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Allgemeine Theorie der Ddmpfungsphinomene
fiir nichtstationédre Prozesse.

II. Abseparierung der virtuellen Zustinde.
Korrektionen zweiter Ordnung

von E. Arnous*) und K. Bleuler
(Seminar fiir theoretische Physik, Universitat Ziirich).
(15.V. 52),

Abstract. In continuation of a previous paper (I) the radiative corrections to the
form and breadth of an emission line are treated. General expressions for these
"corrections are obtained with the help of a canonical transformation which elimi-
nates the virtual processes. This makes essentially use of a ““finite energy shell”
the extension of which is interpreted as the extension of the exciting spectrum.
Some of the corrections depend explicitly on the excitation conditions. It is pro-
ved that, to a very great accuracy, the displacement of the line maximum is given
by the level shifts (~ self energies) as usually calculated (independent of the exci-
tation conditions). The corrections to the classical line shape are worked out expli-
citly, as far as the e2-effects are concerned (§ 5). The e*-corrections are worked out
in the subsequent paper 11I.

Einleitung.

In emner kiirzlich erschienenen Arbeit des gleichen Titels!) (im
folgenden als I zitiert) wurde eine allgemeine Liésungstheorie der
quantenelektrodynamischen Wellengleichung fiir gebundene Zu-
stdnde entwickelt, die geeignet ist, das Problem der Linienform-
und Breite der Spektrallinien einer exakten Liésung im Sinne der
Quantenelektrodynamik entgegenzufithren. Die Hauptresultate
sind in § 1 zusammengestellt. Es wurde gezeigt, dass die Wellen-
gleichung (1) mit vorgegebener, bei einer endlichen Zeit liegenden
Anfangsbedingung exakt gelost werden kann und auf eine Integral-
gleichung fiir die physikalisch interessierenden Grossen U.und I’
fiithrt. Diese Theorie st lediglich mit der Losung von (1) beschaftigt
und macht in keiner Weise davon Gebrauch, was die ,,ungestorte
Hamilton-Funktion Hy und die ,,Wechselwirkung H¢ 1st. Statt
das tibliche ungestorte H, das Elektronen und Photonen ohne
Wechselw1rkung beschreibt und H in (1) einzusetzen, kann man

*) Chargé de Recherches au Centre National de la Reoherche scientifique, Paris.
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ebensogut eine transformierte Hamilton-Funktion K, K in den all-
gemeinen Rahmen der Theorie I einsetzen, wobei z. B. K + K aus
H, + H durch eme kanonische Transformation hervorgeht. Dies
wird im folgenden tatséchlich geschehen.

Das Ziel der vorliegenden. Arbeit und der folgenden Arbeit 111
1st, die hoheren strahlungstheoretischen Naherungen zur Linien-
form zu bestimmen. Es wird sich erweisen, dass diese sehr klein
und mit der gegenwartigen Genauigkeit der Messungen kaum er-
fassbar sind?). Dagegen hat das Problem theoretisches Interesse:
Die grossen Fortschritte, die in den letzten Jahren in der Hand-
habung und Auswertung der Quanten-Elektrodynamik erzielt wur-
den, liegen fast ausschliesslich auf dem Gebiet der Stosse zwischen
freien Partikeln und Lichtquanten. Die einzige Ausnahme ist die
Berechnung der Niveauverschiebung gebundener Zustédnde. Um
Eindeutigkeit in den Resultaten zu erreichen, ist es bekanntlich
notwendig, explizit Gebrauch von der relativistischen Covarianz
des Resultates Gebrauch zu machen. Eine covariante Formulierung
der Quantenelektrodynamik fir gebundene Zusténde ist aber all-
gemein nur moglich (wie wir unten sehen werden), wenn man ex-
pliziten Gebrauch von der Lorentzbedingung (mit Ladungsglied!)
macht, was sehr kompliziert ist. Die Frage der eindeutigen Be-
rechenbarkeit, solcher Grossen wie der Linienbreite (in hoherer
Niaherung) ist also keineswegs von vornherein ganz trivial. Die
Situation wird weiter dadurch verscharft, dass man erstens auch
verlangen muss, Rechenschaft iiber den zeitlichen Ablauf des
Emissionsvorgangs zu erhaltenr (denn dieser 1st durchaus messbar),
und zweitens dadurch, dass die hoheren Naherungen zur ILinien-
form explizit von den Anregungsbedingungen abhéngen (wie wir
sehen werden). Beides kann kaum in covarianter Weise formuliert
werden. Wir werden daher 1im folgenden mit der Coulombeichung
operieren, d. h. mit derjenigen Version der Theorie, in der die longi-
tudinalen und skalaren Photonen eliminiert und durch die Cou-
lomb-Wechselwirkung ersetzt sind.

