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Allgemeine Theorie der Dämpfungsphänomene
für nichtstationäre Prozesse.

II. Abseparierung der virtuellen Zustände.
Korrektionen zweiter Ordnung

von E. Arnous*) und K. Bleuler
(Seminar für theoretische Physik, Universität Zürich).

(15. V. 52).

Abstract. In continuation of a previous paper (I) the radiative corrections to the
form and breadth of an emission line are treated. General expressions for these
corrections are obtained with the help of a canonical transformation which eliminates

the virtual processes. This makes essentially use of a "finite energy shell"
the extension of which is interpreted as the extension of the exciting spectrum.
Some of the corrections depend explicitly on the excitation conditions. It is proved

that, to a very great accuracy, the displacement of the line maximum is given
by the level shifts (~ self energies) as usually calculated (independent of the
excitation conditions). The corrections to the classical line shape are worked out explicitly,

as far as the e2-effects are concerned (§5). The ^-corrections are worked out
in the subsequent paper III.

Einleitung.

In einer kürzlich erschienenen Arbeit des gleichen Titels1) (im
folgenden als I zitiert) wurde eine allgemeine Lösungstheorie der
quantenelektrodynamischen Wellengleichung für gebundene
Zustände entwickelt, die geeignet ist, das Problem der Linienform-
und Breite der Spektrallinien einer exakten Lösung im Sinne der
Quantenelektrodynamik entgegenzuführen. Die Hauptresultate
sind in § 1 zusammengestellt. Es wurde gezeigt, dass die
Wellengleichung (1) mit vorgegebener, bei einer endlichen Zeit liegenden
Anfangsbedingung exakt gelöst werden kann und auf eine
Integralgleichung für die physikalisch interessierenden Grössen U und r
führt. Diese Theorie ist lediglich mit der Lösung von (1) beschäftigt
und macht in keiner Weise davon Gebrauch, was die „ungestörte
Hamilton-Funktion Hq und die „Wechselwirkung H" ist. Statt
das übliche ungestörte H0, das Elektronen und Photonen ohne
Wechselwirkung beschreibt und H in (1) einzusetzen, kann man

*) Chargé de Recherches au Centre National de la Recherche scientifique, Paris.
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ebensogut eine transformierte Hamilton-Funktion K0, K in den
allgemeinen Rahmen der Theorie I einsetzen, wobei z. B. K0 + K aus
H0 + H durch eine kanonische Transformation hervorgeht. Dies
wird im folgenden tatsächlich geschehen.

Das Ziel der vorliegenden. Arbeit und der folgenden Arbeit III
ist, die höheren strahlungstheoretischen Näherungen zur Linienform

zu bestimmen. Es wird sich erweisen, dass diese sehr klein
und mit der gegenwärtigen Genauigkeit der Messungen kaum
erfassbar sind2). Dagegen hat das Problem theoretisches Interesse:
Die grossen Fortschritte, die in den letzten Jahren in der
Handhabung und Auswertung der Quanten-Elektrodynamik erzielt wurden,

liegen fast ausschliesslich auf dem Gebiet der Stösse zwischen
freien Partikeln und Lichtquanten. Die einzige Ausnahme ist die
Berechnung der Niveauverschiebung gebundener Zustände. Um
Eindeutigkeit in den Resultaten zu erreichen, ist es bekanntlich
notwendig, explizit Gebrauch von der relativistischen Covarianz
des Resultates Gebrauch zu machen. Eine covariante Formulierung
der Quantenelektrodynamik für gebundene Zustände ist aber
allgemein nur möglich (wie wir unten sehen werden), wenn man
expliziten Gebrauch von der Lorentzbedingung (mit Ladungsglied!)
macht, was sehr kompliziert ist. Die Frage der eindeutigen
Berechenbarkeit solcher Grössen wie der Linienbreite (in höherer
Näherung) ist also keineswegs von vornherein ganz trivial. Die
Situation wird weiter dadurch verschärft, dass man erstens auch
verlangen muss, Rechenschaft über den zeitlichen Ablauf des

Emissionsvorgangs zu erhalten (denn dieser ist durchaus messbar),
und zweitens dadurch, dass die höheren Näherungen zur Linienform

explizit von den Anregungsbedingungen abhängen (wie wir
sehen werden). Beides kann kaum in covarianter Weise formuliert
werden. Wir werden daher im folgenden mit der Coulombeichung
operieren, d. h. mit derjenigen Version der Theorie, in der die
longitudinalen und skalaren Photonen eliminiert und durch die
Coulomb-AVechselwirkung ersetzt sind.

Bevor wir den Formalismus I zur Berechnung der höheren
Näherungen verwenden können, muss erst noch das folgende, prinzipielle
Problem gelöst werden: Wie bekannt, stellt ein freies, ungestörtes
Elektron keinen stationären Zustand im Sinne der
Quantenelektrodynamik dar. Das Teilchen ist stets von virtuellen Zuständen

begleitet (mit Photonen und Paaren), die ein Ausdruck für das
das Teilchen begleitende Nahefeld sind. Der wahre Zustand des
Teilchens geht aus dem ungestörten durch die Bloch-Nordsieck-
Transformation hervor. Bei Anwesenheit mehrerer Teilchen ist ein
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solcher transformierter Zustand immer noch stationär, solange nur
endliche Zeitintervalle betrachtet werden. Die zeitliche Änderung
des Zustandsvektors ist dann nur durch die tatsächlich stattfindenden

Stossprozesse bedingt, die (im Grenzfall unendlich grossen
Volumens) eine unendlich lange Zeit brauchen. Die wahren Übergänge

können streng von den virtuellen separiert werden. Dies
geschieht am besten im Energieraum, wo die wahren Übergänge unter
strenger Erhaltung der Energie (in der man die Selbstenergie, d. h.
die Massenkorrektion, einschliessen soll) statt, während virtuelle
Zustände solche mit verschiedener Energie sind. Die „Energieschale",

auf der allein die wahren Übergänge stattfinden, kann
unendlich dünn angenommen werden.

