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Ein neues Variationsverfahren zur genäherten Berechnung der
Eigenwerte hermitescher Operatoren

von Hans J. Maehly (Phys. Institut der ETH., Zürich).

(6. III. 1952.)

Summary. A new variation procedure for the approximate computation of
eigenvalues is developped. It is well known that the RiTZ-Method will give upper
bounds for the lowest eigenvalues; by help of our new procedure however, upper
and lower bounds can be calculated (even for operators whose spectrum extends
from — oo to + co), if the positions of the neighbouring eigenvalues can roughly
by estimated. As an example, the two lowest eigenvalues A1( A2 of the differential
equation (arising in the deuteron-problem)

«2 0 +A — 0=0
are calculated with high accuracy.

1. Einleitung.

Die vorliegende Arbeit befasst sich mit Methoden zur genäherten
Berechnung der Eigenwerte eines hermiteschen Operators A, also
derjenigen Werte X(, für welche die Gleichung

Aft Xtfi (1.1)

lösbar ist. Die Lösung dieser Gleichung ist bekanntlich äquivalent
mit der Aufgabe, diejenigen Funktionen ip ft zu finden, für
welche der Erwartungswert von A, d. h. der Quotient

bei allen Variationen von y> stationär bleibt*), und es ist

L(fl)=^Jf Xi. (1.8)

*) Genauer: Für alle zur Variation zugelassenen Funktionen; vgl. hierzu
und für einen kurzen Beweis der Aequivalenz der Eigenwertgleichung (1.1) mit
dem Variationsproblem das 7. Kapitel dieser Arbeit.
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Mit (cp, ip) bezeichnen wir hier ein „hermitesches Produkt" mit den
Eigenschaften

(cp, ip) (ip, cp) (1.4)
und

(ip, ip) > 0 für ip 4= 0 *); (1.5)

die Hermitezität von A wird dann durch die Gleichung

(cp, Aip) (A cp, ip) (1.6)

ausgedrückt. — Oft ist das hermitesche Produkt in der Form

(cp, xp) j cpy dq (1.7)

gegeben; dann lautet die Hermitezitätsbedingung einfach:

[tp(Af)dq= ff(Acp)dq. (1.8)

2. Das Ritzsche Verfahren.

Als Grundlage für das im 3. Kapitel zu besprechende neue
Verfahren sollen hier kurz die wichtigsten Sätze über das Ritzsche
Verfahren zusammengestellt werden. Dieses besteht bekanntlich
darin, dass man zum Variationsproblem ôL(ip) 0 nur
Linearkombinationen von n gegebenen, voneinander linear unabhängigen
„Koordinatenfunktionen" xpx. f2, ipn zulässt**). Man setzt also

ip in der Form

-L(ip)

ZJyiVi***) (2.1)

enten ylt y2, yn so, dass

0 m 1, 2, n (2.2)

Entsprechend den Eigenfunktionen und Eigenwerten des exakten

*) Eine genauere Definition gibt Neumann1), S. 21.

**) Vgl. neben den Originalarbeiten von W. Ritz2) die Abhandlungen von
Collatz3)4)5) und die Diss, des Verf.6). Hylleraas7) hat wohl als erster die

Anwendungsmöglichkeiten des Ritzschen Verfahrens zur genäherten Berechnung
der Eigenwerte der Schroedinger-Gleichung näher untersucht.

***) Die ipl müssen natürlich „zur Variation zugelassene Funktionen" sein,
wie die ip in (1.2); vgl. (7.6).
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Eigenwertproblems (1.1) erhält man auf diese Weise n
„Lösungsfunktionen" gt,

n

9i=2Jynfi, i l, 2, ...,» (2.3)
7=1

und n „Ritzsche Werte"

Li L(gi), t l,2, ...,«. (2.4)

Analog zu einigen Spezialfällen, für welche das Ritzsche Verfahren
näher untersucht wurde, kann man ganz allgemein folgende Sätze
beweisen:

1. Die Ritzschen Werte sind identisch mit den n (evtl. z. T.
mehrfachen) Wurzeln der Säkulargleichung

detKfi, A ipm)—Li (ipl,ipm)] 0 i l, 2, ...,«. (2.5)

Diese Li sind immer reell ; wir ordnen sie der Grösse nach, so dass
also

L1 <L2 <...<LM. (2.6)

2. Die g( bilden ein Orthogonalsystem und können so normiert
werden, dass

(9i>9i) 2J (fi> Vm)yuy,,
l, m \

(9i > A g,) =2J(ipt,A ipm) y„ yim LÄ òti ¦

l, m=l

(2.7)

3. Fügt man dem Ritzschen Ansatz (2.1) noch eine weitere, von
den n ersten linear unabhängige Koordinatenfunktion ipn+1 zu, so
können die Ritzschen Werte Lx, • • •, L„ nur sinken, aber nie unter
den nächst tieferen Wert des alten Systems.

4. Ist der Operator A nach unten halbbeschränkt und sein Spektrum

diskret*), so sind die Ritzschen Werte obere Schranken für die
entsprechenden Eigenwerte, d. h. es ist

X{ < Lit (2.8)

wenn die n kleinsten Eigenwerte analog zu (2.6) geordnet sind:

Xx < A2 < < Xn < (2.9)

*) Ein Operator heisst nach unten (bzw. oben) halbbeschränkt, wenn L(y>)
für alle zugelassenen Funktionen ip ein Minimum (bzw. Maximum) besitzt; z. B-
ist jeder positiv-definite Operator nach unten halbbeschränkt; vgl. Neumann1),
S. 51/52. Für den Fall gemischter Spektren, vgl. Kap. 9.
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5. Ist der Operator A nach oben halbbeschränkt und sein Spektrum

diskret, so sind die Ritzschen Werte untere Schranken für die
entsprechenden Eigenwerte, d. h. es ist

