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Allgemeine Theorie der Déimpfungsphinomene fiir
nichtstationire Prozesse.

III. e*-Korrekturen zur Linienbreite

von E. Arnous¥*).
(Seminar fiir Theoretische Physik, Universitit Ziirich.)

(9. VI. 1952.)

The e*-correction to the line breadth Re I'y o, (E,) is considered. It is shown
that this quantity can be written in a covariant 4-dimensional manner (excepting
a part depending on the excitation conditions) and that it is finite and unambiguous.
The order of magnitude is ~ /1372 —»2/m & where y is the line breath in second
approximation and 2 £ a measure for the extension of the incident exciting spec-
trum.

Die vorliegende Arbeit schliesst sich unmittelbar an zwei frithere
Arbeiten?) desselben Titels an, die im folgenden mit I und IT zitiert
werden. Betreffend Problemstellung, Methode und Bezeichnungen
verweisen wir auf diese Arbeiten, insbesondere auch auf II. Der
Zweck der vorliegenden Arbeit 111 ist die Behandlung der niachsten
Ordnung in der Entwicklung der Linienbreite, das heisst Re Ly.
Die Hauptfrage ist, ob diese Grosse, die sich auf ein gebundenes
Teilchen und auf Anregungsbedingungen bei einer endlichen Zeit
to bezieht, mit den gegenwartigen Methoden der Ladungs- und Mas-
senrenormalisation eindeutig berechenbar und endlich ist. Wir wer-
den sehen, dass beides der Fall ist. In § 4 werden wir die Grossen-
ordnung abschétzen. Da die Berechnung von Re I’y sehr langwierig
18t, so konnen wir nur den Gang der Untersuchung und die haupt-
siichlichsten theoretischen Punkte hier wiedergeben. Wir werden
uns darauf beschrénken, Re I}, (E,") (E, = verschobene Energie
des angeregten Zustands) zu behandeln. Wir erhielten in II die

*) Chargé de Recherches au Centre national de la Recherche Scientifique, Paris.
1) E. ArNous und 8. Zrenav, Helv. Phys. Acta 24, 279 (1951); E. ArNovUS
und K. BLEULER, ibid. 25, 581 (1952).
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Formel (wir schreiben wieder E, statt E,"; im folgenden sind alle
Energien die verschobenen Niveaus):

o ReTy(Eq) = <0| (Hr PH"1H, — H)8(H" PH"+H, — H,) 4
— w2 H 5 Her o (H 6 HY),y + [H” 8 Hr P (H* P H + H,
— H,),4+H" 8 (H,—H,— H,) PH" — - H" 6 (H" PH") , H"
— 5 H" 8 H" (H" P* Hv), + Konj. kompl.] | 0> (1)

1 P
d = a(EOM HO) P = ‘E;:H;.

§ 1. Berechnung der Matrixelemente.

H? und H, sind Operatoren, in denen das transversale Photon-
feld 4; und der Kommutator [, v] vorkommen. y sei das, der zwei-
ten Quantisierung unterworfene Elektronenfeld, in Anwesenheit des
statischen Kernfeldes. Es ist (A = ¢ = 1, Heavyside-Einheiten)

Hor e .. _126 f dr[p(r), yip(r)] 4,(r) (2)

H,— -2 [ [ drdr—1 [y* *(r'), y(r
o= o [ [ ar ), p ] (), v,

p = ¥yt (3)
H, ist schon in IT (Formel (12)) explizit gegeben. In (1) kommen also
Produkte von 4, und von Kommutatoren [y, | vor. Die Anti-
kommutatoren von y an zwel verschiedenen Raumpunkten im
Kernfeld sind unbekannt. Im Anhang I stellen wir eine Zerlegungs-
methode von 4 und y dar, die trotzdem eine verhéltnisméssig
schnelle Bestimmung der Matrixelemente in (1) erméglicht. Die
Methode separiert die reellen von den virtuellen Prozessen und
zerlegt die ersteren in ,,Ein-, zwei- usw. Teilchenterme*’, das heisst
Matrixelemente in denen nur ein, bzw. zwei usw. Teilchen in Uber-
giangen beteiligt sind. In unserem Problem werden nur die Einteil-
chenterme eine Rolle spielen. Diese konnen dann durch die Dirac-
schen Ein-elektronenfunktionen ausgedriickt werden. Endlich wird
es leicht sein, unter den Ein-Teilchentermen diejenigen auszu-
scheiden, die den Vakuumerwartungswert des Stromes <j;>, enthal-
ten, und 1in Abwesenheit eines Magnetfelds verschwinden.

- Da in H* nur der Strom j; = [v, ¥* ] vorkommt, nicht die La-
dungsdichte, so verschwinden also alle von H* herrithrenden Glieder
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die den Vakuumserwartungswert eines Kommutators <[@, p]>, ent-
halten. Betrachten wir zum Beispiel

O|(Hr*PH*+H,—H)d(H" PH"+H,—H), 4| 0>
Es 1st zuerst klar, dass die Zweiteilchenterme von
(H* PH*" + H,— H,) .4

Null geben, denn (siehe Anhang I, Formel [15]) sie entsprechen ent-
weder Prozessen, die hier nicht stattfinden kénnen (wenn zum Bei-
spiel der Prozess mit Paarvernichtung, Positronensprung oder Ver-
nichtung zweier Elektronen anfingt), oder sie verletzen die Energie-
erhaltung (Paarerzeugung), die durch die é-Funktion in der Mitte
verlangt wird.

Betrachten wir weiter die Nullteilchenteile

(H* PH* + H,— H>owm und <H* P H"+ H,— H,>0®m
0 Ph 2 Ph

Der erste Operator ist diagonal und muss ausgeschlossen werden.
Der zweite verletzt die Erhaltung der Energie?). Es bleiben also

<H"* PH* + H,— H>1 m und <H*PH" 4+ H,— H>1m
0Ph 2Ph
Der erste Operator gibt nur Erhaltung der Energie, wenn das im
Anfangszustand |0> absorbierte Elektron reemittiert wird. Dieser
Operator ist aber dann diagonal und muss wieder ausgeschlossen
werden. Der zweite Operator reduziert sich auf

(H" P H"> w1
2 Ph
was die Emission von zwei Photonen beschreibt (Doppelemission).
Die Formel (16) des Anhanges I zeigt, dass die zwel ersten Terme
dieser Formel ¢j>, enthalten, also Null sind. Es bleiben also nur
die Terme

4 Cpp Wy o1 <P1Wado + 4 <Py YD1 <o P30 -

Die Hilfsformeln (1), (8), (11), (12) und (14) des Anhanges I liefern
unmittelbar die zwel einzigen Matrixelemente.

