Energie
des angeregten Zustands) zu behandeln. Wir erhielten in II die

*) Chargé de Recherches au Centre national de la Recherche Scientifique, Paris.
*) E. Arnous und S. Zienau, Helv. Phys. Acta 24, 279 (1951); E. Arnous

und K. Bleuler, ibid. 25, 581 (1952).
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Formel (wir schreiben wieder E0 statt E0'; im folgenden sind alle
Energien die verschobenen Niveaus) :

± Be Pi0 0(E0) <0 | (H»PH»+HC - H.) ô (H* P H*+He -H3)nä

- tt2 H» ô H." ò (H* ô Hpnd + \Htr ô Htr P (Htr P Htr + Hc

- Hs)nd+Htr ô (HC-HS~HL) P m -yH* à(W P2JP') aH»

-jfl" ôH'pH'rp2 H*),+Konj. kompl.] | 0> (1)

Ô^Ô(E0~H0), Pa^.
§ 1. Berechnung der Matrixelemente.

Htr und Hc sind Operatoren, in denen das transversale Photonfeld

A{ und der Kommutator [f, ip] vorkommen, ip sei das, der zweiten

Quantisierung unterworfene Elektronenfeld, in Anwesenheit des

statischen Kernfeldes. Es ist (h c 1, Heavyside-Einheiten)

H»=-iffdr[ip(r),Ytf(r)]A{(r) (2)

H° Wpffdrdr'jr^F\^*^' VW-WW' W(r')} t

y ip* yi (3)

Hs ist schon in II (Formel (12)) explizit gegeben. In (1) kommen also
Produkte von A{ und von Kommutatoren \pp, yi] vor. Die Anti-
kommutatoren von ip an zwei verschiedenen Raumpunkten im
Kernfeld sind unbekannt. Im Anhang I stellen wir eine Zerlegungsmethode

von A und ip dar, die trotzdem eine verhältnismässig
schnelle Bestimmung der Matrixelemente in (1) ermöglicht. Die
Methode separiert die reellen von den virtuellen Prozessen und
zerlegt die ersteren in „Ein-, zwei- usw. Teilchenterme", das heisst
Matrixelemente in denen nur ein, bzw. zwei usw. Teilchen in
Übergängen beteiligt sind. In unserem Problem werden nur die Einteil-
chenterme eine Rolle spielen. Diese können dann durch die Diracschen

Ein-elektronenfunktionen ausgedrückt werden. Endlich wird
es leicht sein, unter den Ein-Teilchentermen diejenigen
auszuscheiden, die den Vakuumerwartungswert des Stromes <jp0 enthalten,

und in Abwesenheit eines Magnetfelds verschwinden.
Da in Htr nur der Strom j{ \y, y* yi] vorkommt, nicht die

Ladungsdichte, so verschwinden also alle von Htr herrührenden Glieder
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die den Vakuumserwartungswert eines Kommutators <pp, y>]y0

enthalten. Betrachten wir zum Beispiel

<0 | (H* P W + He-Hs) ô (Htr P Htr + Hc - Hs)nd\0 >

Es ist zuerst klar, dass die Zweiteilchenterme von

(H»PH» + Hc-Hs)nd

Null geben, denn (siehe Anhang I, Formel [15]) sie entsprechen
entweder Prozessen, die hier nicht stattfinden können (wenn zum
Beispiel der Prozess mit Paarvernichtung, Positronensprung oder
Vernichtung zweier Elektronen anfängt), oder sie verletzen die
Energieerhaltung (Paarerzeugung), die durch die ô-Funktion in der Mitte
verlangt wird.

Betrachten wir weiter die Nullteilchenteile

<W PH* + Hc - Hpo ei und <E* P Htr + He- Hp0m
0 Ph 2 Ph

Der erste Operator ist diagonal und muss ausgeschlossen werden.
Der zweite verletzt die Erhaltung der Energie2). Es bleiben also

<W PHtr + He — H,>na und <Htr P Htr + Hc - Hpi ei
OPh 2Ph

Der erste Operator gibt nur Erhaltung der Energie, wenn das im
Anfangszustand |0> absorbierte Elektron reemittiert wird. Dieser
Operator ist aber dann diagonal und muss wieder ausgeschlossen
werden. Der zweite Operator reduziert sich auf

<Htr P WPi bi
2Ph

was die Emission von zwei Photonen beschreibt (Doppelemission).
Die Formel (16) des Anhanges I zeigt, dass die zwei ersten Terme
dieser Formel </>„ enthalten, also Null sind. Es bleiben also nur
die Terme

4 < fl fz >i < fi fi >o + 4 < Vi Vi >i < fi fs >o •

Die Hilfsformeln (1), (3), (11), (12) und (14) des Anhanges I liefern
unmittelbar die zwei einzigen Matrixelemente.

2) Würden wir Re rt(E) für E 4= E0 berechnen, so könnten in Htr PHtr zwei
weiche Photonen emittiert werden und <[Htr P fi'r>0 E1 wäre von Null verschieden.

2Ph
Auch sonst würden viele der folgenden Vereinfachungen unmöglich sein.
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Ähnliche Betrachtungen können für die anderen Terme gemacht
werden. Wir werden jetzt einige Matrixelemente explizit schreiben,
wie sie uns die obige Methode liefert, um einige Bemerkungen über
die Fortsetzung der Rechnungen machen zu können.

Betrachten wir zum Beispiel das dritte Glied von (1) und
insbesondere

<ff'P(H"PHtd>iHlPh

was allein einen von Null verschiedenen Beitrag gibt. Um dieses
Produkt berechnen zu können, benutzen wir die Formel (18) des

Anhanges I, und man sieht sofort, dass nur die neun letzten Terme
dort von Null verschieden sind (die anderen verschwinden, weil
<j>0 0). Wir geben im Anhang II die entsprechenden
Matrixelemente in tabellarischer Form.

1 c muss ausgeschlossen werden, so wie auch die Fälle n 0 in
5 c und 9 c, weil das Produkt der zwei letzten Htr nicht diagonal
sein muss.

Terme mit verschwindenden Nennern treten also nicht auf. Ferner
sehen wir, dass der Operator HL diejenigen Terme subtrahiert, in
denen der Hauptwert P und die o-Funktion mit demselben Argument

E0 — Ez auftreten, wo also P/x ô(x) vorkommt. Es sind die
Fälle 8 a und n G in 7a und n' G in 9 a. Sie werden durch
<HL>o ei P Htr bzw. PHIp1 B1 P Htr subtrahiert.