Ai >L„_I+X, i-1,2, ...,n, (2.10)

wenn wir mit Av ...,An die n grössten Eigenwerte bezeichnen:

A1>A2>...pAnp... (2.11)

Zusammenfassend können wir also sagen : Das Bitzsche Verfahren
liefert „innere Schranken" für die aussersten Eigenwerte. — Es ist
daher nur dann wirklich brauchbar, wenn es solche äussersten Eigenwerte

überhaupt gibt, wenn also A mindestens halbbeschränkt, oder
noch besser (beidseitig) beschränkt ist. Hingegen kann man z. B.
für ein reines Punktspektrum, das sich von — oobis + oo erstreckt*)
nur sagen, dass die L{ im allgemeinen nicht sehr verschieden von
gewissen, meist ungefähr den n absolut genommen kleinsten
Eigenwerten sind, doch lässt sich die Unzuverlässigkeit dieses Erfahrungsgesetzes

leicht an Beispielen zeigen.

3. Erweiterung des Ritzschen Verfahrens.

Wir wollen nun daran gehen, ein neues Variationsverfahren zu
besprechen**), das in vielen Fällen die Berechnung oberer und unterer
Schranken ermöglicht, selbst dann, wenn der Operator A nicht
einmal halbbeschränkt ist. Dagegen wollen wir vorläufig voraussetzen,
dass das Spektrum von A diskret sei; für den Fall gemischter (d. h.
teils diskreter, teils kontinuierlicher) Spektren verweisen wir nochmals

auf das 9. Kapitel am Schlüsse dieser Arbeit.
Unser Verfahren besteht im wesentlichen darin, das Ritzsche

Verfahren auf den Operator

B (A-pl)~1 (3.1)

anzuwenden; dabei ist p eine relie Zahl, 1 der Einheitsoperator
(der jede Funktion in sich selbst überführt) und B die Inverse von
(A — p 1), die durch

B (A - p 1) BA - pB 1 (3.2)

*) Solche Spektren können z. B. bei der Berechnung von Streuphasen auftreten,
wenn man die Phase (als Parameter) gibt und die „force constant" als Eigenwert
berechnet; vgl. Rosenfeld8), S. 81—82, Hulthen9) und Maehly10).

**) Kurz vor der Korrektur machte mich Herr Dr. hab. N. J. Lehmann auf
seine Dissertation19) aufmerksam, in welcher dieses Verfahren auf Grund der
Integralgleichungstheorie beschrieben ist. Trotzdem scheint mir, wegen der
Verschiedenheit der Darstellung wie auch des Leserkreises, die vorliegende
Publikation nicht ganz überflüssig geworden zu sein.
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definiert ist. Aus (1.1) und (3.2) folgt sofort, dass die Eigenfunktionen

von A und B (bis auf einen evtl. Normierungsfaktor) identisch

sind und dass die Eigenwerte Xt von A mit den Eigenwerten
Pi von B durch die Gleichungen

Vi Tfafa ; li P+PP (3-3)
Ai P ri

verknüpft sind. Hieraus folgt: Ist p kein Eigenwert von A (und
auch nicht ein Häufungspunkt von Eigenwerten), so ist der Operator
B beschränkt. Das Ritzsche Verfahren eignet sich daher gut zur
genäherten Berechnung der Eigenwerte von B: Es liefert innere
Schranken für die äussersten Eigenwerte von B und damit (durch
Rücktransformation in die X- Skala) „äussere Schranken" für n
aufeinanderfolgende, um den Wert X p liegende Eigenwerte von
A. — Diesen Gedankengang wollen wir nun mathematisch formulieren

: Wir setzen ip wieder in der Form

V-JtvtVi (3-4)
i=i

an und bestimmen die stationären Werte von

^)"-^' ^
die nach (2.5) mit den Wurzeln M Mv M2,..., Mn der
Säkulargleichung

det[(ipl,Bipm)-M(ipl,ipm)] 0 (3.6)

identisch sind. Die entsprechenden Werte in der A-Skala, die wir
li nennen wollen :

h V + ~, (3-7)

können auch direkt aus der Säkulargleichung

det {(iph ipm) -(l-p) (fl, B ipm)} 0 (3.8)

berechnet werden, die aus (3.6) durch Multiplikation jedes Elementes

mit (p—l) hervorgeht.
Bevor wir auf die Bedeutung der lf näher eingehen, bemerken wir,

dass sich die Berechnung des Operators B, bzw. der Funktionen

cp^Bip, (3.9)

leicht umgehen lässt, indem man a priori mit n Koordinatenfunktionen

cpv cp2, cpn beginnt und aus diesen die ipi nach

Wi= (A — pl) cpl Acpl~pcpl (3.10)
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berechnet. Setzt man dies in (3.8) ein, so erhält man wegen der
Hermitezität von A für die Werte l lv ln die
Säkulargleichung :

det [(A 99,, A cpm) — (p + l) (<plt Acpm) +pl (<pt, cpm)] 0 *). (3.11)

Die Bedeutung der lt-Werte und ihre Abhängigkeit vom
Parameter p kann man sich am besten an Hand einer Skizze (Fig. 1) klar
machen. Trägt man z. B. p nach rechts und l nach oben auf, so
wird die Figur symmetrisch in bezug auf die Winkelhalbierende

1

IL, ^L JL L

Fig. 1.

Qualitativer Verlauf der Kurven Ipp) für 3 Koordinatenfunktionen. Um das

asymptotische Verhalten der Kurven zu zeigen, sind die Punkte - oo und + oo

an den Rand der Figur verlegt; es ist also nach rechts eigentlich nicht p, sondern
etwa arctg p oder Th p aufgetragen und analog arctg l oder Th l nach oben.
Ferner sind zur Vereinfachung der Figur nur die ersten 4 Eigenwerte eingezeichnet.