%) Wiirden wir Re I'y(E) fiir E + E, berechnen, so kénnten in H P H zwei
weiche Photonen emittiert werden und (H* P H'" ), .. wire von Null verschieden.
2 Ph
Auch sonst wiirden viele der folgenden Vereinfachungen unméglich sein.
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Ahnliche Betrachtungen kinnen fiir die anderen Terme gemacht
werden. Wir werden jetzt einige Matrixelemente explizit schreiben,
wie sie uns die obige Methode liefert, um einige Bemerkungen iiber
die Fortsetzung der Rechnungen machen zu kénnen.

Betrachten wir zum Beispiel das dritte Glied von (1) und insbe-
sondere

<Htr P (Ht’l" P Hw)nd>i 1?11
was allein einen von Null verschiedenen Beitrag gibt. Um dieses
Produkt berechnen zu konnen, benutzen wir die Formel (18) des
Anhanges I, und man sieht sofort, dass nur die neun letzten Terme
dort von Null verschieden sind (die anderen verschwinden, weil
> = 0). Wir geben im Anhang IT die entsprechenden Matrix-
elemente in tabellarischer Form.

1 ¢ muss ausgeschlossen werden, so wie auch die Félle n = 0 in
5c¢ und 9 ¢, weil das Produkt der zwei letzten H?* nicht diagonal
sein muss.

Terme mit verschwindenden Nennern treten also nicht auf. Ferner
sehen wir, dass der Operator H;, diejenigen Terme subtrahiert, in
denen der Hauptwert P und die §-Funktion mit demselben Argu-
ment E,— F, auftreten, wo also P/z é(x) vorkommt. Es sind die
Falle 3a und n = G in Ta und »’ = G in 9a. Sie werden durch
<Hp>om P H" bzw. <Hp >,y P H? subtrahiert.

Die in den Renormalisationstermen auftretenden Paarglieder
werden durch 2b kompensiert und die Fallen = 0in 4bund n = G
in 8b Jassen sich mit den anderen Beitrigen der Renormalisations-
terme zusammen addieren (gemeinsame Zihler). Die tibrigbleiben-
den Matrixelemente konnen folgendermassen gruppiert werden:
la, 2a mit 83b; 1b, 2¢ mit 3¢; 4b, 5¢, 6a, Tb, 8a mit 9c; 4c, 5D,
6e, Ta, 8b mit 9a; 4a, 5a, 6b, Tc, 8¢ mit 9b. In der Bestimmung
der gemeinsamen Nenner benutzt man die Regel3):

p P P P PP
A At EF am—a B T (B

Wenn 4 oder B immer von Null verschieden sind, verschwindet
0(4) 6(B). Es zeigt sich, dass dies immer der Fall ist, wenn nur ein
einzelner Ubergang, etwa vom ersten angeregten Niveau zum
Grundzustand existiert (was durchweg angenommen sei). Aus dem
gleichen Grund verschwindet auch das Glied ~z2in (1). Energie-

3) Man verifiziert diese Formel, indem man die Integraldarstellung des Haupt-
wertes und der d-Funktion einsetzt.
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erhaltung (6-Funktionen) und die nd-Vorschrift lassen sich nicht
erfiillen.

Ahnliche Betrachtungen kinnen auf die Coulombterme H, ange-
wandt werden.

Die tibrighleibenden Beitrége zu Re Iy, (E,), soweit sie nur von
transversalen Photonen herriihren, sind vom Typus:

Zfdr dk y, (ry) e % )y e (Ry) .. (1) ... 9, (1) €57 %

Xy € (Ry) ., (1) X
% 6(E23“Eza’+Ez4—Ez4’ + ka + k4) oder 6(Ez2—Ezz’ + o= Hy + k3 + ]C4)

Nenner

+ konj. Kompl. (4)

e(k) ist der Polarisationsvektor des Photons k. Die Integration ist

natiirlich tiber r; ... r, und k,... k,. Wir charakterisieren (4) kurz
durch:

21 (ky 81) 21" 25 (g 89) 25" 25 (e 83) 23" 24 (kg 84) 24 "Neoher

In der folgenden Tafel I sind die Matrixelemente, die von transver-
salen Photonen herrithren zusammengestellt. Der Anschaulichkeit
halber, sind auch die zugehorigen Feynman-Diagramme angegeben
(--- Photonlinie, — Elektronlinie), doch ist zu beachten, dass die
Elektronenlinien hier gebundene Elektronen beschreiben, n und »'
sind Niveaus positiver Energie, v negativer Energie, 2z und 2’ posi-
tiver oder negativer Energie; ¢, und ¢, sind die Vorzeichen von E,
und E, . G bezeichnet den Grundzustand, 0 das angeregte Anfangs-
niveau. Die Massenkorrektionen

Htr § H* P(H)nq und Ht §(H),q PH

sind noch nicht subtrahiert.

In dem Renormalisationsterm —1/2 H¥ (H* P? H*), kommt die
Grosse der Energieschale des angeregten Zustands explizit vor.
Dies ist auch notwendig, da sonst fiir manche Ubergéinge P2 un-
endlich wiirde. Es ist niitzlich, diesen Term formal aufzuspalten

H_;, Htr (Htr P2 PNItr) g = __flz_ Htr(Htr P2 Htr)d 4
o ;_Htr (Iil'tr P2 E‘tr) i (5)

Natiirlich wiirde jedes Glied von (5) einzeln unendlich, doch werden
wir den zweiten Teil von (5), der nichtrelativistischer Natur 1st, erst
bei der expliziten Berechnung in § 4 brauchen. Fir die Zwecke der
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§ 1-3 lassen wir die Beschréankung ~ einfach weg und die Beitrage
des zweiten Glieds von (5) sind in Tafel I nicht enthalten.

Die Coulombterme, die H, enthalten, sind vom Typus

Yo, (ry) v €(Ry) €57y, (1) B, (1) X

x 7 € (Ry) My, (ro) wy (1) oy (T3) vy, (Fe) 9, (ry) X
% CS(+ Ezg—Ezg'“:’*E_\;?—Eza'—E‘Ezi—Ez,"ﬂ"kz) +]€-k. (6)
Nenner

et [dkdr...drg
(2??:)3_/ Sﬂlr—r}

Sie sind in Tafel IT zusammengestellt. In den Diagrammen bezeich-
net ... ein virtuelles skalares Photon.

