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Bemerkungen zur skalaren Paartheorie
von Gregor Wentzel
Institute for Nuclear Studies University of Chicago, Chicago, Ill. (U.S.A.)
(12. V. 52).

Die im Titel genannte Theorie hat neues Interesse auf sich gelenkt dadurch,
dass in den pseudoskalaren Yukawa-Theorien, durch Transformationen nach
Dysox!) oder Forpy2), Wechselwirkungsterme vom Paartheorie-Typus isoliert
werden konnen, derart, dass die (pseudo-) skalare Paartheorie als eine ,,nullte
Naherung* zur pseudoskalaren Yukawa-Theorie gelten kann®). Dieser Zusammen-
hang hat den Verfasser veranlasst, frithere Untersuchungen iiber die Sattigungs-
eigenschaften der Kernkrifte nach der Paartheorie?) weiterzufiihren. Die folgende
Analyse soll zeigen, dass die Sattigung nach dieser Theorie als Folge der Mehr-

kérperkrifte zustande kommt, wihrend die Austauschkrifte eine untergeordnete
Rolle spielen.

Die Theorie sei charakterisiert durch die Hamilton-Funktion:
—A
H:de[cD*?ﬂT @+ ¥ p* (u— A) p+ A D* B y*y] (1)

(@ = Nukleonteld, unrelativistisch, 4 Komponenten fiir Spm und
Ladung; v = Mesonfeld, komplex ; neutrale Mesonen bleiben ausser
Betracht. Die im Wechselwirkungsterm bendétigte ,,Abschneidung’
wird erst spater eingefithrt. # und ¢ =1 gesetzt.) Die friitheren
Untersuchungen?) betrafen die ,,statische Néherung:

O*P — YN0 (x—x,),

und zwar wurden die Nukleonen in einem oder in zwei Raum-
punkten fixiert angenommen, oder es wurde eine periodische Gitter-
anordnung vorausgesetzt. Fiir diese Probleme wurden strenge Lo-
sungen abgeleitet, und in der Abhingigkeit von den lokalen Be-
setzungszahlen N, bzw. von der Gitterkonstante (Nukleonendichte)
traten typische Sittigungserscheinungen zutage. '
Gegen die Anwendung der statischen Naherung auf dichte Kern-
materie kann folgender Einwand erhoben werden. Betrachten wir,
far den Augenblick, die Wechselwirkung als schwach, so beschreibt
sie Meson-Nukleon-Streuprozesse sowie die Erzeugung und Ver-
nichtung von Mesonpaaren bei Nukleon-Nukleon-Stdssen. Bei An-
wesenheit vieler Nukleonen sind viele dieser (virtuellen) Prozesse

*
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durch das Pauli-Prinzip verboten, weil die betreffenden Nukleon-
Endzustande besetzt sind. Dieses Verbot bleibt in der statischen
Naherung unberiicksichtigt, weil die Zustandsdnderung der Nukle-
onen ignoriert wird; mit anderen Worten, die zugelassenen Impuls-
dnderungen des Mesonfeldes werden nicht durch Gesamtimpulser-
haltung plus Pauli-Prinzip eingeschréankt. Freilich méchte man ver-
muten, dass die Einbeziehung des Pauli-Prinzips die Séttigungsten-
denzen nicht beeintrichtigt, sondern eher verstirkt, denndie betrach-
teten Krifte sind ja anziehend und kénnen durch das Wegfallen von
Termen nur verringert werden. Tatséchlich ist die Sachlage aber ver-
wickelter wegen der vorzunehmenden Selbstenergie-Subtraktionen.