Die in den Renormalisationstermen auftretenden Paarglieder
werden durch 2b kompensiert und die Fälle n 0 in 4b und n G

in 8 b lassen sich mit den anderen Beiträgen der Renormalisations-
terme zusammen addieren (gemeinsame Zähler). Die übrigbleibenden

Matrixelemente können folgendermassen gruppiert werden:
la, 2a mit 3b; lb, 2c mit 3c; 4b, 5c, 6a, 7b, 8a mit 9c; 4c, 5b,
6c, 7a, 8b mit 9a; 4a, 5a, 6b, 7c, 8c mit 9b. In der Bestimmung
der gemeinsamen Nenner benutzt man die Regel3) :

Wenn A oder B immer von Null verschieden sind, verschwindet
ô(A) ô(B). Es zeigt sich, dass dies immer der Fall ist, wenn nur ein
einzelner Übergang, etwa vom ersten angeregten Niveau zum
Grundzustand existiert (was durchweg angenommen sei). Aus dem
gleichen Grund verschwindet auch das Glied ~tt2 in (1). Energie-

3) Man verifiziert diese Formel, indem man die Integraldarstellung des Haupt-
wertes und der d-Funktion einsetzt.
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erhaltung (ô-Funktionen) und die nd-Vorschrift lassen sich nicht
erfüllen.

Ähnliche Betrachtungen können auf die Coulombterme Hc
angewandt werden.

Die übrigbleibenden Beiträge zu Be P40/0 (E0), soweit sie nur von
transversalen Photonen herrühren, sind vom Typus:

¦CT27 fdrdk V*(pi) ei<fc"-°yes'(fti) f,'(rx) .-^W *^,r* *
s,z J

x 7 eSl (fc4) yz/ (r4) x
S(EZ3-EZa'+Ez,-Ez1' + fc, + fc4) oder ô(EZl-E^ + ffg,- ± fc, + fc4)

Nenner

+ konj. Kompl. (4)

es(ft)ist der Polärisationsvektor des Photons fc. Die Integration ist
natürlich über rx r4 und fc,... ft4. Wir charakterisieren (4) kurz
durch :

zl Vp si) zi z2, («2 S2J z2 z3 (^3 ss) za zi Pi si) zi Kenner '

In der folgenden Tafel I sind die Matrixelemente, die von transversalen

Photonen herrühren zusammengestellt. Der Anschaulichkeit
halber, sind auch die zugehörigen Feynman-Diagramme angegeben
(•••Photonlinie, — Elektronlinie), doch ist zu beachten, dass die
Elektronenlinien hier gebundene Elektronen beschreiben, n und n'
sind Niveaus positiver Energie, v negativer Energie, z und z'
positiver oder negativer Energie; ez und ez, sind die Vorzeichen von Ez
und Ezi. G bezeichnet den Grundzustand, 0 das angeregte Anfangsniveau.

Die Massenkorrektionen

H»dH»P(Hs)nd und H»o(Hs)näPHtr
sind noch nicht subtrahiert.

In dem Renormalisationsterm —1/2 Htr (Htr P2 Htr)ä kommt die
Grösse der Energieschale des angeregten Zustands explizit vor.
Dies ist auch notwendig, da sonst für manche Übergänge P2
unendlich würde. Es ist nützlich, diesen Term formal aufzuspalten

- \ Htr (Htr P2 H*) a ~y H(r (Htr P2 Htr) d +

+ ^Htr(HtrP2H»)d. (5)

Natürlich würde jedes Glied von (5) einzeln unendlich, doch werden
wir den zweiten Teil von (5), der nichtrelativistischer Natur ist, erst
bei der expliziten Berechnung in § 4 brauchen. Für die Zwecke der



Tafel I.

Zl (^l Sl) Zl Z2 (^2 SM Z1 23 \"-3 6V Z3 Zi (^4 Sil Zi ò )/Nenner

Emission zweier Quanten

Korrekturen zur Emission:

A gewöhnliche
Korrektur

Bx Selbstenergie
Korrektur

*»•*)

0 Polarisations¬
korrektur

/"

0 (fc s') zz{ks)G

0(ks)zz (k' s') G

G(-ks)z'z'(-k's')0

G(-ks)z'z'(-k's/)0

ô(EG-E0+k+k')
4 k V(Ez-Eq- k) {Ez'-E0+k')

ô(Eg-E0 + k+k')
àkk'(Ez-Eo-k')(Ez'-E0+k')

0(ks)G G (k' s') zz (- k s) z' z' (- fc s') 0

G(k's') zz(-fcs') z'z'*G(-ks) 0

(?(-&«) zz*0(fcV)zfa(-fcV)0

ß(/t'«')2z(-ü's') GG(-ks)0

G(- k s) 00 (fc s') zz (-fcfa)O

G(fcfa)Oi'(-fc,s/)»»(-fas)"

ö(i'8')0f(-is)M«(-i'»')|i

<5(ÄG-£0 + fc)
+4:kk'(Ez-Ez' + k) IEq-Ez-Vez

'

Ez'-E0+k'ez'

ô(EG-E0+k)
4:kk'{EG-Ez-k'ez) (E0-Ez'-k)

ô(EG-E0+k)
4 k fc (^-EG-k) (Ez'-E0 + k'ep

_Ì_ ô(EG-E0+k)
2 4kkpEz-EG+k'£zy
1 ô(EG-E0+k)
2 4kk'(Ez-El)+k' ez)2

ô(EG-E0+k)(EG-E0+k) _ r 1

ékk'(E„-Ev+k) [k'+k fcfafc
1

4rk¥(En-Ev-k) [k'+ k ' F^I
ô(EG-E0+k)

[fc+

*) Äj besteht aus -% Htr ÔHtr (Htr P* Htr)d~i Htr ô(Htr P* Htr)dHtr plus den Matrix-Elementen 2b, 4b (n 0) und 8b (n=ö)
des Anhanges II.
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§ 1-3 lassen wir die Beschränkung ~ einfach weg und die Beiträge
des zweiten Glieds von (5) sind in Tafel I nicht enthalten.

Die Coulombterme, die Hc enthalten, sind vom Typus

x yes(ft2) fl^^wW K(r3) V«,'(ra) »£(r«) YV/W x
d + Ez, - Ez2' + £?za - i?z,' + Ez, - EZl' + k2) .yiNenner (6)

Sie sind in Tafel II zusammengestellt. In den Diagrammen bezeichnet

ein virtuelles skalares Photon.

Tafel II.

^lV^l^l) ~1 ^2\ 2 ^2/^2 Z3ZA ziZ4 ô )/Nenner

^eoui Gewöhnliche
Korrektur
zur Emission
v n. ö(Eo-E0+k)Korrektur 0{ks)O s (_ lcs) z> g z z> 0 „',/ ^+^-^

-Bcoui Selbst¬

energie
Korrektur

Ccoul Polarisa¬
tions-
korrektur

Dcoul Polarisa¬

tions-
korrektur

0(fcs)G z'4=G(fas)0özzz'

0(£s)G G{-ks)z+Ozz'z'Q

0(k s) G <n{-ks)vvnGQ

0{ks)G v(-ks)nnvG0

0(ks)G
'

G(fa*)zfa0z'0zz

0{ks)G ; z'4=G(-foi)0zzöz'

Ô(EG-E0+k)
2k{Ez'-E0+k) z

ô(EG-E0+k)
2k(Ez-EG-k) z

2ö(EG-E0+k)
2k(En-Ev+k)
2ô(EG-Ea + k)

2k{En-Ev-k)

ô(EG-E0+k)
2k{EG-Ez' + k)

ô(EG-E0+k)
2k(E0-Ez'-k)

•O

DCoul enthält den Vakkuumerwartungswert der Ladungsdichte
<£>„, der für gebundene Zustände (im Gegensatz zu freien Partikeln)
nicht verschwindet. Hierin stecken die Ladungsrenormalisation des
Kerns sowie endliche Beiträge.
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§ 2. Vicrdimensionale Zusammenfassung der Matrixelemente.