Dies ist bei gebundenen Zuständen anders. Die Lebensdauer eines

angeregten Atomzustands ist endlich. Es kann folglich keine
Transformation geben, die einen angeregten Atomzustand streng
stationär macht. Im Energieraum drückt sich das dadurch aus, dass
eine endliche Linienbreite existiert. Übergänge finden nur mit
näherungsweiser Energieerhaltung statt, im Prinzip auch zwischen
Zuständen mit stark verschiedener Energie. Eine eindeutige
Unterscheidung zwischen virtuellen Zuständen und Zustände, in die
wahre Übergänge stattfinden können, lässt sich also nicht
durchführen. Eine Ausnahme bildet nur der Grundzustand, der scharf
ist, und also im Sinne der Quantenelektrodynamik streng definiert
werden kann. Die Mehrdeutigkeit in der Definition eines angeregten

Atomzustands muss offenbar darauf zurückzuführen sein, dass
dieser Zustand in Wirklichkeit von den Anregungsbedingungen
abhängt. Schon in erster Näherung hängt ja die Linienform von der
Anregung ab. Wenn man von der natürlichen Linienform spricht
(d. h. der klassischen Linienform, die auch in der Näherung der
Weisskopf-Wignerschen-Theorie erhalten wurde), so ist damit
Anregung durch ein kontinuierliches Spektrum gemeint. Wenn sich
dieses etwa über ein Frequenzintervall fe1... k2, wobei k2 — fex gross
gegen die Linienbreite ist, erstreckt, so ist die natürliche Linie
jedenfalls an den Stellen fe1 und k2 abgeschnitten. Ein anregendes
Spektrum, das sich ins Unendliche erstreckt, kann natürlich nicht
existieren. Es ist deshalb auch durchaus zu erwarten, dass die
virtuellen Zustände, die dem angeregten Atomzustand beigemischt
sind, bis zu einem gewissen Grade von der Art der Anregung
abhängen werden. Eine vollständige Lösung des Problems der Linienbreite

erfordert also eine Behandlung der Lichtemission im
Zusammenhang mit der Anregung, also des ganzen Prozesses der
Resonanzfluoreszenz. Dieses kompliziertere Programm ist hier noch
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nicht durchgeführt. Man kann nämlich, statt die Anregung explizit
zu berücksichtigen, einen „angeregten Atomzustand" durch eine
verallgemeinerte Bloch-Nordsieck-Transformation definieren und
dabei eine gewisse, die verschiedenen Anregungsbedingungen
wiederspiegelnde Willkür walten lassen. WTir werden die folgende
Methode verwenden:

Wir ordnen jedem angeregten Atomzustand, der die Niveaubreite
y haben möge, eine endliche Energieschale der Dicke 2 e zu, wobei
wir £ "p> y, aber klein gegen die Niveauabstände wählen. Zustände
ausserhalb dieser Energieschale sind virtuelle Zustände, die durch
die kanonische Transformation wegtransformiert werden, so dass

neue Atomzustände entstehen. Diese sind dann stationär gemacht,
soweit es möglich ist: Wahre Übergänge finden nur noch auf
der Energieschale statt. Diese umfassen den grössten Teil der
natürlichen Linie. Letztere ist nur an den Grenzen fa e zu beiden
Seiten des Maximums abgeschnitten. Die willkürliche Grösse e

kann also als Mass für die Ausdehnung des anregenden Spektrums
betrachtet werden. Es wird sich zeigen, dass ein Teil der Korrekturen

zur Linienform- und Breite von e unabhängig sind. Die von
£ abhängigen Korrekturen verschwinden im Grenzfall e -> oo, und
man darf diesen Fall wohl als idealisierten Grenzfall wirklich
kontinuierlicher Anregung betrachten.

Vom Standpunkt der Quanten-Elektrodynamik wird sich zeigen,
dass, trotz der oben erwähnten Schwierigkeiten einer covarianten
Formulierung, alle Korrekturen eindeutig und endlich sind, wenn
man von der üblichen Massen- und Ladungs-Renormalisation
Gebrauch macht.

§ 1. Die wichtigsten Resultate der Arbeit I.

Die Arbeit I kann kurz folgendermassen zusammengefasst
werden: Es handelt sich um eine Lösungstheorie der Schrödinger-
Gleichung in Wechselwirkungsdarstellung :

i-^^ K(t)S(t), K(t)=eitK°Ke-itK> (1)

mit der Anfangsbedingung, gültig zu einer Anfangszeit t0,

S(t0)=l (2)

Hierbei ist K0 eine „ungestörte Energie", K eine „Wechselwirkung".