(p Ï), da Gl. (3.11) in p und l symmetrisch ist. Ferner gelten
folgende Sätze über den Verlauf der Kurven lt (p) (die Beweise sind
im 8. Kapitel zusammengefasst) :

1. Für alle l{ und p ist
4^ > 0 (3.12)
dp

2. Für p fa oo werden die lt identisch mit den n Wurzeln der

Säkulargleichung
det[(gpj, Acpm) — L (cp,, cpm)] 0; (3.13)

*) Die folgenden Sätze sind nur dann gültig, wenn die Koordinatenfunktionen
cpv. rpn den in (7.9) angegebenen Bedingungen (cpz 6 Tl') genügen.
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ist p keine Wurzel dieser Gleichung (p±Lt), so sind alle Wurzeln l((p)
von (3.11) endlich; andernfalls ist (3.11) nur noch vom (n—l)ten
Grade in l (bzw. vom (n—fe)ten, wenn p eine /c-fache Wurzel von
(3.13) ist).

3. Ordnet man die Lt und lf(p) der Grösse nach und ist

(3.14)
so ist

(3.15)

4. Bezeichnen wir mit Xs+l,..., XN+n n aufeinanderfolgende Eigenwerte,

welche (mit derselben Zahl j wie in (3.14)) der Ungleichung

XN+1 < < XN+j < p < XN+j+1 < < XN+n, (3.16)

gehorchen, so ist

h <XN+i für i= 1,2,..., j 1

Lj < p < Lm,
h < Ei für i =1,2,.. •> i
he P Lk für k j+l,. ¦ .,n

h>XN+1c für fc= j+l,..., w|
(3.17)

Wie muss man also vorgehen, um obere und untere Schranken für
die Eigenwerte zu berechnen Ist der Operator A nach unten
halbbeschränkt, so wird man, nach der Wahl geeigneter Koordinatenfunktionen

cp-,, cpn, zuerst aus (3.13) die L,... Ln berechnen; sie
sind nach (2.8) obere Schranken für die n ersten Eigenwerte. Zur
Berechnung unterer Schranken für die j ersten Eigenwerte müssen
wir für p einen Wert wählen, der zwischen L, und L3+1 liegt : Dann
sind die l-,,..., lj untere Schranken für Xv..., Xj. Je näher p bei
Xj+1 liegt, desto grösser und damit genauer werden diese unteren
Schranken; ist aber p > Xj+1, so kann man nur noch behaupten,
dass l-, < X2, l2 < Xs,..., I, < Xj+1. Zur Berechnung unterer Schranken

für die ersten j Eigenwerte brauchen wir daher eine möglichst
gute untere Schranke für Xj+1. — Bei unbeschränkten Operatoren
oder zur Berechnung hoher Eigenwerte mit nur wenigen
Koordinatenfunktionen, wo das Ritzsche Verfahren nicht mehr brauchbar
ist, kann man das neue Verfahren auch zur Berechnung oberer
Schranken anwenden; in diesem Falle braucht man eine obere
Schranke für einen „etwas tieferen" Eigenwert.

Es könnte zunächst erscheinen, als ob die Notwendigkeit, zur
Berechnung unterer bzw. oberer Schranken für die interessierenden
Eigenwerte zuerst solche für benachbarte (höhere bzw. tiefere)
Eigenwerte finden zu müssen, das neue Verfahren völlig wertlos
mache. Die Erfahrung zeigt aber, dass bei geschickter Wahl der
Koordinatenfunktionen und geeignet gewähltem j der Einfluss von
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p auf die gesuchten unteren und oberen Schranken sehr klein ist,
so dass es genügt, jene benachbarten Eigenwerte ziemlich roh
abzuschätzen, wofür bekanntlich eine ganze Reihe von Methoden zur
Verfügung stehen (Störungsrechnung, Differenzenrechnung, WKB-
Methode, graphische Verfahren usw.). Selbst dann, wenn diese
Hilfswerte nur Näherungswerte für die betreffenden Eigenwerte
sind, statt zuverlässige untere, bzw. obere Schranken, liefert das

neue Verfahren doch meist bessere Fehlerabschätzungen mit
weniger Rechenarbeit als etwa durch die Betrachtung der „Konvergenz"

der Ritzschen Werte bei wachsenden n möglich ist*).

4. Erweiterung des Weinsteinsehen Einschliessungssatzes**).

Zum Beweis des Weinsteinschen Satzes wenden wir das im letzten
Kapitel beschriebene Verfahren auf eine einzige Koordinatenfunktion

cp an. Dann ergibt sich an Stelle von (3.11):

(Acp,Acp)-(p + l) (cp,Acp) +pl(tp,tp) =0, (4.1)

oder, unter Verwendung der Abkürzungen :

L {cpApi L, (Ay,A<p) w2=_L {L,_L) „„. (42)

nach kurzer Rechnung

(l-L)(L-p)=w\ (4.3)

unabhängig von der Wahl des Parameters p. Nun folgt aber aus
dem 4. und 5. Satz über das Ritzsche Verfahren, dass L nie ausserhalb

aller Eigenwerte liegen kann; es gibt also, von L aus gesehen,
einen nächstkleineren und einen nächstgrösseren Eigenwert, die
wir mit XN bzw. XN+1 bezeichnen. Wählen wir nun in (4.3) p XN,

so ist nach (3,17) l > XN+1 und somit

{XN+l-L)(L-XNÌ<w\ (4.4)

Hieraus folgt der Weinsteinsche Satz: Für jede positive Zahl a

*) Diese zuletzt erwähnte Methode ist z. B. von Hylleraas wiederholt
angewandt worden7) "), sowie neuerdings von L. Hulthen und K. V. Laurikainen12)
für die im 6. Kap. behandelte Differentialgleichung.

**) Vgl. dazu die Originalarbeit von Weinstein13); nach Collatz4), S. 208,
stammt die Idee zu diesem Satz allerdings schon von N. Kryloff und N. BoGO-

LIUBOV, Bull. Acad. Sci. URSS., Classe phys. math., Leningrad (1929), p. 471.