Nun werden wir die folgende Eigenschaft von Be P40/0 (E0)
verifizieren : Wenn in B2 keine Beschränkung, die Energieschale betreffend,

existieren würde, dann würden sich die Coulombterme mit
denen von Tafel I vierdimensional kombinieren lassen, und dasselbe
Resultat ergeben, das man bei Lorentzeichung ohne Betrachtung
der Lorentzbedingung erhalten hätte4), das heisst es treten statt
der Coulombterme 4 Typen von virtuellen Photonen in Tafel I auf.
Für die Terme DCovß von Tafel II, die <ß>0 enthalten, ist das
allerdings erst der Fall, wenn auch die Beiträge <j>0, die in Abwesenheit
eines äusseren Magnetfelds verschwinden, in Betracht gezogen
werden.

Diese Eigenschaft, die von French und Weisskopf für die gebundene

Selbstenergie des Elektrons verifiziert wurde, erstreckt sich
also praktisch auch auf Be P4(E0). (Der Zusatz, der durch die
Energiebeschränkung entsteht, gibt zu keinerlei Konvergenzschwierigkeiten

Anlass). Es ist aber zu betonen, dass all dies nur für
Be r (E0), aber an keiner anderen Stelle E 4= E0 gilt. In dem letzten
Fall dürfte also die Lorentz-Bedingung nicht ignoriert werden, wenn
man mit 4 Photonentypen rechnen will.

M'ir beschränken uns darauf, an dem typischen Beispiel der Pola-
risationsterme zu zeigen, wie die 4-dimensionale Zusammenfassung
durchgeführt werden kann.

Wir schreiben die zwei Polarisationsterme der Tafel I mit der
dortigen Bezeichnungsweise :

v( — k's')nn( — ks)v n( — k's')vv( — ks)n\C 0(fts)GG(feV)o[- En-Ev+k
' En-Ev-k

X

S(EG-E0+k) ._
2k(k'*-k2) " y '

Um die Polarisationsterme CCoul der Tafel II in ähnliche Form
bringen zu können, ergänzen wir zuerst die 2 Polarisationsvektoren
e3', zu 4 Vierervektoren e*', durch Hinzufügen einer longitudinalen
und skalaren Polarisation, s' 3 und 4 :

e\ (0, 0, 0, 1) ; ef 0 wenn s' 1, 2, 3

27<(ft'K:(ft') <5,;/,
s'=l

4) Mit Lorentzeichung bezeichnen wir diejenige Eichung der Potentiale für die
klassisch ô A^jô xß 0; bei Coulombeichung ist div A 0.
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so dass bei Summation über X

y é yx ef (s' 1, 2, 3.) ip* yi y* e\

Dann ersetzen wir 1/4n\r — r'\ durch

1
_ l

±n\r-r'\ ~ (2p-
Wir erhalten

f dk' pi<k',r-r')]p^e
GCoul=0(fcs)GG(fc'4)0x

d(EG-E0+k)T v (-/fc' i)nn(-ks) v l
ra( — fe'4) vv(-ks) n

En-Ev + k ' En-Ev-k 2kk'- (8)

Unsere Behauptung ist jetzt die folgende: Anstatt G und G0oul zu
addieren, können wir in (7) s' von 1 bis 4 statt von 1 bis 2 summieren.

Es genügt offenbar, zu zeigen, dass

G (s' 3,4 statt 1, 2) - GCoul 0. (9)

Wir reduzieren die dritte Komponente auf die vierte mittels der
Formel

fipz(r)y"el(k')e±ik'ripz,(r)dr=±i^=x
xjy,z(r)y*e\e±ik'ry>z.(r)dr (10)

(9) wird jetzt :

G(S' 3,4)-GC0Ul

0(ks) GG(fe'4) 0 [(»(-*.) vv(-k'A) n)^'~ffjfi;ffi*' -
^(-ks)nn(-k'4)v) ^E$^ìné^^- CID

Wegen des Faktors ò(EG—E0 + k) ist aber E0 — EG k und die
zwei Brüche in der Klammer werden gleich 1. Wir addieren und
subtrahieren dann zu der Klammer von (11) den Ausdruck

n(—ks) n' n' (— ft' 4) n

Das erste Glied der Klammer ist dann n (—ft s) z z (— ft' 4) n und
kann über z mit Hilfe der Vollständigkeitsrelation summiert werden.
Für das zweite Glied der Klammer von (11) vertauschen wir
n ^=t n' und erhalten ebenso z (— ft s) n n (— ft' 4) z. Auch hier kann
man über z summieren.
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Man erhält, explicit geschrieben,

l(ll)] f{lj>n(r)e-ikrye°e-ik'rfn(r)-
— fn(r)yie~ik'ryie-ikryesipn(r)}dr 0.

Damit ist (9) bestätigt.
Für die anderen Terme lässt sich dasselbe in ähnlicher Weise

durchführen. Bildet man A (s' 3, 4) — AConì, Bx (s' 3, 4) — BConl

B2 (s' 3, 4), so verschwinden diese Terme allerdings einzeln nicht.
Dagegen heben sich einige Glieder von B2 gegen Glieder von
A — ACou]; die restlichen Glieder von B2, zusammen mit Bx — Peoni
heben sich gegen den Rest von A — ^coui • Einige Terme von
B1 — Beoni verschwinden bei der Integration über die Winkel von
k'. Zusammen5) :

A (s' 3,4) - A,ou] + Bt (s' 3,4) - BCouI + B2 (s' 3,4) 0 (12)

Somit bleiben übrig: (1) die Beiträge von der Doppelemission,
(2) A, B, B2, C von Tafel I, wobei aber s' von 1 bis 4 zu summieren
ist, (3) die Terme DCoui von Tafel II. Letztere, wie schon erwähnt,
nehmen 4-dimensionale Gestalt nur an, wenn die schon weggelassenen

Glieder <?>„ (die verschwinden) berücksichtigt werden. Übrigbleibt

ferner noch das zweite Glied von (5), das explizit von der
Grösse der Energieschale abhängt. Für dieses kann man natürlich
keine 4-dimensionale Gestalt erwarten.

§ 3. Beweis der Konvergenz.