In der Lösung von (1) und (2) spielen die speziellen
Eigenschaften von K0 und K vorderhand keine Rolle. Tatsächlich wird
in (1) eine transformierte Hamilton-Funktion eingesetzt werden.
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In der Lösung von (1), (2) kommt die singulare Funktion

HE-K0)=-ifdtei^-^ -wf-w--iTiô(E-~K0)
o

-2niô+(E~K0) (3)

vor. P bezeichnet den Hauptwert. Die exakte Lösung von (1), mit
der Anfangsbedingung (2), ist

+ 0O

S (t, g -^- f dE e-«C»-*> (1 + S {E- K0) U (E) x
— OO

x{E-K0 + ^r(E)y1eit'^~K') (4)

Hier und im folgenden ist das Vorkommen des Operators K0 im
Argument von |, ò usw. so zu verstehen, dass in einer Darstellung,
wo K0 diagonal ist, derjenige Eigenwert von K0 einzusetzen ist, der
der Position des Faktors f entspricht

(Ç(E-K0)U)nm S(E-En)Unmetc.

U ist (in der Darstellung K0 diagonal) ein Operator mit nur nicht
diagonalen Elementen, Pist rein diagonal. U befriedigt die
Integralgleichung

U(E) Knd+(KSU)nd, l-l(E-K0) (5)

und r ist bestimmt durch

-^r(E)=Kd+(Kiü)d (6)

(nd nicht diagonal, d diagonal)

(4) kann als geeignete Zusammenfassung gewisser Terme in der
üblichen Entwicklung von S

t t v

S(t, to) l-i [K{t') dt'+ (-if fdt' fdt"K(t') K(t") + ¦¦¦
to [q Eq

aufgefasst werden, doch ist diese Entwicklung für Probleme mit
endlicher Linienbreite ungeeignet.

Wenn t fa oo, was der am meisten interessierende Fall ist,
vereinfacht sich (4) mit Hilfe von

--— lim e~%tx£(x) ô(x)
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Das Matrixelement von S für den Anfangszustand 0, Endzustand
A, wird

(A \U(E,)\0ya \S (oo, t0)\ 0> ^ifal^ (7)

®A-E0+Yr0l°(EA)

Damit wird die Wahrscheinlichkeitsverteilung der Endzustände A

wA0=\iA\S(oo,t0)\Qy\2
\<A\U(EA,

SA-E0-~Jmroio(EÄ)

0>j2
(8)

Vìf&r,,.^]
Es sei z. B. 0 der erste angeregte Atomzustand, A der Grundzustand
plus emittierten Lichtquant. Da die Zustände A zum kontinuierlichen

Spektrum gehören, so sieht man, dass selbst nach völligem
Ablauf des Emissionsvorgangs (t fa oo) 77 und P an jeder Stelle E
gebraucht werden. Die Näherungslösung von Weisskopf-Wignbr
erhält man, indem man (a) U durch die erste Näherung, d. h. K
(in diesem Fall wird K H) ersetzt, ebenso P, und (b) r durch
den Wert an der Stelle EA E0 (exakte Energieerhaltung) ersetzt.
In einer exakten Theorie der Linienform treten also zwei Typen
von Korrekturen auf: (a) die eigentlichen strahlungstheoretischen
Korrektionen, die auf den höheren Näherungen in der Entwicklung

nach e2 von U und P beruhen, und (b) Korrekturen, die darauf

beruhen, dass U, r von E oder EA d. h. der Energie des
emittierten Lichtquants, abhängen. Die letzteren haben kein Analogon
in der Theorie freier Partikel, wo EA E0 (exakt). Es sei betont,
dass auch der zeitliche Ablauf nach (4) völlig erfasst ist, wenn TJ,

r an jeder Stelle E bekannt sind. Zwischen U und P besteht noch
die Beziehung

-^Ker(E) (üt(B) Ô(E-K0) U(E))d (9)

Alle Beziehungen (1)—(9) sind exakt. Wenn E E0, so ist die rechte
Seite von (9) die totale Übergangswahrscheinlichkeit, doch hat dieser

Begriff keine exakte Gültigkeit.
Im allgemeinen ist es nicht im Sinne dieser Theorie, U aus (5)

durch Entwicklung zu berechnen. Für Probleme in denen zwei
oder mehr Quantensprünge vorkommen, hängt TJ empfindlich von
E ab und hat selbst einen oder mehrere Resonanznenner vom
gleichen Typ, wie er schon in (1) in jedem Fall auftritt3). Wir werden

uns aber im folgenden auf den einfachen Fall eines einzelnen
Übergangs vom ersten angeregten Zustand in den Grundzustand
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beschränken. In erster Näherung sind dann 77 und r sehr langsam
veränderliche Funktionen von E. Auch in höherer Näherung treten,
wie sich im Verlauf dieser Arbeit ergeben wird, keinerlei neue
Resonanzen auf. 77 kann dann ohne Gefahr aus (5) entwickelt werden :

U Knd+(KiKJnd+(KHK^Knd)nd)nd + (10)

±r={K + KÇKnd+Kï(KïKnd)nd + ...}d (10')

§ 2. Wahl der Wechselwirkung, Elimination der virtuellen Zustände.