***) Wir werden im nächsten Kapitel, Gl. (5.15), sehen, dass L(L'- L) nie
negativ ist.
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muss im abgeschlossenen Intervall zwischen L — otte und L + cc1w
mindestens ein Eigenwert liegen. — Zur Verschärfung dieses Satzes
führen wir nochmals zwei Abkürzungen ein :

d T ^N+l-Kw) X L - -J (*N+1 + xn) • (4-5)

Dann gilt identisch :

XK+1 — L d — x; L — Xy d + x (4.6)

und somit wegen (4.4) : x2 > d2 — w2. Aus den beiden letztenGlei-
chungen folgt nun der neue Satz: Ist w < d, so liegt zwischen

L — (d — yd2 — w2) und L + (d — j/d2 — w2) mindestens ein Eigenwert;

dieser Satz gilt, wie man sich leicht überlegt, a fortiori, wenn

-g-(Ay+i —*») >dP w. (4.7)

Die Anwendung beider Sätze kommt in erster Linie für die
Berechnung höherer Eigenwerte in Frage, die des zweiten vor allem
dann, wenn XN+1—XN aus der asymptotischen Eigenwertverteilung
abgeschätzt werden kann. Die dadurch gewonnenen unteren
Schranken für höhere Eigenwerte können dann als Ausgangspunkt
für das im 3. Kapitel dargestellte Verfahren benutzt werden.

5. Das Iterationsverfahren.

In diesem Kapitel sollen kurz diejenigen Sätze über das Verfahren

der fortgesetzten Näherungen zusammengestellt werden, welche
als Ergänzung zum 3. und 4. Kapitel von Bedeutung sind*).

Das Iterationsverfahren beruht bekanntlich darauf, dass bei defi-
niten Operatoren jede Funktion ip, die zur ersten Eigenfunktion
nicht orthogonal ist, durch wiederholte Anwendung des inversen
Operators A"1 immer mehr der ersten Eigenfunktion angenähert
wird. Da wir uns hier mehr für die Eigenwerte als für die
Eigenfunktionen interessieren, wollen wir vor allem die „Schwarzsehen
Konstanten" ol}:

ocPip) (ip,A->ip), j 0,1,2,... **) (5.1)

*) Eine eingehendere Diskussion dieses Verfahrens findet man z. B. bei
Collatz (loc. cit.).

**) Über die praktische Berechnung von A~l lässt sich erst dann etwas
aussagen, wenn man über A Näheres weiss; so ist z. B. bekannt, dass die Berechnung
von A~ly> auf eine Integralgleichung führt, wenn A ein Differentialoperator ist.
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und die Quotienten

(5.2)

untersuchen. Gehört ip zu den im 7. Kapitel definierten Funktionsräumen

Î) bzw. £>', so definieren wir sinngemäss a_x und <x_2 durch

a-i (f) (f> A ip) ; a._Pip) (Aip,Aip), (5.3)
SO QSjSS

0L(V)=L(V); -iL(ip)=L'(ip). (5.4)

Aus der Hermitezität von A ergibt sich für positives j :

ocj (f) (A-* ip, A-(i-tì ip), i 0,1.. .j, (5.5)

unabhängig von i, also insbesondere wegen (1.5):

oc2k(ip)=(A~*ip,A-*ip)P0, k 0,l,..., (5.6)

und für alle reellen Werte von x :

x2azk— 2x- a.2k_1+a.2k_2 ((x-A)A-kip,(x—A)A~*f)pO; (5.7)

das Gleichheitszeichen kann also höchstens für einen, nie aber
für zwei verschiedene x-Werte gelten, woraus die Ungleichung

(«2*-l(v))2 <«2ft(v) <*2*-2(» (5-8)

folgt. — Wir haben noch nachzutragen, dass A-1 ip, A~2 ip,... und
damit ax (ip), a2 (v),... nur dann für alle ip existieren, wenn 2 0

weder ein Eigenwert, noch ein Häufungspunkt von Eigenwerten
von A ist*) ; wir wollen deshalb für das Folgende annehmen, dass
entweder A positiv définit ist : Dann gilt bekanntlich :

°L(f) fa1 L(ip) >2L(ip) > ...>X1 (5.9)
und

limiL(f)=X1 falls (ip, /x) * 0, (5.10)
j oo

wobei Xx den ersten Eigenwert, f1 die zugehörige Eigenfunktion
bezeichnet; oder aber es gebe zwei aufeinanderfolgende Eigenwerte
X0 und Xv für welche

X0 < 0 < A,: (5.11)

*) Im ersten Fall kann man sich von dieser Einschränkung dadurch befreien,
dass man alle Vergleichs- bzw. Koordinatenfunktionen ip zu der zum Eigenwert
Null gehörigen Eigenfunktion /0 orthogonalisiert, d. h. (ip, /0) 0 verlangt. Ist
k 0 ein mehrfacher Eigenwert, so muss ip natürlich zu allen zugehörigen
Eigenfunktionen orthogonal sein. Vgl. Lit. Nr. 6), S. 410/411.
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Dann liegen alle Eigenwerte von A~x zwischen 1/X0 und 1/X1; nach
dem 4. und 5. Satz über das Ritzsche Verfahren ist also

i<^4fafa<i> fe °,l,... (5.12)

Aus (5.8) und (5.12) ergibt sich nach kurzer Rechnung: Es ist

entweder :

X0p2k-1L(ip)<2kL(ip)<0 (5.13)
oder*) :

Xx < 2»~1L(ip) > 2kL(ip) > 0, (5.14)
also stets:

2*L(P)(2k-1L(ip)-2kL(ip)) >0. (5.15)

Ferner ergibt sich durch Anwendung von (5.9) auf den Operator .42

2k~1L(ip)2kL(tp)>2k+1L(ip)2k+2L(ip) >Um{Xl,X2}, (5.16)

und schliesslich kann man noch beweisen, dass

lim 'L (ip) (M je nachdem ob X0 + X1 {> ?}, (5.17)

falls ip nicht zufällig zu den Eigenfunktionen von X0 bzw. X-, orthogonal

ist ; in diesem Falle wäre X0 bzw. Xx durch den nächsttieferen
bzw. nächsthöheren Eigenwert X( zu ersetzen, für welchen (ip, ft) 4= 0.

