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Ein neues Variationsverfahren zur genédherten Berechnung der
Eigenwerte hermitescher Operatoren
von Hans J. Maehly (Phys. Institut der ETH., Ziirich).

(6. III. 1952.)

Summary. A new variation procedure for the approximate computation of
eigenvalues is developped. It is well known that the Rirz-Method will give upper
bounds for the lowest eigenvalues; by help of our new procedure however, upper
and lower bounds can be calculated (even for operators whose spectrum extends
from —oo to +o0), if the positions of the neighbouring eigenvalues can roughly
by estimated. As an example, the two lowest eigenvalues 4,, 4, of the differential
equation (arising in the deuteron-problem)

a2 o e
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ia? w2 @+ A =

are calculated with high accuracy.

=0

1. Einleitung.

Die vorliegende Arbeit befasst sich mit Methoden zur gendherten
Berechnung der Eigenwerte eines hermiteschen Operators A4, also
derjenigen Werte 4;, fiir welche die Gleichung

Af. = A, | (L.1)

l6sbar ist. Die Losung dieser Gleichung ist bekanntlich dquivalent
mit der Aufgabe, diejenigen Funktionen y = f; zu finden, fiir
welche der Erwartungswert von 4, d. h. der Quotient

, A
L) = (?w, w)ﬂ ' (1.2)

bei allen Variationen von ¢ stationsir bleibt*), und es ist

i!Ai
L(f) = (A0~ ;. (13)

*) Genauer: Fiir alle zur Variation zugelassenen Funktionen; vgl. hierzu
und fiir einen kurzen Beweis der Aequivalenz der Eigenwertgleichung (1.1) mit
dem Variationsproblem das 7. Kapitel dieser Arbeit.
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Mit (¢, ) bezeichnen wir hier ein ,,hermitesches Produkt mit den
Eigenschaften

(@, v) = (v, @) | (1.4)
(v, w) >0 | fiir p =0 *); (1.5)

und

die Hermitezitdt von A wird dann durch die Gleichung

(p, Ay) = (Ag y) (1.6)

ausgedriickt. — Oft 1st das hermitesche Produkt in der Form

(9. v) = [ 9¥ dg (L.7)

o

gegeben; dann lautet die Hermitezitdtsbedingung einfach:

[vap)dg= [vapdq. (19

2. Das Ritzsche Verfahren.

Als Grundlage fiir das im 3. Kapitel zu besprechende neue Ver-
fahren sollen hier kurz die wichtigsten Satze tiber das Ritzsche
Verfahren zusammengestellt werden. Dieses besteht bekanntlich
darin, dass man zum Variationsproblem J6L(y) = 0 nur Linear-
kombinationen von n gegebenen, voneinander linear unabhéngigen
,,Koordinatenfunktionen** ;. v,, ..., v, zuldsst**). Man setzt also
p 1n der Form

w = Dy, p, ¥*F) (2.1)
=1 .
an und bestimmt die Koeffizienten y,, 95, ....s ¥y, s0, dass
0
T Liy)=0 m=12,...,n (2.2)

Entsprechend den Eigenfunktionen und Eigenwerten des exakten

*) Eine genauere Definition gibt NrEuMaANN?), 8. 21.

**) Vgl. neben den Originalarbeiten von W. Rirz?) die Abhandlungen von
CorraTz?)%)%) und die Diss. des Verf.?). HyrLLEraas?) hat wohl als erster die
Anwendungsmoglichkeiten des Ritzschen Verfahrens zur gendherten Berechnung
der Eigenwerte der Schroedinger-Gleichung naher untersucht.

**%¥) Die w, miissen natiirlich ,,zur Variation zugelassene Funktionen sein,
wie die y in (1.2); vgl. (7.6).
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Eigenwertproblems (1.1) erhilt man auf diese Weise n ,,Losungs-
funktionen® g,

gi= Yy, =12 ...,n (2.8)
=1
und n ,,Ritzsche Werte* |
L; = L(g,), 1=1,2,...,n. (2.4)

Analog zu einigen Spezialfillen, fiir welche das Ritzsche Verfahren
naher untersucht wurde, kann man ganz allgemein folgende Sétze
beweisen : '

1. Die Ritzschen Werte sind identisch mit den n (evtl. z.T.
mehrfachen) Wurzeln der Sakulargleichung

det [(v1, Ayn) — Li(vp 9w)] =0 i=1,2,...,n. (2.5)

Diese L; sind immer reell; wir ordnen sie der Grosse nach, so dass
also

L <L, <...<L,. (2.6)

2. Die g; bilden ein Orthogonalsystem und konnen so normiert
werden, dass

(gi’ 9;) = 2: (1/)1: Wm) YalY,m = 0ij s
bt 2.7)
(9:» Ags) = 2 (Yo A Yn) Ysr Yjm = L 045 -
l,m=1

8. Fiigt man dem Ritzschen Ansatz (2.1) noch eine weitere, von
den n ersten linear unabhingige Koordinatenfunktion y,.; zu, so
kénnen die Ritzschen Werte L, ,---,L, nur sinken, aber nie unter
den néchst tieferen Wert des alten Systems.

4. Ist der Operator A nach unten halbbeschrinkt und sein Spek-
trum diskret*), so sind die Ritzschen Werte obere Schranken fiir die
entsprechenden Eigenwerte, d. h. es ist

Ay < Ly, ‘ (2.8)

wenn die n kleinsten Eigenwerte analog zu (2.6) geordnet sind:
M<ih<...<1,<... (2.9)
*) Ein Operator heisst nach unten (bzw. oben) halbbeschrinkt, wenn L(yp)
fiir alle zugelassenen Funktionen w ein Minimum (bzw. Maximum) besitzt; z. B.

ist jeder positiv-definite Operator nach unten halbbeschrinkt; vgl. NEUMANN?),
8. 51/52. Fiir den Fall gemischler Spektren, vgl. Kap. 9.
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5. Ist der Operator A nach oben halbbeschrankt und sein Spek-
trum diskret, so sind die Ritzschen Werte untere Schranken fiir die
entsprechenden Eigenwerte, d. h. es 1st

Az’ > L'n-—i-i-l, 7/ == 13 25 <oy Ny (2‘10)
wenn wir mit Ay, ..., 4, die n grdssten Eigenwerte bezeichnen:
dly 220 A Boe o il B (2.11)

Zusammenfassend kénnen wir also sagen: Das Ritzsche Verfahren
lefert ,,innere Schranken® fiir die dussersten Eigenwerte. — Es ist
daher nur dann wirklich brauchbar, wenn es solche dussersten Eigen-
werte iiberhaupt gibt, wenn also A mindestens halbbeschrénkt, oder
noch besser (beidseitig) beschrinkt ist. Hingegen kann man z. B.
fiir ein reines Punktspektrum, das sich von — cobis + oo erstreckt*)
nur sagen, dass die L; im allgemeinen nicht sehr verschieden von
gewissen, meist ungefihr den » absolut genommen kleinsten Eigen-
werten sind, doch lasst sich die Unzuverlidssigkeit dieses Erfahrungs-
gesetzes leicht an Beispielen zeigen.