Es mag daher angezeigt sein, die Frage nach dem Sattigungs-
charakter der Krifte wieder aufzunehmen, auf Grund eines Kern-
modells, das dem Pauli-Prinzip Rechnung tragt, ndmlich des
Fermiongas-Modells. Zur Vereinfachung soll aber noch ,,statisch*
gerechnet werden, insofern, als die Nukleon-Riickstosse energetisch
vernachldssigt werden: die kinetische Energie der Nukleonen, d. h.
der erste Term in H (1), gilt als vertauschbar mit den {ibrigen
Termen und wird als additive Konstante gefithrt:

3 Py
Hyn = N- 5 5
(N = Nukleonen-Gesamtzahl, p, = Radius der Fermikugel im Im-
pulsraum). Die Vernachlassigung der Nukleon-Riickstossenergien
bringt natiirlich eirien Fehler mit sich, der namentlich ins Gewicht
fallen kann, wenn hohe Meson-Impulse (> u) eine Rolle spielen,
doch wird die ,,Abschneidung® dieser Impulse dafiir sorgen, dass
keine qualitative Falschung der Resultate eintritt.

Die nachstliegende Methode zur Behandlung des mathematischen
Problems bestidnde darin, die in I berechneten Zwei- und Mehr-
korperpotentiale zu tibernehmen und den Erwartungswert der
Energie (einschliesslich Austauschenergie) fiir den Grundzustand
des Nukleongases auszurechnen. Es zeigt sich indessen, dass man
einen giinstigeren Ausgangspunkt fiir die folgende Diskussion ge-
winnt, indem man auf die Hamilton-Funktion (1) zuriickgeht und
beachtet, dass sie, nach Abzug von H,,, ein System linear ge-
koppelter Oszillatoren darstellt.

Wie in I se1

W zv—%zqfeifx, . =V—§-2pfe—ifr;
T T
ferner e 0
O* P = Qﬁgé‘fem[ (90:7 gt Pi’a) (2)
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Alle Operatoren g kommutieren untereinander und konnen daher
wie ¢-Zahlen behandelt werden. Die Hamilton-Funktion lautet nun:

HwHkinzgp:pt—'_Q(q)’ Q (9) :Zw?q; Qt‘i‘lgé’f—f'qg‘% (3)
- -

(wf = p? + 13), und das mathematische Problem reduziert sich auf
das Figenwertproblem der quadratischen Form ().

Wir diskutieren zunichst ein vereinfachtes Problem, das dadurch
entsteht, dass in der Doppelsumme in (3) alle Ausserdiagonalterme
(f = t') weggelassen werden. Die Eigenwerte der Matrix ¢ sind
dann

Q2= w2+ 2do,=wi+AN/V. (4)

Um die potentielle Energie U des Nukleonengases zu berechnen,
hat man (wie in I) die Anderung der Nullpunktsenergie des Meson-
feldes infolge adiabatischer Einschaltung der Kopplung 4 zu be-

rechnen:
2 (£2¢— wy), (5)

t

und hiervon ist noch die Selbstenergie der N isolierten Nukleonen,
d. h. N mal der Wert von (5) fiir ein einziges Nukleon, abzuziehen.
Im Limes V - oo, g, = const:

A 0q '
Uﬁ;’[]/wgugf%_za]. (6)

Ohne Abschneidung wiirde diese Summe logarithmisch divergieren.

Nach Abschneidung (|f| < 4) wird U (6) volum-proportional

(weil ) = V(2 #)~% mal f-Raumintegral), und U/N (= U/[Vp,) als
G

Funktion von g, zeigt dieselben Sattigungseigenschaften wie sie in

I fir die Energie eines Nukleon-Kristallgitters grosser Dichte dis-
kutiert wurden (vgl. I, p. 124/25). Insbesondere:

, U A1 1 ,

u}TmT:m?T £ ?f’ (7)

d. h. bel unendlicher Kompression der Kernmaterie wird gerade

die Selbstenergie der Nukleonen frei.
Im Falle schwacher Kopplung oder geringer Dichte (4 gy <<€ 1?)
kann man nach A entwickeln: '

A2 1
U=—tg 2 5t (8)
[
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Diesen Grenzfall kann man aber auch leicht fir das vollstdndige
Problem (3) behandeln, indem man die Ausserdiagonalterme
f + t' in einer zweiten Naherung beriicksichtigt:

Op— EQE—E
Q?:w?+290 122 Fe_f i

- O ge| % 1 oy Gwlei )
Qr4%+12wf+l[ ; ‘;’ |+ (9)

Hier 1st der letzte Term ein Operator, und in (5) 1st sein Erwartungs-
wert fiir den Grundzustand des Nukleongases einzusetzen. Sei
N(p, o) die Besetzungszahl des Nukleonzustandes p, o (p = Impuls,
o = 1-- 4 numeriert die Spin- und Ladungszustande), also

(Ui fp] < g
N{p, ) = {o fiir [p| > -

Auf Grund der Definition (2) wird dann der Erwartungswert

<o_; 087 =V—22N(p,a) [1—N(@p+1£ 0)]
p,o

(f + 0). Setzt man dies in (9) ein, und verwendet man statt ' die
neue Variable p" = p + ' — 1, so folgt:

2

B 1 5 1 -
A=ty J”l Bwf 2oy le]%; prhEE |
W > i (10)

Die Doppelsumme ist natiirlich durch ein sechsfaches Integral zu
ersetzen, und da die Terme ' = f in (9) fehlen, 1st bei der Integra-
tion iber Nullstellen des Nenners der Cauchysche Hauptwert zu
nehmen (||| — ||| > ¢ > 0).

- Wir bilden wiederum die Nullpunktsenergie-Anderung (5) und
subtrahieren die Selbstenergie der N Nukleonen. Bei dieser Sub-
traktion hebt sich der Term erster Ordnung in 4 wieder fort (wegen
0, = N/V), wihrend von g2 nur ein verschwindend kleiner Bruch-
teil (1/N) abgeht. Von der Doppelsumme in (10) ist eine Doppel-
summe mit dem gleichen Summanden abzuziehen, bei der aber die
Beschrankung |p’| > pp fortfillt, denn fiir ein isoliertes Nukleon
p, o sind ja alle ,,Endzustinde® p’, ¢’ = o durch das Pauli-Prinzip
gestattet. Nach der Subtraktion bleibt eine Doppelsumme iibrig,
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bei der sowohl p als p’ auf das Innere der Fermikugel beschrankt
sind :

_y-e . (11)
|p|<2; p+f -t
Ipl<p1,

Somit wird die potentielle Energie:

U=22)} {—— (12)
;

Wir haben S; fiir die Grenzfille £ =0 und |f| > pp berechnet;

beide Werte werden korrekt dargestellt durch die Interpolations-

formel
i Py 0?
CHEL I . =*§z—az 1, (18)
@2m)* pl+ 91 pp+ 9t

S¢ ist positiv, d. h. das korrigierte Potential (12) ist algebraisch
grosser als der Wert (8) oder (6), der aus der vereinfachten Theorie
folgte. Trotzdem bleibt U im ganzen negativ. Der Summand in
(12) ist ndmlich, nach (18), negativ definit fiir p, > 3/2 u, und die
f-Summe ist auch fiir kleinere p,-Werte negativ, wenn nur der
Abschneideradius im f-Raum gross genug gewahlt wird.

Vergleicht man mit den Ergebnissen der fritheren Arbeit I, so
zeigt sich, dass U (12) die Energie der Zweikorperkrafte ist, sofern
man diese nach A entwickelt und nur den fithrenden Term beibe-
hélt. Der Term mit S; ist die Austauschenergie. [Vgl. I, Abschn. 2,
speziell Gl. (10).]