Bevor wir den Formalismus I zur Berechnung der hoheren Néhe-
rungen verwenden kdnnen, muss erst noch das folgende, prinzipielle
Problem gelést werden: Wie bekannt, stellt ein freies, ungestortes
Elektron keinen stationdren Zustand im Sinne der Quanten-
elektrodynamik dar. Das Teilchen ist stets von virtuellen Zustén-
den begleitet (mit Photonen und Paaren), die ein Ausdruck fiir das
das Teilchen begleitende Nahefeld sind. Der wahre Zustand des
Teilchens geht aus dem ungestorten durch die Bloch-Nordsieck-
Transformation hervor. Bei Anwesenheit mehrerer Teilchen ist ein
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solcher transformierter Zustand immer noch stationér, solange nur
endliche Zeitintervalle betrachtet werden. Die zeitliche Anderung
des Zustandsvektors ist dann nur durch die tatsachlich stattfinden-
den Stossprozesse bedingt, die (im Grenzfall unendlich grossen
Volumens) eine unendlich lange Zeit brauchen. Die wahren Uber-
génge konnen streng von den virtuellen separiert werden. Dies ge-
schieht am besten im Energieraum, wo die wahren Ubergénge unter
strenger Erhaltung der Energie (in der man die Selbstenergie, d. h.
die Massenkorrektion, einschliessen soll) statt, wihrend virtuelle
Zustdnde solche mit verschiedener Energie sind. Die ,,Energie-
schale*, auf der allein die wahren Ubergiinge stattfinden, kann un-
endlich diinn angenommen werden. |

Dies ist bei gebundenen Zustéinden anders. Die Lebensdauer eines
angeregten Atomzustands ist endlich. Es kann folglich keine
Transformation geben, die einen angeregten Atomzustand streng
stationdr macht. Im Energieraum driickt sich das dadurch aus, dass
eine endliche Linienbreite existiert. Ubergéinge finden nur mit
niherungsweiser Energieerhaltung statt, im Prinzip auch zwischen
Zustanden mit stark verschiedener Energie. Eine eindeutige Unter-
scheidung zwischen virtuellen Zustinden und Zustéinde, in die
wahre Ubergiéinge stattfinden konnen, ldsst sich also nicht durch-
fithren. Eine Ausnahme bildet nur der Grundzustand, der scharf
15t, und also im Sinne der Quantenelektrodynamik streng definiert
werden kann. Die Mehrdeutigkeit in der Definition eines angereg-
ten Atomzustands muss offenbar darauf zuriickzufithren sein, dass
dieser Zustand i Wirklichkeit von den Anrequngsbedingungen ab-
hangt. Schon in erster Niherung hingt ja die Linienform von der
Anregung ab. Wenn man von der natiirlichen Linienform spricht
(d. h. der klassischen Linienform, die auch in der N#herung der
Weisskopf-Wignerschen-Theorie erhalten wurde), so ist damit An-
regung durch ein kontinuierliches Spektrum gemeint. Wenn sich
dieses etwa iiber ein Frequenzintervall k... k,, wobel ky — I, gross
gegen die Linienbreite ist, erstreckt, so ist die natiirliche Linie
jedenfalls an den Stellen k; und k, abgeschnitten. Ein anregendes
Spektrum, das sich ins Unendliche erstreckt, kann natiirlich nicht
existieren. Es ist deshalb auch durchaus zu erwarten, dass die vir-
tuellen Zustande, die dem angeregten Atomzustand beigemischt
sind, bis zu einem gewissen Grade von der Art der Anregung ab-
hingen werden. Eine vollstdndige Losung des Problems der Linien-
breite erfordert also eine Behandlung der Lichtemission im Zu-
sammenhang mit der Anregung, also des ganzen Prozesses der Re-
sonanzfluoreszenz. Dieses kompliziertere Programm ist hier noch
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nicht durchgefiihrt. Man kann néamlich, statt die Anregung explizit
zu berticksichtigen, einen ,,angeregten Atomzustand™ durch eine
verallgemeinerte Bloch-Nordsieck-Transformation definieren und
dabel eine gewisse, die verschiedenen Anregungsbedingungen wie-
derspiegelnde Willkiir walten lassen. Wir werden die folgende
Methode verwenden: '

Wir ordnen jedem angeregten Atomzustand, der die Niveaubreite
y haben moge, eine endliche Energieschale der Dicke 2 ¢ zu, wobei
wir € >y, aber klein gegen die Niveauabstinde wihlen. Zustéinde
ausserhalb dieser Energieschale sind virtuelle Zusténde, die durch
die kanonische Transformation wegtransformiert werden, so dass
neue Atomzustinde entstehen. Diese sind dann stationér gemacht,
soweit es moglich ist: Wahre Ubergéinge finden nur noch auf
der Energieschale statt. Diese umfassen den grossten Teil der na-
tiirlichen Linle. Letztere ist nur an den Grenzen -+ ¢ zu beiden
Seiten des Maximums abgeschnitten. Die willkiirliche Grosse ¢
kann also als Mass fiir die Ausdehnung des anregenden Spektrums
betrachtet werden. Es wird sich zeigen, dass ein Teil der Korrek-
turen zur Linienform- und Breite von ¢ unabhéngig sind. Die von
¢ abhangigen Korrekturen verschwinden im Grenzfall ¢ - oo, und
man darf diesen Fall wohl als idealisierten Grenzfall wirklich kon-
tinuierlicher Anregung betrachten.

Vom Standpunkt der Quanten-Elektrodynamik wird sich zeigen,
dass, trotz der oben erwahnten Schwierigkeiten einer covarianten
Formulierung, alle Korrekturen eindeutig und endlich sind, wenn
man von der tblichen Massen- und Ladungs-Renormalisation Ge-
brauch macht.

§ 1. Die wichtigsten Resultate der Arbeit I.

