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Bemerkungen zur skalaren Paartheorie
von Gregor Wentzel

Institute for Nuclear Studies University of Chicago, Chicago, 111. (U.S.A.)

(12.V.52).

Die im Titel genannte Theorie hat neues Interesse auf sich gelenkt dadurch,
dass in den pseudoskalaren Yukawa-Theorien, durch Transformationen nach
Dyson1) oder Foldy2), Wechselwirkungsterme vom Paartheorie-Typus isoliert
werden können, derart, dass die (pseudo-) skalare Paartheorie als eine „nullte
Näherung" zur pseudoskalaren Yukawa-Theorie gelten kann3). Dieser Zusammenhang

hat den Verfasser veranlasst, frühere Untersuchungen über die Sättigungs-
eigenschaften der Kernkräfte nach der Paartheorie4) weiterzuführen. Die folgende
Analyse soll zeigen, dass die Sättigung nach dieser Theorie als Folge der
Mehrkörperkräfte zustande kommt, während die Austauschkräfte eine untergeordnete
Rolle spielen.

Die Theorie sei charakterisiert durch die Hamilton-Funktion :

H fdX \&*~ 0 + n* n + ip* (p2- A) ip + X 0* 0 ip* v»] (1)

(0 Nukleonfeld, unrelativistisch, 4 Komponenten für Spin und
Ladung; ip Mesonfeld, komplex; neutrale Mesonen bleiben ausser
Betracht. Die im Wechselwirkungsterm benötigte „Abschneidung"
wird erst später eingeführt. % und c 1 gesetzt.) Die früheren
Untersuchungen4) betrafen die „statische Näherung":

0*0-+EN*0 (*-*-)>
s

und zwar wurden die Nukleonen in einem oder in zwei
Raumpunkten fixiert angenommen, oder es wurde eine periodische
Gitteranordnung vorausgesetzt. Für diese Probleme wurden strenge
Lösungen abgeleitet, und in der Abhängigkeit von den lokalen
Besetzungszahlen Ns bzw. von der Gitterkonstante (Nukleonendichte)
traten typische Sättigungserscheinungen zutage.

Gegen die Anwendung der statischen Näherung auf dichte
Kernmaterie kann folgender Einwand erhoben werden. Betrachten wir,
für den Augenblick, die Wechselwirkung als schwach, so beschreibt
sie Meson-Nukleon-Streuprozesse sowie die Erzeugung und
Vernichtung von Mesonpaaren bei Nukleon-Nukleon-Stössen. Bei
Anwesenheit vieler Nukleonen sind viele dieser (virtuellen) Prozesse
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durch das Pauli-Prinzip verboten, weil die betreffenden Nukleon-
Endzustände besetzt sind. Dieses Verbot bleibt in der statischen
Näherung unberücksichtigt, weil die Zustandsänderung der Nukleonen

ignoriert wird; mit anderen Worten, die zugelassenen
Impulsänderungen des Mesonfeldes werden nicht durch Gesamtimpulserhaltung

plus Pauli-Prinzip eingeschränkt. Freilich möchte man
vermuten, dass die Einbeziehung des Pauli-Prinzips die Sättigungstendenzen

nicht beeinträchtigt, sondern eher verstärkt, denn die betrachteten

Kräfte sind ja anziehend und können durch das Wegfallen von
Termen nur verringert werden. Tatsächlich ist die Sachlage aber
verwickelter wegen der vorzunehmenden Selbstenergie-Subtraktionen.

Es mag daher angezeigt sein, die Frage nach dem Sättigungscharakter

der Kräfte wieder aufzunehmen, auf Grund eines
Kernmodells, das dem Pauli-Prinzip Rechnung trägt, nämlich des

Fermiongas-Modells. Zur Vereinfachung soll aber noch „statisch"
gerechnet werden, insofern, als die Nukleon-Rückstösse energetisch
vernachlässigt werden: die kinetische Energie der Nukleonen, d. h.
der erste Term in H (1), gilt als vertauschbar mit den übrigen
Termen und wird als additive Konstante geführt :

"kin IV
10 M

(N Nukleonen-Gesamtzahl, pF Radius der Fermikugel im
Impulsraum). Die Vernachlässigung der Nukleon-Rückstossenergien
bringt natürlich einen Fehler mit sich, der namentlich ins Gewicht
fallen kann, wenn hohe Meson-Impulse (p> p) eine Rolle spielen,
doch wird die „Abschneidung" dieser Impulse dafür sorgen, dass
keine qualitative Fälschung der Resultate eintritt.