Um den Charakter der Entwicklung nach 4 besser zu tiberblicken,
haben wir noch die 23-Korrekturen zu U berechnet. Zunichst liefert
die Ausgangsnéherung (6) den Term

' 1 1 ,
e (e X 4
£ W

der das Eintreten der Sattigung bei wachsender Dichte erkennen
liasst ; er rithrt offenbar von Dreikérperkriften her. Von den iibrigen
Termen lasst sich ein Ausdruck abspalten, der bis auf einen nega- -
tiven Faktor mit (12) iibereinstimmt (der also positiv ist, wenn die
Ziweikorperkrafte anziehend sind). Er stellt die A3-Korrektur zu
den Zweikérperpotentialen dar, die nach I eine reduzierte Kopp-
lungskonstante enthalten:

’ ,
e 92 e ZSf el A ‘
Uy=45 ) [_ — 5 +7{} y Ay = i Afin (15)

t
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hier ist 4 der durch I (11) quantitativ definierte Abschneide-
impuls®). Schliesslich kommt noch ein Dreikorperterm hinzu, der
gleichfalls positiv ist.

Uber die hoheren Naherungen kann man nun die folgenden allge-
meinen Feststellungen machen. Schreiben wir die gesamte poten-
tielle Energie als Summe der Beitrage der n-Korperkrafte

N
U=3'0,,
n=2

so wissen wir aus I, dass die A-Abhéngigkeit von U, durch den
Faktor A’y bestimmt ist. Ferner kénnen wir in U, die gewo6hnliche
(Nichtaustausch-) Energie abspalten, ndamlich

U2 = (&) (3 09" X 0 @D (n> 2). (16)

Der Beweis fiir diese Formel ergibt sich daraus, dass der A™Term
aus der Entwicklung des Ausdruckes (6) in Uj enthalten sein muss,
und zwar kann er nur aus dem ersten Term der Reihe

M= 1—mAAdnm+--")

hervorgehen. Fir n = 2, 3 und 4 haben wir die Formel (16) verifi-
ziert mittels der strengen Losungen nach I6). In

U=U+T" (17)
lasst sich nun U° = 3 U? aufsummieren:
S i
UO:;[VQ’?_”AAQO_“)E#_Q&;:‘} ‘ (18)

Die Bedingung 4, o, < u? garantiert die Konvergenz der n-Summe,
doch muss (18) unabhéngig hiervon giiltig sein. Als Funktion von
oo zeigt U° bzw. UYN die gewiinschte Sattigungstendenz; die
Sattigung setzt ein, wenn g, sich dem Werte

_ M el 4
&=, —H (fﬁm)

nihert (z. B. fir 4 =27 g und 1> p-1: g, = § 1. Ahnlich wie
in (7) kommt7?):
. Uo A1 1
]Im _,ZV__ = _—‘—;—? Kf . (19)
Qo— t

Was andererseits die Austauschenergie U’ anlangt, so sind schon
die Einzelterme n > 3 schwierig zu berechnen, und ihre Summie-



Bemerkungen zur skalaren Paartheorie. 575

rung in geschlossener Form scheint unmoglich. Man darf aber wohl
vermuten, dass U’ (als Ganzes) die Eigenschaften hat, die sich so-
wohl fiir Uj als fir Uj aus den obigen Rechnungen ergeben haben,
namlich, dass U’ positiv ist und bei zunehmender Dichte, im Ver-
gleich zu U immer bedeutungsloser wird [fiir » = 2, vgl. (15),
(18)]. Der Sattigungswert g, der Dichte mag hierdurch etwas
grosser werden, aber es ist kaum anzunehmen, dass die Austausch-’
kriifte das schliessliche Eintreten der Sittigung verhindern kénnen.