3. Erweiterung des Ritzschen Verfahrens.

Wir wollen nun daran gehen, ein neues Variationsverfahren zu be-
sprechen®*), das in vielen Féllen die Berechnung oberer und unterer
Schranken ermdoglicht, selbst dann, wenn der Operator A nicht ein-
mal halbbeschrénkt 1st. Dagegen wollen wir vorlaufig voraussetzen,
dass das Spektrum von A4 diskret sei; fiir den Fall gemischter (d. h.
teils diskreter, teils kontinuierlicher) Spektren verweisen wir noch-
mals auf das 9. Kapitel am Schlusse dieser Arbeit.

Unser Verfahren besteht im wesentlichen darin, das Ritzsche
Verfahren auf den Operator

B=(A—p1)-? (8.1)

anzuwenden; dabei ist p eine relle Zahl, 1 der Einheitsoperator
(der jede Funktion in sich selbst iiberfiihrt) und B die Inverse von
(A—p 1), die durch ‘

BA—p1) =BA—pB=1 (3.2)

*) Solche Spektren kénnen z. B. bei der Berechnung von Streuphasen auftreten,
wenn man die Phase (als Parameter) gibt und die ,,force constant‘* als Eigenwert
berechnet; vgl. ROSENFELD®), S.81—82, HuLTHEN?) und MAEHLY!?).

**) Kurz vor der Korrektur machte mich Herr Dr.hab. N. J. LeHMANN auf
seine Dissertation?) aufmerksam, in welcher dieses Verfahren auf Grund der
Integralgleichungstheorie beschrieben ist. Trotzdem scheint mir, wegen der Ver-
schiedenheit der Darstellung wie auch des Leserkreises, die vorliegende Publi-
kation nicht ganz iiberfliissig geworden zu sein.
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definiert ist. Aus (1.1) und (8.2) folgt sofort, dass die Eigenfunk-
tionen von A und B (bis auf einen evtl. Normierungsfaktor) iden-
tisch sind und dass die Eigenwerte 1; von A mit den Eigenwerten
u; von B durch die Gleichungen
1 1
e = Ai—p My
verkniipft sind. Hieraus folgt: Ist p kein Kigenwert von A (und
auch nicht ein Haufungspunkt von Eigenwerten), so ist der Operator
B beschrinkt. Das Ritzsche Verfahren eignet sich daher gut zur
geniherten Berechnung der Eigenwerte von B: Es liefert innere
Schranken fiir die dussersten Eigenwerte von B und damit (durch
Riicktransformation i die A-Skala) ,,iussere Schranken® fiir n
aufeinanderfolgende, um den Wert A = p liegende Eigenwerte von

; h—p (3.3)

A. — Diesen Gedankengang wollen wir nun mathematisch formu-
lieren: Wir setzen y wieder in der Form
Y= 2 Y19 (3.4)
=1
an und bestimmen die stationiren Werte von
_ By 3.5
M) =" (3)

die nach (2.5) mit den Wurzeln M = M, M,,..., M, der Sikular-
gleichung

det [(yi, By,) — M (i, pm)] =0 (3.6)

identisch sind. Die entsprechenden Werte in der A-Skala, die wir
l; nennen wollen :

1
konnen auch direkt aus der Sékulargleichung
det [(ys, m) — (0 —p) (v, Bym)] =0 (3-8)

berechnet werden, die aus (8.6) durch Multiplikation jedes Elemen-
tes mit (p—I) hervorgeht.

Bevor wir auf die Bedeutung der /; ndher eingehen, bemerken wir,
dass sich die Berechnung des Operators B, bzw. der Funktionen

¢, =By, (3.9)
leicht umgehen lésst, indem man a priori mit n Koordinatenfunk-
tionen @q, @y, ...., ¢, beginnt und aus diesen die y; nach

yp=A—pl)g,=Aeg,—py, (8.10)
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berechnet. Setzt man dies in (3.8) ein, so erhélt man Wegen’ der
Hermitezitat von A fiir die Werte Il =1;, ...., I, die Sikular-
gleichung:

det[(Ag, Ag,) — (P +1) (9o Apy) + 2L (py 9u)] =07%).  (3.11)

Die Bedeutung der [,-Werte und ihre Abhéngigkeit vom Para-
meter p kann man sich am besten an Hand einer Skizze (Fig. 1) klar
machen. Trigt man z. B. p nach rechts und ! nach oben auf, so
wird die Figur symmetrisch in bezug auf die Winkelhalbierende
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Fig. 1.
Qualitativer Verlauf der Kurven [ (p) fir 3 Koordinatenfunktionen. Um das
asymptotische Verhalten der Kurven zu zeigen, sind die Punkte —oo und + oo
an den Rand der Figur verlegt; es ist also nach rechts eigentlich nicht p, sondern
etwa arctg p oder Th p aufgetragen und analog arctg I oder Th I nach oben.
Ferner sind zur Vereinfachung der Figur nur die ersten 4 Eigenwerte eingezeichnet.

(p=1), da Gl. (3.11) in p und ! symmetrisch ist. Ferner gelten
folgende Sitze tiber den Verlauf der Kurven I; (p) (die Beweise sind
im 8. Kapitel zusammengefasst):

1. Fir alle [; und p 1st i

T >0. (3.12)

2. Fir p > oo werden die [; identisch mit den n Wurzeln der
Sakulargleichung |

det [(9%) A (pm) — L ((Pl’ (pm)] = 0; (313)

*) Die folgenden Sitze sind nur dann giiltig, wenn die Koordinatenfunktionen
@1s- s @, den in (7.9) angegebenen Bedingungen (¢, € D) geniigen.
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18t p keime Wurzel dieser Gleichung (p+L;), so sind alle Wurzeln 1,(p)
von (3.11) endlich; andernfalls ist (3.11) nur noch vom (r—1)ten
Grade in | (bzw. vom (n—k)ten, wenn p eine k-fache Wurzel von
(8.13) 1ist).