Die quantenelektrodynamische Hamilton-Funktion besteht aus
der ungestörten Energie H0 und der Wechselwirkung H. Für Stösse
freier Partikel kann H in covarianter Form geschrieben werden,
so dass alle vier Typen von Photonen in symmetrischer Weise
vorkommen. Die Lorentz-Bedingung kann dann ignoriert werden,
vorausgesetzt, dass nur Übergänge zwischen Zuständen ohne longitudinale

und skalare Photonen berechnet werden4). Wir werden unten
explizit sehen, dass dieses Verfahren für gebundene Zustände im
allgemeinen falsch ist. Der Grund ist der, dass die Lorentz-Bedingung

(mit Ladungsglied!) explizit berücksichtigt werden muss. Wir
werden deshalb mit der „Coulombeichung" der Potentiale operieren.

Die Wechselwirkung ist dann Htr + Hc, wo Htr die Wechselwirkung

mit dem transversalen Feld, Hc die Coulombwechselwirkung

darstellt. Wie wir ferner sehen werden (siehe unten und
die folgende Arbeit III), gibt es einen Spezialfall, wo auch bei
gebundenen Zuständen die gesamte Wechselwirkung Htr + He in 4-
dimensionaler Weise zusammengefasst werden kann, wie wenn die
Lorentz-Bedingung ohne Belang wäre (abgesehen von einem
endlichen, von e abhängigen Zusatz; siehe III). Dies ist der Fall für
E E0, aber an keiner anderen Stelle E =t= E0. Derselbe Fall trat
schon bei der Berechnung der Linienverschiebung durch French
und Weisskopf5) ein. Der tiefere Grund, warum das gerade für
E E0 der Fall ist, ist uns aber unbekannt.

Wir wollen auch von Anfang an schon die Massenkorrektion in
die Wechselwirkung einbeziehen. Es sei Hs der Massenoperator, so
dass H0 + Hs formal dieselben Eigenzustände (auch für gebundene
Partikel) hat wie H0, nur mit der korrigierten, also experimentellen
Masse. Wir werden in Zukunft wieder H0 für H0 + Hs schreiben.
Die Wechselwirkung enthält dann ein Zusatzglied — Hs, d. h.

H Htr+Hc-Hs (11)
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Hs wurde explizit von French und Weisskopf bestimmt und kann in
4-dimensionaler Weise (in symmetrisierter Form) geschrieben werden.

Hs ±-fdr[y,(r)M(p)ip(r)], y> ip*Yi

M(p) sa /nryM(p>k)+A+(p*))

A(p,k)=Z{%Hpp-k)%((ap) + ßm~E(p-k)-k)-i
ß i

+ a/jHip-fe)a^((ap) + ^ + Ë(p-fe) + fc)-1}

% i74^> p -tgrad, E(p) (p2+m2f, ß Yi

Wenn Hs auf die Eigenfunktion eines freien Partikels ipp mit
Impuls p wirkt, so reduziert sich (12) auf den bekannten Operator der
Selbstenergie und liefert nach der Integration:

Hsipp omß ipp

wo am die invariante (divergente) Massenkorrektion bedeutet.
Dasselbe ist der Fall, wenn Hs auf eine gebundene Eigenfunktion ip0 wirkt

Hs ip0 ô m ß ip0 (13)

wie man sofort sieht, wenn man ip0 nach freien Eigenfunktionen ipp
entwickelt. In (13) hat bm denselben Wert wie für freie Partikel.
Dies muss natürlich verlangt werden, wenn Hs eine universelle
Massenkorrektur beschreiben soll.

Eine entsprechende Ladungskorrektur muss auch noch vollzogen
werden, um Konvergenz zu erzielen, doch ist es einfacher, diese in
einem späteren Stadium (siehe III) vorzunehmen.

Bevor wir den Formalismus von § 1 zur Berechnung der höheren
Näherungen von P benützen können, ist es notwendig, die
Atomzustände neu zu definieren: In höherer Näherung ist ein Atomzustand

von virtuellen Photonen usw. begleitet. Wenn wir
Übergänge zwischen verschiedenen Atomzuständen betrachten, so handelt

es sich sicher um Übergänge zwischen Zuständen mit Ein-
schluss dieser virtuellen Beimischungen. Die neudefinierten
Atomzustände ip' entstehen aus den alten, ungestörten Zuständen durch
eine kanonische Transformation: ip Tip'. Dann transformiert
sich die Hamilton-Funktion

K0 + K T-i(H0 + H»+Hc-Hs)T (14)
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Wäre die Lebensdauer der Atomzustände unendlich, die Niveaubreite

also null, so wären T und K dadurch bestimmt, dass K (in
der Darstellung, wo K0 diagonal ist) nur Matrixelemente zwischen
zwei Zuständen exakt gleicher Energie haben soll. Zwischen solchen
finden dann die realen, unendlich langsam verlaufenden Übergänge

statt6).
Im Sinne des in der Einleitung Gesagten verallgemeinern wir

nun die kanonische Transformation T für endliche Niveaubreite in
folgender Weise, indem wir explizit Gebrauch von der Kleinheit
der Linienbreite machen : Wir ordnen zunächst jedem Atomzustand
0 (in Abwesenheit von Lichtquanten) eine „Energieschale" der
endlichen Dicke e(0) zu. Dabei soll e(0)^>y, aber klein gegen die
Niveauabstände sein. Jeder andere Zustand n (z. B. Atom im
Grundzustand plus emittiertes Lichtquant) liegt dann entweder
innerhalb oder ausserhalb der Energieschale e(0) von 0. Es ist
keineswegs angenommen, dass alle diese Energieschalen gleich sind.
Im Gegenteil, um den Grundzustand G wirklich stationär zu
machen, wollen wir speziell festsetzen, dass für diesen Fall £

verschwinden soll, £ (G) 0. Für alle andern Paare von Zuständen n,
m ist es nur nötig, festzusetzen, dass diese sich entweder auf oder
ausserhalb einer Energieschale befinden. Insbesondere sollen die
beiden Zustände auf der Energieschale liegen, wenn En Em. Auf
diese Weise sind alle Paare von Zuständen in zwei Klassen eingeteilt.