Tafel II.
21(ky81) 2y 25(kg 83)29 2525 242, 0(...)/Nenner
Aeom Gewdhnliche J By Byt B
Korrektur 0(ks)G | z(—ks)2’Gz2"0 | Sk (H, Fo (e — &)
. ( B+ k)
zur Emission |
Beous Selbst- 0(ks) G | G (ks)0Gzzy 2‘1”2?" E}zf ""'1)6 .,
energie _ | (Hz — Byt k)
Korrektur | | ot | O (Bg—Ey+k)
1 0(ks)@ G(-ks)2z40222"0 | 2E(E,—Eg—F) ez
ey |
e  28(By— B+ k)
Ccour Polarisa- 0(ks)@ n(—ks)vvn@0 | et
tions- _ ! 2k(E,—E,+k)
korrektur - 5 26(Eqg—Ey+k)
~ L 0ks)Gd  v(—ks)nnvGO 2k(En*E,,—k)
i o(E E+k)
Dcoul.PO].&I'lsa-, 0(ks)@ G-k s) 2 ’ G0 &,
, = +0z2" 022
tions. || OWOG [ GRNFR0Z0E | k- T+ B
korrektur ! O (Eg—Ey+ k)
. O(ks) G | 2+ G(-ks) 022G2" 2k(E,— Ez—k)

DCOul enthalt den Vakkuumerwartungswert der Ladungsdichte
0>y, der fiir gebundene Zusténde (im Gegensatz zu freien Partikeln)
nicht verschwindet. Hierin stecken die Ladungsrenormahsatlon des
Kerns sowie endliche Beitrige.
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§ 2. Vierdimensionale Zusammenfassung der Matrixelemente.

Nun werden wir die folgende Eigenschaft von Re Iy, (E,) veri-
fizieren: Wenn in B, keine Beschrankung, die Energieschale betref-
fend, existieren wiirde, dann wiirden sich die Coulombterme mit
denen von Tafel I vierdimensional kombinieren lassen, und dasselbe
Resultat ergeben, das man bei Lorentzeichung ohne Betrachtung
der Lorentzbedingung erhalten hatte?), das heisst es treten statt
der Coulombterme 4 Typen von virtuellen Photonen in Tafel I auf.
Fir die Terme D, von Tafel II, die (o>, enthalten, ist das aller-
dings erst der Fall, wenn auch die Beitrage {;>,, die in Abwesenheit
eines #usseren Magnetfelds verschwinden, in Betracht gezogen
werden.

Diese Eigenschaft, die von French und Weisskopt fiir die gebun-
dene Selbstenergie des Elektrons verifiziert wurde, erstreckt sich
also praktisch auch auf Re I'y(E,). (Der Zusatz, der durch die
Energiebeschrinkung entsteht, gibt zu keinerlei Konvergenzschwie-
rigkeiten Anlass). Es ist aber zu betonen, dass all dies nur fir
Re I' (E,), aber an keiner anderen Stelle £ + FE gilt. In dem letzten
Fall diirtte also die Lorentz-Bedingung nicht ignoriert werden, wenn
man mit 4 Photonentypen rechnen will.

Wir beschréanken uns darauf, an dem typischen Beispiel der Pola—
risationsterme zu zeigen, wie die 4-dimensionale Zusammenfassung
durchgefiihrt werden kann. |

Wir schreiben die zweil Polarisationsterme der Tafel I mit der
dortigen Bezeichnungsweise:

0 =0k GGy o[RS okt

8 (By— B+ 1)
Y T @

Um die Polarisationsterme Cg,, der Tafel II in ahnliche Form
bringen zu kénnen, ergénzen wir zuerst die 2 Polarisationsvektoren
e¢*’, zu 4 Vierervektoren ef, durch Hinzuftigen einer longitudinalen
und skalaren Polarisation, s’ = 3 und 4:

=(0,0,0,1); e =0, wenn s =1,2,3
4
D) ¢ (k) e (k) = 6,,,
g'=1

4) Mit Lorentzeichung bezeichnen wir diejenige Eichung der Potentiale fiir die
klassisch  4,/6 z,, = 0; bei Coulombeichung ist div 4 = 0.
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s0 dass bel Summation iiber 1
ye =y'ef (=128, y*=9pyie
Dann ersetzen wir 1/4z |r —r’| durch

1 — ] dk’ e’i(k'wr'"r’).
47 |r—r| (2 m)? kR

Wir erhalten
Ceon=0(Rs) GG (R 4) 0 x

v(-k'd)nn(—ks)r n(—k'4)vv(—ks)n]| 6(Eq—E,+k)
X[ T,—E,+k T B B,k ] srrr - 8

Unsere Behauptung ist jetzt die folgende: Anstatt € und Cg,, zu
addieren, kénnen wir in (7) s” von 1 bis 4 statt von 1 bis 2 summieren.

Es gentigt offenbar, zu zeigen, dass
O(s' = 8,4 statt 1,2) — Oy = 0. (9)
Wir reduzieren die dritte Komponente auf die vierte mittels der
Formel

f%”z v* ek iik"#’z'(r) dr = +1 Ez’i;Ez x

x f Ba(r) ek =¥y, (r) dr (10)

(9) wird jetzt:
C(S’ = 3’ 4) T OCoul =

—0(ks) GG (k' 4) {(n(—ks ) v v (—k'4) n) o kE(g,’ Eon Bla B
‘ N\ (By—Eg) (B,—E,)—k*] 0 (BEg—E,+k)
— (v(—Rs) nn (R 4) ») Sl T ] spam - (1)

Wegen des Faktors 6(Ey;— E, + k) 1st aber Hy— Ey=Fk und die
zwel Briiche in der Klammer werden gleich 1. Wir addieren und
subtrahieren dann zu der Klammer von (11) den Ausdruck

n(—Rks)n'n' (—R' 4)n

Das erste Glied der Klammer ist dann n (—ks) 22 (—R’ 4) » und
kann tiber z mit Hilfe der Vollstandigkeitsrelation summiert werden.
Fir das zweite Glied der Klammer von (11) vertauschen wir
n = n’ und erhalten ebenso 2(—ks) n n (—R' 4) 2. Auch hier kann
man tiber z summieren.
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Man erhilt, explicit geschrieben,

(1] = [{wa®) ey e %7, (1) —
— P, (r) yteikrpteTikry ey, (r)}dr=0.

Damit 1st (9) bestatigt. |

Fiir die anderen Terme ldsst sich dasselbe in dhnlicher Weise
durchfithren. Bildet man 4 (s = 8, 4) — Agyu, By (8" = 8, 4) — Bgou
B, (s" = 3, 4), so verschwinden diese Terme allerdings einzeln nicht.
Dagegen heben sich einige Glieder von B, gegen Glieder von
A — Aoy die restlichen Glieder von B,, zusammen mit B; — Begy
heben sich gegen den Rest von 4 — A(,,. Einige Terme von
B; — B, verschwinden bei der Integration tber die Winkel von
k'. Zusammen?):

A(s’=8,4)— A, + B, (s =8,4) — By, + Bs(s'=38,4) =0. (12)

Cou Cou

Somit bleiben uibrig: (1) die Beitrdage von der Doppelemission,
(2) 4, B, B,, C von Tafel I, wobe1 aber s” von 1 bis 4 zu summieren
1st, (3) die Terme D, von Tafel II. Letztere, wie schon erwihnt,
nehmen 4-dimensionale (zestalt nur an, wenn die schon weggelasse-
nen Glieder {j>, (die verschwinden) beriicksichtigt werden. Ubrig-
bleibt ferner noch das zweite Glied von (5), das explizit von der
Grosse der Energieschale abhéngt. Fir dieses kann man natiirlich
keine 4-dimensionale Gestalt erwarten.