3. Ordnet man die L; und [;(p) der Grosse nach und ist

L; < p < Ljy, (3.14)

li <L1’ fur 'i———l,Z,...,j
lk >Lk fur k:j+1,...,n

S0 15t
(3.15)

4. Bezeichnen wir mit Ay ,..., Ay, n aufesnanderfolgende Eigen-
werte, welche (mat derselben Zahl § wie wn (8.14)) der Ungleichung

Ay <o <Ay <P <Aypjr <o <Ayins (8.16)

gehorchen, so st

i <Ayy; fir i=1,2,...,9
e > Ay, fir k=j+1,...,n (8.17)

Wie muss man also vorgehen, um obere und untere Schranken fiir
die Ergenwerte zu berechnen ? Ist der Operator A nach unten halb-
beschrinkt, so wird man, nach der Wahl geeigneter Koordinaten-
tunktionen ¢, ..., ¢,, zuerst aus (3.13) die L;... L, berechnen; sie
sind nach (2.8) obere Schranken fiir die n ersten Eigenwerte. Zur
Berechnung unterer Schranken fiir die § ersten Eigenwerte miissen
wir fir p einen Wert wihlen, der zwischen L; und L; 4 liegt: Dann
sind die [,..., l; untere Schranken fiir 4,,..., 4;. Je naher p bel
A;.q liegt, desto grosser und damit genauer werden diese unteren
Schranken; ist aber p > 4,,;, so kann man nur noch behaupten,
dass [; < Ay, Iy < 44,..., I; < A;,1. Zur Berechnung unterer Schran-
ken fiir die ersten 7 Eigenwerte brauchen wir daher eine moglichst
gute untere Schranke fiir 1;,;. — Beil unbeschrankten Operatoren
oder zur Berechnung hoher Eigenwerte mit nur wenigen Koordi-
natenfunktionen, wo das Ritzsche Verfahren nicht mehr brauchbar
1st, kann man das neue Verfahren auch zur Berechnung oberer
Schranken anwenden; in diesem Falle braucht man eine obere
Schranke fiir einen ,,etwas tieferen* Eigenwert.

Es konnte zunéchst erscheinen, als ob die Notwendigkeit, zur
Berechnung unterer bzw. oberer Schranken fiir die interessierenden
Eigenwerte zuerst solche fiir benachbarte (hohere bzw. tiefere)
Eigenwerte finden zu miissen, das neue Verfahren vollig wertlos
mache. Die Erfahrung zeigt aber, dass bei geschickter Wahl der

Koordinatenfunktionen und geeignet gewahltem j der Einfluss von
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p auf die gesuchten unteren und oberen Schranken sehr klein ist,
so dass es geniigt, jene benachbarten Eigenwerte ziemlich roh ab-
zuschétzen, wotiir bekanntlich eine ganze Reihe von Methoden zur
Verfiigung stehen (Storungsrechnung, Differenzenrechnung, WKB-
Methode, graphische Verfahren usw.). Selbst dann, wenn diese
Hilfswerte nur Naherungswerte fiir die betreffenden Eigenwerte
sind, statt zuverldssige untere, bzw. obere Schranken, liefert das
neue Verfahren doch meist bessere Fehlerabschitzungen mit we-
niger Rechenarbeit als etwa durch die Betrachtung der ,,Konver-
genz'* der Ritzschen Werte bel wachsenden n moglich ist*).

4. Erweiterung des Weinsteinschen Einschliessungssatzes**).

Zum Beweis des Weinsteinschen Satzes wenden wir das im letzten
Kapitel beschriebene Verfahren auf eine einzige Koordinatenfunk-
tion ¢ an. Dann ergibt sich an Stelle von (3.11):

(A, Ag)—(p +1) (9, Ag) + pl (g, 9) =0, (4.1)

oder, unter Verwendung der Abkiirzungen:

_ (@A) | r_ (Ap, Ag) | 2 _ PT ks 4.9
* () L (7. Ag) * Y L =Ly  (42)

nach kurzer Rechnung
(l— L) (L—7p) = w? (4.3)

unabhéngig von der Wahl des Parameters p. Nun folgt aber aus
dem 4. und 5. Satz tiber das Ritzsche Verfahren, dass L nie ausser-
halb aller Eigenwerte liegen kann; es gibt also, von L aus gesehen,
einen nédchstkleineren und einen nichstgrosseren Eigenwert, die
wir mit Ay bzw. Ay, bezeichnen. Wahlen wir nun in (4.3) p = Ay,
so 1st nach (3,17) | > Ay, und somit

Ay — L) (L —24y) <w? (4.4)
Hieraus folgt der Weinsteinsche Satz: Fiir jede positive Zahl o

*) Diese zuletzt erwdhnte Methode ist z. B. von HYLLERAAS wiederholt an-
gewandt worden?) 1), sowie neuerdings von L. HULTHEN und K. V. LAURIRAINEN12)
fiur die im 6. Kap. behandelte Differentialgleichung.

*¥) Vgl. dazu die Originalarbeit von WEINSTEIN!%); nach CorLatz?), S. 208,
stammt die Idee zu diesem Satz allerdings schon von N. Kryrorr und N. Bogo-
LivBov, Bull. Acad. Sci. URSS., Classe phys. math., Leningrad (1929), p. 471.