Wir zeigen nun, dass die übliche Methode der Ladungs- und
Massenrenormalisation genügt, um alle Divergenzen, die in den
einzelnen Matrixelementen stecken, zu beseitigen. Hierbei handelt es
sich natürlich um die Divergenzen, die bei hohen virtuellen k
auftreten. Die Beiträge von der Doppelemission sind endlich. Eine
Ultrarotkatastrophe tritt auch nicht auf. Ferner dürfen wir zu
diesem Zweck das zweite Glied von (5) ausser acht lassen, da dieses
keine quantenelektrodynamische Divergenz enthält, sondern lediglich

das Verschwinden des Nenners von P2 verhindert.
Ein typisch divergenter Ausdruck, der überall in verschiedenen

Variationen vorkommt, ist zum Beispiel

V _ V f drdr'dk' yl eik'ry>z (r) yz (r') e~ik'r' yx y0 (/•') nq,A-4fa/ fc Ë^ÉZ^PP, • ^)
5) Die Gültigkeit der obigen Behauptungen und von (12) ist keineswegs sehr

leicht zu sehen, doch können wir die zum Teil umfangreichen rechentechnischen
Einzelheiten nicht alle darstellen.



Theorie der Dämpfungsphänomene für nichtstationäre Prozesse. 641

Wir zerlegen die Zwischenzustände in zwei Klassen, je nachdem k'
kleiner oder grösser als eine gegebene Energie li ist. Diese Energie
wollen wir viel grösser als die Ionisierungsenergie I wählen, damit
die Integration über k'Ppt, den Hauptbeitrag zum Integral gibt, aber
viel kleiner als mc2, damit das Gebiet k' > pt alle relativistischen
Effekte einschliesst : zum Beispiel fi= cum (oc 1/137). Wenn k' > pt,
muss die Energie \EZ\ > pip> I sein, damit der Gesamtimpuls,
während des Überganges Ofa z des Elektrons und während der Emission

des Photones ft', innerhalb der Impulsverteilung von f0, also
von der Ordnung der Ionisationsenergie, bleibt. Man darf jetzt das
Elektron z des Zwischenzustandes als frei betrachten und infolgedessen

die Bornsche Näherung in den Zwischenzuständen benutzen.
Wir ersetzen (13) durch

x=27 drdr' dk' dE
fc

Z

P'eik'r 6(E-ap-ßm-V)Vz(r)lj,z(r')e-ik'r' y\0(r)
E0-E-k' eB

was die Summation über z durchzuführen gestattet. Wir entwickeln
dann ô (E — ap — ß m — V) nach Potenzen von V (siehe Anhang
III) und erhalten für fc' > pt:

Y fdrdk'dE V»4"'{W—p-P*-)+
A J F~~ X

'rU(E-af

x
+ E^-ßmV^E-aP-^ + ö^ VIPP?p-ßm+---Vik'^*'°{r)

E0-E-k' eE

Die Benützung der Formel

eik'r -J- (p) e~ik'r ¦[- (p — ft') p — i grad

und die Trennung der Zwischenzustände positiver und negativer
Energien mittels der Operatoren

H±(p)=|[l±^f^], E(p)=(\p\2 + m2r
o(E-ap-ßm)H± ô(ETE(p))H±, H++ H~ 1

gibt endlich (H± kommutiert mit E (p)) :

y f drdk' H+(p-k') H-(p-k')
J fc " y \E0-E(p-k')-k' + E0-E(p-k') + k' "*"

+ E0-E(p-k')-k'
V

E0-E(p-k')-k' + j? *»• ^)
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Man sieht : Je höher die Potenz von V, desto höher die Potenz von
k' im Nenner. Von einer bestimmten Stelle ab mUss also fdk' endlich

sein. Nachdem sämtliche Terme in diese Form gebracht sind,
kann man leicht entscheiden, ob noch Divergenzen übrig bleiben
oder nicht.

Als Beispiel betrachten wir das Matrixelement A

A =-
1 to ei kr/ y,z yze~ikr'y es (k) y>z' yz' e~f k'r" yx y>0

2fc (Ez-Ez' + k)

_ k'(sz'-ez)-(Ez-Ez' + k)
1 r,

(E6-Ez-k'sz)(Ez'-EB+k'eP W
wobei

64 f^T^ eifer7 e(k) ipGô(EG-E0+k) fdk' dr'(2n)

(15) divergiert höchstens logarithmisch.
Die Entwicklung (14) zeigt sofort, dass nur die von V unabhängigen

Terme divergieren können. Betrachten wir zuerst den Term,
der fc' (ez> — ez) im Zähler enthält. Da die Vorzeichen von Ez und
Ez verschieden sein müssen, bekommen wir die folgenden zwei
Möglichkeiten (aA iyi yx) :

Ax= iip*Ge-ikr«.xx E(p-k-k') + E(p-k') + k "

,HPP-k-k') zwn^£„E-tp-K) a,ip0

x

EG-E(p-k'~k)-k' v^ I -E(p-k')-Ea-k

Ä2= • • ¦^fGe~lkr^ _E(p_k_k>)_E(p_k>)+P X

_,. -, ,-HPp-ft-ft') „, a,e}k)=-=r,HPp —fc')a,w».EG+E(p-k-k') + k' ^ i E(p-k')-E0 + k' VJ^ ' xro

Divergenzen kommen offenbar nur von dem Produkt der 2 Glieder
l/2iniî+ (p — fe — ft')undi?+ (p—fc') und demProdukt zweier afe',
da ein einzelner Faktor a fe' nach Integration über die Winkel von
fe' verschwindet. Die Summation über X ergibt

aA (a e (fe)) ßA -2(«e(fc))
ocA(afe') (a e(fe)) («fe') ax 2k'2(a e(fc)) — 4 (ek') («fc')

Ferner ist

fdk' («<*>%<«*> ^fdk'(ae(k)).
Der divergierende Teil von Ax + A2 ist also

• • • ^Jf-fdripKr) e-ik-(ae(k))ip0(r). (15')
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Der Term Ez — Ez- + k von (15) lässt sich ebenso behandeln (Beitrag

A3). Nur die Produkte von 2 Faktoren («ft') geben Divergenzen.
A3 ergibt sich als die Hälfte von (15'). Der divergierende Anteil
von (15) ist also

A=A1+A2+A3^ •¦¦nijd^fdripG(r)e-ik'(ae{k))y,0(r). (16)

Diese Divergenz wird durch B2 exakt kompensiert. Der U-unabhän-
gige Teil des ersten Terms von B2 ist

1 * [ H+(p-k') H-(p-k')
±ik'Vaa-}'\(EG-E(p-k')-kP + (EG+E (p-k') + k'}

xxxyiGy>*e ikr(ae)ip0

n
2T f^p[drips(r)e-ik'(a(ae(k))Vo(r).

Der zweite Term von B2 gibt dasselbe. Es folgt also, dass A + B2
endlich ist.