§ 3. Beweis der Konvergenz.

Wir zeigen nun, dass die iibliche Methode der Ladungs- und
Massenrenormalisation geniigt, um alle Divergenzen, die in den ein-
zelnen Matrixelementen stecken, zu beseitigen. Hierbei handelt es
sich natiirlich um die Divergenzen, die bei hohen virtuellen k auf-
treten. Die Beitrdge von der Doppelemission sind endlich. Eine
Ultrarotkatastrophe tritt auch nicht auf. Ferner diirfen wir zu
diesem Zweck das zweite Glied von (5) ausser acht lassen, da dieses
keine quantenelektrodynamische Divergenz enthilt, sondern ledig-
lich das Verschwinden des Nenners von P? verhindert.

Ein typisch divergenter Ausdruck, der iiberall in verschiedenen
Variationen vorkommt, ist zum Beispiel

- e ’
ayh E@k r

B drdrdk’ 7y v (1) 3, (F) 57 5 ()

%) Die Giiltigkeit der obigen Behauptuhgen und von (12) ist keineswegs sehr
leicht zu sehen, doch kénnen wir die zum Teil umfangreichen rechentechnischen
Einzelheiten nicht alle darstellen.
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Wir zerlegen die Zwischenzusténde in zwei Klassen, je nachdem k'
kleiner oder grosser als eine gegebene Energie u ist. Diese Energie
wollen wir viel grosser als die Ionisierungsenergie I wihlen, damit
die Integration iiber k’<< u den Hauptbeitrag zum Integral gibt, aber
viel kleiner als mc2, damit das Gebiet k' > u alle relativistischen
Effekte einschliesst : zum Beispiel u = « m (« = 1/187). Wenn k' > p,
muss die Energie | E,| > u> I sein, damit der Gesamtimpuls,
wihrend des Uberganges 0-> z des Elektrons und withrend der Emis-
sion des Photones R’, innerhalb der Impulsverteilung von w,, also
von der Ordnung der Ionisationsenergie, bleibt. Man darf jetzt das
Elektron # des Zwischenzustandes als frei betrachten und infolge-
dessen die Bornsche Naherung in den Zwischenzustdnden benutzen.

Wir ersetzen (13) durch

drdr' dk’ dE
sz/rrk .

TS (B—ap—pm—V)y, (") 5, () e Yy ()
Ey,—E—k e

was die Summation tiber 2z durchzufiihren gestattet. Wir entwickeln
dann 60 (E —a p — f m — V) nach Potenzen von V (siehe Anhang
III) und erhalten fiir k' > u:

drdk’ A v eik’r{d(E_a”_ﬁmH

X_a. — o X
P P —ik'r, 2
o t P a ap—fm Vél-ap—pm)+o() V E—aﬁ_—“ﬁ-—m—_i_ }e Y 'Po(’j).
Ey—-E—-Fk ¢eg

Die Beniitzung der Formel
¢*rf(p) e~ =f (p—K), p=—igrad

und die Trennung der Zwischenzustinde positiver und negativer
Energien mittels der Operatoren

H(p) = 3 [1£2520™], B(p) =(|p[* + m?®

S(E—ap— Bm) Hisé(E$E(p))Hi, H++ H-=1
gibt endlich (H* kommutiert mit E (p)):

el il EpK]
A Eo—E(p—k)—k

H-(p-FK)
E,—E(p-kK)+

A= + o+

| o (p k’) 24 (p—.kl) ¢ 5 @ A

+ E E (p k’) k’ EQ_E (P"" kl)_ I + }y QP‘) ” (14) .
41
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Man sieht: Je hoher die Potenz von V, desto héher die Potenz von
k' im Nenner. Von einer bestimmten Stelle ab muss also f dk" end-
lich sein. Nachdem sdmtliche Terme in diese Form gebracht sind,
kann man leicht entscheiden, ob noch Divergenzen iibrig bleiben

oder nicht.
Als Beispiel betrachten wir das Matrixelement 4

Ad—... 1L ve e KTy, G e R y et (k) yr gy e T Yhy, X
2K (Ez_Ez'"f—k)
K ler—2)— (B,— By +) (15)

_ (Bg—E,— ¢, (By — By+ k' ¢)
wobel

4
— s [Tl G ok R) b (Hy— Byt AR dr
(15) divergiert hochstens logarithmisch.

Die Entwicklung (14) zeigt sofort, dass nur die von ¥ unabhén-
gigen Terme divergieren konnen. Betrachten wir zuerst den Term,
der k' (¢,, — ¢,) im Zahler enthélt. Da die Vorzeichen von E, und
E," verschieden sein miissen, bekommen wir die folgenden zweil
Moglichkeiten (o; = % 9% ") :

1

e—ikra : _
‘Y E(p—k-Kk)+E(p-Kk)+k

x

Alz---—iwé

1

/ k _ /
X g g H P —k—R) e H o (p—R) @y

“E(p-k)-By- ¥

R, —%kr 1
IR Ry ey = oy Ty =y e

1 _ , ae (k) :
~ EG+E(p—-k—k’)+k’H (p—k—Fk) Ep-Kk)-Bo+k H*(p—FR') a3 9o.

Divergenzen kommen offenbar nur von dem Produkt der 2 Glieder
1/2in H* (p —kR — k') und H* (p —R’) und dem Produkt zweiera R’,
da ein einzelner Faktor e k" nach Integration tber die Winkel von
R’ verschwindet. Die Summation tber A ergibt

o, (zek) e, = —2(ae(k)
w,(@k) (aekR) (@k)a, =2k (ae(k) —4 (ek’) (k).

Ferner 1st
fdk’ (e k)k ke fdk’(ae (R))
Der divergierende Teil von 4, + 4, ist also

B[ [ e @em)ne.  05)
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Der Term E, — E, + k von (15) lasst sich ebenso behandeln (Bei-
trag A,). Nur die Produkte von 2 Faktoren (e R’) geben Divergenzen.
Ag ergibt sich als die Hilfte von (15'). Der divergierende Anteil
von (15) 1st also

A=A+ Ayt Ag —> i /‘f,c’?_ f dryi(r) e~ (e e(R)) o (r). (16)

Diese Divergenz wird durch B, exakt kompensiert. Der V-unabhén-
gige Teil des ersten Terms von B, ist

R HY(p—k) H-(p-k)
R C At BT Tt E T ¥

X &, Yo wg e~ (a €) p,

[ far i e aam)wie

Der zweite Term von B, gibt dasselbe. Es folgt also, dass 4 + B,
endlich ist.