Will man nicht nur den (absolut) kleinsten, sondern auch die zweit-,
dritt-,... -kleinsten Eigenwerte von A berechnen, so kann man das

Iterationsverfahren mit dem Bitzschen kombinieren**) ; die Wurzeln
iL 'Lf der Determinanten

det [(fl)A-<i-^ipm)~iLi(ipl,A-iipm)] 0 (5.18)

streben nämlich im allgemeinen gegen die n absolut kleinsten
Eigenwerte***). Bei positiv-definitem A gilt ausserdem****):

Li >1Lip2Li> >Xi * n (5.19)

*) Die erste Möglichkeit scheint Svartholm1*) in seiner Ungleichung (2.21)
übersehen zu haben.

**) Vgl. hierzu die „Variation-Iteration-Method" von Svartholm13), sowie
die Diss, des Verf.6), S. 421.

***) Ausser wenn eine der zu diesen absolut kleinsten Eigenwerten gehörenden
Eigenfunktionen zu allen ipv..., ipn orthogonal ist; dann scheidet der betreffende
Eigenwert natürlich aus.

****) Dies ist nicht etwa mit (5.9) identisch, da die Koeffizienten ya von (2.3)
bei der Iteration im allgemeinen geändert werden.
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Für die Wurzeln jl jl(p) der Determinanten

det [(ipl,A-('-2)ipm)-(p + P) (ipl,A-(i-1)ipm) +

+ np(Vl,A--Vm)] 0 (5.20)

gelten alle im 3. Kapitel für die l{ abgeleiteten Sätze sicher dann,
wenn j gerade ist, bei positiv-definitem A aber auch für ungerade j.
Dagegen ist noch nicht allgemein untersucht worden, unter welchen
Bedingungen die so erhaltenen unteren bzw. oberen Schranken
durch die Iteration verbessert werden.

6. Anwendungsbeispiel.

Als Beispiel für die Anwendung des im 3. Kapitel beschriebenen
Verfahrens behandeln wir die Differentialgleichung:

/72 rh r—%

di-*2<P + * \ 0-° (6-1)

im Grundgebiet x 0 bis oo und mit der Randbedingung

<Z>(0)=0**), (6.2)

wobei x ein Parameter, X der gesuchte Eigenwert ist. Dieses
Eigenwertproblem hat bekanntlich für die Berechnung der Bindungsenergie

des Deuterons eine grosse Rolle gespielt (bis die Entdeckung
seines Quadrupolmomentes zu komplizierteren Kraftansätzen führte)
und ist daher von verschiedenen Autoren behandelt worden*). Die
genauesten Rechnungen sind bisher von Hulthbn ausgeführt worden,

der für verschiedene x-Werte nach dem Ritzschen Verfahren
obere Schranken für die drei ersten Eigenwerte berechnet hat12).
Als Koordinatenfunktionen verwendet Hulthbn die ersten
Eigenfunktionen der Differentialgleichung

welche exakt gelöst werden kann und ein Potential enthält, das
mit e~x/x in den wesentlichen Punkten qualitativ übereinstimmt15).
Die Eigenwerte von (6.3) sind

Xn' n(n + 2x), n l,2,..., (6.4)

*) Alle diese Arbeiten sind im letzten Artikel von Hulthen und Laurikainen12)
zitiert.

**) Das Verhalten von 0 für x^oo wird durch die Forderung (0, 0) < oo
bestimmt; vgl. (6.6) und (7.6).
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und die drei ersten Eigenfunktionen lauten, abgesehen von einem
willkürlichen Normierungsfaktor :

Wl e~xx(l — e-x)

f2 e-xx(l — e-x) ((3 + 2 x) (1 - e—) — 2)

ip3 e~xx(l — e~x) ((5+2x)(2+x)(l-e-x)2-6(2+x)(l-e-x)+3)

(6.5)

Für das Eigenwertproblem (6.1)—(6.2) sind das hermitesche Produkt
und der Operator A durch

(cp,ip) cp(x)ip(x)-^rdx,

A xex ¦ r* dx*)

gegeben, so dass also

(6.6)

(6.7)

(6.8)(cp,Aip) Jcp(x2ip-d^dx,
o

oo

(Acp,Aip)=f(x2cp-^-)(x2ip~-^-)xexdx. (6.9)
ü

Setzen wir zur Abkürzung :

i¥w(l + 2*)= f (1~e T e-il+z*)xdc

Z(~ir+l-(l)-ln(k + l + 2x

so erhält man mit den Koordinatenfunktionen (6.5) :

PO

(fl,ip1)= /"Jlz£3!..-a+«^

(6.10)

-e-—"cdx M™(l + 2x)

(Wi'Vz) (3+-2*)M(3)(1 + 2*)-2M(2>(1+-2k)

(ip2, ip2) (3 + 2 x)2M(4>(1 + 2»)-
— 4 (3+-2 *) M<3) (1 + 2*) +4M(2)(1 + 2«)

(6.11)
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und so fort. Ferner ergibt sich nach einiger Rechnung:

0 0
9

1

2(3+«)
1 3

1 + x (l + x)(Z + 2x)

8

3 3-(ll + 6x)

(Aip.AipP^ -^ s ^±1^1(6.13)
(l + x)(3+2x) (3 + 2 x) (2+x)