Die Arbeit I kann kurz folgendermassen zusammengefasst wer-
den: Es handelt sich um eine Losungstheorie der Schrodinger-
Gleichung in Wechselwirkungsdarstellung:

.08 . .
i 250 _K@)S@), K(t)=etfKe 5 (1)

mit der Anfangsbedingung, giiltig zu einer Anfangszeit t,,
| S (t) =1 @)

Hierbei 1st K, eine ,,ungestorte Emergie”, K eine ,,Wechselwir-
kung®. In der Losung von (1) und (2) spielen die speziellen Eigen-
schaften von K, und K vorderhand keine Rolle. Tatséchlich wird
in (1) eine transformierte Hamilton-Funktion eingesetzt werden.
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~ In der Lésung von (1), (2) kommt die singulire Funktion

£(E—K,) -—z/dte”(EK o —in 8(E—Ky) =

- 0
——2mid, (E—K,) (3)

vor. P bezeichnet den Hauptwert. Die exakte Losung von (1), mit
der Anfangsbedingurg (2), ist

+ 00
S(tty) =5 [ AE e E-K) (1 1 £(E —K,) U (E)x

X (E —K,+ _;_ I (E))—leito(E—Ku) (4)

Hier und im folgenden ist das Vorkommen des Operators K, im
Argument von &, é usw. so zu verstehen, dass in einer Darstellung,
wo K, diagonal ist, derjenige Eigenwert von K, einzusetzen ist, der
der Position des Faktors & entspricht

(f(E _KO) U)nmzs(E _En) Unm etc

U ist (in der Darstellung K, diagonal) ein Operator mit nur nicht
diagonalen Elementen, I'ist rein diagonal. U befriedigt die Integral-
gleichung

U(E) = K+ (KEU),,, §=8E—K,) (5)
und I" ist bestimmt durch
1
EF(E)ZKd+(K5U)d (6)
(nd = nicht diagonal, d = diagonal)

(4) kann als geeignete Zusammenfassung gewisser Terme in der
iblichen Entwicklung von S

t
S(t, =1—1 [/ K({t")dt d dt" K 4
(¢, t0) %E.,/ (&) dt + (— /tft ) K (")

aufgefasst werden, doch ist diese Entwicklung fiir Probleme mit
endlicher Linienbreite ungeeignet.

Wenn t > oo, was der am meisten interessierende Fall ist, ver-
einfacht sich (4) mit Hilfe von

—— lim e~ % & (1) = d(x)

2“ t— oo
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Das Matrixelement von S fiir den Anfangszustand 0, Endzustand
A, wird
il il

<4 |S (o0, td)l 0> = i
EA_E0+’§F0/0(EA)

(7)

Damit wird die Wahrscheinlichkeitsverteilung der Endzustéinde 4

Wy o= |{A| S (o0, tp)] 03]* =
<4 |U(E) 02

(8)

1 2 1
[EA—EO ﬂ—z—JmFo/O(EA)] + Z[Refo[u(EA)]z

Es se1 z. B. O der erste angeregte Atomzustand, 4 der Grundzustand
plus emittierten Lichtquant. Da die Zustédnde 4 zum kontinuierli-
chen Spektrum gehoéren, so sieht man, dass selbst nach volligem
Ablauf des Emissionsvorgangs (f - oo) U und I" an jeder Stelle E
gebraucht werden. Die Naherungslosung von WEIisskoPF-WIGNER
erhalt man, indem man (a) U durch die erste Naherung, d. h. K
(in diesem Fall wird K = H) ersetzt, ebenso I, und (b) I" durch
den Wert an der Stelle B, = E, (exakte Energieerhaltung) ersetzt.
In einer exakten Theorie der Linienform treten also zwei Typen
von Korrekturen auf: (a) die eigentlichen strahlungstheoretischen
Korrektionen, die auf den hoheren Naherungen in der Entwick-
lung nach e? von U und I" beruhen, und (b) Korrekturen, die dar-
auf beruhen, dass U, I' von E oder E, , d. h. der Energie des emit-
tierten Lichtquants, abhédngen. Die letzteren haben kein Analogon
in der Theorie freier Partikel, wo E, = E, (exakt). Es sel betont,
dass auch der zeitliche Ablauf nach (4) vollig erfasst ist, wenn U,
I' an jeder Stelle E bekannt sind. Zwischen U und I besteht noch
die Beziehung

—— ReI'(E) = (UN(E) 6(E—K,) U(E)); (9)

Alle Beziehungen (1)—(9) sind exakt. Wenn E = I, so ist die rechte
Seite von (9) die totale Ubergangswahrscheinlichkeit, doch hat die-
ser Begriff keine exakte Giiltigkeit.

Im allgemeinen ist es nicht im Sinne dieser Theorie, U aus (5)
durch Entwicklung zu berechnen. Fiir Probleme in denen zwel
oder mehr Quantenspriinge vorkommen, héngt U empfindlich von
E ab und hat selbst einen oder mehrere Resonanznenner vom
gleichen T'yp, wie er schon in (1) in jedem Fall auftritt®). Wir wer-
den uns aber im folgenden auf den einfachen Fall eines einzelnen
Ubergangs vom ersten angeregten Zustand in den Grundzustand
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beschrénken. In erster Naherung sind dann U und I" sehr langsam
verénderliche Funktionen von E. Auch in héherer Naherung treten,
wie sich im Verlauf dieser Arbeit ergeben wird, keinerlei neue Re-
sonanzen auf. U kann dann ohne Gefahr aus (5) entwickelt werden:

U=Kyt (KEK,p) g+ (KEEEK,Dudua - (10)

i T={E+ KK+ KE(KER, )y t-)y (10

§ 2. Wahl der Wechselwirkung, Elimination der virtuellen Zustiinde.