Die nächstliegende Methode zur Behandlung des mathematischen
Problems bestände darin, die in I berechneten Zwei- und
Mehrkörperpotentiale zu übernehmen und den Erwartungswert der
Energie (einschliesslich Austauschenergie) für den Grundzustand
des Nukleongases auszurechnen. Es zeigt sich indessen, dass man
einen günstigeren Ausgangspunkt für die folgende Diskussion
gewinnt, indem man auf die Plamilton-Funktion (1) zurückgeht und
beachtet, dass sie, nach Abzug von Hkin, ein System linear
gekoppelter Oszillatoren darstellt.

Wie in I sei

femel¬

le =7-^27^fï, 7i V-i2Jp(e-iU;
t i

0*0 g=Zete»* |>o fa=3;;2P!)- (2)
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Alle Operatoren ç>t kommutieren untereinander und können daher
wie c-Zahlen behandelt werden. Die Hamilton-Funktion lautet nun:

H - Hkjn EPtVt + Q Q (9) E w? 2* It + XE tt-r 2Ê 2t- (3)
t t er

(ftif j«2 + ï2), und das mathematische Problem reduziert sich auf
das Eigenwertproblem der quadratischen Form Q.

Wir diskutieren zunächst ein vereinfachtes Problem, das dadurch
entsteht, dass in der Doppelsumme in (3) alle Ausserdiagonalterme
(I =t= f) weggelassen werden. Die Eigenwerte der Matrix Q sind
dann

Q2 co2+Xeo=co2 + XN/V. (4)

Um die potentielle Energie U des Nukleonengases zu berechnen,
hat man (wie in I) die Änderung der Nullpunktsenergie des Mesonfeldes

infolge adiabatischer Einschaltung der Kopplung X zu
berechnen :

E(Ot-cot), (5)
t

und hiervon ist noch die Selbstenergie der N isolierten Nukleonen,
d. h. N mal der Wert von (5) für ein einziges Nukleon, abzuziehen.
Im Limes V -> oo, q0 const:

u=E\}/co2+Xe0~< AQa

• COJ
(6)

Ohne Abschneidung würde diese Summe logarithmisch divergieren.
Nach Abschneidung (|I| < Ä) wird U (6) volum-proportional
(weil Z V(% ^)~3 mal ï-Raumintegral), und U/N U/Vq0) als

£

Funktion von q0 zeigt dieselben Sättigungseigenschaften wie sie in
I für die Energie eines Nukleon-Kristallgitters grosser Dichte
diskutiert wurden (vgl. I, p. 124/25). Insbesondere:

lim -faT-2far W

d. h. bei unendlicher Kompression der Kernmaterie wird gerade
die Selbstenergie der Nukleonen frei.

Im Falle schwacher Kopplung oder geringer Dichte (X q0 <p. p2)
kann man nach X entwickeln :

u=-^q22:\+---. (8)
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Diesen Grenzfall kann man aber auch leicht für das vollständige
Problem (3) behandeln, indem man die Ausserdiagonalterme
ï =t= Ï' in einer zweiten Näherung berücksichtigt:

Qf=co2+Xeo~-X2£' trf(->r-i_
t'2_f2

ü. Qo

2 cof

'>;,

8»j " «'i 12co
l_ y,, et-t-et-t- gr-i

I'2_|2 + • (9)

Hier ist der letzte Term ein Operator, und in (5) ist sein Erwartungswert
für den Grundzustand des Nukleongases einzusetzen. Sei

N(p, a) die Besetzungszahl des Nukleonzustandes p, er (p Impuls,
er !•• 4 numeriert die Spin- und Ladungszustände), also

N(v o-wrfür!p|<^'
PF-

Auf Grund der Definition (2) wird dann der Erwartungswert

<Q__tQîP=V-2^N(V,a)[l-N(p + i,a)]

(ï 4= 0). Setzt man dies in (9) ein, und verwendet man statt f die
neue Variable p' p + I' — ï, so folgt:

Q, Qo

2 co. 8 co?
_.4F-2j;

£ \v\<-pf
Ip'i >pf

1

(p'-p+ï)2-ï2 + •

(10)

Die Doppelsumrne ist natürlich durch ein sechsfaches Integral zu
ersetzen, und da die Terme f ï in (9) fehlen, ist bei der Integration

über Nullstellen des Nenners der Cauchysche Hauptwert zu
nehmen (| |t'| — 11| | > e fa 0).