**%) Wir werden im néchsten Kapitel, Gl (5.15), sehen, dass L(L’— L) nie
negativ ist.
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muss vm abgeschlossenen Intervall zwischen L—oaw und L+ a-1w
mindestens ewn Eigenwert liegen. — Zur Verscharfung dieses Satzes
tithren wir nochmals zwel Abkiirzungen ein:

1
d = ?(ZN+1M/1N); z=L—+ (Pyat2n) - (4.5)
Dann gilt identisch:
Ayoi—Li=d—=z; L—Aly=d+=x (4.6)

und somit wegen (4.4): 2 > d? — w2 Aus den beiden letztenGlei-
chungen folgt nun der neue Satz: Ist w < d, so liegt zwischen
L—(d—)d?— w? und L + (d — ) d® — w®) mindestens ein Eigen-
wert; dieser Satz gilt, wie man sich leicht iiberlegt, a fortiori, wenn
5 y—2y) >d > w. 4.7)
Die Anwendung beider Sitze kommt in erster Linie fiir die
Berechnung hoherer Eigenwerte in Frage, die des zweiten vor allem
dann, wenn Ay,,—4y aus der asymptotischen Eigenwertverteilung
abgeschétzt werden kann. Die dadurch gewonnenen unteren
Schranken fiir hohere Eigenwerte konnen dann als Ausgangspunkt
fir das im 3. Kapitel dargestellte Verfahren benutzt werden.

5. Das Iterationsverfahren.

In diesem Kapitel sollen kurz diejenigen Satze tiber das Verfah-
ren der fortgesetzten Néherungen zusammengestellt werden, welche
als Ergénzung zum 3. und 4. Kapitel von Bedeutung sind*).

Das Iterationsverfahren beruht bekanntlich darauf, dass be1 defi-
niten Operatoren jede Funktion v, die zur ersten Kigenfunktion
nicht orthogonal ist, durch wiederholte Anwendung des inversen
Operators A-! immer mehr der ersten Eigenfunktion angendhert
wird. Da wir uns hier mehr fir die Figenwerte als fir die Eigen-
funktionen interessieren, wollen wir vor allem die ,,Schwarzschen
Konstanten‘* «;:

o (y) = (v, A7 y), §=0,12,... %% (5.1)

*) Eine eingehendere Diskussion dieses Verfahrens findet man z.B. bei
CoLrarz (loc. cit.).
*¥) Uber die praktische Berechnung von A-! lisst sich erst dann etwas aus-
sagen, wenn man iiber A Naheres weiss; so ist z. B. bekannt, dass die Berechnung
von A~ly auf eine Integralgleichung fiihrt, wenn A ein Differentialoperator ist.
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und die Quotienten

L(y) = Sk (5.2)

untersuchen. Gehort ¢ zu den im 7. Kapitel definierten Funktions-
rdumen D bzw. D', so definieren wir sinngeméss «_; und «_, durch

wy (p) = (9, Ay); ay(y) = (Ay Ay), (5.3)

°L(y) = L(y); ~'L(y) = L' (y). (5.4)

Aus der Hermitezitat von A ergibt sich fiir positives 7:

‘5o dass

a; (y) = (A~ty, A-0-Dy), i=0,1...5, (5.5)
unabhingig von 1, also inshesondere wegen (1.5):
oo () = (AF*p, A*y) >0, k=0,1,..., (5.6)

und fiir alle reellen Werte von z:
220y —2 L+ 0y gt Uap_g= ((a;—A) Ary (x—A) AF 1,1)) > 0; (5.7)

das Gleichheitszeichen kann also hochstens fiir einen, nie aber
fiir zwei verschiedene z-Werte gelten, woraus die Ungleichung

(az k-1 (V’))z < oty o () % a () (5.8)
folgt. — Wir haben noch nachzutragen, dass A-! ¢, A-2 y,... und
damit o, (y), oy (¢),... nur dann fiir alle y existieren, wenn 4 =0

weder ein Figenwert, noch ein Haufungspunkt von Eigenwerten
von A 1st*); wir wollen deshalb fiir das Folgende annehmen, dass
entweder A positiv definit ist: Dann gilt bekanntlich:

L(y) > L(y) > L(y) >...> 4 (5.9)
und
lim ’L(yp) = 2, falls (w, f,) 0, (5.10)
j=00 :

wobe1r 4; den ersten Higenwert, f; die zugehorige Eigenfunktion
bezeichnet; oder aber es gebe zwel aufeinanderfolgende Eigenwerte
Ao und 4,, fir welche

o < 0 < Ay (5.11)

*) Im ersten Fall kann man sich von dieser Einschrankung dadurch befreien,
dass man alle Vergleichs- bzw. Koordinatenfunktionen ¢ zu der zum Eigenwert
Null gehorigen Eigenfunktion f, orthogonalisiert, d. h. (v, f,) = 0 verlangt. Ist
A = 0 ein mehrfacher Eigenwert, so muss y natiirlich zu allen zugehorigen Eigen-
funktionen orthogonal sein. Vgl. Lit. Nr. 6), S.410/411.
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Dann liegen alle Eigenwerte von A-1 zwischen 1/4, und 1/4,; nach
dem 4. und 5. Satz tiber das Ritzsche Verfahren ist also

1 1 1 .
"K<\T_1L@‘)—\<\—E, k=0,1,... (5.12)

Aus (5.8) und (5.12) ergibt sich nach kurzer Rechnung: Es ist

entweder :

Jo > 2*1L(y) < 25 () < 0 (5.13)
oder*®) :
A < 2 1L (y) > 2*L(y) > 0, (5.14)
also stets:
**L(y) (**1L(y) —2*L(y)) >0. (5.15)

Ferner ergibt sich durch Anwendung von (5.9) auf den Operator A2
26-1T, ()26 L () > 2R+1L () 20+2L (y) > Min {42, 42},  (5.16)

und schliesslich kann man noch beweisen, dass

lim 9L () = {ﬁo} je nachdem ob 4, + 4, {z 8}, (5.17)
j—> 00 1

falls v nicht zufillig zu den Eigenfunktionen von A, bzw. 4, ortho-
gonal 1st; in diesem Falle ware A, bzw. 4, durch den néchsttieferen
bzw. nachsthoheren Eigenwert 4, zu ersetzen, fiir welchen (y, f;) + 0.

Wall man nicht nur den (absolut) kleinsten, sondern auch die zweit-,
dritt-, ... -kleinsten Higenwerte von A berechnen, so kann man das
Tterationsverfahren mit dem Ritzschen kombinieren®*); die Wurzeln
i, = L; der Determinanten

det [(y, A~ Py,) —L;(py, A7 p,)] =0 (5.18)

streben nédmlich im allgemeinen gegen die n absolut kleinsten Eigen-
werte***). Bei positiv-definitem A gilt ausserdem****):

L, >, >2L,>.... >4 i=1...,n (519

*) Die erste Moglichkeit scheint SvarTHOLM!¢) in seiner Ungleichung (2.21)
iibersehen zu haben.