Die Selbstenergiebeiträge Bx sind analog zu behandeln. Die
Entwicklung muss aber hier bis zu den in V linearen Gliedern fortgesetzt
werden. Bt konvergiert, wenn die Beiträge der Massenkorrektion
Htr ô Htr p tHs)na und Htr ô {ßs)nd P Htr abgezogen werden. Der
Operator Hs [siehe II Formel (12)] ist symmetrisch in Anfang- und
Endzustand. Um die Subtraktion durchführen zu können, müssen
wir in unseren Matrixelementen die Nenner symmetrisieren, zum
Beispiel

2 _ / 1 1 \
EG-Ez-k'ez \Ë0-El-k\ + E0-Ez-k'Ez) +

1 \
\EG-Ez-k'i+

Für grosse Werte von fc' ist die zweite Klammer mit (E0 — Eg)jk'2
äquivalent. Wenn man sie in die Selbstenergieterme einführt,
verschwinden die divergierenden Integrale, entweder weil

ffo(r) fz'*a(r) dr 0 oder weil f -™ 0

Wenn man die erste Klammer in die Selbstenergieterme einführt
und die l?s-Beiträge subtrahiert, so reduziert sich das Problem genau
auf das von French und Weisskopf (Niveauverschiebung6)) behandelte.

Dies braucht hier nicht mehr im einzelnen wiederholt werden.
Es folgt, dass B1 minus Beiträge von Hs endlich ist.

6) J. Feench und V. Weisskopf, Phys. Rev. 75, 1240 (1949).
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Wir brauchen auch nicht die Polarisationsterme C und DCoul im
einzelnen zu betrachten. Sie sind proportional zu den bekannten
Ausdrücken für die Vakuum-Polarisation. Es ist bekannt, dass C
eine Divergenz enthält, die die Ladung in Htr renormalisiert. Dieser
Beitrag ist also wegzulassen. Nach Elimination der nicht-eichinvarianten

Glieder durch bekannte Verfahren7) ist der Rest endlich.
DCo„i enthält das divergente <ß>0, das die Renormalisation der

Ladung des Kernfeldes beschreibt8), und ausserdem den
wohlbekannten endlichen Term —(oc/IStt) [72 ò(r), der auch in der Lamb-
verschiebung eine Rolle spielt.9) Damit ist die Endlichkeit von
Be ri0/0 (E0) bewiesen.

Es wäre weiter zu fragen, ob auch Be P4 (E) E #= E0 endlich
ist. Obwohl die Rechnung für diesen Fall unverhältnismässig viel
komplizierter ist, besteht wohl kein Zweifel, dass dies der Fall ist.
Man kann sich Be T4 (E) nach E — E0 entwickelt denken, und da
E nur im Nenner zusammen mit fc' vorkommt, so kann wohl kaum
eine Divergenz übrig bleiben. (Vergleiche auch den analogen Fall
von Jm P2(E) in IL)

§ 4. Abschätzung in nicht-relativistischer Näherung.

In nicht-relativistischer Näherung sind die einzigen Terme, die
von Null verschieden sind, die Matrixelemente für die Emission
zweier Quanten und A, Bx und B2, während die Coulombterme Null
sind : -4Coul hat den Faktor ez, — sz und verschwindet, weil Ez > 0

und Ez. > 0. BCmü ist genau durch Htr ô Htr P (HsCouh)nd und
Htr ô (HsCoul)nd P Htr kompensiert, wenn für Hs die nicht-relativistische

Form der Selbstenergie benutzt wird. Diese besteht dann
aus dem Coulombbeitrag

HsCmû -f: Ifärdr' y,*(r) ô^-f(r') (17)sCoul- Sn
_ _

und dem transversalen Beitrag
2 r. - r _ *aH^-ra ^/^^irVtì (18)3n mj J Y w m

Ha HsConl+ H[r.

') Zum Beispiel W.Pauli and F. Villars, Kev. Mod. Phys. 21, 434 (1949);
G. Källen, Ark. f. Fysik, 2, 187 (1950).

8) Da e in der Wechselwirkung wie in dem ungestörten Problem (Kernfeld)
vorkommt, so muss eine Ladungsrenormalisation auch an 2 Stellen ausgeführt
werden.

9) E. A. Uehling, Phys. Eev. 48, 55-63 (1935).
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Wir ersetzen a durch p/m und die ip und E durch die Schrödinger
Eigenfunktionen und Eigenwerte. Ferner beschränken wir uns für
die reellen Photonen fc auf die Dipolstrahlung (erlaubte Übergänge).
Die Frage, ob dies auch für die virtuellen Photonen fc' erlaubt ist,
muss aber näher diskutiert werden. Wenn das nicht-relativistische
Gebiet durch fc' < pt oc m oc ~ 1/137, definiert ist, ist die
Dipolnäherung gerechtfertigt. Die obere Grenze unserer Integrale ist dann
~ a m, und das Resultat hängt von log oc m log a + log m ab.
Die Rechnungen von French und Weisskopf über die Linienverschiebung

haben gezeigt, dass log oc wegfällt, wenn man den
relativistischen Teil der Integrale hinzufügt. Das angenähert richtige
Resultat erhält man, wenn man die nicht-relativistische Rechnung
für die Dipolstrahlung bis zur oberen Grenze m fortsetzt.

Da wir sowieso nur eine grobe Abschätzung geben können, werden

wir auch hier dasselbe Verfahren anwenden und nur die
Dipolstrahlung betrachten aber trotzdem pt m als obere Grenze
wählen10). Damit werden die Integrale über ft, ft' elementar.

Wir betrachten zuerst die Teile von B e P4, die nicht von der
Energieschale e abhängen. Wir beschränken uns darauf, an dem
ersten Glied von B, zu zeigen, wie die Rechnung durchgeführt wird.
Das Resultat der Integration ist

Bx (erstes Glied)
e*

(y)2(fl0 - EG) £ f drx ¦ ' • dn x
i,i,z,z' •>

x Wo (ri) Pi fa (ri) fi (rè Vi f* (rò fz fo) Vi fz' (rs) ft'+a (»4) Vi fo (ri) X

^\-^^-E^^bt\)- (19)

Es tritt ein Glied auf das in pt linear ist. Dieses wird aber durch
EtT ô (Hlr)ndPHtr, Formel (18), subtrahiert. Der Term ~ /x fällt
also weg.

Weiter werden wir die Tatsache benutzen, dass der Logarithmus
eine langsam variierende Funktion ist und sie als eine Konstante
betrachten: ™ ™

log ^%=%f- const (20)

(20) ist sicher von der Grössenordnung 1-10. Dann können wir
Ez — EG in das Matrixelement absorbieren :

27 (E*-Ea) fa(rz) Vi fz (r2) f*z(rs) p,
Z

fi (rò [Vi fl] fz (ig) f* (r3) Pi fG (r2) [pi H]Piô (r2 - r3)

Y^{[P,2fl]+P2^}^('-2-r3). (21)

10) Unser Verfahren ist ähnlich dem von Bethe in der Rechnung der
Linienverschiebung, Phys. Rev. 72, 339-341 (1947).
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(19) zerlegt sich also in zwei Teile, Bx (Beitrag von [pf H]) und
B'[ (Beitrag von V2 V). Wir betrachten nur Bx", da B/ sich mit
andern Gliedern von A und B2 kombinieren lässt. Wir erhalten

B"x
Ec-E.