Die quantenelektrodynamische Hamilton-Funktion besteht aus
der ungestiorten Energie H, und der Wechselwirkung H. Fiir Stosse
freier Partikel kann H in covarianter Form geschrieben werden,
so dass alle vier Typen von Photonen in symmetrischer Weise vor-
kommen. Die Lorentz-Bedingung kann dann ignoriert werden, vor-
ausgesetzt, dass nur Ubergiinge zwischen Zustinden ohne longitu-
dinale und skalare Photonen berechnet werden4). Wir werden unten
explizit sehen, dass dieses Verfahren fiir gebundene Zusténde wvm
allgemeinen falsch ist. Der Grund ist der, dass die Lorentz-Bedin-
gung (mit Ladungsglied!) explizit berticksichtigt werden muss. Wir
werden deshalb mit der ,,Coulombeichung** der Potentiale operie-
ren. Die Wechselwirkung ist dann H” + H,, wo H” die Wechsel-
wirkung mit dem transversalen Feld, H, die Coulombwechsel-
wirkung darstellt. Wie wir ferner sehen werden (siehe unten und
die folgende Arbeit III), gibt es einen Spezialfall, wo auch bei ge-
bundenen Zusténden die gesamte Wechselwirkung H” + H, in 4-
dimensionaler Weise zusammengefasst werden kann, wie wenn die
Lorentz-Bedingung ohne Belang wére (abgesehen von einem end-
lichen, von ¢ abhangigen Zusatz; siehe III). Dies ist der Fall fir
E = E,, aber an keiner anderen Stelle K + E,. Derselbe Fall trat
schon be1l der Berechnung der Linienverschiebung durch FrENcH
und WEIsskorr®) ein. Der tiefere Grund, warum das gerade fir
E = K, der Fall ist, ist uns aber unbekannt.

Wir wollen auch von Anfang an schon die Massenkorrektion in
die Wechselwirkung einbeziehen. Es sei H, der Massenoperator, so
dass Hy + H, formal dieselben Eigenzusténde (auch fiir gebundene
Partikel) hat wie Hy, nur mit der korrigierten, also experimentellen
Masse. Wir werden in Zukunft wieder H, fiir Hy, + H, schreiben.
Die Wechselwirkung enthélt dann ein Zusatzglied — H,, d. h.

H=H"+H,—H, (11)

*
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H, wurde explizit von FrENcH und WEISSKOPF bestimmt und kann in
4-dimensionaler Weise (in symmetrisierter Form) geschrieben werden.

— 5 [ArEE M) v®], ¥ v*y,
M (p) =§;; [EriA(p. B+ 4+ (p k)

A(p.R) = X {a, H* (p— k)« ((@p) + fm— B (p—R) — K=" (12)

u=1

+a,H (p—R)a,((@p)+fm+E(p—Fk)+k'}
o, =1y,¥,, P=—1grad, E(p) = (p2+m2}, p=y,

H*(p) = (125507
Wenn H, auf die Eigenfunktion eines freien Partikels y, mit Im-
puls p wirkt, so reduziert sich (12) auf den bekannten Operator der
Selbstenergie und liefert nach der Integration:

Hsippzémﬁﬂq)p

wo dm die invariante (divergente—) Massenkorrektion bedeutet. Das-
selbe 1st der Fall, wenn H, auf eine gebundene Eigenfunktion v, wirkt

H,po=0dmf y, (13)

wie man sofort sieht, wenn man v, nach freien Eigenfunktionen v,
entwickelt. In (13) hat dm denselben Wert wie fiir freie Partikel.
Dies muss natirlich verlangt werden, wenn H, eine universelle
Massenkorrektur beschreiben soll.

Eine entsprechende Ladungskorrektur muss auch noch vollzogen
werden, um Konvergenz zu erzielen, doch 1st es einfacher, diese in
einem spateren Stadium (siehe III) vorzunehmen.

Bevor wir den Formalismus von § 1 zur Berechnung der hoheren
Naherungen von I" beniitzen konnen, ist es notwendig, die Atom-
zustdnde neu zu definieren: In hoherer Naherung ist ein Atomzu-
stand von virtuellen Photonen usw. begleitet. Wenn wir Uber-
gange zwischen verschiedenen Atomzustanden betrachten, so han-
delt es sich sicher um Ubergiinge zwischen Zustinden mit Ein-
schluss dieser virtuellen Beimischungen. Die neudefinierten Atom-
zustdnde y’ entstehen aus den alten, ungestorten Zusténden durch
eine kanonische Transformation: » = Ty’. Dann transformiert
sich die Hamilton-Funktion

Ko+ K =T-1(Hy+ H"+H,—H)T (14)
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Wire die Lebensdauer der Atomzustdnde unendlich, die Niveau-
breite also null, so wiren T und K dadurch bestimmt, dass K (in
der Darstellung, wo K, diagonal ist) nur Matrixelemente zwischen
zwel Zusténden exakt gleicher Energie haben soll. Zwischen solchen
finden dann die realen, unendlich langsam verlaufenden Uber-
ginge statts).