**) Vgl. hierzu die ,,Variation-Iteration-Method von SvarTHOLM!3), sowie
die Diss. des Verf.%), S. 421.

**%) Ausser wenn eine der zu diesen absolut kleinsten Eigenwerten gehérenden
Eigenfunktionen zu allen v,,. .., y, orthogonal ist; dann scheidet der betreffende
Eigenwert natiirlich aus.

****) Dies ist nicht etwa mit (5.9) identisch, da die Koeffizienten y; von (2.3)
bei der Iteration im allgemeinen geindert werden.
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Fiir die Wurzeln /I = 7l(p) der Determinanten

det [(yi, A=9"Py,)—(p+) (v, A Vy,) +
~ +ilp (9, A )] =0 (5.20)

gelten alle im 3. Kapitel fiir die I, abgeleiteten Satze sicher dann,
wenn j gerade ist, bel positiv-definitem A aber auch fiir ungerade j.
Dagegen ist noch nicht allgemein untersucht worden, unter welchen
Bedingungen die so erhaltenen unteren bzw. oberen Schranken
durch die Iteration verbessert werden. '

6. Anwendungsbeispiel.

Als Beispiel fiir die Anwendung des im 3. Kapitel beschriebenen
Verfahrens behandeln wir die Differentialgleichung:

a: o

dx?

¥, W | 6:3 D —( (6.1)

im Grundgebiet £ = 0 bis co und mit der Randbedingung
® (0) — 0*%), (6.2)

wobel % ein Parameter, 4 der gesuchte Eigenwert ist. Dieses Eigen-
wertproblem hat bekanntlich fiir die Berechnung der Bindungs-
energie des Deuterons eine grosse Rolle gespielt (bis die Entdeckung
seines Quadrupolmomentes zu komplizierteren Kraftansitzen fiihrte)
und 1st daher von verschiedenen Autoren behandelt worden*). Die
genauesten Rechnungen sind bisher von Hurrnex ausgefiihrt wor-
den, der fiir verschiedene »-Werte nach dem Ritzschen Verfahren
obere Schranken fiir die drei ersten Eigenwerte berechnet hat!2).
Als Koordinatenfunktionen verwendet HuLtunen die ersten Eigen-
funktionen der Differentialgleichung

d2 , —&
xR R S (6.3)

welche exakt gelost werden kann und ein Potential enthélt, das
mit e~%/z in den wesentlichen Punkten qualitativ tibereinstimmt?!5).
Die Eigenwerte von (6.8) sind

A =nn+2%, n=12..., (6.4)

*) Alle diese Arbeiten sind im letzten Artikel von HULTHEN und LAURIKAINEN!2)
zitiert.

**) Das Verhalten von @ fiir % — oo wird durch die Forderung (@, @) < oo
bestimmt; vgl. (6.6) und (7.6).
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und die drei ersten Eigenfunktionen lauten, abgesehen von einem
willkiirlichen Normierungsfaktor :

Yy =e (1l —e™)
Py =€ (1— ) ((3 +2%) (1 —e) —2) (6.5)
py = (1 — ) ((5+2%) (2+) (1-67)2—6(2+ %) (1—e~*) +8)

Fir das Eigenwertproblem (6.1)—(6.2) sind das hermitesche Produkt
und der Operator A durch

59) ~ [ (e p(o) e (6.6)
4
A = g (x2—~£;) (6.7)
gegeben, so dass also
mAw:jZ@w—§$Wa (6.8)
:
Ap.dp) = [ (2o—20) (2y—2L)erds.  (69)

Setzen wir zur Abkiirzung:

M™(1+2%) = /7(1_:;—;6.)71 e=(1729% d
0 | | (6.10)

:é\%‘(g_l)lﬁl-(Z)-ln(k“f‘l‘f‘zx)

so erhalt man mit den Koordinatenfunktionen (6.5):

(o) = [ e 00 = MO (1425
0
(91, w2) = (B+22) M® (1 +23) —2 M1 +24) | (6.11)

(Y25 po) = (34222 MD (1 + 2 2) —
— 48+ 2x%) MP(1+2x%) +4MP(1 +2x)
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und so fort. Ferner ergibt sich nach einiger Rechnung:

L) ¢
Oy - m> 2
(ppApm) =52 0 0 (6.12)
) 9
0 O SETa
1 1 3
1+% (1+#) (3+2%)
e 1 3-(1146 )
Ay, Ayy) = T14x . B+2x) (2+x) (6.13)
3 3 (11+46%) s

(I+%)(B+2x) (34+2x) (2+x)

Aus diesen Matrizen wurden die Ritzschen Werte L, und die
,,Grammelschen Werte** L,*) als Wurzeln der Sakulargleichungen

det [(y Ay,) — Ly, p,)] =0 (6.14)

det [(Ay, Ay,)—L (p, Ayp,)] =0 (6.15)

und

tir » =0, 0,1, ..., 1 berechnet (sieche Tabelle 1).

Zur Berechnung wunterer Schranken fir 4; und 4, nach dem im
3. Kapitel geschilderten Verfahren bendtigen wir zuerst eine grobe
untere Schranke fir den 3. oder 4. Eigenwert. Hiefiir verwenden
wir die WK B-Methode**) in folgender vereinfachter Weise: Wir
schreiben zuerst die Differentialgleichungen (6.1) und (6.3) in der
Form:

ff: 2@ =0;  z=[1""—u, (6:14)

d2 ! ! ! o
Yty =0 o = A T, (6.17)

Integriert man %’ von O bis zu demjenigen Wert z;’, bei welchem
x' = 0 wird, so ergibt sich nach einiger Rechnung:

[xaa= | l/n(n—é—2%) S —wdr—na.  (6.18)
0 0

*) Gl. (6.15) entspricht der Gl. (5.18) mit § = —1; analog zu (5.19) muss
L;/—L; >0 sein und die Grosse dieser Differenz gibt einen Anhaltspunkt fir
den ,,Fehler“ L,—4,; vgl. hierzu auch die Diss. des Verf.¢).