Die Selbstenergiebeitrage B, sind analog zu behandeln. Die Ent-
wicklung muss aber hier bis zu den in V linearen Gliedern fortgesetzt
werden. B; konvergiert, wenn die Beitrige der Massenkorrektion
H*§ H" P (Hy),q, und H 6 (H,),, P H" abgezogen werden. Der
Operator H, [siehe IT Formel (12)] ist symmetrisch in Anfang- und
Endzustand. Um die Subtraktion durchfiithren zu kénnen, miissen
wir in unseren Matrixelementen die Nenner symmetrisieren, zum

Beispiel
2 _ 1 | 1 )+
Ba-B,-F s, _(EG—Ez—k’az T mCE-Fe,

S g

1 1
B ( EG_Ez_k, &y B EO_Ez—klez ) |
Fiir grosse Werte von k' ist die zweite Klammer mit (E, — Eg)/k"?
daquivalent. Wenn man sie in die Selbstenergieterme einfiihrt, ver-
schwinden die divergierenden Integrale, entweder weil
f'e,u; (M) pprg)dr =0 oder weil —d]{f— =

v

Wenn man die erste Klammer in die Selbstenergieterme einfiihrt
und die H-Beitrage subtrahiert, so reduziert sich das Problem genau
auf das von French und Weisskopf (Niveauverschiebung®)) behan-
delte. Dies braucht hier nicht mehr im einzelnen wiederholt werden.
Es folgt, dass B; minus Beitrage von H, endlich ist.

%) J. FrENCH und V. WEisskorr, Phys. Rev. 75, 1240 (1949).
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Wir brauchen auch nicht die Polarisationsterme ¢ und D¢,y 1m
einzelnen zu betrachten. Sie sind proportional zu den bekannten
Ausdriicken fiir die Vakuum-Polarisation. Es 1st bekannt, dass C
eine Divergenz enthilt, die die Ladung in H¥ renormalisiert. Dieser
Beitrag ist also wegzulassen. Nach Elimination der nicht-eichinva-
rianten Glieder durch bekannte Verfahren?) ist der Rest endlich.

D, enthilt das divergente <p>,, das die Renormalisation der
Ladung des Kernfeldes beschreibt®), und ausserdem den wohlbe-
kannten endlichen Term —(«/15 ) |72 6(r), der auch in der Lamb-
verschiebung eine Rolle spielt.?) Damit ist die Endlichkeit von
Re I'y,, (Ey) bewresen.

Es wire weiter zu fragen, ob auch Re Iy (Ii) , I + I, endlich
1st. Obwohl die Rechnung fiir diesen Fall unverhéltnisméassig viel
komplizierter ist, besteht wohl kein Zweifel, dass dies der Fall ist.
Man kann sich Re I’y (F) nach . — E, entwickelt denken, und da
F nur im Nenner zusammen mit k" vorkommt, so kann wohl kaum
eine Divergenz iibrig bleiben. (Vergleiche auch den analogen Fall
von Jm Iy (E) in IL.)

§ 4. Abschiitzung in nicht-relativistischer Niherung.

In nicht-relativistischer N#iherung sind die einzigen Terme, die
von Null verschieden sind, die Matrixelemente fiir die Emission
zweler Quanten und 4, B, und B,, wihrend die Coulombterme Null
sind: A,y hat den Faktor ¢, — ¢, und verschwindet, weil E, > 0
und E, > 0. Bg,, ist genau durch H7" é H" P (H,cou)na und
H 6 (H cou)na P H" kompensiert, wenn fiir H, die nicht-relativi-
stische Form der Selbstenergie benutzt wird. Diese besteht dann
aus dem Coulombbeitrag

2
Hycou= | [ drdr' v*@) 0=y (r) (17

lr d

und dem transversalen Beitrag

r 2 [ a
HY == gz | A [ dr v ) s vl X
Hs = HsCoul e H?"

7y Zum Beispiel W. Pavur1 and F. ViLrars, Rev. Mod. Phys 21, 434 (1949);
G. KALLEN, Ark. f. Fysik, 2, 187 (1950).

%) Da e in der Wechselwirkung wie in dem ungestorten Problem (Kernfeld) vor-
kommt, , so muss eine Ladungsrenormalisation auch an 2 Stellen ausgefiihrt

werden.
%) E. A. UsHrING, Phys. Rev. 48, 55-63 (1935).
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Wir ersetzen @ durch p/m und die y und E durch die Schrédinger
Eigenfunktionen und Eigenwerte. Ferner beschréanken wir uns fiir
die reellen Photonen % auf die Dipolstrahlung (erlaubte Ubergiinge).
Die Frage, ob dies auch fiir die virtuellen Photonen k" erlaubt ist,
muss aber naher diskutiert werden. Wenn das nicht-relativistische
Gebiet durch k" < g =am , « ~1/137, definiert 1st, 1st die Dipol-
naherung gerechtfertigt. Die obere Grenze unserer Integrale ist dann
~ o m, und das Resultat hédngt von log « m = log « 4 log m ab.
Die Rechnungen von French und Weisskopf iiber die Linienver-
schiebung haben gezeigt, dass log « wegfillt, wenn man den relati-
vistischen Teil der Integrale hinzufiigt. Das angenshert richtige
Resultat erhélt man, wenn man die nicht-relativistische Rechnung
fiir die Dipolstrahlung bis zur oberen Grenze m fortsetzt.

Da wir sowieso nur eine grobe Abschitzung geben konnen, wer-
den wir auch hier dasselbe Verfahren anwenden und nur die Dipol-
strahlung betrachten aber trotzdem g = m als obere Grenze wih-
len1?). Damit werden die Integrale tiber k, k" elementar.

Wir betrachten zuerst die Teile von Re Iy, die nicht von der
Energieschale ¢ abhingen. Wir beschrianken uns darauf, an dem
ersten Glied von B; zu zeigen, wie die Rechnung durchgefiihrt wird.
Das Resultat der Integration ist

B, (erstes Glied) = @ e; ( ) (Bo—Eg) ) f dry -+ dry x

zgzz

X o (1) Pi g (ry) e (Ta) P; w:(T2) ¥, S (re) piw, (rs) vy :q:a(’h) D; Yo (Te) X
EGI A=+ (B E)Iog'#E,—E%—MI}. (19)

Es tritt ein Glied auf das in u linear ist. Dieses wird aber durch
H'r 6 (H"), 4 P H, Formel (18), subtrahiert. Der Term ~ p fallt
also weg.