Wir bilden wiederum die Nullpunktsenergie-Änderung (5) und
subtrahieren die Selbstenergie der N Nukleonen. Bei dieser
Subtraktion hebt sich der Term erster Ordnung in X wieder fort (wegen

gu N/V), während von o2 nur ein verschwindend kleiner Bruchteil

(1/JV) abgeht. Von der Doppelsumme in (10) ist eine Doppelsumme

mit dem gleichen Summanden abzuziehen, bei der aber die
Beschränkung |p'| > pF fortfällt, denn für ein isoliertes Nukleon
p, a sind ja alle „Endzustände" p', a' a durch das Pauli-Prinzip
gestattet. Nach der Subtraktion bleibt eine Doppelsumme übrig,
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bei der sowohl p als p' auf das Innere der Fermikugel beschränkt
sind :

st v-2E
ipi < pf
ir'\<PF

(P'-P+I)2-Ï2 (H)

Somit wird die potentielle Energie :

V X2E
P 2 8,

+ -- (12)

Wir haben St für die Grenzfälle 1 0 und | i \ p> pF berechnet ;

beide Werte werden korrekt dargestellt durch die Interpolationsformel

St~l2p>
P"

4 + 9Ï2 64 i4+9I2
(13)

St ist positiv, d. h. das korrigierte Potential (12) ist algebraisch
grösser als der Wert (8) oder (6), der aus der vereinfachten Theorie
folgte. Trotzdem bleibt U im ganzen negativ. Der Summand in
(12) ist nämlich, nach (13), negativ définit für pF > 3/2 p, und die
ï-Summe ist auch für kleinere pF-Werte negativ, wenn nur der
Abschneideradius im f-Raum gross genug gewählt wird.

Vergleicht man mit den Ergebnissen der früheren Arbeit I, so

zeigt sich, dass 77 (12) die Energie der Zweikörperkräfte ist, sofern
man diese nach X entwickelt und nur den führenden Term beibehält.

Der Term mit St ist die Austauschenergie. [Vgl. I, Abschn. 2,
speziell Gl. (10).]

Um den Charakter der Entwicklung nach X besser zu überblicken,
haben wir noch die A3-Korrekturen zu U berechnet. Zunächst liefert
die Ausgangsnäherung (6) den Term

— (*ßo? E~tr16
(14)

der das Eintreten der Sättigung bei wachsender Dichte erkennen
lässt; er rührt offenbar von Dreikörperkräften her. Von den übrigen
Termen lässt sich ein Ausdruck abspalten, der bis auf einen negativen

Faktor mit (12) übereinstimmt (der also positiv ist, wenn die

Zweikörperkräfte anziehend sind). Er stellt die A3-Korrektur zu
den Zweikörperpotentialen dar, die nach I eine reduzierte
Kopplungskonstante enthalten :

v2 x\E p 2 8,
*A 1+kA/àn'

(15)
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hier ist A der durch I (11) quantitativ definierte Abschneideimpuls5).

Schliesslich kommt noch ein Dreikörperterm hinzu, der
gleichfalls positiv ist.

Über die höheren Näherungen kann man nun die folgenden
allgemeinen Feststellungen machen. Schreiben wir die gesamte potentielle

Energie als Summe der Beiträge der w-Körperkräfte

u^Eun,
n 2

so wissen wir aus I, dass die X-Abhängigkeit von 77B durch den
Faktor XnA bestimmt ist. Ferner können wir in 77„ die gewöhnliche
(Nichtaustausch-) Energie abspalten, nämlich

U°n=(il)(XAeûr2:^(2n~1)(n>2). (16)
t

Der Beweis für diese Formel ergibt sich daraus, dass der A"-Term
aus der Entwicklung des Ausdruckes (6) in 77° enthalten sein muss,
und zwar kann er nur aus dem ersten Term der Reihe

XAl Xn(l — nXAf4:7c + ---)

hervorgehen. Für n 2, 3 und 4 haben wir die Formel (16) verifiziert

mittels der strengen Lösungen nach Is). In

77 =77°+77' (17)

lässt sich nun 77° X U° aufsummieren :

xaQ,
u°=27 Vcoi + XAQo-cot-^- (18)

Die Bedingung XA q0 < p2 garantiert die Konvergenz der n-Summe,
doch muss (18) unabhängig hiervon gültig sein. Als Funktion von
q0 zeigt 77° bzw. U°jN die gewünschte Sättigungstendenz; die
Sättigung setzt ein, wenn q0 sich dem Werte

<"2 2/1 A

nähert (z. B. für A 2 ti p und X ^> p~x: qs f p3). Ähnlich wie
in (7) kommt7) :

r/o xA
llm N 2 V

Q„—> OO t
vE~- ds)

Was andererseits die Austauschenergie 77' anlangt, so sind schon
die Einzelterme n > 3 schwierig zu berechnen, und ihre Summie-
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rung in geschlossener Form scheint unmöglich. Man darf aber wohl
vermuten, dass 77' (als Ganzes) die Eigenschaften hat, die sich
sowohl für U'2 als für Us aus den obigen Rechnungen ergeben haben,
nämlich, dass 77' positiv ist und bei zunehmender Dichte, im
Vergleich zu 77°, immer bedeutungsloser wird [für n 2, vgl. (15),
(13)]. Der Sättigungswert qs der Dichte mag hierdurch etwas
grösser werden, aber es ist kaum anzunehmen, dass die Austausch-'
kräfte das schliessliche Eintreten der Sättigung verhindern können.