Ein stiitzendes Argument kann man noch aus der folgenden
qualitativen Uberlegung gewinnen. Im Grenzfall grosser Dichte,
nidmlich wenn 4 ¢y > p? + 42% wird es erlaubt sein, in (1) die
Terme mit y* (42— A) y zu vernachlissigen. Dadurch wird H— H,,
additiv (separiert) in den Beitrigen der Volumelemente d X = V;:

H—H,, IZ(P: pitAoqi ). (20)

=1

Hier bedeuten g, p; die kanonischen Variablen des Mesonfeldes in
der 4*" Raumzelle und p; das rdumliche Mittel der Nukleondichte
in dieser Zelle. Wir wihlen als Volumen einer Zelle V;, = 6 n2 A-3,
damit die Anzahl der Freiheitsgrade des Mesonfeldes dieselbe ist
wie nach der oben verwendeten Abschneidevorschrift [Z = V/V; =
V (2 7)-3 (4 #/3) A3]. Die gemittelten Dichten ¢, konnen als kon-
stant gelten, und der Grundzustand des Nukleongases hinsichtlich
der kinetischen Energie (~ Y V; 0%/ M) ist die homogene Ver-

teilung: g; = go = N/V (sofern g, V;> 1). Die Nullpunktsenergie
des Mesonfeldes wird damit

CP. 43 A
ZVAQOZNWV*;, (21)

dies ersetzt die Grosse (5) in der fritheren Rechnung. Hiervon ist
wiederum die Selbstenergie der Nukleonen (N- const) abzuziehen,
und diese tiberwiegt um so mehr, je grosser die Dichte gy Damit
haben wir das Ergebnis (19) wiedergewonnens?). In dieser Néherung
treten keine Terme auf, die den Austauschenergien U’ entsprechen,
was darauf schliessen lasst, dass letztere bei grosser Dichte belang-
los sind.

Die hier versuchten Néherungen sprechen also iibereinstimmend
dafiir, dass das Paulische Ausschlussprinzip bzw. die daraus resul-
tierende Austauschenergie fiir die Bindungsenergie und ihre Ab-
séittigung mit zunehmender Dichte keine entscheidende Bedeutung
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hat. Daraus erklart sich, waram bereits ein statisches Modell, wel-
ches Austauscheffekte ignoriert, ein qualitativ zutreffendes Bild
liefert.

Anmerkungen.
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5) In (15) sowie in (16), (18) und (19) sind die Beitrige der hochsten |f|-Werte
(2 4) nicht ganz konsequent behandelt (indem der Imaginirteil des Aus-
druckes I (14) vernachlassigt wurde). Es lohnt sich aber nicht, die genaue -
Abhéngigkeit auf Grund einer bestimmten Abschneidevorschrift anzuschreiben.

%) Fiir n = 4 muss man bereits die Zweikorperkrafte in zweiter Ordnung beriick-

sichtigen, d. h. die Terme, die sich aus I (10) bei Weiterentwicklung des Loga-

rithmus ergeben. Diese Terme heben sich gegen gewisse Vierkorperterme (oder

besser: Zweipaarterme), die nicht die Form (16) haben. Auch bei hoheren n-

Werten miissen sich solche Terme (die nicht einmal volumproportional sind)

allgemein wegheben, da sie in der obigen Stérungsrechnung [A*-Terme von (9)]

iiberhaupt nicht auftreten.

Die rechte Seite von (19) stellt wiederum die freigewordene Nukleon- Selbst-

energie dar. Vgl. I (8), wo der ,,arc tg* fiir nicht zu hohe »x-Werte durch sein

Argument ersetzt werden darf; beziiglich der Beitrige » = A beachte man An-

merkung 5. Die Ahnlichkeit von U° mit der in I, Abschn. 3, berechneten Gitter-

energie ist natiirlich nicht iiberraschend.

8) Vgl. Anmerkung 7. Fiir ein einziges, isoliertes Nukleon ergibt (20) die Selbst-

~ energie |1 g, = ]//1/ vorausgesetzt, dass A/V;>> A2, d.h. 1.4 > 6 a? (,,starke
Kopplung*). Verg]elcht man mit I (8) (oder mlt (19), wo 4, ~ 4 7/A), so scheint
der Selbstenergiewert V/'l/V um einen Faktor der Ordnung V4 A zu hoch. Man
hat den Eindruck, dass in (20) A2 durch A, ersetzt werden sollte, doch kann ich
keine Begriindung hierfiir angeben.

-1
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