9 (2nm)i EZ'-EG

xV2V

a I drxdr2dr3 ip*(rx) Pi ipG(rx) ipG(r2) x

(22)n) f*z'+G(r3) Pi fo(r3) log ^fa^g-
Wir bemerken weiter, dass

/ fz'Vifo im(Ez, — E0 fz' ri fo •

Das Verhältnis (Ez-—EQ)/(Ezi—EG) kann auch grob als Konstante
betrachtet werden, es variiert für Wasserstoff zwischen 5/32 und 1.

In (22) kann man £ 2J — (z' G) schreiben. 27 gibt keinen
2'=j=G

Beitrag, da P2 V e2 ò(r) (für Wasserstoff), und ò(r) r,- 0. Es
bleibt der Beitrag z' G oder

tv, _ 2_ e4

i_ir (2ji)4
(E»-EG)*

Vo ri Ve flV*y faiÌ~-ÌMEz' — E,G
(23)

Hier ist (für den Grundzustand von Wasserstoff)

flV2VipG=e2\ipG(0)\2=*
4 m3
137T

(23) ist proportional zur Linienbreite zweiter Ordnung

y BeP2(E0) 3-137 (Eo-EG)z fo ri fa

Wenn wir
Ez'-EB jo EG-EZ-ß

E0 - EG~EzE.

setzen, erhalten wir die Grössenordnung

B V
i 2jt1373 -

Ähnliche Betrachtungen für die anderen Matrixelemente zeigen,
dass unsere Korrekturen alle von der gleichen Grössenordnung sind
(es tritt auch p2jm2 ~ 1/1372 auf), mit Ausnahme des von der
Energieschale abhängigen Teils.

Endlich müssen wir noch den Teil von B2 berechnen, der explizit
von dem e des angeregten Zustands abhängt. Aus (5) sieht man,
dass in (Htr P2Hir)d nur der Übergang 0 fa G + fc' fa 0 eine Rolle
spielt, da für alle andern Übergänge die ^-Bedingung automatisch
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erfüllt ist. Bei der Integration über fc' ist dann das Gebiet E0—EG-~ e

bis E0 — EG + e auszuschliessen. Man findet für den Beitrag B2'
von diesem Übergang

J + J liEp^Q^WWoVifal^
o E,-EQ+e/

y2
—-rfa h Glieder unabhängig von e.in2 e ° °

Es ergibt sich als Schlussresultat, dass

B*rm{EJ--&-£. (24)

Der e-abhängige Teil verschwindet für e fa oo, wie das auch in II
für die e-abhängigen Korrektionen Jm r2(E), der Fall war. e fa oo
entspricht dem idealisierten Grenzfall kontinuierlicher Anregung.

§ 5. Linienversehiebung vierter Ordnung.

Zum Schluss seien noch einige Bemerkungen über Jmf4 gemacht.
Wenn wir dieselbe Darstellung wie bisher wählen, in der also die
zweite Ordnung der Niveauverschiebung HL in die Definition der
Energien einbezogen ist, erhalten wir11)

\jm rt{E0) (H* P W + HC- ff.) P (fl* P H« + HC- Hs)nd

+ H*rP(Hc-Hs-HL) PHtr-n2HtrÒHtr ô(HtrPHtr+ Hc-Hs)nä
+ fc. k.-7t2W ô W P (HtrôHtr)nd - n2 W ô (HC~HS - HL) x

Y.ÖH»-His. (25)

wobei HL (Htr P Htr + HC — Hs) d. Ht, ist die vierte Ordnung des

Massenoperators. Wie man sieht, ist Jm F(E0) von der Energieschale

e unabhängig. Man wird nun (25) als die Niveauverschiebung
vierter Ordnung betrachten und die Darstellung weiterhin so
abändern, dass diese in die Definition der Energieniveaus einbezogen
ist. Dann verschwindet J m P4(J?0) m der neuen Darstellung. Genau

") Hätten wir die unverschobenen Niveaus zur Darstellung und als Anfangszustand

gewählt (HL= 0), so wäre in (25) ein Zusatzglied - (Htr P2 Htr) (Htr P Hir+
+ He — Hs)d aufgetreten, das von e abhängt. In unserer Darstellung tritt aber
Hc— HS—HL statt Hc— Hs auf, und dieses Glied verschwindet.
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wie in II, ist das Maximum der Linie dann durch die Differenzen d< r
verschobenen Niveaus gegeben. Auch in vierter Ordnung erwei; t
sich also die Verschiebung des Linienmaximums als unabhängig vo i
den Anregungsbedingungen (abgesehen von der sehr kleinen Ve: -

Schiebung, die von der E-Abhängigkeit von Be P(E) herrührt.)

Schlussfolgerung. Als Resultat der vorliegenden Untersuchunge
I-III kann man folgendes feststellen : Die Quantenelektrodynami
führt, mit Hilfe der Ladungs- und Massenrenormalisation, auch b
gebundenen Zuständen zu eindeutigen und endlichen Resultate]
Dies betrifft insbesondere auch den Fall, wo die Anregung zu ein< r
endlichen Zeit t0 geschehen ist (wir haben sogar t0 als scharf bestimmt
angenommen), wo also Anregung und Emission nicht in stationärem
Betrieb sind. Auch die Zeitabhängigkeit des Emissionsvorganges
kann völlig erfasst werden.

Die Korrekturen zur klassischen, oder Weisskopf-Wignerschen
Linienform und -breite sind alle ausserordentlich klein. Soweit sie

von den Anregungsbedingungen unabhängig sind, ist die Korrektur
zur Linionbreite l/1373mal kleiner als die übliche zweite Ordnung,
ebenso ist die zusätzliche Linienverschiebung (die nicht in der
Selbstenergie HL enthalten ist) völlig vernachlässigbar (siehe II).
Auch die von der Ausdehnung des anregenden Spektrums e abhängigen

Korrekturen Jm P2(E) und (24) sind von der Grössenordnung
y2je <py, verschwinden für e->oc, und sind nur wesentlich, wenn
man mit einer verhältnismässig scharfen Linie anregt, deren Schärfe
mit y vergleichbar ist. Man kann also schhessen, dass die Weiss-
kopf-Wignersche Näherung ausserordentlich gut ist, und viel besser
als zum Beispiel die erste Näherung für Stossprozesse, und das

magnetische Moment, wo die strahlungstheoretischen Korrekturen
oft von der Grössenordnung 1/137 des Haupteffekts sind. Dies liegt
an der wesentlich nicht-relativistischen Natur des Problems.