Weiter werden wir die Tatsache benutzen, dass der Logarithmus
eine langsam variierende Funktion ist und sie als eine Konstante

betrachten:
log Ze~Tml _ oonst (20)

(20) ist sicher von der Grossenordnung 1-10. Dann kénnen wir
E,— E, in das Matrixelement absorbieren:

2 (B.—Eg) ve(ra) pivp.(ro) v, (rs) ps=
(r2) [pa H:I wz (rz) sz (rs) Pi= Yq (r2) [pJ H] D ) (rz _ r3) s
:§"PG{[ij]+ P2V} o(r,—rs) . (21)

10) Unser Verfahren ist dhnlich dem von Bethe in der Rechnung der Linienver-
schiebung, Phys. Rev. 72, 339 — 341 (1947).
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(19) zerlegt sich also in zwei Teile, B," (Beitrag von [p} H]) und
B’ (Beitrag von V2 V). Wir betrachten nur B;”, da B,’ sich mit

1
andern Gliedern von 4 und B, kombinieren ldsst. Wir erhalten

" 2 A E,~-E * *
By = e (2;:m)4 E:'——Ei fdrl drydrs yy (ry) piye(ry) vers) X
) Ey—E,—
X V2V 9, (1) vy 16(Fs) Di 9o (1) log %G“E‘;ﬁ_ . (22)

Wir bemerken weiter, dass
fw.fff PiPo = im(Ez'“—Eo)/wZ i Yo -

Das Verhéltnis (B, —E,)/(E,—E;) kann auch grob als Konstante

betrachtet werden, es variiert fiir Wasserstoff zwischen 5/32 und 1.

In (22) kann man } = } — (¢ = G) schreiben. }' gibt keinen
2 =G z z

Beitrag, da 2V =e24d(r) (fir Wasserstoff), und 6(r) r;, = 0. Es

bleibt der Beitrag 2’ = G, oder

" 2 4 E E E .
Bl:? (2en) ( @ ’f%”"a‘l)a /%VZVWG "log. (28)

Hier ist (fiir den Grundzustand von Wasserstoff)

wa VZVWG—e”V’G(O ‘2: 1374

(28) 1st proportional zur Linienbreite zweiter Ordnung

4 * 2
v = Be I, (E,) :W(EO_EG)31fTPO "o ¥y »

Wenn wir

Ey— Ez lad
EZ—EG l,g T Eg- =1

setzen, erhalten wir die Grossenordnung

" v
By~ g -

Ahnliche Betrachtungen fiir die anderen Matrixelemente zeigen,
dass unsere Korrekturen alle von der gleichen Grossenordnung sind
(es tritt auch p2/m? ~ 1/1372 auf), mit Ausnahme des von der
Energieschale abhiéngigen Teils.

Endlich miissen wir noch den Teil von B, berechnen, der explizit
von dem & des angeregten Zustands abhingt. Aus (5) sieht man,
dass in (H* P2 H), nur der Ubergang 0 - G + k&’ - 0 eine Rolle
spielt, da fiir alle andern Ubergiinge die ~-Bedingung automatisch
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erfiillt ist. Bei der Integration iiber &’ ist dann das Gebiet Ey—Eg— &
bis By — Eq + ¢ auszuschliessen. Man findet fiir den Be1trag B
von diesem Ubergang

\ . E, EG E u
) . Edk
B, =—"9_WW(EO_EG)( -/ + f )(Eo Eg—k)? i%Pz’PG!

0 E«—Egte

2 .
- Ez% + Glieder unabhéngig von e.

Es ergibt sich als Schlussresultat, dass

2
Re Iy (Eo) ~ 1—;}%‘ - _;ig_ . (24)

Der e-abhéngige Teil verschwindet fiir ¢ - oo, wie das auch in II
fir die e-abhéngigen Korrektionen Jm I'y(E), der Fall war. ¢ > oo
entspricht dem idealisierten Grenzfall kontinuierlicher Anregung.

§ 5. Linienverschiebung vierter Ordnung.

Zum Schluss selen noch einige Bemerkungen iber J m I', gemacht.
Wenn wir dieselbe Darstellung wie bisher wahlen, in der also die
zweite Ordnung der Niveauverschiebung Hy in die Definition der
Energien einbezogen ist, erhalten wirl?)

L Jm Iy(By) = (H* P H* + H,— H,) P(H" P H" + H, — H) 4
+ H"P(H,—H,—H,) PH"—x*H* § Hr §(H* PH* + H,—H,) 4
+ k.k.—m2Ht 8 H P(H" 8 H"),q— n* H 8 (H,—H, — H,) x

x 8 Hr —H, , . | 25)

wobel Hy, = (H* P H" + H,— H,) 4. H, ; 1st die vierte Ordnung des
Massenoperators. Wie man sieht, ist Jm I'(E,) von der Energie-
schale ¢ unabhéngig. Man wird nun (25) als die Niveauverschiebung
vierter Ordnung betrachten und die Darstellung weiterhin so ab-
dndern, dass diese in die Definition der Energieniveaus einbezogen
ist. Dann verschwindet J m I',(Fy) in der neuen Darstellung. Genau

11) Hatten wir die unverschobenen Niveaus zur Darstellung und als Anfangs-
zustand gewihlt (H 7,=0), so wire in (25) ein Zusatzglied — (H!" P2 H¥") (H" P H +
+ H,— H,); aufgetreten, das von & abhingt. In unserer Darstellung tritt aber
H,— H,— Hj statt H,— H; auf, und dieses Glied verschwindet.
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wie 1 11, 1st das Maximum der Linie dann durch die Differenzen decr
verschobenen Niveaus gegeben. Auch in vierter Ordnung erweist
sich also die Verschiebung des Linienmaximums als unabhéngig vo 1
den Anregungsbedingungen (abgesehen von der sehr kleinen Ve -
schiebung, die von der E-Abhéngigkeit von Re I'(I) herrihrt.)

Schlussfolgerung. Als Resultat der vorliegenden Untersuchunge
I-I1IT kann man folgendes feststellen: Die Quantenelektrodynami
fithrt, mit Hilfe der Ladungs- und Massenrenormalisation, auch b
gebundenen Zustédnden zu eindeutigen und endlichen Resultate .
Dies betrifft insbesondere auch den Fall, wo die Anregung zu eincr
endlichen Zeit ¢, geschehen ist (wir haben sogar ¢, als scharf bestimmt
angenommen), wo also Anregung und Emission nicht in stationdrem
Betrieb sind. Auch die Zeitabhéngigkeit des Emissionsvorganges
kann vollig erfasst werden.

Die Korrekturen zur klassischen, oder Weisskopf-Wignerschen
Linienform und -breite sind alle ausserordentlich klein. Soweit sie
von den Anregungsbedingungen unabhéngig sind, 1st die Korrektur
zur Linienbreite 1/1373mal kleiner als die tbliche zweite Ordnung,
ebenso 1st die zusétzliche Linienverschiebung (die nicht in der
Selbstenergie Hj enthalten ist) vollig vernachlidssigbar (siehe II).
Auch die von der Ausdehnung des anregenden Spektrums ¢ abhén-
gigen Korrekturen J m I'y(E) und (24) sind von der Grissenordnung
y%/e <y, verschwinden fiir ¢ >oc, und sind nur wesentlich, wenn
man mit einer verhéltnisméssig scharfen Linie anregt, deren Scharfe
mit y vergleichbar ist. Man kann also schliessen, dass die Weiss-
kopf-Wignersche Naherung ausserordentlich gut ist, und viel besser
als zum Beispiel die erste Naherung fiir Stossprozesse, und das
magnetische Moment, wo die strahlungstheoretischen Korrekturen
oft von der Gréssenordnung 1/187 des Haupteffekts sind. Dies liegt
an der wesentlich nicht-relativistischen Natur des Problems.