27

Aus diesen Matrizen wurden die Ritzschen Werte Lf und die
„Grammeischen Werte" L/*) als Wurzeln der Säkulargleichungen

det [(ipl,Aipm)—L(ipl, ipm)] 0 (6.14)
und

det [(A ipt, Aipm)—L'(ip,, A ipm)] 0 (6.15)

für x 0, 0,1, 1 berechnet (siehe Tabelle 1).
Zur Berechnung unterer Schranken für Xx und X2 nach dem im

3. Kapitel geschilderten Verfahren benötigen wir zuerst eine grobe
untere Schranke für den 3. oder 4. Eigenwert. Hiefür verwenden
wir die WKB-Methode**) in folgender vereinfachter Weise: Wir
schreiben zuerst die Differentialgleichungen (6.1) und (6.3) in der
Form:

(6.16)

(6.17)

Integriert man %' von 0 bis zu demjenigen Wert x-,', bei welchem
%' 0 wird, so ergibt sich nach einiger Rechnung :

Xi p
f %'dx= I Vn(n + 2x)~^Ç——x2dx nn (6.18)

0 0

d*0
+ Z2<P 0-

dx* ^7" ' *-]/*-?-*•.
d*V

i '2 O *'-]/*'¦!£*-*'

*) Gl. (6.15) entspricht der Gl. (5.18) mit ; — 1 ; analog zu (5.19) muss

L/ — Li > 0 sein und die Grösse dieser Differenz gibt einen Anhaltspunkt für
den „Fehler" Lt — kt; vgl. hierzu auch die Diss, des Verf.6).

**) Eine ausführliche Darstellung dieser Methode findet sich bei Kemble16),
eine kürzere z. B. bei Schiff17).
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gute Näherungen für die Eigenwerte Xn von (6.16) sind. Dies wird
durch Tab. 1 bestätigt; die Abweichung von den Ritzschen Werten
ist aber doch so gross (verglichen mit Lp — Ln), dass wir mit
Sicherheit behaupten können: Für n 1,2 und 0 < x < 1 ist

An < Xn (6.20)

Es ist daher sehr wahrscheinlich, dass diese Ungleichung auch für
n 3 gilt : Dann sind nach (3.15)—(3.18) die beiden kleinsten Wurzeln
(li und l2) von

det [(A iplt A ipm) — (A3 + l) (iPl, A ipm) + A31 (ipt, ipm)] 0 (6.21)

untere Schranken für X± und X2.

Aus Tabelle 1 ist ersichtlich, dass die Differenz zwischen den
oberen und unteren Schranken am grössten wird, wenn x 0 ist.
Gerade in diesem Falle ist es aber leicht möglich, beide Schranken
durch Iteration zu verbessern. Da nämlich nach (6.7) für x 0

einfach
A0 -xe*--£- (6.22)

ist, folgt nach bekannten Sätzen über Integralgleichungen:
oo

A~1ip(x) f G(x,x') -~ ip(x')dx' (6.23)
Ò

mit
\x wenn x < x' \G(x,x)=[, - ¦ (6.24)
| x wenn x > x \

(cp, A~l ip) lässt sich in der symmetrischen Form :

PO CO

(cp,Ailip) /l G(x,x')—x-x—cp(x)ip(x')dxdx' (6.25)
ò ô

schreiben; dies ist hier wichtig, weil für unsere Koordinatenfunktionen

(6.5) das Integral (6.23) nicht geschlossen ausgewertet werden
kann, wohl aber das Doppelintegral in (6.25). Es ist nämlich —
unter Benutzung der Abkürzung M(n) aus (6.10) —

a-e-*)> c.„ / (1 — e-x'f e~x'dx'
io

und folglich wegen der Symmetrie des Integrals (6.25

dx=M^+pX)_ {626)

((l-e-*p, A-\l-e~xf) (-rlr- + -^) M*+M (1), (6.27)
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womit die (y>i, A0 ipm) leicht berechnet werden können. Ersetzen
wir nun in den Säkulargleichungen (6.14), (6.15) und (6.21) (ip1; ipm),
(y>i>Aipm) und (Aipl; Aipm) durch (ipl; A^ip^, (ipu ipm) und (iph
A0ipm), so erhalten wir an Stelle von L/, L, und lit die um einen
„halben Iterationsschritt" verbesserten Werte Lt, xLi und H{,
welche in der ersten Kolonne von Tabelle 1 eingetragen sind. Man
sieht daraus, dass der Abstand der Fehlerschranken durch diese
Iteration für den zweiten Eigenwert auf etwa ein Zehntel, für den
ersten sogar auf ein Vierzigstel des alten Wertes heruntergedrückt
werden konnte.

7. Zulassungsbedingungen für die Koordinatenfunktionen.

R. Courant18) hat für elliptische Differentialgleichungen untersucht,

welche Funktionen zum Variationsproblem (7.1) zugelassen
werden dürfen, wenn dieses mit dem Eigenwertproblem (1.1)
äquivalent sein soll. Leider sind diese mathematisch exakten Kriterien
für die praktische Rechnung wenig geeignet; wir wollen deshalb
versuchen, allgemein gültige und leicht kontrollierbare Bedingungen
für die Äquivalenz von (1.1) und (7.1) zu finden.