Im Sinne des in der Einleitung Gesagten verallgemeinern wir
nun die kanonische Transformation 7T fiir endliche Niveaubreite in
folgender Weise, indem wir explizit Gebrauch von der Kleinheit
der Linienbreite machen: Wir ordnen zun#chst jedem Atomzustand
0 (in Abwesenheit von Lichtquanten) eine ,,Energieschale’* der end-
lichen Dicke ¢(0) zu. Dabei soll £(0) >, aber klein gegen die
Niveauabstinde sein. Jeder andere Zustand n (z. B. Atom im
Grundzustand plus emittiertes Lichtquant) liegt dann entweder
innerhalb oder ausserhalb der Energieschale £(0) von 0. Es ist
keineswegs angenommen, dass alle diese Energieschalen gleich sind.
Im Gegenteil, um den Grundzustand G wirklich stationir zu ma-
chen, wollen wir speziell festsetzen, dass fiir diesen Fall ¢ ver-
schwinden soll, ¢ (¢) = 0. Fir alle andern Paare von Zusténden n,
m ist es nur notig, festzusetzen, dass diese sich entweder auf oder
ausserhalb einer Energieschale befinden. Insbesondere sollen die
beiden Zustéinde auf der Energieschale liegen, wenn E, = E,,. Auf
diese Weise sind alle Paare von Zustéinden in zwei Klassen einge-
teilt. Zustandspaare auf und Zustandspaare ausserhalb einer
Energieschale?). Es wird sich erweisen, dass die Grosse dieser
Energieschalen vollstdndig aus den physikalisch interessierenden
Grossen herausfallt, mit Ausnahme der beiden Energieschalen
¢(0) und ¢ (G), fir die Zustdnde 0 und G, zwischen denen der be-
trachtete Ubergang liegt. Dies ist zu erwarten, denn ein physikali-
scher Effekt kann nicht davon abhidngen, wie man zuerst eine
Iamilton-Funktion transformiert, wohl aber héingt der Ubergang
0 > G davon ab, wie die Zustdnde 0 und G definiert sind, und dies
hingt von £(0) und (@) ab.

Em beliebiger Operator ¢) kann dann in zwei Teile ) und ) zer-
legt werden, wobei (in der Darstellung, wo K, diagonal ist) Q und
@ nur Matrixelemente haben sollen fiir je zwei Zusténde, die auf,
bzw. ausserhalb ihrer Energieschale liegen.

Q=0+0

Wir verlangen nun von der Transformation (14), dass K nur
Elemente auf der Energieschale haben soll: K = K, K = 0. Auf
diese Weise werden wir erreichen, dass ein angeregter r Atomzustand
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relativ stabil wird und seine zeitliche Anderung nur durch die realen
Ubergénge bedingt wird. Diese kénnen nur auf der Energieschale
stattfinden; die Linie ist also zu beiden Seiten an den Stellen + &
abgeschnitten. Die Willkiir, die in der Wahl von ¢ liegt, ist offen-
bar der Ausdruck fiir die Tatsache, dass der angeregte Atomzu-
stand von der Anregung abhéngt.

Wir entwickeln 7' nach Potenzen von e

T=1+T+Tp+---, T'=1-T,—T,+T?+-.-- (15)
T —0, T,+T}- T} (15
und beachten, dass H” von erster, H, und H, von zweiter Ordnung

sind. Ebenso K = K; + K, + K3 +---. Wir erhalten bis zur dritten
Ordnung:

K,— H,

Kl = H"+ [Ho Tl]

K, = HtTTl_T1K1+[H0T2]+Hc_Hs
Ky=H"T,—T1K,—T, K, + (Hc”_Hs) T, +[HoTs]

(16)

Wir spalten dann jede dieser Gleichungen in die —- und ~-Bestand-
teile auf. Fiir die letzteren verschwindet die linke Seite. Da[H 1] =
—_—

[H,T;], so erhalten wir zunéchst sukzessive Bestimmungsgleichun-
gen fir T'; in jeder Ordnung. Diese sind von der Form

[Ho Tz] = “‘@ (17)

Diese Gleichung kann am besten in Form eines Integrals gelost

werden. Da [I\H,] = —[T;, E—H,) und (E —Hy) o7 =1,

(K —H ) 6(E — Hy) = 0, g0 ist die Losung von (17)

Q6(E—Hy) = dea(E HO)QE_PT (18)

In Energledarstellung 1st die Integration sofort auszufithren, und man
erhilt die gewohnlichen Formeln der elementaren Storungstheorie.

Die Teile von (16), die auf der Energieschale liegen, bestimmen
K sukzessive. Unbestimmt bleibt zun#chst noch T;. Wir konnen
itber T; verfiigen, vorausgesetzt, dass die Unitarititsbedingungen
(15") erfiillt sind. Wir setzen also einfach

T, =0, T,=1Tj=5 (07 (19)
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Damit ist auch T bestimmt und folglich K. Zu beachten ist, dass
[HyT,]=+ 0, wenn die Energieschale endlich ist. Dagegen werden
wir K, nur fiir solche Zustandspaare brauchen, die genau die
gleiche Energie haben. Dann ist [HyT5] = 0. Fir die Doppelinte-
grale, die bei der Bestimmung von T, erstmalig auftreten, sei noch
bemerkt, dass

fdedE'a(E—Ho)é( ' —Hy) Q (B, E) =

- [AE 8(E—Hy)Q(E, E) (20)
Man erhélt ohne Schwierigkeit:
P :fpgtfa (PET’%, 5= 0(E—Hy))
]

(21)

N/

2—"A/P(,chﬁ‘Hs)a+‘/PH”P1;_‘I&6_"./P6§”PEMP

P

~

1 r r r
2:—2]13512 SH" P

Man verifiziert leicht, dass Ty + T7 = (T;)2?, wie es sein muss.
e o P——
Ferner:

—

K0:H07 KIZI_-_IW
7 KZ :EG_ES_F[HO_ZE] +jﬂHtTPHtré— [Pﬂtf 6}_1“’.

Ky= f H" P(H.—H, + H" PH") 5+

r—

+ [ 8(H" PH"+ H,—H\) PH"

+ ] OH" P (H"PH"+H,—H,)+ f (H,— H) PH" 56—

—/H"’(SI:I”P.P_I”P—ijIj”qﬁH”P_H”—

_ /QPHWPEI” 5ﬂtr+f5ﬂtTP[HoIz]nd“‘

*;fH”Pl:I‘TéI:I”P-|—~;_/4P1:-I”6{—1”PI_I” .