Ein stützendes Argument kann man noch aus der folgenden
qualitativen Überlegung gewinnen. Im Grenzfall grosser Dichte,
nämlich wenn X q0 ^> p2 + A2, wird es erlaubt sein, in (1) die
Terme mit ip* (p2 — A) ip zu vernachlässigen. Dadurch wird H — HMn
additiv (separiert) in den Beiträgen der Volumelemente dX V{:

H-Hu^EfàPi+XQtq'qi). (20)

Hier bedeuten qt, pt die kanonischen Variablen des Mesonfeldes in
der iten Raumzelle und Qt das räumliche Mittel der Nukleondichte
in dieser Zelle. Wir wählen als Volumen einer Zelle Vt 6 tz2 A~3,
damit die Anzahl der Freiheitsgrade des Mesonfeldes dieselbe ist
wie nach der oben verwendeten Abschneidevorschrift [Z V/Vi —

V (2 ti) ~3 (4 nß) A3]. Die gemittelten Dichten q( können als
konstant gelten, und der Grundzustand des Nukleongases hinsichtlich
der kinetischen Energie ~ £ Vi QpzfM) ist die homogene Ver-

i
teilung: q{ q0 N/V (sofern Q0Vi^> 1). Die Nullpunktsenergie
des Mesonfeldes wird damit

^À7o ^l/J; (2D

dies ersetzt die Grösse (5) in der früheren Rechnung. Hiervon ist
wiederum die Selbstenergie der Nukleonen (N- const) abzuziehen,
und diese überwiegt um so mehr, je grösser die Dichte o0. Damit
haben wir das Ergebnis (19) wiedergewonnen8). In dieser Näherung
treten keine Terme auf, die den Austauschenergien 77' entsprechen,
was darauf schhessen lässt, dass letztere bei grosser Dichte belanglos

sind.
Die hier versuchten Näherungen sprechen also übereinstimmend

dafür, dass das Paulische Ausschlussprinzip bzw. die daraus
resultierende Austauschenergie für die Bindungsenergie und ihre Ab-
sättigung mit zunehmender Dichte keine entscheidende Bedeutung
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hat. Daraus erklärt sich, warum bereits ein statisches Modell,
welches Austauscheffekte ignoriert, ein qualitativ zutreffendes Bild
liefert.

Anmerkungen.

x) F. J. Dyson, Phys. Rev. 73, 929 (1948); K. M. Case, Phys. Rev. 76, 14 (1949).
2) L. L. Foldy, Phys. Rev. 84, 168 (1951).
3) G. Wentzel, Phys. Rev., 86, 802 (1952).
4) G. Wentzel, Helv. Phys. Acta 15, 111 (1942), im folgenden als I zitiert; Prog.

Theor. Physics 5, 584 (1950), Abschn. II, III.
5) In (15) sowie in (16), (18) und (19) sind die Beiträge der höchsten |ï [-Werte

(> A) nicht ganz konsequent behandelt (indem der Imaginärteil des
Ausdruckes I (14) vernachlässigt wurde). Es lohnt sich aber nicht, die genaue ï-
Abhängigkeit auf Grund einer bestimmten Abschneidevorschrift anzuschreiben.

6) Für n 4 muss man bereits die Zweikörperkräfte in zweiter Ordnung
berücksichtigen, d. h. die Terme, die sich aus I (10) bei Weiterentwicklung des
Logarithmus ergeben. Diese Terme heben sich gegen gewisse Vierkörperterme (oder
besser: Zweipaarterme), die nicht die Form (16) haben. Auch bei höheren n-
Werten müssen sich solche Terme (die nicht einmal volumproportional sind)
allgemein wegheben, da sie in der obigen Störungsrechnung [A"-Terme von (9)]
überhaupt nicht auftreten.

') Die rechte Seite von (19) stellt wiederum die freigewordene Nukleon-Selbst-
energie dar. Vgl. I (8), wo der „arc tg" für nicht zu hohe »«-Werte durch sein
Argument ersetzt werden darf; bezüglich der Beiträge x > A beachte man
Anmerkung 5. Die Ähnlichkeit von U° mit der in I, Abschn. 3, berechneten
Gitterenergie ist natürlich nicht überraschend.

8) Vgl. Anmerkung 7. Für ein einziges, isoliertes Nukleon ergibt (20) die
Selbstenergie ]/A Qi yX/Vj, vorausgesetzt, dass A/Fj- "p> A2, d. h. À A "p> 6 n2 („starke
Kopplung"). Vergleicht man mit I (8) (oder mit (19), wo fa «^ 4 n/A), so scheint
der Selbstenergiewert yXj Vt um einen Faktor der Ordnung yX A zu hoch. Man
hat den Eindruck, dass in (20) X durch XA ersetzt werden sollte, doch kann ich
keine Begründung hierfür angeben.
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