Eine genauere Behandlung der Emission zusammen mit der An-
regung, die zu einer préziseren Fassung von ¢ fiihren sollte, ist da-
gegen noch wiinschenswert, doch hat dieses Problem nichts mit der
typisch quantenelektrodynamischen Seite des Problems zu tun.

Ich mochte Herrn Prof. W. HrerrrLeERr fiir das Interesse, das er
dieser Arbeit entgegengebracht hat, herzlichst danken. Diese Arbeit
wurde durch ein Stipendium des Centre national de la Recherche
scientifique, Paris, ermoglicht, wofiir ich dieser Institution bestens
danke.
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Anhang.

I. Abseparierung der reellen und virtuellen Prozesse'?).

Wir zerlegen jeden Photonoperator A (x) (x =r, t) bzw. Elektronoperator y(x)
oder () in zwei Teile: den Teil A (bzw. y+ oder ™), der die Absorption beschreibt,
und den Teil A~ (bzw. y~ oder y ), der die Emissionen beschreibt. Statt Produkte
von A (bzw. y und y) haben wir dann Produkte von AF bzw. p= und y=. 4ist das
transversale Feld allein.

Wir bringen diese Operatoren dann, mittels der Vertauschungsrelationen, in
eine solche Reihenfolge, dass jeder Absorptionsoperator rechts von allen Emissions-
operatoren steht. Durch die Vertauschungsrelationen treten Kommutatoren (bzw.
Antikommutatoren) auf. Fiir das Elektronenfeld, in Anwesenheit des Kerns, sind
diese zwar nicht explizit bekannt. Sie sind aber c-Zahlen und kénnen infolgedessen
auch als Vakuumserwartungswerte von Produkten zweier Operatoren betrachtet
werden. Die letzteren kénnen durch die Diracschen Ein-Elektronenfunktionen aus-
gedriickt werden. Ausser Produkten von geordnefen Operatoren erhalten wir also
noch Vakuumserwartungswerte.

Die geordneten Operatoren, die zuerst Teilchen im Anfangszustand absorbieren
und dann neue Teilchen im Endzustand emittieren, beschreiben die reellen Prozesse.
Die Vakuumserwartungswerte, wo Teilchen zuerst emittiert sind und sofort wieder
absorbiert, beschreiben die virtuellen Prozesse.

Photon-Operatoren. Wir setzen:
Ai(x) =47 () + 4; () =

o 3 k As k ei(kr*kt)_i_ As* k e—i(k J"-—-kt)) . (1)
(2%)3,2é§/l/2k () (4 (k) (k)
Das Photon Vakuum ist definiert durch
z) | Phot. Vak. > =0. (2)
Aus [A;t A;7]=[4;7 A, ]1=0 und <A; 4,5, =[4;7 4;7] folgt:
A, A=A AT + A7 A7 + (A7 A7F+ A7 A7)+ (A4 A, (3)
Dopp. Abs. Dopp. Em. Streuung
A, ;4=
=A A AT + A7 A7A7 + (A A AT+ ATATA+ A ATA +) 4)
Dreif. Abs. Dreif. Em. Abs. + Streuung
H(A7 A7 At + A7 Ay A+ A7 A AT+
Streuung + Em.
+ (4 (A Ao + A5 <Ay Ao + Ay <A Ajg)
Abs. oder Em.

{ >o bezeichnet den Erwartungswert im Photon-Vakuum.

Elektron-Operatoren. Wir setzen :

(@) =y (@) + v (2)= T a, v, (r) et T 0%y, (r) e (3)
Ep>0 E, <0
Elektr. Vernicht. Posit. Erzeug.
y(2) = yH (@) +yp~(2)=2 b, y, (7) euEer Z’w P (7) HEn (6)
E, <0 >0

Posit. Vernicht. Elektr. Erzeug.

12) Siehe z. B. HEisENBERG W., Z.f. Phys. 120, 673 (1943) und STUECKELBERG,
Nature, 153, 143 (1944).
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wobei vy, (bzw. y,) die Diracschen Ein-elektronen-Eigenfunktionen im &usseren
Feld sind und E, > 0, E, << 0 (y = p* »%).
Das materielle Vakuum ist definiert durch ‘
yt(z) | mat. Vak > =y*(z) | mat. Vak > =0. (7)
Aus den Anti-Vertauschungsrelationen!3)
v v b ={yh w1 =0 {1t v t=<{w1 v {vih v} =<y1 w20
folgt: ‘
1. Produkt zweier Operatoren.
Y1 Y=y Yt T Yty YTy w1 e (8)
Paar Paar Elek. Posit.
Vern.  Erz. Sprung Sprung

Yo pr=—y1 Ya— i Y —yr ¥t tu pit <y Yo (9)
oy vl=pim v+ v+ vt v vt + 3y w210 (10)

wobei (¢,= 4- 1 wenn E, = 0)

@YD= Z gs(r) y,(r) =1 Ey (11)

(@) B() o = Z galn) W, (r') 10— En (12)

), 9@ Do == X & 3, (r) v (r) ¢l (=1 Bz (13)
EzSo

[ ] bezeichnet auch beim Elektronenfeld den Kommutator.

W1 Yo Yo 1 und [y, ,] zerlegen sich also in einen Teil, der die reellen Prozesse
beschreibt, und den wir ,,Einteilchenteil*“ nennen und mit < »; bezeichnen, und
einen Vakuumserwartungswert, der einem virtuellen Prozess entspricht und ,,Null-
teilchenteil*“ genannt werden soll. Der Einteilchenteil ist:

Cpryen=—<e pyor1=3 yp v ri=v v+ vy vt =y pi™ (14)

2. Produlkt zweter Kommutatoren.

Das Produkt zweier Kommutatoren zerlegt sich in drei Teile: Einen ,,Zweiteil-
chenteil, den wir mit { >, bezeichnen; einen Einteilchenteil ¢ »;, der reelle und
auch virtuelle Prozesse beschreibt; und einen Teil, der nur virtuelle Prozesse be-
schreibt. Explizit:

?11‘. {{y1s ¥l (s, VA (15)

Paar Vern.+ Paar Vern. wit vt Pyt gt
+ Paar Vern. + Posit. Sprung. — ;= wit 9t pat—wy it gy "
+ Paar Vern. + Elek. Sprung s~ p,+ 9oty + py ™ woT gty ‘
+ Paar Vern. + Paar. Erz. Vs Vo prT Wt e By prt Wt P e vt Bt
T v ysT
+ Posit. Sprung+ Paar Erz.  —y,™ ys~ v vt — i v v pst
+ Elek. Sprung+ Paar Erz. ™ ps y ot + 1 wa sy