Alle Doppelintegrale reduzieren sich allgemein auf einfache, mit
Hilfe von (20), mit Ausnahme von

17 r P 7 P T nis )
fdedE 6(E—Ho) H 5~ HY 5 HY S (B'— H).
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Da aber K nur fiir exakte Energieerhaltung gebraucht wird, kann
dieses Integral auch

/“(3 Htr P H"P Htr

v

geschrieben werden (ein Faktor 0 ganz links hat dann denselben
Effekt wie ein 0 ganz rechts). Das Glied [HyT;] in K, ist wegge-
lassen. Der Kommutator [HyT,] in K, ist notwendig, damit K,
hermitisch ist.

§ 3. Darstellung: ,,Verschobene Niveaus*.

Bevor wir die obigen Resultate zur Berechnung der physikalisch
interessierenden Grossen benutzen, ist es angezeigt, eine Anderung
der Darstellung vorzunehmen. K, hat offenbar auch reine Diagonal-
elemente K,, (wihrend K;, = 0): |

Ky = (H,—H),+ [(H"PH"),5. (23)

Das letzte Glied von K, (22) und der Kommutator haben keine
Diagonalelemente, da (H" PH"), =0. Mit der Neudefinition
der Atomzusténde ist naturgemiss auch eine Energleverschiebung
verbunden. Wenn wir Uberginge zwischen verschiedenen Niveaus
betrachten, so sind damit selbstverstindlich Ubergiinge zwischen
den verschobenen Niveaus gemeint, und es ist sinnlos, zu sagen,
dass das Atom zur Zeit t; in einem unverschobenen angeregten Zu-
stand war. Wir werden daher unsere Darstellung so abéandern, dass
an Stelle der Eigenwerte von H, die verschobenen Energiewerte
auftreten. Hierbei ist aber eines zu beachten: Die Niveauverschie-
bung ist experimentell einzig und allein durch die Verschiebung
des Maximums der Limie definiert. Dieses ist aber nach (8) durch
JmI" bestimmt, und nicht allein (wie wir sofort sehen werden)
durch K, ;. Wenn Ej, Ej die Energien der verschobenen Niveaus
sind, so liegt nach (8) das Maximum der Linie dann bei E), = E
(E; = verschobene Energie des Grundzustands + Lichtquant),
- wenn JmI (Eg) =0 (wenn man die schwache E-Abhéngigkeit von
Rel” vernachléassigt). Wir zeigen, dass dies die Niveauverschiebung
wie folgt bestimmt8):

H,= (H,—H),+ [(HPH,3 28

(24) 1st nichts anderes als die Selbstenergie, wie sie von FRENCH
und WEIsskoprr4) berechnet wurde. H; unterscheidet sich von K,
durch das Fehlen von ~ in einem Faktor H. Wir indern somit
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unsere Darstellung folgendermassen: Statt H, betrachten wir
H; = H,+ H, als die ,,ungestorte Energie*’. Die Eigenwerte, F,,
sind die verschobenen Niveaus. Die Eigenfunktionen bleiben aber
unverdndert, da H diagonal ist. In der Wechselwirkung tritt dann
das Zusatzglied — H; auf, also

K'=K—H,. (25)

Alles frithere bleibt unverindert, wenn H; durch H, und K durch
K’ ersetzt wird. Insbesondere treten in (8) die verschobenen Ener-

gien auf:
CA| U (E7) 052
on — 7 E< } ( A)\ >‘ . (26)

s I v 2 1 7
[EA—EO — 5 Im Ty, (EA)] o [Be Iy (B2

(genau genommen, miissten auch die Indizes 4 und 0 einen Strich
tragen). Auch die Energieschalen sind neu definiert, insbesondere
bezieht sich &(0’) auf die Nachbarschaft des verschobenen Ni-
veaus Ej. Um zu zeigen, dass die Linienverschiebung tatséchlich
durch (24) gegeben ist, berechnen wir [f,(F) mit (24) bis zur
zweiten Ordnung. Nach (25) und (23), (24) ist jetzt

K;d: sz_HLmj(HwP-HW‘S)d “/(HWPH”‘S):; -

~— [(H"PH"8),; @0

ferner nach (10") und (22)

1 ! s ’ 4 7 7
24 ['20/0 (B) =Kyg+ (K, §K)y =Ky + (H' Sﬂt )a =

~

= —im (H"8H"), + (H" PH"),— [ (H"P H"),9,

und nach Ausfithrung der Integration im letzten Glied explizit:

3 Im Lo (B) = {H" gy H —HY 5 HY) - (29)
5 Re g (B) = (H"S HY), (28')

Wir sehen, dass tatsichlich
Jm Ty (B) = 0. (29)

Wenn es erlaubt ist, Rel” als unabhingig von E; zu betrachten,

und wir werden sehen, dass dies in sehr guter Néherung der Fall

1st, so folgt aus (26) und (29) streng, dass das Linienmaximum jetzt
38
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bei E; = E; liegt. Hiermit ist der Beweis dafiir erbracht (was
bisher nur sehr plausibel war), dass die iibliche Berechnung der Nt-
veauverschiebung durch (24) tatsachlich die Verschiebung des Linien-
maximums liefert. Ganz exakt 1st das nicht der Fall, da Rel" von
Ej, wenn auch nur sehr schwach, abhingt (siehe § 5). Die Ver-
schiebung Hj ist unabhingig von ¢, also unabhingig von den An-
requngsbedingungen (vorausgesetzt natiirlich, dass ¢ > y).