**) Kine ausfiihrliche Darstellung dieser Methode findet sich bei KEMBLE!S),
eine kiirzere z. B. bei ScHIFF!?).
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Wegen der Ahnlichkeit der Potentiale in (6.16) und (6.17) ist zu

erwarten, dass die Werte 4, fiir welche

T T — e
r —~a
/xdx:fl//ln';—xz ==, (6.19)
0 0
() >0 nur fir 0 < z < 2,
Tabelle 1.
Naherungswerte fiir die Eigenwerte der Differentialgleichung (6.1).
5t == D0 % 0,0 0,1 0,2 0,3 0,4

L, = 16,6292 L’y 19,8616 |20,3572 |20,8663 |21,3862 |21,9150

1L, = 15,4559 L, (16,6292 17,3819 (18,1056 |18,8081 (19,4946

Ay = 14,137 A, (14,137 14,95 15,71 16,45 17,17

L, = 6,44851 L, | 6,45664 | 6,93767 | 7,40885 | 7,87200 | 8,32851

1L, = 6,44758 L, | 6,44851 | 6,93156 | 7,40335 | 7,86647 | 8,32267

17, = 6,44700 A 6,44169 | 6,92648 | 7,39916 | 7,86270 | 8,31907
1Ly, = ,00058 | Ly, | ,00682 | ,00508 | ,00419 | ,00377 | ,00360

Ay, = 6,283 A, | 6,283 6,81 7,31 7,79 8,25

L, = 1,679853 | L, | 1,681753 1,905142 2,124869 2,341791| 2,556509

L, = 1,679810| L, | 1,679853 1,904002 2,124151 2,341321| 2,556191

1, = 1,679806 | I, 1,679697 1,903901 2,124083 2,341274 2,556158
1L~ = ,000004 | L-1, | ,000156 ,000101 ,000068 ,000047 ,000033

4, = 1,671 A4, | 1,571 1,82 2,06 2,29 2,51

» | 05 0,6 i 0,7 I 0,8 0,9 1,0
T - . :

Ly 22,4511 22,9933 23,5408 24,0928 | 24,6487 | 25,2080

L, 20,1686 20,8327 21,4887 22,1381, |22,7820 |23,4212

A, | 17,87 18,57 19,26 19,94 20,60 21,25

Ly 8,77945 9,22569 9,66790 | 10,10663 | 10,54233 |10,97538

s 8,77322 9,21907 9,66093 | 10,09937 @ 10,54386 | 10,96775

ks | 8,76965 9,21545 9,65724 | 10,09559 | 10,53997 | 10,96377

Ly, ,00357 ,00362 ,00369 ,00378 ,00389 ,00398

4, | 87 9,16 9,61 10,05 10,49 10,93

Ly 2,769459 | 2,980961 | 3,191261 | 3,400551| 3,608982 3,816674

L, 2,769237 | 2,980802 3,191146 | 3,400466 3,608917 3,816624

I 2,769212 | 2,980784 3,191132| 3,400455 3,608909 3,816617

L1, | ,000025 ,000018 ,000014 ,000011|  ,000008| ,000007
o 2,73 2,95 3,16 3,37 3,58 3,79

36
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gute Naherungen fir die Eigenwerte 4, von (6.16) sind. Dies wird
durch Tab. 1 bestatigt; die Abweichung von den Ritzschen Werten
1st aber doch so gross (verglichen mit L,”— L,), dass wir mit
Sicherheit behaupten kénnen: Fir n = 1,2 und 0 < » <1 ist

A, <2, (6.20)

Es 1st daher sehr wahrscheinlich, dass diese Ungleichung auch fir
n = 3 gilt: Dann sind nach (3.15)—(3.18) die beiden kleinsten Wurzeln
(I; und ly) von

det [(Apy A ) — (A3 +1) (ps Apy) + Ay Ly 9] = 0 (6.21)

untere Schranken fiir A, und A,.

Aus Tabelle 1 ist ersichtlich, dass die Differenz zwischen den
oberen und unteren Schranken am grossten wird, wenn » = 0 1ist.
Gerade in diesem Falle ist es aber leicht moglich, beide Schranken
durch Iteration zu verbessern. Da nimlich nach (6.7) fir » =0

einfach
d2

Ayj=—2xe®- e (6.22)
1st, folgt nach bekannten Sdtzen iber Integralgleichungen:
A7y (2) = [ Gl o) p(a)da’ (6.23)
0
mit
’ |z, wenn z < 2’
g, ') = (6.24)

)2/, wenn z > 2’

(@, Ay y) lasst sich in der symmetrischen Form:
oo oo ’
e—(z+x)

(p. 451 9) = [ [ Ga o) £ 9@ (@) deda’ (625)

x-x ]
0 0

schreiben; dies ist hier wichtig, weil fiir unsere Koordinatenfunk-
tionen (6.5) das Integral (6.23) nicht geschlossen ausgewertet werden
kann, wohl aber das Doppelintegral in (6.25). Es ist namlich —
unter Benutzung der Abkiirzung M™ aus (6.10) —

" —a)J o k+j+1
(li"iew[/ (1me‘“')ke“‘”dx’]da:=M U (6.26)

Ck+1

o

0 0

und folglich wegen der Symmetrie des Integrals (6.25):

(1—e=)3, A7 (1—e=)F) = (jjl + kil)MkHH(l)’ (6.27)
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womit die (y;, Ay y,) leicht berechnet werden kénnen. Ersetzen
wir nun in den Sikulargleichungen (6.14), (6.15) und (6.21) (v;, ¥n),
(v Ay,) und (Ay, Ayp,,) durch (v, A7 v,), (Y vn) und (v,
A, v,), so erhalten wir an Stelle von I/, L, und [;, die um einen
,>;halben Iterationsschritt’ verbesserten Werte L,, 'L, und I,
welche in der ersten Kolonne von Tabelle 1 eingetragen sind. Man
sieht daraus, dass der Abstand der Fehlerschranken durch diese
Iteration fiir den zweiten Eigenwert auf etwa ein Zehntel, fir den
ersten sogar auf ein Vierzigstel des alten Wertes heruntergedriickt
werden konnte.

7. Zulassungsbedingungen fiir die Koordinatenfunktionen.

R. Courant!®) hat fiir elliptische Differentialgleichungen unter-
sucht, welche Funktionen zum Variationsproblem (7.1) zugelassen
werden diirfen, wenn dieses mit dem Eigenwertproblem (1.1) aqui-
valent sein soll. Leider sind diese mathematisch exakten Kriterien
fir die praktische Rechnung wenig geeignet; wir wollen deshalb
versuchen, allgemein giiltige und leicht kontrollierbare Bedingungen
fiir die Aquivalenz von (1.1) und (7.1) zu finden.