Zustandspaare auf und Zustandspaare ausserhalb einer
Energieschale7). Es wird sich erweisen, dass die Grösse dieser
Energieschalen vollständig aus den physikalisch interessierenden
Grössen herausfällt, mit Ausnahme der beiden Energieschalen
e(0) und £ (G), für die Zustände 0 und G, zwischen denen der
betrachtete Übergang liegt. Dies ist zu erwarten, denn ein physikalischer

Effekt kann nicht davon abhängen, wie man zuerst eine
Hamilton-Funktion transformiert, wohl aber hängt der Übergang
0 fa G davon ab, wie die Zustände 0 und G definiert sind, und dies
hängt von e(0) und e(G) ab.

Ein beliebiger Operator Q kann dann in zwei Teile Q und Q

zerlegt werden, wobei (in der Darstellung, wo K0 diagonal ist) Q und
Q nur Matrixelemente haben sollen für je zwei Zustände, die auf,
bzw. ausserhalb ihrer Energieschale liegen.

Q Q + Q

Wir verlangen nun von der Transformation (14), dass K nur
Elemente auf der Energieschale haben soll : K K, K 0. Auf
diese Weise werden wir erreichen, dass ein angeregter Atomzustand
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relativ stabil wird und seine zeitliche Änderung nur durch die realen
Übergänge bedingt wird. Diese können nur auf der Energieschale
stattfinden; die Linie ist also zu beiden Seiten an den Stellen -}- e

abgeschnitten. Die Willkür, die in der Wahl von e liegt, ist offenbar

der Ausdruck für die Tatsache, dass der angeregte Atomzustand

von der Anregung abhängt.
Wir entwickeln T nach Potenzen von e

T l + T1 + T2 + ---, T~1 1^T1-~T2 + T2+--- (15)

Tx + Tl 0, T2 + Tl Tl (15')

und beachten, dass Htr Aron erster, Hc und Hs von zweiter Ordnung
sind. Ebenso K K1 + K2 + Kz H Wir erhalten bis zur dritten
Ordnung :

K0 HQ

K^-Wr+iHoTJ)
K2 H*' Ti -TlK1 + [H0 T2] + Hc -H,
K3 m T2 - Tx K2- T2 Kx + (He - Hs) Tx + [H0 T3]

(16)

Wir spalten dann jede dieser Gleichungen in die —- und —Bestandteile

auf. Für die letzteren verschwindet die linke Seite. Da [H0 Tt]

[H0Ti\, so erhalten wir zunächst sukzessive Bestimmungsgleichungen
für T( in jeder Ordnung. Diese sind von der Form

[H0Ti] -Q (17)

Diese Gleichung kann am besten in Form eines Integrals gelöst

werden. Da [T{H0] - [Tt, E - H0] und (E - H0) -^ 1,

(E — H0) ö(E — H0) 0, so ist die Lösung von (17)
* °

-f-oo • + OO

Ti =JdE1^w-Qô(E-H0)=-JdEO(E-H0)Q ^- (18)

In Energiedarstellung ist die Integration sofort auszuführen, und man
erhält die gewöhnlichen Formeln der elementaren Störungstheorie.

Die Teile von (16), die auf der Energieschale liegen, bestimmen
K sukzessive. Unbestimmt bleibt zunächst noch p. Wir können
über T_i verfügen, vorausgesetzt, dass die Unitaritätsbedingungen
(15') erfüllt sind. Wir setzen also einfach

T/=0, T2 Tt -\(T1)2 (19)
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Damit ist auch T bestimmt und folglich K. Zu beachten ist, dass

[H0 T2] =1= 0, wenn die Energieschale endlich ist. Dagegen werden
wir Ks nur für solche Zustandspaare brauchen, die genau die
gleiche Energie haben. Dann ist [H0TS] 0. Für die Doppelintegrale,

die bei der Bestimmung von T2 erstmalig auftreten, sei noch
bemerkt, dass

j jdEdE'ô(E-H0)ô(E'-H0)Q(E,E')

=fdEô(E-H0)Q(E,E)
Man erhält ohne Schwierigkeit:

T\=JPH^Ô (p -ë^, ô ô(E-H0))

T, fP (Hc -HS)Ô+ fp Htr P Htr ô - fôHtr PHtr P

l

(20)

T., PWôWP

(21)

Man verifiziert leicht, dass T2 + Tj, (Ti)'2, wie es sein muss.
Ferner:

K0 H0, K1=H"

K2=HC-HS + [H0T2] + [WrPHtr ô - fpHtrôHtr

K3=JHtr P !HC -Hs + Htr PHtr\ Ò +

ô(HtrPHtr+Hc-Hs\PHtr-

j ôHtr P (HtrPHtr + Hc -Hs) + f(He- Hs) PHtrô-

Htr ÔHtr PHtr P- f PHtrèHtrPHtr-

P Htr PHtr ÔHtr+ ÔHirP [H0T2 nd

-\ [HtrPHtrdHtrP + y fpHtrôHtrPHtr

\ (22)

Alle Doppelintegrale reduzieren sich allgemein auf einfache, mit
Hilfe von (20), mit Ausnahme von

f [dE dE' ô (E - H0) H» -E^w H*-^- H" ô (E'~ H0).
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Da aber Ks nur für exakte Energieerhaltung gebraucht wird, kann
dieses Integral auch

fdHtrPHtrPHtr

geschrieben werden (ein Faktor ò ganz links hat dann denselben
Effekt wie ein ô ganz rechts). Das Glied [H0TS~\ in K3 ist weggelassen.