Fir den Grundzustand G (ohne Lichtquanten) verschwindet
JmI" an jeder Stelle E, da die Energieschale unendlich klein ist
und H" also nur ein Photon unendlich kleiner Energie emittieren
konnte. Trotz des Auftretens von I, in (26) ist die Formel also
symmetrisch in Anfangs- und Endzustand (auch Rely, = 0).

Wir werden die E-Abhingigkeit von Rel” und JmI in § 5 ge-
nauer untersuchen.

§ 4. Strahlungstheoretische Korrektionen zu Rel.

Das Hauptziel dieser Untersuchungen ist die Berechnung der
strahlungstheoretischen Korrektionen zur Linienbreite, also Rel}.
Die explizite Berechnung erfolgt in der folgenden Arbeit III; hier
werden wir nur die Ausgangsformel ableiten und zeigen, dass sie
nur von der Grosse der Energieschale ¢(0) abhéangt. Wir werden in
§ 5 sehen, dass Rel sehr schwach von E abhingt. Dasselbe wird
sich fiir Rel), erweisen. Da Rel, sowieso eine kleine Korrektur dar-
stellt, werden wir uns darauf beschranken, Rel} nur an einer Stelle,
ndmlich £ = I zu berechnen. Die ohnehin sehr komplizierten ex-
pliziten Rechnungen werden dadurch sehr wesentlich vereinfacht.
Die Stelle E = E spielt in mehrfacher Hinsicht eine ausgezeichnete
Rolle.

Wenn wir U ebenfalls wie K entwickeln, U = U, + U, + Us,, s0
wird nach (9)

1 ¢ ’ &
5 Bell o0 (Ey) =<0] U8, U 0> =

und nach (10) (man bemerke, dass H;,,= 0 und K; = H" keine
Diagonalelemente hat) |

U, =K,
Uz(Ea) - Kz na T (Hy &g Ky) g
Us(E(’)) = Ks na T (K, & Kz b ((Kz_ H;)é, Kl)nd
+ (K1 & (K & K na)uas  So=E8(By— Hy) .

(30"
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Explizit 1st zunéchst
U2 (E;)) — EC_ I_Ig+ [HO »lé] - {/nHtTP gtra "E‘féHtTPI_ItT}nd—}—

+ (Htr'PO I_Itr)nd — 47 (Et’r 60 Etr)ml .

Wenn U auf den Zustand |0) wirkt und von links mit é, multi-
pliziert ist (siehe (30)),

/'Ht,. PH”(S 10> = H Pg I:Itr ]0> 59]‘(51:1”PE” !0> — 50 Ijtr P{] Etr |0>
S[HoB][0y =0,
wird also

8y Uy (Ey) 105 = 6o {H,— H,+ H" LH"+ H" F, H" + H" F, H" —
—im H" 8, H"}|0y = 8y{H,— H,+ H" B, H" —in H" 6, H"}|0>. (31)

Die Glieder H” P H kombinieren sich so, dass die Energieschale
vollig herausgefallen i1st. Das Glied — 1z wird durch die anderen
Glieder in UY 6, U, usw. kompensiert (ausser im Produkt ~ 7?).
Ebenso werden sich die Glieder H,— H, so erginzen, dass die
Energieschale herausfallt.

In dhnlicher Weise sind UY, 6, U, und UY 6, U; zu berechnen. Es
zeigt sich, dass in fast allen Gliedern die Energieschale herausfallt?®).
K3 kommt nur in Uz vor, und dies ist mit d, multipliziert, was
exakte Energieerhaltung bedeutet. Das Schlussresultat ist (nach
einiger Rechnung):

1 , )
KT Re I, (Ey) =
- <Ol {(Htr Y o B H,) 60 (HtrR) H"+H,— Hs)nd -
—TCZH”(SO Htrao (Hcrao H”)nd-l—[H”ao HMB)(HWR)H”—}_ Hc—Hs)mz | (31)
e Ht{f 60 (Hc . Hs . HL) P H — _% Htr 60 (Etr PO2 Et-r)d Htr .

—%H“’éo H'(H'" B? H"),+ konj. compl.]} |0 . ,
Die Energieschale kommt nur noch in den ,,Renormalisations-
termen‘ mit dem Faktor {4 und den ,,quadratischen Nennern* P?
vor. Im ersten Renormahsatlonsterm, wo (H"P:H'),; in der Mltte
steht, bezieht sich dieser Faktor offenbar auf den Grundzustand,
da links der Faktor H" 4§, steht, der bei exakter Energieerhaltung
vom Ausgangsniveau nur zum Grundzustand fihren kann. Da
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¢(G) = 0, so kann man hier auch die ~-Restriktion weglassen. Da-
gegen ist diese Restriktion im zweiten Renormalisationsterm notig,
da sonst divergente Beitrige entstehen wiirden. Der Faktor
(H'*PZH'), bezieht sich hier auf das angeregte Niveau 0 und der
Faktor H" rechts kann zum Grundniveau fithren. Ohne die ~-
Restriktion wiirde dann B? quadratisch divergieren. Es ist also zu
erwarten, dass auch Relj, e-abhéngige Beitrage hat. Dies werden
wir in IIT auch finden. Man sieht aber auch schon aus der Struktur
dieses Gliedes, dass die e-abhingigen Beitrige fir ¢ > co ver-
schwinden, #hnlich wie das fir Jm I3(F) der Fall war. Wir werden
mn IIT Re I, explizit auf Konvergenz und Eindeutigkeit hin unter-
suchen und die Grossenordnung abschétzen.