Den linearen Raum der zum Variationsproblem

0L(y) =0 | (7.1)

zugelassenen Funktionen v wollen wir, in Anlehnung an Courant-
HiLBerT!®), mit © bezeichnen und fiir ,,p gehort zu D* kurz p€D
schreiben. — (7.1) bedeutet: Ist 9 = f, eine Lisung dieses Varia-
tionsproblems, so muss in erster Naherung gelten:

OL(y) =L(f;+ dy) —L(f;) =0, wenndyp€D, (7.2

oder, was offenbar dasselbe bedeutet:
d

?—;-L(ff,ﬁs(p):() fir e=0, wenn @€D. (7.3)
Nach der Definition von L(y) fihrt dies auf die Gleichung:
(9, Af) + (fu A @) —L(f:) {(. fs) + (i 9) } = 0. (7.4)

Andrerseits folgt aus der Eigenwertgleichung (1.1) fiir jede Funk-
tion ¢, fiir welche das hermitesche Produkt definiert ist*):

((p’Afi)+(Afiﬂ@)_li{(QD’fi)_}_(fi!qg)}:O’ (7.5)

*) Also fiir jedes @ € §), wenn $ den zugehorigen Hllbertschen Raum bezeichnet;
vgl. NEvmann?), S, 21.
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Die beiden letzten Gleichungen, und damit das Variationsproblem
(7.1) und das Eigenwertproblem (1.1) sind offenbar dann &quiva-
lent, wenn wir den Funktionsraum D wie folgt definieren:

(¢, ¢) < o0, (9, Ag)<oo¥)|
und (7., Ag) — (s, 9 (7.6)

Da das Ritzsche Verfahren auf dem Variationsprinzip (7.1) be-
ruht, miissen, damit die Satze des 2. Kapitels giiltig sind, die Koor-
dinatenfunktionen y, in (2.1) diesen Bedingungen (y, € D) gentigen.
Die letzte Bedingung in (7.6) scheint zunéchst unbrauchbar zu sein,
da wir ja die Eigenfunktionen f, noch nicht kennen; in den meisten
Fillen 1st es aber leicht, das qualitative Verhalten der Eigenfunk-
tionen in allen wichtigen Punkten (am Rande, im Unendlichen,
1in singuldren Punkten usw.) so weit zu bestimmen, dass die Giiltig-
keit von (7.6) (d. h. bei Differentialoperatoren: Das Verschwinden
der Randterme bei der partiellen Integration) nachgepriift werden
kann. '

Oft st es moglich, (@, A¢) durch partielle Integration in eine
symmetrische Gestalt zu bringen**), die wir mit (¢ A ¢) — ohne
Komma — bezeichnen wollen. Dann geniigen fiir die Aquivalenz
des Variationsproblems

pE€®D, wenn

WAP) _
S oo (7.7)

mit (1.1) die etwas schwécheren Bedingungen :

=D de b

(@, p)<oo, (pAg) <oo
i an—ane | (78)

*) Dies soll bedeuten: (@,®) und (@, A @) — oft sind dies uneigentliche
Integrale — ewistieren, d. h. divergieren nicht.
**) Beispiele: 1. Fir A= —d?*/dx? also A@p =—¢@", ergibt sich
b b
pAp) = - [pg de= [ @)dz= (@A),
a

a
wenn am Rande (x = a, x = b)
@ = 0 oder ¢" = 0.
2. Fiir den Operator

A= (— " A+V (=, y,z))

2m

ergibt sich aus dem Greenschen Satz (falls die Randterme verschwinden):

(¢Aq9):fff(%|gradqal2+V(w, y,z)-qﬂ)dmdydz.

Fiir weitere Beispiele vgl. Courant-HiLBerT I1'8), Kap. VII, sowie die Diss.
des Verf.5).
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Awuch fiir das Ratzsche Verfahren geniigen dann die Bedingungen
P, €D,, wenn wir diberall (v, A p,,) durch (v, A y,,) ersetzen.

Analog kann man zeigen, dass fiir die Anwendung des erweiterten
Ritzschen Verfahrens in der Form (3.11) und fiir den Weinstein-
schen Einschliessungssatz, also iiberall da, wo der Ausdruck (Ae,
A ¢) auftritt, die Bedingungen:

p€ED d.h. ¢ €D und (Agp, Ag) <oco (7.9)

erfiillt sein miissen.

8. Beweise zum erweiterten Ritzschen Verfahren.

In diesem Kapitel wollen wir zeigen, wie die vier Sétze des
3. Kapitels (Gl. (3.12)—(3.17)) bewiesen werden konnen, doch wer-
den wir die Beweise nicht bis in alle Einzelheiten durchfithren. —
Es 1st fiir das Folgende vorteilhaft, die Hilfsfunktion

(Ap, Ap)—p(p. Ap) 8.1
((P’A(P)—’P(‘Pa()?) ( ' )

einzufithren, welche fiir alle €D’ definiert ist. Man iberlegt sich
leicht, dass [(p, ¢) fiir jede Eigenfunktion stationér und gleich dem
zugehorigen Eigenwert wird. Beschrinken wir uns aber auf einen
durch den Ansatz

L(p, p)=

¥ = 231 P15 P €D (8.2)
=1

aufgespannten (n-dimensionalen) Funktionenraum ®,’, so wird
L(p, ) In D,’ genau dann stationir, wenn

()Z(p,(}‘?): Ol(p:z""’zn) :0 fur m:l,,,_,’n,, (8.3)

0z, 02,,

oder, wie sich nach kurzer Rechnung ergibt*):
;’{(A 90 Apn) —(p+ 1) (9, Ap,) + 2l g eu) 2 =0, (84)
=1

Dieses Gleichungssystem fiir die #, ist genau dann lésbar, wenn
die Determinante der Koeffizienten verschwindet: Die stationdren
Werte von I (p. @) in D, sind also identisch mit den Wurzeln 1;(p)
von (8.11). Fiir jeden dieser Werte gibt es eine Losung z,(p),...,

*) Vgl. Lit. Nr. 6, Gl. (62)—(65).
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2in(p), (die wir als ,,Losungsvektor in D, ansehen kénnen) und
eine zugehorige ,,Losungsfunktion‘ h(p):

hi(p) = d za(P)@r, 1=1,...,n, (8.5)
=1

welche fiir p > oo in eine der Ritzschen Losungsfunktionen tiber-
geht. — Aus GIl. (8.3) ergibt sich nun, dass

dly _ Ol(ph) | 53 Olp, ) diw _ OUD.K) (8.6)

dp op oz dp  o0p ’

m=1
weiter aus der Definition von [(p, ¢) und der Ungleichung (5.8):

olip.¢) _ (@) (A, Ap)—(p, Ag)*

oip  {g. Ap)-plp,9)® =0 (8.7)
fiir jedes @ €D’, also insbesondere fiir jedes h,, womit der erste Satz
bewiesen 1ist.