Der Kommutator [H0T2] in K2 ist notwendig, damit K2
hermitisch ist.

§ 3. Darstellung: „Verschobene Niveaus".

Bevor wir die obigen Resultate zur Berechnung der physikalisch
interessierenden Grössen benutzen, ist es angezeigt, eine Änderung
der Darstellung vorzunehmen. K2 hat offenbar auch reine Diagonalelemente

K2d (während KZd 0) :

K2d=(Hc-Hs)d+f(H»PH%ò. (23)

Das letzte Glied von K2 (22) und der Kommutator haben keine
Diagonalelemente, da (HtrPHtr)d 0. Mit der Neudefinition
der Atomzustände ist naturgemäss auch eine Energieverschiebung
verbunden. Wenn wir Übergänge zwischen verschiedenen Niveaus
betrachten, so sind damit selbstverständlich Übergänge zwischen
den verschobenen Niveaus gemeint, und es ist sinnlos, zu sagen,
dass das Atom zur Zeit t0 in einem unverschobenen angeregten
Zustand war. Wir werden daher unsere Darstellung so abändern, dass

an Stelle der Eigenwerte von H0 die verschobenen Energiewerte
auftreten. Hierbei ist aber eines zu beachten: Die Niveauverschiebung

ist experimentell einzig und allein durch die Verschiebung
des Maximums der Linie definiert. Dieses ist aber nach (8) durch
JmP bestimmt, und nicht allein (wie wir sofort sehen werden)
durch K2d. Wenn E'A, E'0 die Energien der verschobenen Niveaus
sind, so liegt nach (8) das Maximum der Linie dann bei E'A E'0

(E'A verschobene Energie des Grundzustands + Lichtquant),
wenn dmP (E£) 0 (wenn man die schwache E-Abhängigkeit von
BeP vernachlässigt). Wir zeigen, dass dies die Niveauverschiebung
wie folgt bestimmt8) :

HL=(H-Hs)d + f(H»PH%\ò (24)

(24) ist nichts anderes als die Selbstenergie, wie sie von French
und Weisskopf4) berechnet wurde. HL unterscheidet sich von K2d
durch das Fehlen von ~ in einem Faktor Htr. Wir ändern somit
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unsere Darstellung folgendermassen : Statt H0 betrachten wir
Hq H0 + HL als die „ungestörte Energie". Die Eigenwerte, E'n,
sind die verschobenen Niveaus. Die Eigenfunktionen bleiben aber
unverändert, da HL diagonal ist. In der Wechselwirkung tritt dann
das Zusatzglied — Hh auf, also

K' K-HL. (25)

Alles frühere ^bleibt unverändert, wenn Hq durch H0 und K durch
K' ersetzt wird. Insbesondere treten in (8) die verschobenen Energien

auf:
\<A\U(Ep 0>|2}\ (26)

[EA-K-YJmr^(EA)]2+ì[Rero,o{EA)f
'

(genau genommen, müssten auch die Indizes A und 0 einen Strich
tragen). Auch die Energieschalen sind neu definiert, insbesondere
bezieht sich fi(O') auf die Nachbarschaft des verschobenen
Niveaus Eq. Um zu zeigen, dass die Linienverschiebung tatsächlich
durch (24) gegeben ist, berechnen wir .T0/0(E) mit (24) bis zur
zweiten Ordnung. Nach (25) und (23), (24) ist jetzt

K2d K2d-HL f(H*PH»ô)d-f(H>rpH»ô)d

- f(HtrPHtrò)d; (27)

ferner nach (10') und (22)

¦^r20l0(E)=K'2d+(K^K)ä K2ä+(ermtr)a-

-Ì7i(HtrOHtr)d+ (HtrPHtr)d- f(HtrPHtr)dò,

und nach Ausführung der Integration im letzten Glied explizit:

1 Jmr20!0(E) -{fl*^lf-lf -WUr^i (28)

~BeP2QlQ(E) (W^IP\. (28')

Wir sehen, dass tatsächlich

Jmr2Qlo(E'0) 0. (29)

Wenn es erlaubt ist, BeT als unabhängig von E'A zu betrachten,
und wir werden sehen, dass dies in sehr guter Näherung der Fall
ist, so folgt aus (26) und (29) streng, dass das Linienmaximum jetzt
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bei E'A E'q liegt. Hiermit ist der Beweis dafür erbracht (was
bisher nur sehr plausibel war), dass die übliche Berechnung der
Niveauverschiebung durch (24) tatsächlich die Verschiebung des
Linienmaximums liefert. Ganz exakt ist das nicht der Fall, da BeP von
E'A, wenn auch nur sehr schwach, abhängt (siehe § 5). Die
Verschiebung HL ist unabhängig von e, also unabhängig von den

Anregungsbedingungen (vorausgesetzt natürlich, dass e*^> y).
Für den Grundzustand G (ohne Lichtquanten) verschwindet

•ImP an jeder Stelle E, da die Energieschale unendlich klein ist
und Hr also nur ein Photon unendlich kleiner Energie emittieren
könnte. Trotz des Auftretens von ro/0 in (26) ist die Formel also
symmetrisch in Anfangs- und Endzustand (auch BePtìlG 0).