§ 5. Bestimmung von JmI2(E) und ReIs (E).

Wir untersuchen zum Schluss die E-Abhéngigkeit von I' in
zweiter Naherung. Es gentigt vollig, dies in nichtrelativistischer
Naherung zu tun. Wir bemerken zuerst, dass nur transversale Pho-
tonen zu Jm [, beitragen (28). Daraus erhellt sofort, dass es im
allgemeinen nicht moglich ist, I'(F) in 4-dimensionaler Weise zu
berechnen, ohne die Lorentz-Bedingung explizit zu berticksichti-
gen. Dies ist nur an der Stelle £ = K, moglichl9).

Da in (28) nur H auf der Energieschale vorkommt, so tragen
nur Ubergéinge von 0 in den Grundzustand G mit Emission von
k bei, wobei k mit der Resonanzfrequenz E,— E; nahezu (d. h.
innerhalb &) ibereinstimmt. Das Matrixelement HY fiir diesen
Ubergang ist proportional zu 1/)k, also H = B/)/k. Nennen wir
die Resonanzfrequenz E; — E = k,, so 1st

27 |B|2 Qko/k{) = Rerzozo(E(’)) =y

die gewohnliche Linienbreite zweiter Ordnung. g, ist die Dichte-
funktion fir Lichtquanten der Frequenz k. (28) ergibt dann

kote
1 _1pi2 [ 2 P P\ _
5 Jm L (E) = | Bl /.Tdk(“ﬁ___ﬁf__;{_m)'
ko—e
_ 7 E-E; Eo’*E"'i 9
~ T2 Ry lOg‘EO’—Eﬁs (32)

Dies verschwindet, wie es sein muss, fir K = E;. JmI,(E) ver-
schwindet auch in den beiden Grenzfillen ¢ > 0 und & - co. Fiir
den Grundzustand ist also Jm [hgq = 0. Setzen wir E = E, =
E¢ + &k (Linienform fiir ¢ - co), so stellt (32) eine von ¢ abhéngige
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Modifikation der Linienform dar (ohne das Maximum zu ver-
schieben). Betrachten wir Werte von k, die in der Nahe des Maxi-
mums ky = E;— E/, liegen, so konnen wir nach (k,—k)/e entwickeln

und erhalten

1 p k ky,—k
5 IM Ly (Eg+ k) = —‘3}',:‘* =

0 &

(33)

Dies ist proportional zu ky, — k = E; — E;. Setzt man dies in (26)
eln, so sieht man, dass (33) in dieser Néaherung als Korrektion zur
Linienbreite aufgefasst werden kann. In dem 1dealisierten Grenzfall
einer wirklich kontinuierlichen Anregung (die sich bis ins Unend-
liche erstreckt) geht & > oo und die Korrektion JmIy(E) > 0.
Wir werden in der folgenden Arbeit 111 sehen, dass die Korrektion
vierter Naherung aus zwei Teilen besteht, von denen der erste von
e unabhénglg ist (Grossenordnung /1373 fir Wasserstoff), der
zweite, ahnlich wie (83), proportional zu 1/e ist. (Grossenordnung
v2/e). In dem 1dealen Grenzfall kontinuierlicher Anregung sind also
der e-unabhéngige Teil von Rel) und ferner die E-Abhangigkeit
von Rel' die einzigen Korrekturen.

Wir betrachten schliesslich noch die E-Abhéngigkeit von Re l.
Wir erhalten aus (28")

Re I (E) = 2aHy, 8(E — Eq—k) HY =22 | B[* S& e

5 o

wo wieder y = Rely(E;). Fir E = E; = E;, + k heisst das, dass
y mit dem Faktor k/k, zu multiplizieren ist. Die Abweichung von »
ist also (wenn kg —k ~ ) von der Grossenordnung y?%k,. Wenn
e < ky, wie urspriinglich angenommen war, dann ist die Korrek-
tion von Jm I4(E) viel grosser. Wenn wir in (26) den Zéhler durch
die erste Nédherung H" ersetzen und den Grenzfall & - oo betrach-
ten, so wird die Wahrscheinlichkeitsverteilung der emittierten
Lichtquanten

& dk
27 ko (ky—k)2+y2 k24 ko

Die zu Hj zus#tzliche Verschiebung des Maximums, die von der
k-Abhangigkeit von Re I, und auch von U(Ej) herriihrt, ist
Ak, .. =—v28Fk,.

Fur das 2P-Niveau von Wasserstoff ist y = 6-3x108 sec=* = 100
Meg. c. Fiir den Radiofrequenz-Ubergang 2Py, - 28, (25 ist
stark metastabil und unsere Betrachtungen kénnen auch hier an-
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gewandt werden), 1st k, = 104 Meg. c. und Ak, = 10-3 Meg. c.
Dies 1st noch rund 1000mal kleiner als die gegenwértige Mess-
genauigkeit der Linienverschiebung (ca. 1 Meg. ¢). Natiirlich miiss-
ten auch erst die hoheren Naherungen von Hy, ( ~ e* usw.) bestimmt
werden, bevor diese Verschiebung in Betracht gezogen wird.

Re I’y wird in der folgenden Arbeit III abgeschitzt werden.

Wir wiinschen, Herrn Prof. W. HerrLer fiir das grosse Interesse,
das er dieser Arbeit entgegengebracht hat, und fiir die vielen Rat-
schlage herzlich zu danken.
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