Eine genauere Behandlung der Emission zusammen mit der
Anregung, die zu einer präziseren Fassung von e führen sollte, ist
dagegen noch wünschenswert, doch hat dieses Problem nichts mit der
typisch quantenelektrodynamischen Seite des Problems zu tun.

Ich möchte Herrn Prof. W. Heitler für das Interesse, das er
dieser Arbeit entgegengebracht hat, herzlichst danken. Diese Arbeit
wurde durch ein Stipendium des Centre national de la Recherche
scientifique, Paris, ermöglicht, wofür ich dieser Institution bestens
danke.
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Anhang.

I. Abseparierung der reellen und virtuellen Prozesse12).

Wir zerlegen jeden Photonoperator A (x) (x r, t) bzw. Elektronoperator ip(x)
oder y> (x) in zwei Teile : den Teil^4+ (bzw. p oder yip, der die Absorption beschreibt,
und den Teil A~ (bzw. yr oder yip, der die Emissionen beschreibt. Statt Produkte
von A (bzw. y> und yi) haben wir dann Produkte von A T bzw. y>± und y>±. A ist das
transversale Feld allein.

Wir bringen diese Operatoren dann, mittels der Vertauschungsrelationen, in
eine solche Reihenfolge, dass jeder Absorptionsoperator rechts von allen Emissionsoperatoren

steht. Durch die Vertauschungsrelationen treten Kommutatoren (bzw.
Antikommutatoren) auf. Für das Elektronenfeld, in Anwesenheit des Kerns, sind
diese zwar nicht explizit bekannt. Sie sind aber c-Zahlen und können infolgedessen
auch als Vakuumserwartungswerte von Produkten zweier Operatoren betrachtet
werden. Die letzteren können durch die Diracschen Ein-Elektronenfunktionen
ausgedrückt werden. Ausser Produkten von geordneten Operatoren erhalten wir also
noch Vakuumserwartungswerte.

Die geordneten Operatoren, die zuerst Teilchen im Anfangszustand absorbieren
und dann neue Teilchen im Endzustand emittieren, beschreiben die reellen Prozesse.
Die Vakuumserwartungswerte, wo Teilchen zuerst emittiert sind und sofort wieder
absorbiert, beschreiben die virtuellen Prozesse.

Photon-Operatoren. Wir setzen:

At(x) Ap(x) + Af(x)

{2 If'2 E fpfl e/{k) (AS{k) Skr~m+AS*M «-«<*-">) (1)

Das Photon Vakuum ist definiert durch

Ap (x) | Phot. Vak. > 0. (2)

Aus [Ap Ap] [Ap A; ] 0 und <.A, Apo [Ap Ap\ folgt:

At At=Ap Ap + Af Af + (Af Ap + Af Ap) + (At A,p (3)

Dopp. Abs. Dopp. Em. Streuung

i j Ä:~

=A+APA+ + AfAfAh- + (Af A+ Ap+Af ApAP+Ak-ApAp) (4)

Dreif. Abs. Dreif. Em. Abs. + Streuung

+ (Af- Af Ap + Af Af Ap + Af Af Af) +
Streuung + Em.

+ (At <fa. Ap0 + Aj <.At Ap0 + Ak (At Af0)
Abs. oder Em.

< yo bezeichnet den Erwartungswert im Photon-Vakuum.

Elektron-Operatoren. Wir setzen :

y>(x) y>+(x) + tp-(x) ZanVn(r) e~ilE« + Z^P VrM e~UE" (5)
En>0 Ev<0

Elektr. Vernicht. Posit. Erzeug.

yi(x) Tp(x) + 7p-(x)=Sbv yv (r) étEv+pap yn (r) eitE« (6)
Ev< 0 En> 0

Posit. Vernicht. Elektr. Erzeug.

12) Siehe z. B. Heisenberg W., Z. f. Phys. 120, 673 (1943) und Stueckelberg,
Nature, 153, 143 (1944).
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wobei yìn (bzw. y>v) die Diracschen Ein-elektronen-Eigenfunktionen im äusseren
Feld sind und En > 0 Ev < 0 (7p y)* y4).

Das materielle Vakuum ist definiert durch

ip(x) 1 mat. Vak > =yi+(x) | mat. Vak > =0 (7)

Aus den Anti-Vertauschungsrelationen13)

{yif, %"} {Vi+> y2+} =0 {^i+, yf} <Vi Va>o> {Vi+> Vfa} <Vi V~2>o

folgt:
1. Produkt zweier Operatoren.

vi Vä= wP vP+ yf V2~+ vf va+- vr w~P+ <vi vPo (8)
Paar Paar Elek. Posit.
Vern. Erz. Sprung Sprung

Va Vi= - Vi+ v~2- vf vf-yf wP+vr Vi+ + <Va Vi>o (9)

i[Vi. Va] vP VP + Wx~ V>ïT+ Vi~ Wp- Va- wP + i <[Vi. Va]>o (10)

wobei (ez= + 1 wenn Ez ii 0)

<y (*) ¥>(*')>„ T v»(r) V,(r') ei(t~*'>^ (11)
-E„<o

<V(*') V»>o Z v„(r) V„(0 ei('-(,)^ (12)
-Em>0

<[y(a;), y(*')]>0 - 27 ^ ?,(r) y.(r') e^"('>^ (13)
I?2go

[ ] bezeichnet auch beim Elektronenfeld den Kommutator.

Vi V2' V2 Vi un(i Evi' V'a] zerlegen sich also in einen Teil, der die reellen Prozesse
beschreibt, und den wir „Einteilchenteil" nennen und mit < >j bezeichnen, und
einen Vakuumserwartungswert, der einem virtuellen Prozess entspricht und „Null-
teilchenteil" genannt werden soll. Der Einteilchenteil ist:
<viV2>i= -<va vi>i=4<[vifa2]>i=vi+V2++vrv2"+vrv2+-va" vfa (14)

2. Produkt zweier Kommutatoren.

Das Produkt zweier Kommutatoren zerlegt sich in drei Teile: Einen „Zweiteilchenteil",

den wir mit < y2 bezeichnen; einen Einteilchenteil < >1( der reelle und
auch virtuelle Prozesse beschreibt; und einen Teil, der nur virtuelle Prozesse
beschreibt. Explizit:

ï <tvi> Va] [y~3> Vi]>2= (15)

Paar Vern. + Paar Vern. yip y>f yip y>p
+ Paar Vern. + Posit. Sprung. - ytf yip yip yip- ytf yip yip y>f
+ Paar Vern. + Elek. Sprung yif yip ytp ytp + yjf y>f ^3+ ytf
+ Paar Vern. + Paar. Erz. yjf ytf 'yip y>p+ y>f yif yip y>p+ yif iff yp yip