Wir werden die E-Abhängigkeit von Ber und JmP in § 5

genauer untersuchen.

§ 4. Strahlungstheoretische Korrektionen zu Her.

Das Hauptziel dieser Untersuchungen ist die Berechnung der
strahlungstheoretischen Korrektionen zur Linienbreite, also BeP^.
Die explizite Berechnung erfolgt in der folgenden Arbeit III; hier
werden wir nur die Ausgangsformel ableiten und zeigen, dass sie

nur von der Grösse der Energieschale £ (0) abhängt. Wir werden in
§ 5 sehen, dass Ber2 sehr schwach von E abhängt. Dasselbe wird
sich für Ber^ erweisen. Da BePi sowieso eine kleine Korrektur
darstellt, werden wir uns darauf beschränken, BeP^ nur an einer Stelle,
nämlich E E0 zu berechnen. Die ohnehin sehr komplizierten
expliziten Rechnungen werden dadurch sehr wesentlich vereinfacht.
Die Stelle E E0 spielt in mehrfacher Hinsicht eine ausgezeichnete
Rolle.

Wenn wir 77 ebenfalls wie K entwickeln, 77 Vx + 772 + 773, so
wird nach (9)

-±iBeriOIO(E'0) <0\TPo0ü\0>='

<0| Utô0 V, + 77tò0 773 + 772t ö0 77210> ò0=ò(E'0-H'0) (30)

und nach (10) (man bemerke, dass HLnd= 0 und Kx Htr keine
Diagonalelemente hat)

ül-*l
Uz(K)=K2nd+(K1i0K1)nd

UZ(K) =K3nd+ (K, f0 K2 Jnd + ((K2 --HJW-
+ (KJQ(KJ0K1)ndU, fo f(B0- h:

(30')
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Explizit ist zunächst

TJ2(Eq) He-Hs + [H0 T2] + {fHtrP H^Ô+fôH'PH^-t-

+ (H»PQHtXd-Ì7z(H»ò0HtXd.

Wenn 77 auf den Zustand |0> wirkt und von links mit <50

multipliziert ist (siehe (30)),

Htr PW'Ò 10> HtrP0Htr 10> ÔQ f ôHtrP Htr \0y SoHtrP0 Htr 10>

o0[HoT2]\0y 0,
wird also

Ôq V2(Eq) |0> ô0{Hc^H8 + HtrPom + H^P0Htr+^P0Br-
-Ì7tHtrò0Htr}\0} Ô0{HC-HS + HtrP0Htr-Ì7tHtro0Htr}\Oy (31)

Die Glieder HtrPHtr kombinieren sich so, dass die Energieschale
völlig herausgefallen ist. Das Glied — in wird durch die anderen
Glieder in U-\ <50 TJ1 usw. kompensiert (ausser im Produkt ~ ti2)
Ebenso werden sich die Glieder Hc — fls so ergänzen, dass die
Energieschale herausfällt.

In ähnlicher Weise sind TJ\ ô0 77t und TJ\ ô0 773 zu berechnen. Es
zeigt sich, dass in fast allen Gliedern die Energieschale herausfällt9).
Ks kommt nur in 773 vor, und dies ist mit ô0 multipliziert, was
exakte Energieerhaltung bedeutet. Das Schlussresultat ist (nach
einiger Rechnung) :

Y^ Be rtQI0(E'0)

<0| {(fl"P0 H*+HC- H.) ô0(HtrPq H» + Hc -Hs)ni-
-n2 Wo«H*d0 (Htrd0Htr)nd+ [fl% H»Pq(H»P0H»+ Hc-H.)* J (31

+ Ht'ô0(Hc-H-HL)PH»-±H»ô0(H»P*Ht')dH»-

-\fl!M0fl"(fl"-po2fl*Od + konj. compi.]} |0>

Die Energieschale kommt nur noch in den „Renormalisations-
termen" mit dem Faktor \ und den „quadratischen Nennern" P2

vor. Im ersten Renormalisationsterm, wo (HtrP02Htr)d in der Mitte
steht, bezieht sich dieser Faktor offenbar auf den Grundzustand,
da links der Faktor Htrô0 steht, der bei exakter Energieerhaltung
vom Ausgangsniveau nur zum Grundzustand führen kann. Da
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e (G) 0, so kann man hier auch die —Restriktion weglassen.
Dagegen ist diese Restriktion im zweiten Renormalisationsterm nötig,
da sonst divergente Beiträge entstehen würden. Der Faktor
(HtrPQ2Htr)d bezieht sich hier auf das angeregte Niveau 0 und der
Faktor Htr rechts kann zum Grundniveau führen. Ohne die ~-
Restriktion würde dann P02 quadratisch divergieren. Es ist also zu
erwarten, dass auch BePi0i0 £-abhängige Beiträge hat. Dies werden
wir in III auch finden. Man sieht aber auch schon aus der Struktur
dieses Gliedes, dass die £-abhängigen Beiträge für e fa co
verschwinden, ähnlich wie das für Jm 11(E) der Fall war. Wir werden
in III BerA explizit auf Konvergenz und Eindeutigkeit hin
untersuchen und die Grössenordnung abschätzen.