Der erste Teil des zweiten Satzes ergibt sich sofort aus (3.11),
wenn wir jedes Element der Determinante durch p dividieren und
1/p gegen Null streben lassen; der zweite Teil folgt, wie man am
besten aus Fig. 1 abliest, aus der Symmetrie dieser Figur beziiglich
Vertauschung von p und I.

Den dritten Satz beweisen wir zuerst fiir p = 0 (wir werden
weiter unten sehen, dass dies geniigt): Dann ist einfach

_ _ (Ag,Aq)
und die h; konnen, da (Ah;, Ak, stets positiv ist, durch
(Ahg, Ahy) = 8,5, (hy, Ah) — = 8, (8.9)

l'i

normiert werden, was sich am schnellsten durch Anwendung des
Ritzschen Verfahrens — insbesondere von Gl. (2.7) — auf den
Operator A= und mit den Koordinatenfunktionen A ¢, ergibt. Die
h; wie auch die ,,gewohnlichen’ Ritzschen Lésungsfunktionen g,
von (2.3) bilden je ein vollstindiges Funktionensystem in ®,"; man
kann also jede Funktion p€D,’ als Linearkombination der g; oder
der h; darstellen:

Y = Zn' T G = i’xmhm. (8.10)
m=1 m=1

Fiir unseren Beweis brauchen wir nun insbesondere ein solches v,
tir welches

Ty =By = e, =L4=0; Hp3=...=u,=0. (8.11)

Das sind (n — 1) homogene Gleichungen fiir » unabhéngige Un-
bekannte; es gibt also sicher fiir jedes j eine solche Funktion, und
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da wir sowohl die L, wie auch die I; der Grisse nach geordnet haben,

i i) = 37 %2 (2-——4)1 : 5.12)

m=i \m=1i

i i —1
_ 3 a:?n( Zw;‘;) <L. 8.13)
m=1 m=1
Ist nun L, < 0, so folgt aus (8.13), (8.8) und (5.15):
L(y) <L (y), (8.14)

und aus den letzten drei Ungleichungen I, < L;, womit die erste
Zeile von (3.15) fiir p = 0 bewiesen ist; ganz analog verlduft der
Beweis fiir die zweite Zeile. Ist aber p = 0, so kann das Problem
durch die Transformation

A-A—p-1, Li=Li—p L=L-p (815

auf den Spezialfall p = 0 zuriickgefiihrt werden.

Der vierte Satz endlich ergibt sich durch Anwendung des Ritz-
schen Verfahrens, insbesondere Gl. (2.8)—(2.11), auf den zu Beginn
des 8. Kapitels definierten Operator B mit den Eigenwerten u, und
Riicktransformation in die A-Skala gemiss Gl. (8.3). Auf die Wie-
dergabe dieser elementaren, aber etwas umstéindlichen Rechnungen
soll hier verzichtet werden, da man sich den Sachverhalt leichter
an Hand einer Skizze (als rechnerisch) klarmachen kann.

9. Zwei Ergiinzungen.

1. Alle oben beschriebenen Methoden lassen sich fast unveréndert
auch dann anwenden, wenn neben den diskreten Eigenwerten ein
- Kontinuum auftritt, indem man namlich dieses Streckenspektrum
als Limes eines sehr dichten Linienspektrums auffasst®). Besteht
z. B. das Gesamtspektrum eines Operators A aus zwei diskreten
Eigenwerten 4,, 4, und einem Kontinuum mit der Untergrenze
A" > Ay, s0 gelten fiir die Ritzschen Werte die Ungleichungen:

Wkl dyxly, HEL<€ el 0 @)

Kennt man A**) und ist L, < A’, so wird man fir das erweiterte
Ritzsche Verfahren mit Vorteil p = A’ wihlen; dann ist namlich

<l L<l, N<L<...<l,, (9.2)
*) Dies ergibt sich aus einer unpublizierten Untersuchung des Verf. mit

Hilfe des hierfiir besonders geeigneten Neumannschen Formalismus?).
*%) Z. B. bei der Berechnung von Bindungsenergien, wo 4" =0 ist.
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wodurch die beiden diskreten Eigenwerte in Schranken einge-
schlossen sind.

2. Oft 1st es mit Hilfe gruppentheoretischer Methoden maglich,
die gesamte Menge der Eigenfunktionen in Teilmengen einzuteilen,
die sich durch ihre Symmetrieeigenschaften unterscheiden; dann
wird man natiirlich auch den Raum D bzw. ©’ der zulédssigen Koor-
dinatenfunktionen in die entsprechenden invarianten Teilrdume
aufspalten, d. h. von den Koordinatenfunktionen jeweils dieselben
Symmetrieeigenschaften fordern, welche der gesuchten Eigenfunk-
tion zukommen.

Diese Arbeit ist in der Hauptsache bei der Vorbereitung und
Durchfithrung numerischer Berechnungen von Bindungsenergien
und Streuphasen entstanden, welche leider wegen der augenblick-
lichen Unsicherheit in den Kraftansitzen eingestellt werden mussten.
Der Anwendungsbereich der hier geschilderten Methoden geht aber
sicher weit iiber diese speziellen Anwendungen hinaus.

Herrn Prof. Dr. Paur ScaerreErR mochte ich fiir die Unterstiit-
zung und Forderung dieser Arbeit herzlich danken. Ausserdem bin
ich Herrn ALrFrED AEPPLI, dipl. math. ETH., fiir die kritische Durch-
sicht des ersten Entwurfes zu Dank verpflichtet.
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