Den linearen Raum der zum Variationsproblem

OL(ip)=0 (7.1)

zugelassenen Funktionen ip wollen wir, in Anlehnung an Courant-
Hilbbrt18), mit Î) bezeichnen und für ,,ip gehört zu Î)" kurz ipÇ.X>

schreiben. — (7.1) bedeutet : Ist -ip fi eine Lösung dieses
Variationsproblems, so muss in erster Näherung gelten :

ôL(ip) =L(fi + dy>)~ L(fi) 0, wenn ôip£T>, (7.2)

oder, was offenbar dasselbe bedeutet:

~L(ft+eq>)=-0 füre 0, wennçfaD. (7.3)

Nach der Definition von L(ip) führt dies auf die Gleichung :

(cp,Afi) + (fi,Acp)-L(U){(cP,fl) + (fi,cp)}=0. (7.4)

Andrerseits folgt aus der Eigenwertgleichung (1.1) für jede Funktion

cp, für welche das hermitesche Produkt definiert ist*) :

(<p,Afi) + (Afi, cp)-Xi{(cp, U) + (U, cp)}=0, (7.5)

*) Also für jedes cp € §, wenn § den zugehörigen Hilbertschen Raum bezeichnet;
vgl. Neumann1), S. 21.
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Die beiden letzten Gleichungen, und damit das Variationsproblem
(7.1) und das Eigenwertproblem (1.1) sind offenbar dann äquivalent,

wenn wir den Funktionsraum Î) wie folgt definieren :

/- «. [ (<P> v) < °° » (v, A cp) < oo *) 1

cp G D, wenn Pfafa vy' / ' ']¦ (7.6)
(und (/É,i4ç>) (i4/„ ç>) J

Da das Ritzsche Verfahren auf dem Variationsprinzip (7.1)
beruht, müssen, damit die Sätze des 2. Kapitels gültig sind, die
Koordinatenfunktionen ipl in (2.1) diesen Bedingungen (ipl 6 £)) genügen.
Die letzte Bedingung in (7.6) scheint zunächst unbrauchbar zu sein,
da wir ja die Eigenfunktionen ft noch nicht kennen ; in den meisten
Fällen ist es aber leicht, das qualitative Verhalten der Eigenfunktionen

in allen wichtigen Punkten (am Rande, im Unendlichen,
in singulären Punkten usw.) so weit zu bestimmen, dass die Gültigkeit

von (7.6) (d. h. bei Differentialoperatoren : Das Verschwinden
der Randterme bei der partiellen Integration) nachgeprüft werden
kann.

Oft ist es möglich, (cp, A cp) durch partielle Integration in eine
symmetrische Gestalt zu bringen**), die wir mit (cpAcp) — ohne
Komma — bezeichnen wollen. Dann genügen für die Äquivalenz
des Variationsproblems

s ^Af) 0 (7.7)
(cp, cp) '

mit (1.1) die etwas schwächeren Bedingungen:

cp^„ d.h.j(9,'/;<?°; {(p^f\°°\- (7.8)r )und (UAcp) (Afi, cp) |
v '

*) Dies soll bedeuten: (cp,cp) und (cp, Acp)— oft sind dies uneigentliche
Integrale — existieren, d. h. divergieren nicht.

**) Beispiele: 1. Für A= -d2/dx2, also Acp =—cp", ergibt sich

b b

(cp, Acp) - f cpcp" dx f (cppdx (cp Acp),
a a

wenn am Rande (x a, x D)

cp 0 oder cp' 0.
2. Für den Operator

ergibt sich aus dem Greenschen Satz (falls die Randterme verschwinden):

(cpAcp) Iff t—— | grad cp |2 + V(x, y, z) -cp2\ dxdydz

Für weitere Beispiele vgl. Courant-Hilbert II18), Kap. VII, sowie die Diss.
des Verf.6).
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Auch für das Bitzsche Verfahren genügen dann die Bedingungen
^j€X)s, wenn wir überall (ip^AipP) durch (ipiAipm) ersetzen.

Analog kann man zeigen, dass für die Anwendung des erweiterten
Ritzschen Verfahrens in der Form (3.11) und für den Weinstein -

schen Einschliessungssatz, also überall da, wo der Ausdruck (Acp,
A cp) auftritt, die Bedingungen :

cp G D' d.h. cpet) und (A cp, A cp) < oo (7.9)

erfüllt sein müssen.

8. Beweise zum erweiterten Ritzschen Verfahren.

In diesem Kapitel wollen wir zeigen, wie die vier Sätze des
3. Kapitels (Gl. (3.12)—(3.17)) bewiesen werden können, doch werden

wir die Beweise nicht bis in alle Einzelheiten durchführen. —
Es ist für das Folgende vorteilhaft, die Hilfsfunktion

l(p,cp)= lAf,AV)-yy>,AV) (8>1)
(cp,Acp)-p(cp,cp)

einzuführen, welche für alle cptZQ' definiert ist. Man überlegt sich
leicht, dass l(p, cp) für jede Eigenfunktion stationär und gleich dem
zugehörigen Eigenwert wird. Beschränken wir uns aber auf einen
durch den Ansatz

cp £zlcpl, ^eX)' (8.2)
i=i

aufgespannten (n-dimensionalen) Funktionenraum £>„', so wird
l (p, cp) in !£)„' genau dann stationär, wenn

dl(p,cp)
__ dl(p,z,...,zn)

özm dzm

oder, wie sich nach kurzer Rechnung ergibt*) :

0 für m 1,.. n, (8.3)

£{(Acpl,Acpm) — (p + l)(cpl,AcPm)+pl(cpl,cpm)}zl 0. (8.4)
i=i

Dieses Gleichungssystem für die zl ist genau dann lösbar, wenn
die Determinante der Koeffizienten verschwindet: Die stationären
Werte von l(p. cp) in î)„' sind also identisch mit den Wurzeln lt(p)
von (3.11). Für jeden dieser Werte gibt es eine Lösung zn(p),...,

*) Vgl. Lit. Nr. 6, Gl. (62)—(65).
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Zin(p)> (die wir als „Lösungsvektor" in D„' ansehen können) und
eine zugehörige „Lösungsfunktion" ht(p) :

n
hi(p) 2J z*i(P)fi> i l,---,n, (8.5)

welche für p fa oo in eine der Ritzschen Lösungsfunktionen übergeht.