+ vrv2" vs+V4+
+ Posit. Sprung-h Paar Erz. - yj.f ytf yif yip- i
-f Elek. Sprung-f Paar Erz. yif 'yif yjf ytp + yt1
+ Paar Erz. + Paar Erz. yjf ytf yif ytf
+ Vern. zweier Pos. + Erz. zweier Pos. - ytf ytf yip yip
+ Vern. zweier El. + Erz. zweier El. — Vi ~ vY~ V2+ V«+

13) Wir schreiben der Kürze halber ipt statt yig^Xj) usw. Zwei Variable i, j können
auch gleich sein.
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Der letzte Term enthält zum Beispiel die Coulomb- oder Möllerwechselwirkung
zweier Elektronen. Ferner

<tvi> Va] [v~3> Vj>i <tVi' VJ>i <tV3> VJ>o
+ <[Vs> V4D1 <Lvi> V2D0 + 4 <Va V3>i <Vi V4>o + 4 <Vi Vi>i <Va Vs>o (16)

<[Vi>Va][V3> VJ>o_=
<iVi> V2D0 <[v~3> VJ>o + 4 <V2 V3>o < Vi Vi>o • (17)

3. Produkt dreier Kommutatoren.

Hier treten Drei-, Zwei- und Einteilchenteile auf. Wir brauchen nur den
Einteilchenteil:

<[?i> V2] \p>3, VJ iva. V6]>i
<[Vi. Va]>i <[V3> Vi]>o <tV5> Ve]>o + <[v~3> V4]>i <[Vl> Val>o <[v~6> Ve]>o

+ <[Vs» Vel>l <tvi' Va]>o <tvs> Vi]>o + 4 <Vi Ve>i <Va V5>o <l Vs. Vd>o

+ 4 <Va Vs>i <Vi Ve>o <[Va> V*]>o + 4 <Vs Vc>i <V4 Vs>o <[Vi> Va]>o

+ 4 <V4 V5>i <V3 Ve>o <tvi> V2D0+4 <Va Vs>i <Vi V4>o <[ Vs> V6]>o

+ 4 <v_i V4>i <Va V3>o <[ Vs. V6]>o+ 4 <[yx, V2D1 <Vs Ve>o <V4 Vs>o

+ 4 <[V3._V4]>1 <Vi Ve>o <Va Vs>o+4 <[yi5, Ve]>i <Vi Vi)>o <Va Vs>o

+ 8 <Va Vs>i <Vi Vs>o <Vi Ve>o- 8 <Vi V4>i <Vs V6>o <Va Vs>o

- 8 <V2 V5>i <V3 Ve>o <Vi Vi>o- 8 < yt3 Ve>i <V2 Vs>o <Vi Vi>o
+ 8 <Vi V5>i <Vi V6>o <V2 Vs>o+ 8 <^i Ve>i <Vi Vs>o <Va Vs>o (!8)

II. Matrixelemente von <Htr P (Htr P Htr)nd}i ei
lPh

Die obigen Matrixelemente lassen sich mittels der Formel (4) und (18) und der
Hilfsformeln (1), (5), (6), (11), (12) und (14) des Anhanges I ausdrücken. Die vier
ersten Linien der Formel (18) geben keinen Beitrag, weil <?'>„ in Abwesenheit eines
Magnetfeldes Null ist. Die anderen Terme geben Matrixelemente der Form

yf drdk vz,(/-1)(res-(fci)KfeiriW(>-1)
X

x ^)(rePk2))e^y,zfp^ -iW(re,(y)ei^^,w (19)

(19) beschreibt einen Übergang von einem angeregten Zustand | 0 > (eines der
drei z'=0), in einen Zustand, wo das Elektron im Grundzustand ist (eines der
z= G) und ein Photon mit Impuls k existiert. (19) lässt sich durch die Indices

2j.. .z3', sx s, «3 und die Impulse klt k2, ks charakterisieren. Die Matrixelemente
vom Typ (19) sind unten in einer Tafel zusammengestellt, n, n' (bzw. v, v') sind
Niveaus positiver (bzw. negativer) Energien. Die Indizes s sind weggelassen.

77/. Entwicklung von ô (E — H—V) nach Potenzen von V.

Es sei H=ap+ ß m. Zuerst ist klar, dass

$(E-H-V) Ç(E-H) + £(E-H) V i(E-H) +
+ !pE-H) VS (E-H) V Ç(E-H)+... (20)

Dies erkennt man, indem man zum Beispiel die Darstellung §(x) lf(x+io),
a -> 0, benutzt und nach V entwickelt.
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zx k 1 «i' z2k ««' Za k3 z3' AEy AEZ

,a \ k' -k' -k En-Ev+k k+k'
1 b Iff k' 0 v -k n n -k' v En-Ev+k'

le '1 -k k' -k' „ 0*)

Hi 1
k Ai. Ai En-Ev+k EQ-E0+k' + En-Ev+k

2 b v TO G 0 n Jl En-Ev+k' „le „ EG-E0 + En-Ev
,a 1 EG-E0 + k EG-E0+¥+En-Ev+k

3 b L m n V G 0 EG-E0+k'
le I

» EG-Eo+En~Ev

(a 1 Ev-En-k EG-Ev+k+k'
4 b u 0 G m n V Er-En-k'

le 1

„ Eq-E-v

f« 1 Ev-En-k En-E0+k+k'
5 jb

y e Kî n

i

V r\

c

;. o

r

n •> v-a

tì

Ev-En-k'
E„-Eo*)

•ii hH rH EG-Ev+k EG-Ev'+k+¥
ì ° e

v •: ri 0ff -g EG-Ev+k'
„ EG-EV'

ia ii E0-En-k Eq- Ev+¥+En- E0+k
7 b U w e V re 0 E0-En-k'

lo 1

i

EG-Ev+En-Ea
,a Ev-EG-k En- E0+ ¥ + Eq- Ev+ k

8 b u » » o ff V Ev — EG — k
le 1

¦ ¦ En~Eo+EG~E"
,a En,-E0 + k En-E0+k + ¥

9 ,b G m w n' ?i/ 0 En,-E0+¥
U

1 ' > ' 1 ' En~EP)

*) 1 c muss ausgeschlossen werden, da H'r P Htr nicht diagonal sein darf; ebenso
die Fälle w=0 in 5 e und 9 c.

Die rechte Seite, mit E-H-V multipliziert, gibt in der Tat 1. ò(E-H- V) ist
der imaginäre Teil von — f/?i, also

6(E-H- V) -1 -[| (E-H- F)-|* (E-H- V)]
2 71

Ô(E-H)+ —^-=rV Ô(E-H) + Ô(E-H)V ''
E-H E-H

Man kann auch die „Vorzeichen Funktion" f (#+ 7) (e(E) + 1, wenn £ > 0)
nach Potenzen von V entwickeln:

+00

e(H+V)= f dEe(E)ö(E-H-V)
+ 00

e(H)+ JdEs(E)^-s-VÔ(E-H) + Ô(E-H)V1^w^+ ¦ ¦ ¦
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