+ Paar Erz. + Paar Erz. Vi W Ya W
+ Vern. zweier Pos.+ Erz. zweier Pos. —,~ y,~ y,t s
+4- Vern. zweier El. + Erz. zweier El. — w1 ps ety

13) Wir schreiben der Kiirze halber y, statt v, () usw. Zwei Variable ¢, j konnen
auch gleich sein.
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Der letzte Term enthilt zum Beispiel die Coulomb- oder Mollerwechselwirkung
zweier Elektronen. Ferner

B <[§1a Wa] [@3, Yalo1 =< [;,Uup Yol o1 [y AP
+ {[ys val>1 [y1 ¥2lDo + 4 <2 P21 <Y1 Yo + 4 {91 Y1 <¥2 Yo (16)

(w1 wol w3 ¥alDo =
(1 vallo s walDo+4 <2 W3 o {1 a0 - (17)

3. Produlkt dreier Kommultatoren.

Hier treten Drei-, Zwei- und Einteilchenteile auf. Wir brauchen nur den Ein-
teilchenteil :

91 wol [y il [9ss YelD1=
= [y Yal>1 [y valdo [ws welDo + <[@3’ val)1 <[a1’ valo <[@5: YelDo
+ {Lys w1 <[w1 ¥olDo Lys ¥aldo+4 <1 wer1 <2 500 <l wss WalDo
+ 4 {ys P51 <Y1 Yoo <[ws> Yaldo +4 s Yeo1 <¥a w500 (w1 Y20
+ 4 <y, P51 Y3 Yoo <[—1;71, Yol Dot+4 {y2 Y31 <Y1 %o Lys w0
+ 4 {1 Y21 <Wa a0 <[5 YelDot+ 4 <[Y1 ¥al>1 <¥s Yero <¥a ¥so
+4 [z Y4101 <P1 Yoo W2 wsrot+ 4 <[wss Vel D1 W1 %a) Do W2 Y320
+ 8 {ys war1 <¥a Y520 <Y1 ¥ero— 8 <y1 Y1 <¥s3 Vo <¥2 Y520
=8 {yp Y51 {Ps Yoo <y1 Wo— 8 < Y3 Yer1 <¥a2 Y520 <W1¥ado
+ 8 (Y w51 <1 Vo ¥z warot 8 {y1 Wer1 <¥a Y500 <¥2 Yao (18)

I1. Matrizelemente von (Hir P (H'T P H'"), >1 1.
1Ph

Die obigen Matrixelemente lassen sich mittels der Formel (4) und (18) und der
Hilfsformeln (1), (5), (6), (11), (12) und (14) des Anhanges I ausdriicken. Die vier
ersten Linien der Formel (18) geben keinen Beitrag, weil (5>, in Abwesenheit eines
Magnetfeldes Null ist. Die anderen Terme geben Matrixelemente der Form

_ii 2 drdk _ pz(r) (7 € (k1)) gtkin pz (1) %
(2m)?/2 ~J Y8k kyky AE,
. 52 theyry , .
x Lulrl{y e (22_2: i v, (r) (Y € (ky)) €5 5y, (r)  (19)

(19) beschreibt einen Ubergang von einem angeregten Zustand | 0 > (eines der
drei 2’=0), in einen Zustand, wo das Elektron im Grundzustand ist (eines der
z=(@) und ein Photon mit Impuls %k existiert. (19) lasst sich durch die Indices
2. .25, 81 858y und die Impulse k;, ks, k; charakterisieren. Die Matrixelemente
vom Typ (19) sind unten in einer Tafel zusammengestellt. n, n’ (bzw. », »’) sind
Niveaus positiver (bzw. negativer) Energien. Die Indizes s sind weggelassen.

11I. Entwicklung von & (E— H — V) nach Potenzen von V.

Es sei H=a p-+ f m. Zuerst ist klar, dass
§(E-H-V)=¢(E-H)+§(E-H)VEE-H)+
+EE-H)VEE-H)VEE-H)+... (20)

Dies erkennt man, indem man zum Beispiel die Darstellung &(z)=1/(z+1 o),
¢ — 0, benutzt und nach V entwickelt.
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|
2, ky 2y ‘ 2o Ry 2y | 25 Ky 25 AE, AE,
l a k’ -k’ -k E,—E,+k k+ &
11D }G KO|v—kn n-k'v| B —E-+k .
lc "‘k k’ '"k, ER ) O*)
a A . E,~E,+k | BEg—Ey+¥+E,—E,+k
2 {b g} v n| @ 0 n | v |E —-E+k -
¢ | | . Ey—E,+E,—F,
a \ BEq—Ey+k | Eg—Ey+k+E,—E,+k
3{1) }v n|n v | G o Eg—E,+k -
¢ | | ., | Eg—Ey+ E,— B,
* ) | E,—~B,~k | Bg—E,+ b+ ¥
4 {b v 0| G n|\n | v | E,—-E,—F ‘ vs
C l EE 1 EG_Ev
5 i lg © S0 : ?_?_2» Rl
(7 L R g V| ErT BT s
¢ & & & ) E,— Eq*)
Ja: : :: : EG—Ev+k EG—Ev,"f‘k"i‘k,
6{b %}v' 2 0|y € V|G E v| Eg—E A+ s
| B = ’
¢ | | s EG'_Ev
a | E,—E,~k | Eg—E,+I+E,—E,+k
7 {b }'V n | G I v n O EO—En—kl LE)
c I - Ey-E,+E,-E,
a | | By—EBg—k | B,—Ey+ K +Eg—B,+k
S{b lv n n | 0|G Lo | E,—E;-F vs
o | ! ‘ | ., | B,—By+ Eg— By
a ‘ ! ‘ E,-Ey+k | E,—E,+k+k
9 {b }G noon #w|n' ‘ 0| B, —E,+¥ '
¢ ¥ v \ ‘ » B, E,*)

*) 1c muss ausgeschlossen werden, da H!" P H'" nicht diagonal sein darf; ebenso
die Fille n=0 in 5¢ und 9ec.

Die rechte Seite, mit £ — H — V multipliziert, gibt in der Tat 1. §(E—H— V) ist
der imaginédre Teil von — &/, also

S(E-H-V)= 5[5 (B-H-V)-& (B-H-V))=

P P
g VOE-H) +S(E-H)V z—r + - -

Man kann auch die ,,Vorzeichen Funktion* & (H+ V) (¢ (B) =41, wenn E Z 0)
nach Potenzen von V entwickeln:

— §(E-H)+

e(H+V)= [dBe(B)S(B-H-V)=

= e(H)+ [dE &(B) [E?-_JH V 8(E— H)+ 6 (E—H) V—E-_{)H—] TR
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