— Aus Gl. (8.3) ergibt sich nun, dass

dp _ dl(p,hj) y dl(p,hf) dzm _ dl(p,hj) _ g g,
dp dp ¦", dzm dp dp ' V fa

c c m—l m r r
weiter aus der Definition von l(p, cp) und der Ungleichung (5.8) :

àl(p,cp) _ (cp,cp)'(Acp, A<p)-(<p, Acp)2 > q ,g rjs
dp {(cp, A cp) - p (cp, cp)}2 "^ ' \ •

für jedes tpGD', also insbesondere für jedes h(, womit der erste Satz
bewiesen ist.

Der erste Teil des zweiten Satzes ergibt sich sofort aus (3.11),
wenn wir jedes Element der Determinante durch p dividieren und
1/p gegen Null streben lassen; der zweite Teil folgt, wie man am
besten aus Fig. 1 abliest, aus der Symmetrie dieser Figur bezüglich
Vertauschung von p und l.

Den dritten Satz beweisen wir zuerst für p 0 (wir werden
weiter unten sehen, dass dies genügt) : Dann ist einfach

'«-'«¦*»-¦«£$£. <8-8>

und die Ti,- können, da (Aht, Ah{) stets positiv ist, durch

(A hf, A h,) ou, (hi, A h,) -- òi3 (8.9)
li

normiert werden, was sich am schnellsten durch Anwendung des
Ritzschen Verfahrens — insbesondere von Gl. (2.7) — auf den
Operator A~l und mit den Koordinatenfunktionen Acpt ergibt. Die
hi wie auch die „gewöhnlichen" Ritzschen Lösungsfunktionen gf
von (2.3) bilden je ein vollständiges Funktionensystem in X>P; man
kann also jede Funktion yfaD/ als Linearkombination der gt oder
der hi darstellen:* n n

W J] xmgm £xmhm. (8.10)
m=l m=l

Für unseren Beweis brauchen wir nun insbesondere ein solches ip,
für welches

xi x2 — • • • xi-i 0; xi+1 xn 0. (8.11)

Das sind (n — 1) homogene Gleichungen für n unabhängige
Unbekannte; es gibt also sicher für jedes j eine solche Funktion, und
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da wir sowohl die Lt- wie auch die lt der Grösse nach geordnet haben,
ist

i(w)-E<(Ei-<) >li> {8-12)
m-=i \m=i m j

L(iP) jjlmx2JÈxìY<Li. (8.13)
m=l \m=l /

Ist nun Li < 0, so folgt aus (8.13), (8.8) und (5.15):

l (v) < L (f) (8.14)

und aus den letzten drei Ungleichungen lt < Lt, womit die erste
Zeile von (3.15) für p 0 bewiesen ist; ganz analog verläuft der
Beweis für die zweite Zeile. Ist aber p 0, so kann das Problem
durch die Transformation

A A — p ¦ 1, Li Li — p, li li — p (8.15)

auf den Spezialfall p 0 zurückgeführt werden.
Der vierte Satz endlich ergibt sich durch Anwendung des

Ritzschen Verfahrens, insbesondere Gl. (2.8)—(2.11), auf den zu Beginn
des 3. Kapitels definierten Operator B mit den Eigenwerten p{ und
Rücktransformation in die X-Skala gemäss Gl. (3.3). Auf die
Wiedergabe dieser elementaren, aber etwas umständlichen Rechnungen
soll hier verzichtet werden, da man sich den Sachverhalt leichter
an Hand einer Skizze (als rechnerisch) klarmachen kann.

9. Zwei Ergänzungen.

1. Alle oben beschriebenen Methoden lassen sich fast unverändert
auch dann anwenden, wenn neben den diskreten Eigenwerten ein
Kontinuum auftritt, indem man nämlich dieses Streckenspektrum
als Limes eines sehr dichten Linienspektrums auffasst*). Besteht
z. B. das Gesamtspektrum eines Operators A aus zwei diskreten
Eigenwerten Xx, X2 und einem Kontinuum mit der Untergrenze
X' > X2, so gelten für die Ritzschen Werte die Ungleichungen:

X1 < L., X2 < L2, X'< Ls < < Ln (9.1)

Kennt man X'**) und ist L2 < X', so wird man für das erweiterte
Ritzsche Verfahren mit Vorteil p X' wählen; dann ist nämlich

k<Xi, 12<X2, X'<13< <ln, (9.2)

*) Dies ergibt sich aus einer unpublizierten Untersuchung des Verf. mit
Hilfe des hierfür besonders geeigneten Neumannschen Formalismus1).

**) Z. B. bei der Berechnung von Bindungsenergien, wo X' 0 ist.
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wodurch die beiden diskreten Eigenwerte in Schranken
eingeschlossen sind.

2. Oft ist es mit Hilfe gruppentheoretischer Methoden möglich,
die gesamte Menge der Eigenfunktionen in Teilmengen einzuteilen,
die sich durch ihre Symmetrieeigenschaften unterscheiden; dann
wird man natürlich auch den Raum £> bzw. £>' der zulässigen
Koordinatenfunktionen in die entsprechenden invarianten Teilräume
aufspalten, d. h. von den Koordinatenfunktionen jeweils dieselben
Symmetrieeigenschaften fordern, welche der gesuchten Eigenfunktion

zukommen.

Diese Arbeit ist in der Hauptsache bei der Vorbereitung und
Durchführung numerischer Berechnungen von Bindungsenergien
und Streuphasen entstanden, welche leider wegen der augenblicklichen

Unsicherheit in den Kraftansätzen eingestellt werden mussten.
Der Anwendungsbereich der hier geschilderten Methoden geht aber
sicher weit über diese speziellen Anwendungen hinaus.

Herrn Prof. Dr. Paul Scherrer möchte ich für die Unterstützung

und Förderung dieser Arbeit herzlich danken. Ausserdem bin
ich Herrn Alfred Aeppli, dipi. math. ETH., für die kritische Durchsicht

des ersten Entwurfes zu Dank verpflichtet.
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