§ 5. Bestimmung von JmJ^E) und Rer2 (E).

Wir untersuchen zum Schluss die E-Abhängigkeit von J1 in
zweiter Näherung. Es genügt völlig, dies in nichtrelativistischer
Näherung zu tun. Wir bemerken zuerst, dass nur transversale
Photonen zu JmP2 beitragen (28). Daraus erhellt sofort, dass es im
allgemeinen nicht möglich ist, r(E) in 4-dimensionaler Weise zu
berechnen, ohne die Lorentz-Bedingung explizit zu berücksichtigen.

Dies ist nur an der Stelle E E0 möglich10).
Da in (28) nur HJr auf der Energieschale vorkommt, so tragen

nur Übergänge von 0 in den Grundzustand G mit Emission von
k bei, wobei k mit der Resonanzfrequenz E'0 — Eq nahezu (d.h.
innerhalb e) übereinstimmt. Das Matrixelement Htr für diesen

Übergang ist proportional zu 1/j/fc, also Htr Bj\/k. Nennen wir
die Resonanzfrequenz E'0 — Eg fc0, so ist

2n\B\2okJk0=Ber2Q,0(E'Q)=y

die gewöhnliche Linienbreite zweiter Ordnung. ok ist die
Dichtefunktion für Lichtquanten der Frequenz k. (28) ergibt dann

-\jmr2QlQ(E) \B\2f^dk{

E — Eq -.

—-,—— log2ji

¦E'a-k

E'-E+ e

En-E-e (32)

Dies verschwindet, wie es sein muss, für E — E'Q. Jmr2(E)
verschwindet auch in den beiden Grenzfällen e -> 0 und £ fa oo. Für
den Grundzustand ist also Jm r2GI0 0. Setzen wir E — EA
EG + k (Linienform für t fa oo), so stellt (32) eine von e abhängige



Theorie der Dämpfungsphänomene für nichtstationäre Prozesse. 597

Modifikation der Linienform dar (ohne das Maximum zu
verschieben). Betrachten wir Werte von k, die in der Nähe des
Maximums fc0 E'q — Eq liegen, so können wir nach (fe0 — k)fe entwickeln
und erhalten

\ Jm r20l0 (EG+ fc) =-£-*- iszi (33)

Dies ist proportional zuk0 — k EA — Eq. Setzt man dies in (26)
ein, so sieht man, dass (33) in dieser Näherung als Korrektion zur
Linienfrmte aufgefasst werden kann. In dem idealisierten Grenzfall
einer wirklich kontinuierlichen Anregung (die sich bis ins Unendliche

erstreckt) geht £ fa oo und die Korrektion Jm r2(E) -> 0.

Wir werden in der folgenden Arbeit III sehen, dass die Korrektion
vierter Näherung aus zwei Teilen besteht, von denen der erste von
£ unabhängig ist (Grössenordnung y/1373 für Wasserstoff), der
zweite, ähnlich wie (33), proportional zu 1/e ist. (Grössenordnung
y2/e). In dem idealen Grenzfall kontinuierlicher Anregung sind also
der £-unabhängige Teil von BeTi und ferner die E-Abhängigkeit
von Ber die einzigen Korrekturen.

Wir betrachten schliesslich noch die E-Abhängigkeit von BeP2.
Wir erhalten aus (28')

Ber2Ql0(E) =2nH0'Aö(E-Eß-k) fl% 2n\B\2^
EQ+k=Ek

r^fa K K-e'q (34)

wo wieder y Ber2(E'0). Für E EA EG + k heisst das, dass

y mit dem Faktor fc/fc0 zu multiplizieren ist. Die Abweichung von y
ist also (wenn k0 — k ~ y) von der Grössenordnung y2jk0. Wenn
£ <p. fc0, wie ursprünglich angenommen war, dann ist die Korrektion

von JmT2(E) viel grösser. Wenn wir in (26) den Zähler durch
die erste Näherung IPr ersetzen und den Grenzfall e -> oo betrachten,

so wird die Wahrscheinlichkeitsverteilung der emittierten
Lichtquanten

w (k)dk -2— -. r-.2n k0 (k0-k)2 + y2k2l4:kl

Die zu HL zusätzliche Verschiebung des Maximums, die von der
fc-Abhängigkeit von BeT2 und auch von V(EA) herrührt, ist

^femax -r2/8fe0.
Für das 2P-Niveau von Wasserstoff ist y 6-3xl08 sec-1 100
Meg. c. Für den Radiofrequenz-Übergang 2P3/2 fa 2S1/2 (2S ist
stark metastabil und unsere Betrachtungen können auch hier an-
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gewandt werden), ist fc0 10* Meg. c. und /lfcmax — 10-3 Meg. c.
Dies ist noch rund lOOOmal kleiner als die gegenwärtige
Messgenauigkeit der Linienverschiebung (ca. 1 Meg. c). Natürlich müss-
ten auch erst die höheren Näherungen von HL ~ e4 usw.) bestimmt
werden, bevor diese Verschiebung in Betracht gezogen wird.

BeP± wird in der folgenden Arbeit III abgeschätzt werden.

Wir wünschen, Herrn Prof. W. Heitler für das grosse Interesse,
das er dieser Arbeit entgegengebracht hat, und für die vielen
Ratschläge herzlich zu danken.
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